Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / irqchip / irq-gic-v3-its.c
blobe23d1d18f9d6a39731bdd34633e2bbc9bc473525
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/bitmap.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/log2.h>
23 #include <linux/mm.h>
24 #include <linux/msi.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_pci.h>
29 #include <linux/of_platform.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
40 #include "irq-gic-common.h"
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
45 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
48 * Collection structure - just an ID, and a redistributor address to
49 * ping. We use one per CPU as a bag of interrupts assigned to this
50 * CPU.
52 struct its_collection {
53 u64 target_address;
54 u16 col_id;
58 * The ITS structure - contains most of the infrastructure, with the
59 * top-level MSI domain, the command queue, the collections, and the
60 * list of devices writing to it.
62 struct its_node {
63 raw_spinlock_t lock;
64 struct list_head entry;
65 void __iomem *base;
66 unsigned long phys_base;
67 struct its_cmd_block *cmd_base;
68 struct its_cmd_block *cmd_write;
69 void *tables[GITS_BASER_NR_REGS];
70 struct its_collection *collections;
71 struct list_head its_device_list;
72 u64 flags;
73 u32 ite_size;
76 #define ITS_ITT_ALIGN SZ_256
78 struct event_lpi_map {
79 unsigned long *lpi_map;
80 u16 *col_map;
81 irq_hw_number_t lpi_base;
82 int nr_lpis;
86 * The ITS view of a device - belongs to an ITS, a collection, owns an
87 * interrupt translation table, and a list of interrupts.
89 struct its_device {
90 struct list_head entry;
91 struct its_node *its;
92 struct event_lpi_map event_map;
93 void *itt;
94 u32 nr_ites;
95 u32 device_id;
98 static LIST_HEAD(its_nodes);
99 static DEFINE_SPINLOCK(its_lock);
100 static struct device_node *gic_root_node;
101 static struct rdists *gic_rdists;
103 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
104 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
106 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
107 u32 event)
109 struct its_node *its = its_dev->its;
111 return its->collections + its_dev->event_map.col_map[event];
115 * ITS command descriptors - parameters to be encoded in a command
116 * block.
118 struct its_cmd_desc {
119 union {
120 struct {
121 struct its_device *dev;
122 u32 event_id;
123 } its_inv_cmd;
125 struct {
126 struct its_device *dev;
127 u32 event_id;
128 } its_int_cmd;
130 struct {
131 struct its_device *dev;
132 int valid;
133 } its_mapd_cmd;
135 struct {
136 struct its_collection *col;
137 int valid;
138 } its_mapc_cmd;
140 struct {
141 struct its_device *dev;
142 u32 phys_id;
143 u32 event_id;
144 } its_mapvi_cmd;
146 struct {
147 struct its_device *dev;
148 struct its_collection *col;
149 u32 event_id;
150 } its_movi_cmd;
152 struct {
153 struct its_device *dev;
154 u32 event_id;
155 } its_discard_cmd;
157 struct {
158 struct its_collection *col;
159 } its_invall_cmd;
164 * The ITS command block, which is what the ITS actually parses.
166 struct its_cmd_block {
167 u64 raw_cmd[4];
170 #define ITS_CMD_QUEUE_SZ SZ_64K
171 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
173 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
174 struct its_cmd_desc *);
176 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
178 cmd->raw_cmd[0] &= ~0xffUL;
179 cmd->raw_cmd[0] |= cmd_nr;
182 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
184 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
185 cmd->raw_cmd[0] |= ((u64)devid) << 32;
188 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
190 cmd->raw_cmd[1] &= ~0xffffffffUL;
191 cmd->raw_cmd[1] |= id;
194 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
196 cmd->raw_cmd[1] &= 0xffffffffUL;
197 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
200 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
202 cmd->raw_cmd[1] &= ~0x1fUL;
203 cmd->raw_cmd[1] |= size & 0x1f;
206 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
208 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
209 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
212 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
214 cmd->raw_cmd[2] &= ~(1UL << 63);
215 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
218 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
220 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
221 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
224 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
226 cmd->raw_cmd[2] &= ~0xffffUL;
227 cmd->raw_cmd[2] |= col;
230 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
232 /* Let's fixup BE commands */
233 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
234 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
235 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
236 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
239 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
