Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / firewire / core-device.c
blobf9e3aee6a2113031a8df272eacdf024c504ba27e
1 /*
2 * Device probing and sysfs code.
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
45 #include "core.h"
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
52 EXPORT_SYMBOL(fw_csr_iterator_init);
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
59 return ci->p++ < ci->end;
61 EXPORT_SYMBOL(fw_csr_iterator_next);
63 static const u32 *search_leaf(const u32 *directory, int search_key)
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
74 last_key = key;
77 return NULL;
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
82 unsigned int quadlets, i;
83 char c;
85 if (!size || !buf)
86 return -EINVAL;
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
104 buf[i] = '\0';
106 return i;
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * An overlong string is silently truncated such that it and the
119 * zero byte fit into @size.
121 * Returns strlen(buf) or a negative error code.
123 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
125 const u32 *leaf = search_leaf(directory, key);
126 if (!leaf)
127 return -ENOENT;
129 return textual_leaf_to_string(leaf, buf, size);
131 EXPORT_SYMBOL(fw_csr_string);
133 static void get_ids(const u32 *directory, int *id)
135 struct fw_csr_iterator ci;
136 int key, value;
138 fw_csr_iterator_init(&ci, directory);
139 while (fw_csr_iterator_next(&ci, &key, &value)) {
140 switch (key) {
141 case CSR_VENDOR: id[0] = value; break;
142 case CSR_MODEL: id[1] = value; break;
143 case CSR_SPECIFIER_ID: id[2] = value; break;
144 case CSR_VERSION: id[3] = value; break;
149 static void get_modalias_ids(struct fw_unit *unit, int *id)
151 get_ids(&fw_parent_device(unit)->config_rom[5], id);
152 get_ids(unit->directory, id);
155 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
157 int match = 0;
159 if (id[0] == id_table->vendor_id)
160 match |= IEEE1394_MATCH_VENDOR_ID;
161 if (id[1] == id_table->model_id)
162 match |= IEEE1394_MATCH_MODEL_ID;
163 if (id[2] == id_table->specifier_id)
164 match |= IEEE1394_MATCH_SPECIFIER_ID;
165 if (id[3] == id_table->version)
166 match |= IEEE1394_MATCH_VERSION;
168 return (match & id_table->match_flags) == id_table->match_flags;
171 static const struct ieee1394_device_id *unit_match(struct device *dev,
172 struct device_driver *drv)
174 const struct ieee1394_device_id *id_table =
175 container_of(drv, struct fw_driver, driver)->id_table;
176 int id[] = {0, 0, 0, 0};
178 get_modalias_ids(fw_unit(dev), id);
180 for (; id_table->match_flags != 0; id_table++)
181 if (match_ids(id_table, id))
182 return id_table;
184 return NULL;
187 static bool is_fw_unit(struct device *dev);
189 static int fw_unit_match(struct device *dev, struct device_driver *drv)
191 /* We only allow binding to fw_units. */
192 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
195 static int fw_unit_probe(struct device *dev)
197 struct fw_driver *driver =
198 container_of(dev->driver, struct fw_driver, driver);
200 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
203 static int fw_unit_remove(struct device *dev)
205 struct fw_driver *driver =
206 container_of(dev->driver, struct fw_driver, driver);
208 return driver->remove(fw_unit(dev)), 0;
211 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
213 int id[] = {0, 0, 0, 0};
215 get_modalias_ids(unit, id);
217 return snprintf(buffer, buffer_size,
218 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
219 id[0], id[1], id[2], id[3]);
222 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
224 struct fw_unit *unit = fw_unit(dev);
225 char modalias[64];
227 get_modalias(unit, modalias, sizeof(modalias));
229 if (add_uevent_var(env, "MODALIAS=%s", modalias))
230 return -ENOMEM;
232 return 0;
235 struct bus_type fw_bus_type = {
236 .name = "firewire",
237 .match = fw_unit_match,
238 .probe = fw_unit_probe,
239 .remove = fw_unit_remove,
241 EXPORT_SYMBOL(fw_bus_type);
243 int fw_device_enable_phys_dma(struct fw_device *device)
245 int generation = device->generation;
247 /* device->node_id, accessed below, must not be older than generation */
