2 * ov534-ov7xxx gspca driver
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 * PS3 Eye camera - FPS range extended by Joseph Howse
16 * <josephhowse@nummist.com> http://nummist.com
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 #define MODULE_NAME "ov534"
39 #include <linux/fixp-arith.h>
40 #include <media/v4l2-ctrls.h>
42 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
43 #define OV534_REG_SUBADDR 0xf2
44 #define OV534_REG_WRITE 0xf3
45 #define OV534_REG_READ 0xf4
46 #define OV534_REG_OPERATION 0xf5
47 #define OV534_REG_STATUS 0xf6
49 #define OV534_OP_WRITE_3 0x37
50 #define OV534_OP_WRITE_2 0x33
51 #define OV534_OP_READ_2 0xf9
53 #define CTRL_TIMEOUT 500
55 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
56 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
57 MODULE_LICENSE("GPL");
59 /* specific webcam descriptor */
61 struct gspca_dev gspca_dev
; /* !! must be the first item */
63 struct v4l2_ctrl_handler ctrl_handler
;
64 struct v4l2_ctrl
*hue
;
65 struct v4l2_ctrl
*saturation
;
66 struct v4l2_ctrl
*brightness
;
67 struct v4l2_ctrl
*contrast
;
68 struct { /* gain control cluster */
69 struct v4l2_ctrl
*autogain
;
70 struct v4l2_ctrl
*gain
;
72 struct v4l2_ctrl
*autowhitebalance
;
73 struct { /* exposure control cluster */
74 struct v4l2_ctrl
*autoexposure
;
75 struct v4l2_ctrl
*exposure
;
77 struct v4l2_ctrl
*sharpness
;
78 struct v4l2_ctrl
*hflip
;
79 struct v4l2_ctrl
*vflip
;
80 struct v4l2_ctrl
*plfreq
;
94 static int sd_start(struct gspca_dev
*gspca_dev
);
95 static void sd_stopN(struct gspca_dev
*gspca_dev
);
98 static const struct v4l2_pix_format ov772x_mode
[] = {
99 {320, 240, V4L2_PIX_FMT_YUYV
, V4L2_FIELD_NONE
,
100 .bytesperline
= 320 * 2,
101 .sizeimage
= 320 * 240 * 2,
102 .colorspace
= V4L2_COLORSPACE_SRGB
,
104 {640, 480, V4L2_PIX_FMT_YUYV
, V4L2_FIELD_NONE
,
105 .bytesperline
= 640 * 2,
106 .sizeimage
= 640 * 480 * 2,
107 .colorspace
= V4L2_COLORSPACE_SRGB
,
110 static const struct v4l2_pix_format ov767x_mode
[] = {
111 {320, 240, V4L2_PIX_FMT_JPEG
, V4L2_FIELD_NONE
,
113 .sizeimage
= 320 * 240 * 3 / 8 + 590,
114 .colorspace
= V4L2_COLORSPACE_JPEG
},
115 {640, 480, V4L2_PIX_FMT_JPEG
, V4L2_FIELD_NONE
,
117 .sizeimage
= 640 * 480 * 3 / 8 + 590,
118 .colorspace
= V4L2_COLORSPACE_JPEG
},
121 static const u8 qvga_rates
[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
122 static const u8 vga_rates
[] = {60, 50, 40, 30, 15};
124 static const struct framerates ov772x_framerates
[] = {
127 .nrates
= ARRAY_SIZE(qvga_rates
),
131 .nrates
= ARRAY_SIZE(vga_rates
),
140 static const u8 bridge_init_767x
[][2] = {
141 /* comments from the ms-win file apollo7670.set */
171 {0xc0, 0x50}, /* HSize 640 */
172 {0xc1, 0x3c}, /* VSize 480 */
173 {0x34, 0x05}, /* enable Audio Suspend mode */
174 {0xc2, 0x0c}, /* Input YUV */
175 {0xc3, 0xf9}, /* enable PRE */
176 {0x34, 0x05}, /* enable Audio Suspend mode */
177 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
178 {0x31, 0xf9}, /* enable 1.8V Suspend */
179 {0x35, 0x02}, /* turn on JPEG */
181 {0x25, 0x42}, /* GPIO[8]:Input */
182 {0x94, 0x11}, /* If the default setting is loaded when