240 struct its_cmd_desc *desc)
242 unsigned long itt_addr;
243 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
245 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
246 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
248 its_encode_cmd(cmd, GITS_CMD_MAPD);
249 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
250 its_encode_size(cmd, size - 1);
251 its_encode_itt(cmd, itt_addr);
252 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
254 its_fixup_cmd(cmd);
256 return NULL;
259 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
260 struct its_cmd_desc *desc)
262 its_encode_cmd(cmd, GITS_CMD_MAPC);
263 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
264 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
265 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
267 its_fixup_cmd(cmd);
269 return desc->its_mapc_cmd.col;
272 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
273 struct its_cmd_desc *desc)
275 struct its_collection *col;
277 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
278 desc->its_mapvi_cmd.event_id);
280 its_encode_cmd(cmd, GITS_CMD_MAPVI);
281 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
282 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
283 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
284 its_encode_collection(cmd, col->col_id);
286 its_fixup_cmd(cmd);
288 return col;
291 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
292 struct its_cmd_desc *desc)
294 struct its_collection *col;
296 col = dev_event_to_col(desc->its_movi_cmd.dev,
297 desc->its_movi_cmd.event_id);
299 its_encode_cmd(cmd, GITS_CMD_MOVI);
300 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
301 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
302 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
304 its_fixup_cmd(cmd);
306 return col;
309 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
310 struct its_cmd_desc *desc)
312 struct its_collection *col;
314 col = dev_event_to_col(desc->its_discard_cmd.dev,
315 desc->its_discard_cmd.event_id);
317 its_encode_cmd(cmd, GITS_CMD_DISCARD);
318 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
319 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
321 its_fixup_cmd(cmd);
323 return col;
326 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
327 struct its_cmd_desc *desc)
329 struct its_collection *col;
331 col = dev_event_to_col(desc->its_inv_cmd.dev,
332 desc->its_inv_cmd.event_id);
334 its_encode_cmd(cmd, GITS_CMD_INV);
335 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
336 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
338 its_fixup_cmd(cmd);
340 return col;
343 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
344 struct its_cmd_desc *desc)
346 its_encode_cmd(cmd, GITS_CMD_INVALL);
347 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
349 its_fixup_cmd(cmd);
351 return NULL;
354 static u64 its_cmd_ptr_to_offset(struct its_node *its,
355 struct its_cmd_block *ptr)
357 return (ptr - its->cmd_base) * sizeof(*ptr);
360 static int its_queue_full(struct its_node *its)
362 int widx;
363 int ridx;
365 widx = its->cmd_write - its->cmd_base;
366 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
368 /* This is incredibly unlikely to happen, unless the ITS locks up. */
369 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
370 return 1;
372 return 0;
375 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
377 struct its_cmd_block *cmd;
378 u32 count = 1000000; /* 1s! */
380 while (its_queue_full(its)) {
381 count--;
382 if (!count) {
383 pr_err_ratelimited("ITS queue not draining\n");
384 return NULL;
386 cpu_relax();
387 udelay(1);
390 cmd = its->cmd_write++;
392 /* Handle queue wrapping */
393 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
394 its->cmd_write = its->cmd_base;
396 return cmd;
399 static struct its_cmd_block *its_post_commands(struct its_node *its)
401 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
403 writel_relaxed(wr, its->base + GITS_CWRITER);
405 return its->cmd_write;
408 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
411 * Make sure the commands written to memory are observable by
412 * the ITS.
414 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
415 __flush_dcache_area(cmd, sizeof(*cmd));
416 else
417 dsb(ishst);
420 static void its_wait_for_range_completion(struct its_node *its,
421 struct its_cmd_block *from,
422 struct its_cmd_block *to)
424 u64 rd_idx, from_idx, to_idx;
425 u32 count = 1000000; /* 1s! */
427 from_idx = its_cmd_ptr_to_offset(its, from);
428 to_idx = its_cmd_ptr_to_offset(its, to);
430 while (1) {
431 rd_idx = readl_relaxed(its->base + GITS_CREADR);
432 if (rd_idx >= to_idx || rd_idx < from_idx)
433 break;
435 count--;
436 if (!count) {
437 pr_err_ratelimited("ITS queue timeout\n");
438 return;
440 cpu_relax();
441 udelay(1);
445 static void its_send_single_command(struct its_node *its,
446 its_cmd_builder_t builder,
447 struct its_cmd_desc *desc)
449 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