248 smp_rmb();
250 return device->card->driver->enable_phys_dma(device->card,
251 device->node_id,
252 generation);
254 EXPORT_SYMBOL(fw_device_enable_phys_dma);
256 struct config_rom_attribute {
257 struct device_attribute attr;
258 u32 key;
261 static ssize_t show_immediate(struct device *dev,
262 struct device_attribute *dattr, char *buf)
264 struct config_rom_attribute *attr =
265 container_of(dattr, struct config_rom_attribute, attr);
266 struct fw_csr_iterator ci;
267 const u32 *dir;
268 int key, value, ret = -ENOENT;
270 down_read(&fw_device_rwsem);
272 if (is_fw_unit(dev))
273 dir = fw_unit(dev)->directory;
274 else
275 dir = fw_device(dev)->config_rom + 5;
277 fw_csr_iterator_init(&ci, dir);
278 while (fw_csr_iterator_next(&ci, &key, &value))
279 if (attr->key == key) {
280 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
281 "0x%06x\n", value);
282 break;
285 up_read(&fw_device_rwsem);
287 return ret;
290 #define IMMEDIATE_ATTR(name, key) \
291 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
293 static ssize_t show_text_leaf(struct device *dev,
294 struct device_attribute *dattr, char *buf)
296 struct config_rom_attribute *attr =
297 container_of(dattr, struct config_rom_attribute, attr);
298 const u32 *dir;
299 size_t bufsize;
300 char dummy_buf[2];
301 int ret;
303 down_read(&fw_device_rwsem);
305 if (is_fw_unit(dev))
306 dir = fw_unit(dev)->directory;
307 else
308 dir = fw_device(dev)->config_rom + 5;
310 if (buf) {
311 bufsize = PAGE_SIZE - 1;
312 } else {
313 buf = dummy_buf;
314 bufsize = 1;
317 ret = fw_csr_string(dir, attr->key, buf, bufsize);
319 if (ret >= 0) {
320 /* Strip trailing whitespace and add newline. */
321 while (ret > 0 && isspace(buf[ret - 1]))
322 ret--;
323 strcpy(buf + ret, "\n");
324 ret++;
327 up_read(&fw_device_rwsem);
329 return ret;
332 #define TEXT_LEAF_ATTR(name, key) \
333 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
335 static struct config_rom_attribute config_rom_attributes[] = {
336 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
337 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
338 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
339 IMMEDIATE_ATTR(version, CSR_VERSION),
340 IMMEDIATE_ATTR(model, CSR_MODEL),
341 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
342 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
343 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
346 static void init_fw_attribute_group(struct device *dev,
347 struct device_attribute *attrs,
348 struct fw_attribute_group *group)
350 struct device_attribute *attr;
351 int i, j;
353 for (j = 0; attrs[j].attr.name != NULL; j++)
354 group->attrs[j] = &attrs[j].attr;
356 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
357 attr = &config_rom_attributes[i].attr;
358 if (attr->show(dev, attr, NULL) < 0)
359 continue;
360 group->attrs[j++] = &attr->attr;
363 group->attrs[j] = NULL;
364 group->groups[0] = &group->group;
365 group->groups[1] = NULL;
366 group->group.attrs = group->attrs;
367 dev->groups = (const struct attribute_group **) group->groups;
370 static ssize_t modalias_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
373 struct fw_unit *unit = fw_unit(dev);
374 int length;
376 length = get_modalias(unit, buf, PAGE_SIZE);
377 strcpy(buf + length, "\n");
379 return length + 1;
382 static ssize_t rom_index_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
385 struct fw_device *device = fw_device(dev->parent);
386 struct fw_unit *unit = fw_unit(dev);
388 return snprintf(buf, PAGE_SIZE, "%d\n",
389 (int)(unit->directory - device->config_rom));
392 static struct device_attribute fw_unit_attributes[] = {
393 __ATTR_RO(modalias),
394 __ATTR_RO(rom_index),
395 __ATTR_NULL,
398 static ssize_t config_rom_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
401 struct fw_device *device = fw_device(dev);
402 size_t length;
404 down_read(&fw_device_rwsem);
405 length = device->config_rom_length * 4;
406 memcpy(buf, device->config_rom, length);
407 up_read(&fw_device_rwsem);
409 return length;
412 static ssize_t guid_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
415 struct fw_device *device = fw_device(dev);