183 * system boots up, this flag is closed here */
185 static const u8 sensor_init_767x
[][2] = {
203 {0x7a, 0x2a}, /* set Gamma=1.6 below */
223 {0x14, 0x38}, /* gain max 16x */
303 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
307 {0xa4, 0x8a}, /* Night mode trigger point */
340 static const u8 bridge_start_vga_767x
[][2] = {
348 {0x35, 0x02}, /* turn on JPEG */
350 {0xda, 0x00}, /* for higher clock rate(30fps) */
351 {0x34, 0x05}, /* enable Audio Suspend mode */
352 {0xc3, 0xf9}, /* enable PRE */
353 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
354 {0x8d, 0x1c}, /* output YUV */
355 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
356 {0x50, 0x00}, /* H/V divider=0 */
357 {0x51, 0xa0}, /* input H=640/4 */
358 {0x52, 0x3c}, /* input V=480/4 */
359 {0x53, 0x00}, /* offset X=0 */
360 {0x54, 0x00}, /* offset Y=0 */
361 {0x55, 0x00}, /* H/V size[8]=0 */
362 {0x57, 0x00}, /* H-size[9]=0 */
363 {0x5c, 0x00}, /* output size[9:8]=0 */
364 {0x5a, 0xa0}, /* output H=640/4 */
365 {0x5b, 0x78}, /* output V=480/4 */
370 static const u8 sensor_start_vga_767x
[][2] = {
376 static const u8 bridge_start_qvga_767x
[][2] = {
384 {0x35, 0x02}, /* turn on JPEG */
386 {0xc0, 0x50}, /* CIF HSize 640 */
387 {0xc1, 0x3c}, /* CIF VSize 480 */
388 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
389 {0x8d, 0x1c}, /* output YUV */
390 {0x34, 0x05}, /* enable Audio Suspend mode */
391 {0xc2, 0x4c}, /* output YUV and Enable DCW */
392 {0xc3, 0xf9}, /* enable PRE */
393 {0x1c, 0x00}, /* indirect addressing */
394 {0x1d, 0x48}, /* output YUV422 */
395 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
396 {0x51, 0xa0}, /* DCW input H=640/4 */
397 {0x52, 0x78}, /* DCW input V=480/4 */
398 {0x53, 0x00}, /* offset X=0 */
399 {0x54, 0x00}, /* offset Y=0 */
400 {0x55, 0x00}, /* H/V size[8]=0 */
401 {0x57, 0x00}, /* H-size[9]=0 */
402 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
403 {0x5a, 0x50}, /* DCW output H=320/4 */
404 {0x5b, 0x3c}, /* DCW output V=240/4 */
409 static const u8 sensor_start_qvga_767x
[][2] = {
416 static const u8 bridge_init_772x
[][2] = {
455 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
456 { 0x1d, 0x00 }, /* payload size */
458 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
459 { 0x1d, 0x58 }, /* frame size */
460 { 0x1d, 0x00 }, /* frame size */
463 { 0x1d, 0x08 }, /* turn on UVC header */
464 { 0x1d, 0x0e }, /* .. */
474 static const u8 sensor_init_772x
[][2] = {
477 /*fixme: better have a delay?*/
500 { 0x63, 0xaa }, /* AWB - was e0 */
503 { 0x13, 0xf0 }, /* com8 */
516 { 0x13, 0xff }, /* AWB */
564 { 0x8e, 0x00 }, /* De-noise threshold */
567 static const u8 bridge_start_vga_772x
[][2] = {
578 static const u8 sensor_start_vga_772x
[][2] = {
588 static const u8 bridge_start_qvga_772x
[][2] = {
599 static const u8 sensor_start_qvga_772x
[][2] = {
610 static void ov534_reg_write(struct gspca_dev
*gspca_dev
, u16 reg
, u8 val
)
612 struct usb_device
*udev
= gspca_dev
->dev
;
615 if (gspca_dev
->usb_err
< 0)
618 PDEBUG(D_USBO
, "SET 01 0000 %04x %02x", reg
, val
);
619 gspca_dev
->usb_buf
[0] = val
;
620 ret
= usb_control_msg(udev
,
621 usb_sndctrlpipe(udev