450 struct its_collection *sync_col;
451 unsigned long flags;
453 raw_spin_lock_irqsave(&its->lock, flags);
455 cmd = its_allocate_entry(its);
456 if (!cmd) { /* We're soooooo screewed... */
457 pr_err_ratelimited("ITS can't allocate, dropping command\n");
458 raw_spin_unlock_irqrestore(&its->lock, flags);
459 return;
461 sync_col = builder(cmd, desc);
462 its_flush_cmd(its, cmd);
464 if (sync_col) {
465 sync_cmd = its_allocate_entry(its);
466 if (!sync_cmd) {
467 pr_err_ratelimited("ITS can't SYNC, skipping\n");
468 goto post;
470 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
471 its_encode_target(sync_cmd, sync_col->target_address);
472 its_fixup_cmd(sync_cmd);
473 its_flush_cmd(its, sync_cmd);
476 post:
477 next_cmd = its_post_commands(its);
478 raw_spin_unlock_irqrestore(&its->lock, flags);
480 its_wait_for_range_completion(its, cmd, next_cmd);
483 static void its_send_inv(struct its_device *dev, u32 event_id)
485 struct its_cmd_desc desc;
487 desc.its_inv_cmd.dev = dev;
488 desc.its_inv_cmd.event_id = event_id;
490 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
493 static void its_send_mapd(struct its_device *dev, int valid)
495 struct its_cmd_desc desc;
497 desc.its_mapd_cmd.dev = dev;
498 desc.its_mapd_cmd.valid = !!valid;
500 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
503 static void its_send_mapc(struct its_node *its, struct its_collection *col,
504 int valid)
506 struct its_cmd_desc desc;
508 desc.its_mapc_cmd.col = col;
509 desc.its_mapc_cmd.valid = !!valid;
511 its_send_single_command(its, its_build_mapc_cmd, &desc);
514 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
516 struct its_cmd_desc desc;
518 desc.its_mapvi_cmd.dev = dev;
519 desc.its_mapvi_cmd.phys_id = irq_id;
520 desc.its_mapvi_cmd.event_id = id;
522 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
525 static void its_send_movi(struct its_device *dev,
526 struct its_collection *col, u32 id)
528 struct its_cmd_desc desc;
530 desc.its_movi_cmd.dev = dev;
531 desc.its_movi_cmd.col = col;
532 desc.its_movi_cmd.event_id = id;
534 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
537 static void its_send_discard(struct its_device *dev, u32 id)
539 struct its_cmd_desc desc;
541 desc.its_discard_cmd.dev = dev;
542 desc.its_discard_cmd.event_id = id;
544 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
547 static void its_send_invall(struct its_node *its, struct its_collection *col)
549 struct its_cmd_desc desc;
551 desc.its_invall_cmd.col = col;
553 its_send_single_command(its, its_build_invall_cmd, &desc);
557 * irqchip functions - assumes MSI, mostly.
560 static inline u32 its_get_event_id(struct irq_data *d)
562 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
563 return d->hwirq - its_dev->event_map.lpi_base;
566 static void lpi_set_config(struct irq_data *d, bool enable)
568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
569 irq_hw_number_t hwirq = d->hwirq;
570 u32 id = its_get_event_id(d);
571 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
573 if (enable)
574 *cfg |= LPI_PROP_ENABLED;
575 else
576 *cfg &= ~LPI_PROP_ENABLED;
579 * Make the above write visible to the redistributors.
580 * And yes, we're flushing exactly: One. Single. Byte.
581 * Humpf...
583 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
584 __flush_dcache_area(cfg, sizeof(*cfg));
585 else
586 dsb(ishst);
587 its_send_inv(its_dev, id);
590 static void its_mask_irq(struct irq_data *d)
592 lpi_set_config(d, false);
595 static void its_unmask_irq(struct irq_data *d)
597 lpi_set_config(d, true);
600 static void its_eoi_irq(struct irq_data *d)
602 gic_write_eoir(d->hwirq);
605 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
606 bool force)
608 unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
609 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
610 struct its_collection *target_col;
611 u32 id = its_get_event_id(d);
613 if (cpu >= nr_cpu_ids)
614 return -EINVAL;
616 target_col = &its_dev->its->collections[cpu];
617 its_send_movi(its_dev, target_col, id);
618 its_dev->event_map.col_map[id] = cpu;
620 return IRQ_SET_MASK_OK_DONE;
623 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
625 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 struct its_node *its;
627 u64 addr;
629 its = its_dev->its;
630 addr = its->phys_base + GITS_TRANSLATER;
632 msg->address_lo = addr & ((1UL << 32) - 1);
633 msg->address_hi = addr >> 32;
634 msg->data = its_get_event_id(d);
637 static struct irq_chip its_irq_chip = {
638 .name = "ITS",
639 .irq_mask = its_mask_irq,
640 .irq_unmask = its_unmask_irq,
641 .irq_eoi = its_eoi_irq,
642 .irq_set_affinity = its_set_affinity,
643 .irq_compose_msi_msg = its_irq_compose_msi_msg,
647 * How we allocate LPIs:
649 * The GIC has id_bits bits for interrupt identifiers. From there, we
650 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
651 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
652 * bits to the right.