416 int ret;
418 down_read(&fw_device_rwsem);
419 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
420 device->config_rom[3], device->config_rom[4]);
421 up_read(&fw_device_rwsem);
423 return ret;
426 static ssize_t is_local_show(struct device *dev,
427 struct device_attribute *attr, char *buf)
429 struct fw_device *device = fw_device(dev);
431 return sprintf(buf, "%u\n", device->is_local);
434 static int units_sprintf(char *buf, const u32 *directory)
436 struct fw_csr_iterator ci;
437 int key, value;
438 int specifier_id = 0;
439 int version = 0;
441 fw_csr_iterator_init(&ci, directory);
442 while (fw_csr_iterator_next(&ci, &key, &value)) {
443 switch (key) {
444 case CSR_SPECIFIER_ID:
445 specifier_id = value;
446 break;
447 case CSR_VERSION:
448 version = value;
449 break;
453 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
456 static ssize_t units_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
459 struct fw_device *device = fw_device(dev);
460 struct fw_csr_iterator ci;
461 int key, value, i = 0;
463 down_read(&fw_device_rwsem);
464 fw_csr_iterator_init(&ci, &device->config_rom[5]);
465 while (fw_csr_iterator_next(&ci, &key, &value)) {
466 if (key != (CSR_UNIT | CSR_DIRECTORY))
467 continue;
468 i += units_sprintf(&buf[i], ci.p + value - 1);
469 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
470 break;
472 up_read(&fw_device_rwsem);
474 if (i)
475 buf[i - 1] = '\n';
477 return i;
480 static struct device_attribute fw_device_attributes[] = {
481 __ATTR_RO(config_rom),
482 __ATTR_RO(guid),
483 __ATTR_RO(is_local),
484 __ATTR_RO(units),
485 __ATTR_NULL,
488 static int read_rom(struct fw_device *device,
489 int generation, int index, u32 *data)
491 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
492 int i, rcode;
494 /* device->node_id, accessed below, must not be older than generation */
495 smp_rmb();
497 for (i = 10; i < 100; i += 10) {
498 rcode = fw_run_transaction(device->card,
499 TCODE_READ_QUADLET_REQUEST, device->node_id,
500 generation, device->max_speed, offset, data, 4);
501 if (rcode != RCODE_BUSY)
502 break;
503 msleep(i);
505 be32_to_cpus(data);
507 return rcode;
510 #define MAX_CONFIG_ROM_SIZE 256
513 * Read the bus info block, perform a speed probe, and read all of the rest of
514 * the config ROM. We do all this with a cached bus generation. If the bus
515 * generation changes under us, read_config_rom will fail and get retried.
516 * It's better to start all over in this case because the node from which we
517 * are reading the ROM may have changed the ROM during the reset.
518 * Returns either a result code or a negative error code.
520 static int read_config_rom(struct fw_device *device, int generation)
522 struct fw_card *card = device->card;
523 const u32 *old_rom, *new_rom;
524 u32 *rom, *stack;
525 u32 sp, key;
526 int i, end, length, ret;
528 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
529 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
530 if (rom == NULL)
531 return -ENOMEM;
533 stack = &rom[MAX_CONFIG_ROM_SIZE];
534 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
536 device->max_speed = SCODE_100;
538 /* First read the bus info block. */
539 for (i = 0; i < 5; i++) {
540 ret = read_rom(device, generation, i, &rom[i]);
541 if (ret != RCODE_COMPLETE)
542 goto out;
544 * As per IEEE1212 7.2, during initialization, devices can
545 * reply with a 0 for the first quadlet of the config
546 * rom to indicate that they are booting (for example,
547 * if the firmware is on the disk of a external
548 * harddisk). In that case we just fail, and the
549 * retry mechanism will try again later.
551 if (i == 0 && rom[i] == 0) {
552 ret = RCODE_BUSY;
553 goto out;
557 device->max_speed = device->node->max_speed;
560 * Determine the speed of
561 * - devices with link speed less than PHY speed,
562 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
563 * - all devices if there are 1394b repeaters.
564 * Note, we cannot use the bus info block's link_spd as starting point
565 * because some buggy firmwares set it lower than necessary and because
566 * 1394-1995 nodes do not have the field.