654 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
656 #define IRQS_PER_CHUNK_SHIFT 5
657 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
659 static unsigned long *lpi_bitmap;
660 static u32 lpi_chunks;
661 static DEFINE_SPINLOCK(lpi_lock);
663 static int its_lpi_to_chunk(int lpi)
665 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
668 static int its_chunk_to_lpi(int chunk)
670 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
673 static int its_lpi_init(u32 id_bits)
675 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
677 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
678 GFP_KERNEL);
679 if (!lpi_bitmap) {
680 lpi_chunks = 0;
681 return -ENOMEM;
684 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
685 return 0;
688 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
690 unsigned long *bitmap = NULL;
691 int chunk_id;
692 int nr_chunks;
693 int i;
695 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
697 spin_lock(&lpi_lock);
699 do {
700 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
701 0, nr_chunks, 0);
702 if (chunk_id < lpi_chunks)
703 break;
705 nr_chunks--;
706 } while (nr_chunks > 0);
708 if (!nr_chunks)
709 goto out;
711 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
712 GFP_ATOMIC);
713 if (!bitmap)
714 goto out;
716 for (i = 0; i < nr_chunks; i++)
717 set_bit(chunk_id + i, lpi_bitmap);
719 *base = its_chunk_to_lpi(chunk_id);
720 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
722 out:
723 spin_unlock(&lpi_lock);
725 if (!bitmap)
726 *base = *nr_ids = 0;
728 return bitmap;
731 static void its_lpi_free(struct event_lpi_map *map)
733 int base = map->lpi_base;
734 int nr_ids = map->nr_lpis;
735 int lpi;
737 spin_lock(&lpi_lock);
739 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
740 int chunk = its_lpi_to_chunk(lpi);
741 BUG_ON(chunk > lpi_chunks);
742 if (test_bit(chunk, lpi_bitmap)) {
743 clear_bit(chunk, lpi_bitmap);
744 } else {
745 pr_err("Bad LPI chunk %d\n", chunk);
749 spin_unlock(&lpi_lock);
751 kfree(map->lpi_map);
752 kfree(map->col_map);
756 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
757 * deal with (one configuration byte per interrupt). PENDBASE has to
758 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
760 #define LPI_PROPBASE_SZ SZ_64K
761 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
764 * This is how many bits of ID we need, including the useless ones.
766 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
768 #define LPI_PROP_DEFAULT_PRIO 0xa0
770 static int __init its_alloc_lpi_tables(void)
772 phys_addr_t paddr;
774 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
775 get_order(LPI_PROPBASE_SZ));
776 if (!gic_rdists->prop_page) {
777 pr_err("Failed to allocate PROPBASE\n");
778 return -ENOMEM;
781 paddr = page_to_phys(gic_rdists->prop_page);
782 pr_info("GIC: using LPI property table @%pa\n", &paddr);
784 /* Priority 0xa0, Group-1, disabled */
785 memset(page_address(gic_rdists->prop_page),
786 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
787 LPI_PROPBASE_SZ);
789 /* Make sure the GIC will observe the written configuration */
790 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
792 return 0;
795 static const char *its_base_type_string[] = {
796 [GITS_BASER_TYPE_DEVICE] = "Devices",
797 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
798 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
799 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
800 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
801 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
802 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
805 static void its_free_tables(struct its_node *its)
807 int i;
809 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
810 if (its->tables[i]) {
811 free_page((unsigned long)its->tables[i]);
812 its->tables[i] = NULL;
817 static int its_alloc_tables(const char *node_name, struct its_node *its)
819 int err;
820 int i;
821 int psz = SZ_64K;
822 u64 shr = GITS_BASER_InnerShareable;
823 u64 cache;
824 u64 typer;
825 u32 ids;
827 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
829 * erratum 22375: only alloc 8MB table size
830 * erratum 24313: ignore memory access type
832 cache = 0;
833 ids = 0x14; /* 20 bits, 8MB */
834 } else {
835 cache = GITS_BASER_WaWb;
836 typer = readq_relaxed(its->base + GITS_TYPER);
837 ids = GITS_TYPER_DEVBITS(typer);
840 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
841 u64 val = readq_relaxed(its->base + GITS_BASER + i * 8);
842 u64 type = GITS_BASER_TYPE(val);
843 u64 entry_size = GITS_BASER_ENTRY_SIZE(val);
844 int order = get_order(psz);
845 int alloc_size;
846 int alloc_pages;
847 u64 tmp;
848 void *base;
850 if (type == GITS_BASER_TYPE_NONE)
851 continue;
854 * Allocate as many entries as required to fit the
855 * range of device IDs that the ITS can grok... The ID
856 * space being incredibly sparse, this results in a
857 * massive waste of memory.
859 * For other tables, only allocate a single page.
861 if (type == GITS_BASER_TYPE_DEVICE) {
863 * 'order' was initialized earlier to the default page
864 * granule of the the ITS. We can't have an allocation
865 * smaller than that. If the requested allocation
866 * is smaller, round up to the default page granule.
868 order = max(get_order((1UL << ids) * entry_size),
869 order);
870 if (order >= MAX_ORDER) {
871 order = MAX_ORDER - 1;
872 pr_warn("%s: Device Table too large, reduce its page order to %u\n",
873 node_name, order);
877 alloc_size = (1 << order) * PAGE_SIZE;
878 alloc_pages = (alloc_size / psz);
879 if (alloc_pages > GITS_BASER_PAGES_MAX) {
880 alloc_pages = GITS_BASER_PAGES_MAX;
881 order = get_order(GITS_BASER_PAGES_MAX * psz);
882 pr_warn("%s: Device Table too large, reduce its page order to %u (%u pages)\n",
883 node_name, order, alloc_pages);
886 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
887 if (!base) {
888 err = -ENOMEM;
889 goto out_free;
892 its->tables[i] = base;
894 retry_baser:
895 val = (virt_to_phys(base) |
896 (type << GITS_BASER_TYPE_SHIFT) |
897 ((entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
898 cache |
899 shr |
900 GITS_BASER_VALID);
902 switch (psz) {
903 case SZ_4K:
904 val |= GITS_BASER_PAGE_SIZE_4K;
905 break;
906 case SZ_16K:
907 val |= GITS_BASER_PAGE_SIZE_16K;
908 break;
909 case SZ_64K:
910 val |= GITS_BASER_PAGE_SIZE_64K;
911 break;
914 val |= alloc_pages - 1;
916 writeq_relaxed(val, its->base + GITS_BASER + i * 8);
917 tmp = readq_relaxed(its->base + GITS_BASER + i * 8);
919 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
921 * Shareability didn't stick. Just use
922 * whatever the read reported, which is likely
923 * to be the only thing this redistributor
924 * supports. If that's zero, make it
925 * non-cacheable as well.
927 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
928 if (!shr) {
929 cache = GITS_BASER_nC;
930 __flush_dcache_area(base, alloc_size);
932 goto retry_baser;
935 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
937 * Page size didn't stick. Let's try a smaller
938 * size and retry. If we reach 4K, then
939 * something is horribly wrong...
941 switch (psz) {
942 case SZ_16K:
943 psz = SZ_4K;
944 goto retry_baser;
945 case SZ_64K:
946 psz = SZ_16K;
947 goto retry_baser;
951 if (val != tmp) {
952 pr_err("ITS: %s: GITS_BASER%d doesn't stick: %lx %lx\n",
953 node_name, i,
954 (unsigned long) val, (unsigned long) tmp);
955 err = -ENXIO;
956 goto out_free;
959 pr_info("ITS: allocated %d %s @%lx (psz %dK, shr %d)\n",
960 (int)(alloc_size / entry_size),
961 its_base_type_string[type],
962 (unsigned long)virt_to_phys(base),
963 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
966 return 0;
968 out_free:
969 its_free_tables(its);
971 return err;
974 static int its_alloc_collections(struct its_node *its)
976 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
977 GFP_KERNEL);
978 if (!its->collections)
979 return -ENOMEM;
981 return 0;
984 static void its_cpu_init_lpis(void)
986 void __iomem *rbase = gic_data_rdist_rd_base();
987 struct page *pend_page;
988 u64 val, tmp;
990 /* If we didn't allocate the pending table yet, do it now */
991 pend_page = gic_data_rdist()->pend_page;
992 if (!pend_page) {
993 phys_addr_t paddr;
995 * The pending pages have to be at least 64kB aligned,
996 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
998 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
999 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1000 if (!pend_page) {
1001 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1002 smp_processor_id());
1003 return;
1006 /* Make sure the GIC will observe the zero-ed page */
1007 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1009 paddr = page_to_phys(pend_page);
1010 pr_info("CPU%d: using LPI pending table @%pa\n",
1011 smp_processor_id(), &paddr);
1012 gic_data_rdist()->pend_page = pend_page;
1015 /* Disable LPIs */
1016 val = readl_relaxed(rbase + GICR_CTLR);
1017 val &= ~GICR_CTLR_ENABLE_LPIS;
1018 writel_relaxed(val, rbase + GICR_CTLR);
1021 * Make sure any change to the table is observable by the GIC.
1023 dsb(sy);
1025 /* set PROPBASE */
1026 val = (page_to_phys(gic_rdists->prop_page) |
1027 GICR_PROPBASER_InnerShareable |
1028 GICR_PROPBASER_WaWb |
1029 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1031 writeq_relaxed(val, rbase + GICR_PROPBASER);
1032 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1034 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1035 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1037 * The HW reports non-shareable, we must
1038 * remove the cacheability attributes as
1039 * well.
1041 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1042 GICR_PROPBASER_CACHEABILITY_MASK);
1043 val |= GICR_PROPBASER_nC;
1044 writeq_relaxed(val, rbase + GICR_PROPBASER);
1046 pr_info_once("GIC: using cache flushing for LPI property table\n");
1047 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1050 /* set PENDBASE */
1051 val = (page_to_phys(pend_page) |
1052 GICR_PENDBASER_InnerShareable |
1053 GICR_PENDBASER_WaWb);
1055 writeq_relaxed(val, rbase + GICR_PENDBASER);
1056 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1058 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1060 * The HW reports non-shareable, we must remove the
1061 * cacheability attributes as well.