568 if ((rom[2] & 0x7) < device->max_speed ||
569 device->max_speed == SCODE_BETA ||
570 card->beta_repeaters_present) {
571 u32 dummy;
573 /* for S1600 and S3200 */
574 if (device->max_speed == SCODE_BETA)
575 device->max_speed = card->link_speed;
577 while (device->max_speed > SCODE_100) {
578 if (read_rom(device, generation, 0, &dummy) ==
579 RCODE_COMPLETE)
580 break;
581 device->max_speed--;
586 * Now parse the config rom. The config rom is a recursive
587 * directory structure so we parse it using a stack of
588 * references to the blocks that make up the structure. We
589 * push a reference to the root directory on the stack to
590 * start things off.
592 length = i;
593 sp = 0;
594 stack[sp++] = 0xc0000005;
595 while (sp > 0) {
597 * Pop the next block reference of the stack. The
598 * lower 24 bits is the offset into the config rom,
599 * the upper 8 bits are the type of the reference the
600 * block.
602 key = stack[--sp];
603 i = key & 0xffffff;
604 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
605 ret = -ENXIO;
606 goto out;
609 /* Read header quadlet for the block to get the length. */
610 ret = read_rom(device, generation, i, &rom[i]);
611 if (ret != RCODE_COMPLETE)
612 goto out;
613 end = i + (rom[i] >> 16) + 1;
614 if (end > MAX_CONFIG_ROM_SIZE) {
616 * This block extends outside the config ROM which is
617 * a firmware bug. Ignore this whole block, i.e.
618 * simply set a fake block length of 0.
620 fw_err(card, "skipped invalid ROM block %x at %llx\n",
621 rom[i],
622 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
623 rom[i] = 0;
624 end = i;
626 i++;
629 * Now read in the block. If this is a directory
630 * block, check the entries as we read them to see if
631 * it references another block, and push it in that case.
633 for (; i < end; i++) {
634 ret = read_rom(device, generation, i, &rom[i]);
635 if (ret != RCODE_COMPLETE)
636 goto out;
638 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
639 continue;
641 * Offset points outside the ROM. May be a firmware
642 * bug or an Extended ROM entry (IEEE 1212-2001 clause
643 * 7.7.18). Simply overwrite this pointer here by a
644 * fake immediate entry so that later iterators over
645 * the ROM don't have to check offsets all the time.
647 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
648 fw_err(card,
649 "skipped unsupported ROM entry %x at %llx\n",
650 rom[i],
651 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
652 rom[i] = 0;
653 continue;
655 stack[sp++] = i + rom[i];
657 if (length < i)
658 length = i;
661 old_rom = device->config_rom;
662 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
663 if (new_rom == NULL) {
664 ret = -ENOMEM;
665 goto out;
668 down_write(&fw_device_rwsem);
669 device->config_rom = new_rom;
670 device->config_rom_length = length;
671 up_write(&fw_device_rwsem);
673 kfree(old_rom);
674 ret = RCODE_COMPLETE;
675 device->max_rec = rom[2] >> 12 & 0xf;
676 device->cmc = rom[2] >> 30 & 1;
677 device->irmc = rom[2] >> 31 & 1;
678 out:
679 kfree(rom);
681 return ret;
684 static void fw_unit_release(struct device *dev)
686 struct fw_unit *unit = fw_unit(dev);
688 fw_device_put(fw_parent_device(unit));
689 kfree(unit);
692 static struct device_type fw_unit_type = {
693 .uevent = fw_unit_uevent,
694 .release = fw_unit_release,
697 static bool is_fw_unit(struct device *dev)
699 return dev->type == &fw_unit_type;
702 static void create_units(struct fw_device *device)
704 struct fw_csr_iterator ci;
705 struct fw_unit *unit;
706 int key, value, i;
708 i = 0;
709 fw_csr_iterator_init(&ci, &device->config_rom[5]);
710 while (fw_csr_iterator_next(&ci, &key, &value)) {
711 if (key != (CSR_UNIT | CSR_DIRECTORY))
712 continue;
715 * Get the address of the unit directory and try to
716 * match the drivers id_tables against it.