1063 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1064 GICR_PENDBASER_CACHEABILITY_MASK);
1065 val |= GICR_PENDBASER_nC;
1066 writeq_relaxed(val, rbase + GICR_PENDBASER);
1069 /* Enable LPIs */
1070 val = readl_relaxed(rbase + GICR_CTLR);
1071 val |= GICR_CTLR_ENABLE_LPIS;
1072 writel_relaxed(val, rbase + GICR_CTLR);
1074 /* Make sure the GIC has seen the above */
1075 dsb(sy);
1078 static void its_cpu_init_collection(void)
1080 struct its_node *its;
1081 int cpu;
1083 spin_lock(&its_lock);
1084 cpu = smp_processor_id();
1086 list_for_each_entry(its, &its_nodes, entry) {
1087 u64 target;
1090 * We now have to bind each collection to its target
1091 * redistributor.
1093 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1095 * This ITS wants the physical address of the
1096 * redistributor.
1098 target = gic_data_rdist()->phys_base;
1099 } else {
1101 * This ITS wants a linear CPU number.
1103 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1104 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1107 /* Perform collection mapping */
1108 its->collections[cpu].target_address = target;
1109 its->collections[cpu].col_id = cpu;
1111 its_send_mapc(its, &its->collections[cpu], 1);
1112 its_send_invall(its, &its->collections[cpu]);
1115 spin_unlock(&its_lock);
1118 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1120 struct its_device *its_dev = NULL, *tmp;
1121 unsigned long flags;
1123 raw_spin_lock_irqsave(&its->lock, flags);
1125 list_for_each_entry(tmp, &its->its_device_list, entry) {
1126 if (tmp->device_id == dev_id) {
1127 its_dev = tmp;
1128 break;
1132 raw_spin_unlock_irqrestore(&its->lock, flags);
1134 return its_dev;
1137 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1138 int nvecs)
1140 struct its_device *dev;
1141 unsigned long *lpi_map;
1142 unsigned long flags;
1143 u16 *col_map = NULL;
1144 void *itt;
1145 int lpi_base;
1146 int nr_lpis;
1147 int nr_ites;
1148 int sz;
1150 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1152 * At least one bit of EventID is being used, hence a minimum
1153 * of two entries. No, the architecture doesn't let you
1154 * express an ITT with a single entry.
1156 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1157 sz = nr_ites * its->ite_size;
1158 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1159 itt = kzalloc(sz, GFP_KERNEL);
1160 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1161 if (lpi_map)
1162 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1164 if (!dev || !itt || !lpi_map || !col_map) {
1165 kfree(dev);
1166 kfree(itt);
1167 kfree(lpi_map);
1168 kfree(col_map);
1169 return NULL;
1172 __flush_dcache_area(itt, sz);
1174 dev->its = its;
1175 dev->itt = itt;
1176 dev->nr_ites = nr_ites;
1177 dev->event_map.lpi_map = lpi_map;
1178 dev->event_map.col_map = col_map;
1179 dev->event_map.lpi_base = lpi_base;
1180 dev->event_map.nr_lpis = nr_lpis;
1181 dev->device_id = dev_id;
1182 INIT_LIST_HEAD(&dev->entry);
1184 raw_spin_lock_irqsave(&its->lock, flags);
1185 list_add(&dev->entry, &its->its_device_list);
1186 raw_spin_unlock_irqrestore(&its->lock, flags);
1188 /* Map device to its ITT */
1189 its_send_mapd(dev, 1);
1191 return dev;
1194 static void its_free_device(struct its_device *its_dev)
1196 unsigned long flags;
1198 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1199 list_del(&its_dev->entry);
1200 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1201 kfree(its_dev->itt);
1202 kfree(its_dev);
1205 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1207 int idx;
1209 idx = find_first_zero_bit(dev->event_map.lpi_map,
1210 dev->event_map.nr_lpis);
1211 if (idx == dev->event_map.nr_lpis)
1212 return -ENOSPC;
1214 *hwirq = dev->event_map.lpi_base + idx;
1215 set_bit(idx, dev->event_map.lpi_map);
1217 return 0;
1220 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1221 int nvec, msi_alloc_info_t *info)
1223 struct its_node *its;
1224 struct its_device *its_dev;
1225 struct msi_domain_info *msi_info;
1226 u32 dev_id;
1229 * We ignore "dev" entierely, and rely on the dev_id that has
1230 * been passed via the scratchpad. This limits this domain's
1231 * usefulness to upper layers that definitely know that they
1232 * are built on top of the ITS.
1234 dev_id = info->scratchpad[0].ul;
1236 msi_info = msi_get_domain_info(domain);
1237 its = msi_info->data;
1239 its_dev = its_find_device(its, dev_id);
1240 if (its_dev) {
1242 * We already have seen this ID, probably through
1243 * another alias (PCI bridge of some sort). No need to
1244 * create the device.
1246 pr_debug("Reusing ITT for devID %x\n", dev_id);
1247 goto out;
1250 its_dev = its_create_device(its, dev_id, nvec);
1251 if (!its_dev)
1252 return -ENOMEM;
1254 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1255 out:
1256 info->scratchpad[0].ptr = its_dev;
1257 return 0;
1260 static struct msi_domain_ops its_msi_domain_ops = {
1261 .msi_prepare = its_msi_prepare,
1264 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1265 unsigned int virq,
1266 irq_hw_number_t hwirq)
1268 struct irq_fwspec fwspec;
1270 if (irq_domain_get_of_node(domain->parent)) {
1271 fwspec.fwnode = domain->parent->fwnode;
1272 fwspec.param_count = 3;
1273 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1274 fwspec.param[1] = hwirq;
1275 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1276 } else {
1277 return -EINVAL;
1280 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1283 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1284 unsigned int nr_irqs, void *args)
1286 msi_alloc_info_t *info = args;
1287 struct its_device *its_dev = info->scratchpad[0].ptr;
1288 irq_hw_number_t hwirq;
1289 int err;
1290 int i;
1292 for (i = 0; i < nr_irqs; i++) {
1293 err = its_alloc_device_irq(its_dev, &hwirq);
1294 if (err)
1295 return err;
1297 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1298 if (err)
1299 return err;
1301 irq_domain_set_hwirq_and_chip(domain, virq + i,
1302 hwirq, &its_irq_chip, its_dev);
1303 pr_debug("ID:%d pID:%d vID:%d\n",
1304 (int)(hwirq - its_dev->event_map.lpi_base),
1305 (int) hwirq, virq + i);
1308 return 0;
1311 static void its_irq_domain_activate(struct irq_domain *domain,
1312 struct irq_data *d)
1314 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1315 u32 event = its_get_event_id(d);
1317 /* Bind the LPI to the first possible CPU */
1318 its_dev->event_map.col_map[event] = cpumask_first(cpu_online_mask);
1320 /* Map the GIC IRQ and event to the device */
1321 its_send_mapvi(its_dev, d->hwirq, event);
1324 static void its_irq_domain_deactivate(struct irq_domain *domain,
1325 struct irq_data *d)
1327 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1328 u32 event = its_get_event_id(d);
1330 /* Stop the delivery of interrupts */
1331 its_send_discard(its_dev, event);
1334 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1335 unsigned int nr_irqs)
1337 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1338 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1339 int i;
1341 for (i = 0; i < nr_irqs; i++) {
1342 struct irq_data *data = irq_domain_get_irq_data(domain,
1343 virq + i);
1344 u32 event = its_get_event_id(data);
1346 /* Mark interrupt index as unused */
1347 clear_bit(event, its_dev->event_map.lpi_map);
1349 /* Nuke the entry in the domain */
1350 irq_domain_reset_irq_data(data);
1353 /* If all interrupts have been freed, start mopping the floor */
1354 if (bitmap_empty(its_dev->event_map.lpi_map,
1355 its_dev->event_map.nr_lpis)) {
1356 its_lpi_free(&its_dev->event_map);
1358 /* Unmap device/itt */
1359 its_send_mapd(its_dev, 0);
1360 its_free_device(its_dev);
1363 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1366 static const struct irq_domain_ops its_domain_ops = {
1367 .alloc = its_irq_domain_alloc,
1368 .free = its_irq_domain_free,
1369 .activate = its_irq_domain_activate,
1370 .deactivate = its_irq_domain_deactivate,
1373 static int its_force_quiescent(void __iomem *base)
1375 u32 count = 1000000; /* 1s */
1376 u32 val;
1378 val = readl_relaxed(base + GITS_CTLR);
1379 if (val & GITS_CTLR_QUIESCENT)
1380 return 0;
1382 /* Disable the generation of all interrupts to this ITS */
1383 val &= ~GITS_CTLR_ENABLE;
1384 writel_relaxed(val, base + GITS_CTLR);
1386 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1387 while (1) {
1388 val = readl_relaxed(base + GITS_CTLR);
1389 if (val & GITS_CTLR_QUIESCENT)
1390 return 0;
1392 count--;
1393 if (!count)
1394 return -EBUSY;
1396 cpu_relax();
1397 udelay(1);
1401 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1403 struct its_node *its = data;
1405 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1408 static const struct gic_quirk its_quirks[] = {
1409 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1411 .desc = "ITS: Cavium errata 22375, 24313",
1412 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1413 .mask = 0xffff0fff,
1414 .init = its_enable_quirk_cavium_22375,
1416 #endif
1421 static void its_enable_quirks(struct its_node *its)
1423 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1425 gic_enable_quirks(iidr, its_quirks, its);