718 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
719 if (unit == NULL)
720 continue;
722 unit->directory = ci.p + value - 1;
723 unit->device.bus = &fw_bus_type;
724 unit->device.type = &fw_unit_type;
725 unit->device.parent = &device->device;
726 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
728 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
729 ARRAY_SIZE(fw_unit_attributes) +
730 ARRAY_SIZE(config_rom_attributes));
731 init_fw_attribute_group(&unit->device,
732 fw_unit_attributes,
733 &unit->attribute_group);
735 if (device_register(&unit->device) < 0)
736 goto skip_unit;
738 fw_device_get(device);
739 continue;
741 skip_unit:
742 kfree(unit);
746 static int shutdown_unit(struct device *device, void *data)
748 device_unregister(device);
750 return 0;
754 * fw_device_rwsem acts as dual purpose mutex:
755 * - serializes accesses to fw_device_idr,
756 * - serializes accesses to fw_device.config_rom/.config_rom_length and
757 * fw_unit.directory, unless those accesses happen at safe occasions
759 DECLARE_RWSEM(fw_device_rwsem);
761 DEFINE_IDR(fw_device_idr);
762 int fw_cdev_major;
764 struct fw_device *fw_device_get_by_devt(dev_t devt)
766 struct fw_device *device;
768 down_read(&fw_device_rwsem);
769 device = idr_find(&fw_device_idr, MINOR(devt));
770 if (device)
771 fw_device_get(device);
772 up_read(&fw_device_rwsem);
774 return device;
777 struct workqueue_struct *fw_workqueue;
778 EXPORT_SYMBOL(fw_workqueue);
780 static void fw_schedule_device_work(struct fw_device *device,
781 unsigned long delay)
783 queue_delayed_work(fw_workqueue, &device->work, delay);
787 * These defines control the retry behavior for reading the config
788 * rom. It shouldn't be necessary to tweak these; if the device
789 * doesn't respond to a config rom read within 10 seconds, it's not
790 * going to respond at all. As for the initial delay, a lot of
791 * devices will be able to respond within half a second after bus
792 * reset. On the other hand, it's not really worth being more
793 * aggressive than that, since it scales pretty well; if 10 devices
794 * are plugged in, they're all getting read within one second.
797 #define MAX_RETRIES 10
798 #define RETRY_DELAY (3 * HZ)
799 #define INITIAL_DELAY (HZ / 2)
800 #define SHUTDOWN_DELAY (2 * HZ)
802 static void fw_device_shutdown(struct work_struct *work)
804 struct fw_device *device =
805 container_of(work, struct fw_device, work.work);
806 int minor = MINOR(device->device.devt);
808 if (time_before64(get_jiffies_64(),
809 device->card->reset_jiffies + SHUTDOWN_DELAY)
810 && !list_empty(&device->card->link)) {
811 fw_schedule_device_work(device, SHUTDOWN_DELAY);
812 return;
815 if (atomic_cmpxchg(&device->state,
816 FW_DEVICE_GONE,
817 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
818 return;
820 fw_device_cdev_remove(device);
821 device_for_each_child(&device->device, NULL, shutdown_unit);
822 device_unregister(&device->device);
824 down_write(&fw_device_rwsem);
825 idr_remove(&fw_device_idr, minor);
826 up_write(&fw_device_rwsem);
828 fw_device_put(device);
831 static void fw_device_release(struct device *dev)
833 struct fw_device *device = fw_device(dev);
834 struct fw_card *card = device->card;
835 unsigned long flags;
838 * Take the card lock so we don't set this to NULL while a
839 * FW_NODE_UPDATED callback is being handled or while the
840 * bus manager work looks at this node.
842 spin_lock_irqsave(&card->lock, flags);
843 device->node->data = NULL;
844 spin_unlock_irqrestore(&card->lock, flags);
846 fw_node_put(device->node);
847 kfree(device->config_rom);
848 kfree(device);
849 fw_card_put(card);
852 static struct device_type fw_device_type = {
853 .release = fw_device_release,
856 static bool is_fw_device(struct device *dev)
858 return dev->type == &fw_device_type;
861 static int update_unit(struct device *dev, void *data)
863 struct fw_unit *unit = fw_unit(dev);
864 struct fw_driver *driver = (struct fw_driver *)dev->driver;
866 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
867 device_lock(dev);
868 driver->update(unit);
869 device_unlock(dev);
872 return 0;
875 static void fw_device_update(struct work_struct *work)
877 struct fw_device *device =
878 container_of(work, struct fw_device, work.work);
880 fw_device_cdev_update(device);
881 device_for_each_child(&device->device, NULL, update_unit);
885 * If a device was pending for deletion because its node went away but its
886 * bus info block and root directory header matches that of a newly discovered
887 * device, revive the existing fw_device.
888 * The newly allocated fw_device becomes obsolete instead.
890 static int lookup_existing_device(struct device *dev, void *data)
892 struct fw_device *old = fw_device(dev);
893 struct fw_device *new = data;
894 struct fw_card *card = new->card;
895 int match = 0;
897 if (!is_fw_device(dev))
898 return 0;
900 down_read(&fw_device_rwsem); /* serialize config_rom access */
901 spin_lock_irq(&card->lock); /* serialize node access */
903 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
904 atomic_cmpxchg(&old->state,
905 FW_DEVICE_GONE,
906 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
907 struct fw_node *current_node = new->node;
908 struct fw_node *obsolete_node = old->node;
910 new->node = obsolete_node;
911 new->node->data = new;
912 old->node = current_node;
913 old->node->data = old;
915 old->max_speed = new->max_speed;
916 old->node_id = current_node->node_id;
917 smp_wmb(); /* update node_id before generation */
918 old->generation = card->generation;
919 old->config_rom_retries = 0;
920 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
922 old->workfn = fw_device_update;
923 fw_schedule_device_work(old, 0);
925 if (current_node == card->root_node)
926 fw_schedule_bm_work(card, 0);
928 match = 1;
931 spin_unlock_irq(&card->lock);
932 up_read(&fw_device_rwsem);
934 return match;
937 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
939 static void set_broadcast_channel(struct fw_device *device, int generation)
941 struct fw_card *card = device->card;
942 __be32 data;
943 int rcode;
945 if (!card->broadcast_channel_allocated)
946 return;
949 * The Broadcast_Channel Valid bit is required by nodes which want to
950 * transmit on this channel. Such transmissions are practically
951 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
952 * to be IRM capable and have a max_rec of 8 or more. We use this fact
953 * to narrow down to which nodes we send Broadcast_Channel updates.
955 if (!device->irmc || device->max_rec < 8)
956 return;
959 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
960 * Perform a read test first.
962 if (device->bc_implemented == BC_UNKNOWN) {
963 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
964 device->node_id, generation, device->max_speed,
965 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
966 &data, 4);
967 switch (rcode) {
968 case RCODE_COMPLETE:
969 if (data & cpu_to_be32(1 << 31)) {
970 device->bc_implemented = BC_IMPLEMENTED;
971 break;
973 /* else fall through to case address error */
974 case RCODE_ADDRESS_ERROR:
975 device->bc_implemented = BC_UNIMPLEMENTED;
979 if (device->bc_implemented == BC_IMPLEMENTED) {
980 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
981 BROADCAST_CHANNEL_VALID);
982 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
983 device->node_id, generation, device->max_speed,
984 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
985 &data, 4);
989 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
991 if (is_fw_device(dev))
992 set_broadcast_channel(fw_device(dev), (long)gen);
994 return 0;
997 static void fw_device_init(struct work_struct *work)
999 struct fw_device *device =
1000 container_of(work, struct fw_device, work.work);
1001 struct fw_card *card = device->card;
1002 struct device *revived_dev;
1003 int minor, ret;
1006 * All failure paths here set node->data to NULL, so that we
1007 * don't try to do device_for_each_child() on a kfree()'d
1008 * device.