1428 static int its_probe(struct device_node *node, struct irq_domain *parent)
1430 struct resource res;
1431 struct its_node *its;
1432 void __iomem *its_base;
1433 struct irq_domain *inner_domain;
1434 u32 val;
1435 u64 baser, tmp;
1436 int err;
1438 err = of_address_to_resource(node, 0, &res);
1439 if (err) {
1440 pr_warn("%s: no regs?\n", node->full_name);
1441 return -ENXIO;
1444 its_base = ioremap(res.start, resource_size(&res));
1445 if (!its_base) {
1446 pr_warn("%s: unable to map registers\n", node->full_name);
1447 return -ENOMEM;
1450 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1451 if (val != 0x30 && val != 0x40) {
1452 pr_warn("%s: no ITS detected, giving up\n", node->full_name);
1453 err = -ENODEV;
1454 goto out_unmap;
1457 err = its_force_quiescent(its_base);
1458 if (err) {
1459 pr_warn("%s: failed to quiesce, giving up\n",
1460 node->full_name);
1461 goto out_unmap;
1464 pr_info("ITS: %s\n", node->full_name);
1466 its = kzalloc(sizeof(*its), GFP_KERNEL);
1467 if (!its) {
1468 err = -ENOMEM;
1469 goto out_unmap;
1472 raw_spin_lock_init(&its->lock);
1473 INIT_LIST_HEAD(&its->entry);
1474 INIT_LIST_HEAD(&its->its_device_list);
1475 its->base = its_base;
1476 its->phys_base = res.start;
1477 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1479 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1480 if (!its->cmd_base) {
1481 err = -ENOMEM;
1482 goto out_free_its;
1484 its->cmd_write = its->cmd_base;
1486 its_enable_quirks(its);
1488 err = its_alloc_tables(node->full_name, its);
1489 if (err)
1490 goto out_free_cmd;
1492 err = its_alloc_collections(its);
1493 if (err)
1494 goto out_free_tables;
1496 baser = (virt_to_phys(its->cmd_base) |
1497 GITS_CBASER_WaWb |
1498 GITS_CBASER_InnerShareable |
1499 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1500 GITS_CBASER_VALID);
1502 writeq_relaxed(baser, its->base + GITS_CBASER);
1503 tmp = readq_relaxed(its->base + GITS_CBASER);
1505 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1506 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1508 * The HW reports non-shareable, we must
1509 * remove the cacheability attributes as
1510 * well.
1512 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1513 GITS_CBASER_CACHEABILITY_MASK);
1514 baser |= GITS_CBASER_nC;
1515 writeq_relaxed(baser, its->base + GITS_CBASER);
1517 pr_info("ITS: using cache flushing for cmd queue\n");
1518 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1521 writeq_relaxed(0, its->base + GITS_CWRITER);
1522 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1524 if (of_property_read_bool(node, "msi-controller")) {
1525 struct msi_domain_info *info;
1527 info = kzalloc(sizeof(*info), GFP_KERNEL);
1528 if (!info) {
1529 err = -ENOMEM;
1530 goto out_free_tables;
1533 inner_domain = irq_domain_add_tree(node, &its_domain_ops, its);
1534 if (!inner_domain) {
1535 err = -ENOMEM;
1536 kfree(info);
1537 goto out_free_tables;
1540 inner_domain->parent = parent;
1541 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1542 info->ops = &its_msi_domain_ops;
1543 info->data = its;
1544 inner_domain->host_data = info;
1547 spin_lock(&its_lock);
1548 list_add(&its->entry, &its_nodes);
1549 spin_unlock(&its_lock);
1551 return 0;
1553 out_free_tables:
1554 its_free_tables(its);
1555 out_free_cmd:
1556 kfree(its->cmd_base);
1557 out_free_its:
1558 kfree(its);
1559 out_unmap:
1560 iounmap(its_base);
1561 pr_err("ITS: failed probing %s (%d)\n", node->full_name, err);
1562 return err;
1565 static bool gic_rdists_supports_plpis(void)
1567 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1570 int its_cpu_init(void)
1572 if (!list_empty(&its_nodes)) {
1573 if (!gic_rdists_supports_plpis()) {
1574 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1575 return -ENXIO;
1577 its_cpu_init_lpis();
1578 its_cpu_init_collection();
1581 return 0;
1584 static struct of_device_id its_device_id[] = {
1585 { .compatible = "arm,gic-v3-its", },
1589 int its_init(struct device_node *node, struct rdists *rdists,
1590 struct irq_domain *parent_domain)
1592 struct device_node *np;
1594 for (np = of_find_matching_node(node, its_device_id); np;
1595 np = of_find_matching_node(np, its_device_id)) {
1596 its_probe(np, parent_domain);
1599 if (list_empty(&its_nodes)) {
1600 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1601 return -ENXIO;
1604 gic_rdists = rdists;
1605 gic_root_node = node;
1607 its_alloc_lpi_tables();
1608 its_lpi_init(rdists->id_bits);
1610 return 0;