1011 ret = read_config_rom(device, device->generation);
1012 if (ret != RCODE_COMPLETE) {
1013 if (device->config_rom_retries < MAX_RETRIES &&
1014 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1015 device->config_rom_retries++;
1016 fw_schedule_device_work(device, RETRY_DELAY);
1017 } else {
1018 if (device->node->link_on)
1019 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1020 device->node_id,
1021 fw_rcode_string(ret));
1022 if (device->node == card->root_node)
1023 fw_schedule_bm_work(card, 0);
1024 fw_device_release(&device->device);
1026 return;
1029 revived_dev = device_find_child(card->device,
1030 device, lookup_existing_device);
1031 if (revived_dev) {
1032 put_device(revived_dev);
1033 fw_device_release(&device->device);
1035 return;
1038 device_initialize(&device->device);
1040 fw_device_get(device);
1041 down_write(&fw_device_rwsem);
1042 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1043 GFP_KERNEL);
1044 up_write(&fw_device_rwsem);
1046 if (minor < 0)
1047 goto error;
1049 device->device.bus = &fw_bus_type;
1050 device->device.type = &fw_device_type;
1051 device->device.parent = card->device;
1052 device->device.devt = MKDEV(fw_cdev_major, minor);
1053 dev_set_name(&device->device, "fw%d", minor);
1055 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1056 ARRAY_SIZE(fw_device_attributes) +
1057 ARRAY_SIZE(config_rom_attributes));
1058 init_fw_attribute_group(&device->device,
1059 fw_device_attributes,
1060 &device->attribute_group);
1062 if (device_add(&device->device)) {
1063 fw_err(card, "failed to add device\n");
1064 goto error_with_cdev;
1067 create_units(device);
1070 * Transition the device to running state. If it got pulled
1071 * out from under us while we did the intialization work, we
1072 * have to shut down the device again here. Normally, though,
1073 * fw_node_event will be responsible for shutting it down when
1074 * necessary. We have to use the atomic cmpxchg here to avoid
1075 * racing with the FW_NODE_DESTROYED case in
1076 * fw_node_event().
1078 if (atomic_cmpxchg(&device->state,
1079 FW_DEVICE_INITIALIZING,
1080 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1081 device->workfn = fw_device_shutdown;
1082 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1083 } else {
1084 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1085 dev_name(&device->device),
1086 device->config_rom[3], device->config_rom[4],
1087 1 << device->max_speed);
1088 device->config_rom_retries = 0;
1090 set_broadcast_channel(device, device->generation);
1092 add_device_randomness(&device->config_rom[3], 8);
1096 * Reschedule the IRM work if we just finished reading the
1097 * root node config rom. If this races with a bus reset we
1098 * just end up running the IRM work a couple of extra times -
1099 * pretty harmless.
1101 if (device->node == card->root_node)
1102 fw_schedule_bm_work(card, 0);
1104 return;
1106 error_with_cdev:
1107 down_write(&fw_device_rwsem);
1108 idr_remove(&fw_device_idr, minor);
1109 up_write(&fw_device_rwsem);
1110 error:
1111 fw_device_put(device); /* fw_device_idr's reference */
1113 put_device(&device->device); /* our reference */
1116 /* Reread and compare bus info block and header of root directory */
1117 static int reread_config_rom(struct fw_device *device, int generation,
1118 bool *changed)
1120 u32 q;
1121 int i, rcode;
1123 for (i = 0; i < 6; i++) {
1124 rcode = read_rom(device, generation, i, &q);
1125 if (rcode != RCODE_COMPLETE)
1126 return rcode;
1128 if (i == 0 && q == 0)
1129 /* inaccessible (see read_config_rom); retry later */
1130 return RCODE_BUSY;
1132 if (q != device->config_rom[i]) {
1133 *changed = true;
1134 return RCODE_COMPLETE;
1138 *changed = false;
1139 return RCODE_COMPLETE;
1142 static void fw_device_refresh(struct work_struct *work)
1144 struct fw_device *device =
1145 container_of(work, struct fw_device, work.work);
1146 struct fw_card *card = device->card;
1147 int ret, node_id = device->node_id;
1148 bool changed;
1150 ret = reread_config_rom(device, device->generation, &changed);
1151 if (ret != RCODE_COMPLETE)
1152 goto failed_config_rom;
1154 if (!changed) {
1155 if (atomic_cmpxchg(&device->state,
1156 FW_DEVICE_INITIALIZING,
1157 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1158 goto gone;
1160 fw_device_update(work);
1161 device->config_rom_retries = 0;
1162 goto out;
1166 * Something changed. We keep things simple and don't investigate
1167 * further. We just destroy all previous units and create new ones.
1169 device_for_each_child(&device->device, NULL, shutdown_unit);
1171 ret = read_config_rom(device, device->generation);
1172 if (ret != RCODE_COMPLETE)
1173 goto failed_config_rom;
1175 fw_device_cdev_update(device);
1176 create_units(device);
1178 /* Userspace may want to re-read attributes. */
1179 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1181 if (atomic_cmpxchg(&device->state,
1182 FW_DEVICE_INITIALIZING,
1183 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1184 goto gone;
1186 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1187 device->config_rom_retries = 0;
1188 goto out;
1190 failed_config_rom:
1191 if (device->config_rom_retries < MAX_RETRIES &&
1192 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1193 device->config_rom_retries++;
1194 fw_schedule_device_work(device, RETRY_DELAY);
1195 return;
1198 fw_notice(card, "giving up on refresh of device %s: %s\n",
1199 dev_name(&device->device), fw_rcode_string(ret));
1200 gone:
1201 atomic_set(&device->state, FW_DEVICE_GONE);
1202 device->workfn = fw_device_shutdown;
1203 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1204 out:
1205 if (node_id == card->root_node->node_id)
1206 fw_schedule_bm_work(card, 0);
1209 static void fw_device_workfn(struct work_struct *work)
1211 struct fw_device *device = container_of(to_delayed_work(work),
1212 struct fw_device, work);
1213 device->workfn(work);
1216 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1218 struct fw_device *device;
1220 switch (event) {
1221 case FW_NODE_CREATED:
1223 * Attempt to scan the node, regardless whether its self ID has
1224 * the L (link active) flag set or not. Some broken devices
1225 * send L=0 but have an up-and-running link; others send L=1
1226 * without actually having a link.
1228 create:
1229 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1230 if (device == NULL)
1231 break;
1234 * Do minimal intialization of the device here, the
1235 * rest will happen in fw_device_init().
1237 * Attention: A lot of things, even fw_device_get(),
1238 * cannot be done before fw_device_init() finished!
1239 * You can basically just check device->state and
1240 * schedule work until then, but only while holding
1241 * card->lock.
1243 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1244 device->card = fw_card_get(card);
1245 device->node = fw_node_get(node);
1246 device->node_id = node->node_id;
1247 device->generation = card->generation;
1248 device->is_local = node == card->local_node;
1249 mutex_init(&device->client_list_mutex);
1250 INIT_LIST_HEAD(&device->client_list);
1253 * Set the node data to point back to this device so
1254 * FW_NODE_UPDATED callbacks can update the node_id
1255 * and generation for the device.
1257 node->data = device;
1260 * Many devices are slow to respond after bus resets,
1261 * especially if they are bus powered and go through
1262 * power-up after getting plugged in. We schedule the
1263 * first config rom scan half a second after bus reset.
1265 device->workfn = fw_device_init;
1266 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1267 fw_schedule_device_work(device, INITIAL_DELAY);
1268 break;
1270 case FW_NODE_INITIATED_RESET:
1271 case FW_NODE_LINK_ON:
1272 device = node->data;
1273 if (device == NULL)
1274 goto create;
1276 device->node_id = node->node_id;
1277 smp_wmb(); /* update node_id before generation */
1278 device->generation = card->generation;
1279 if (atomic_cmpxchg(&device->state,
1280 FW_DEVICE_RUNNING,
1281 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1282 device->workfn = fw_device_refresh;
1283 fw_schedule_device_work(device,
1284 device->is_local ? 0 : INITIAL_DELAY);
1286 break;
1288 case FW_NODE_UPDATED:
1289 device = node->data;
1290 if (device == NULL)
1291 break;
1293 device->node_id = node->node_id;
1294 smp_wmb(); /* update node_id before generation */
1295 device->generation = card->generation;
1296 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1297 device->workfn = fw_device_update;
1298 fw_schedule_device_work(device, 0);
1300 break;
1302 case FW_NODE_DESTROYED:
1303 case FW_NODE_LINK_OFF:
1304 if (!node->data)
1305 break;
1308 * Destroy the device associated with the node. There
1309 * are two cases here: either the device is fully
1310 * initialized (FW_DEVICE_RUNNING) or we're in the
1311 * process of reading its config rom
1312 * (FW_DEVICE_INITIALIZING). If it is fully
1313 * initialized we can reuse device->work to schedule a
1314 * full fw_device_shutdown(). If not, there's work
1315 * scheduled to read it's config rom, and we just put
1316 * the device in shutdown state to have that code fail
1317 * to create the device.
1319 device = node->data;
1320 if (atomic_xchg(&device->state,
1321 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1322 device->workfn = fw_device_shutdown;
1323 fw_schedule_device_work(device,
1324 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1326 break;