, 0),
623 USB_DIR_OUT
| USB_TYPE_VENDOR
| USB_RECIP_DEVICE
,
624 0x00, reg
, gspca_dev
->usb_buf
, 1, CTRL_TIMEOUT
);
626 pr_err("write failed %d\n", ret
);
627 gspca_dev
->usb_err
= ret
;
631 static u8
ov534_reg_read(struct gspca_dev
*gspca_dev
, u16 reg
)
633 struct usb_device
*udev
= gspca_dev
->dev
;
636 if (gspca_dev
->usb_err
< 0)
638 ret
= usb_control_msg(udev
,
639 usb_rcvctrlpipe(udev
, 0),
641 USB_DIR_IN
| USB_TYPE_VENDOR
| USB_RECIP_DEVICE
,
642 0x00, reg
, gspca_dev
->usb_buf
, 1, CTRL_TIMEOUT
);
643 PDEBUG(D_USBI
, "GET 01 0000 %04x %02x", reg
, gspca_dev
->usb_buf
[0]);
645 pr_err("read failed %d\n", ret
);
646 gspca_dev
->usb_err
= ret
;
648 return gspca_dev
->usb_buf
[0];
651 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
652 * (direction and output)? */
653 static void ov534_set_led(struct gspca_dev
*gspca_dev
, int status
)
657 PDEBUG(D_CONF
, "led status: %d", status
);
659 data
= ov534_reg_read(gspca_dev
, 0x21);
661 ov534_reg_write(gspca_dev
, 0x21, data
);
663 data
= ov534_reg_read(gspca_dev
, 0x23);
669 ov534_reg_write(gspca_dev
, 0x23, data
);
672 data
= ov534_reg_read(gspca_dev
, 0x21);
674 ov534_reg_write(gspca_dev
, 0x21, data
);
678 static int sccb_check_status(struct gspca_dev
*gspca_dev
)
683 for (i
= 0; i
< 5; i
++) {
685 data
= ov534_reg_read(gspca_dev
, OV534_REG_STATUS
);
695 PERR("sccb status 0x%02x, attempt %d/5",
702 static void sccb_reg_write(struct gspca_dev
*gspca_dev
, u8 reg
, u8 val
)
704 PDEBUG(D_USBO
, "sccb write: %02x %02x", reg
, val
);
705 ov534_reg_write(gspca_dev
, OV534_REG_SUBADDR
, reg
);
706 ov534_reg_write(gspca_dev
, OV534_REG_WRITE
, val
);
707 ov534_reg_write(gspca_dev
, OV534_REG_OPERATION
, OV534_OP_WRITE_3
);
709 if (!sccb_check_status(gspca_dev
)) {
710 pr_err("sccb_reg_write failed\n");
711 gspca_dev
->usb_err
= -EIO
;
715 static u8
sccb_reg_read(struct gspca_dev
*gspca_dev
, u16 reg
)
717 ov534_reg_write(gspca_dev
, OV534_REG_SUBADDR
, reg
);
718 ov534_reg_write(gspca_dev
, OV534_REG_OPERATION
, OV534_OP_WRITE_2
);
719 if (!sccb_check_status(gspca_dev
))
720 pr_err("sccb_reg_read failed 1\n");
722 ov534_reg_write(gspca_dev
, OV534_REG_OPERATION
, OV534_OP_READ_2
);
723 if (!sccb_check_status(gspca_dev
))
724 pr_err("sccb_reg_read failed 2\n");
726 return ov534_reg_read(gspca_dev
, OV534_REG_READ
);
729 /* output a bridge sequence (reg - val) */
730 static void reg_w_array(struct gspca_dev
*gspca_dev
,
731 const u8 (*data
)[2], int len
)
734 ov534_reg_write(gspca_dev
, (*data
)[0], (*data
)[1]);
739 /* output a sensor sequence (reg - val) */
740 static void sccb_w_array(struct gspca_dev
*gspca_dev
,
741 const u8 (*data
)[2], int len
)
744 if ((*data
)[0] != 0xff) {
745 sccb_reg_write(gspca_dev
, (*data
)[0], (*data
)[1]);
747 sccb_reg_read(gspca_dev
, (*data
)[1]);
748 sccb_reg_write(gspca_dev
, 0xff, 0x00);
754 /* ov772x specific controls */
755 static void set_frame_rate(struct gspca_dev
*gspca_dev
)
757 struct sd
*sd
= (struct sd
*) gspca_dev
;
765 const struct rate_s
*r
;
766 static const struct rate_s rate_0
[] = { /* 640x480 */
767 {60, 0x01, 0xc1, 0x04},
768 {50, 0x01, 0x41, 0x02},
769 {40, 0x02, 0xc1, 0x04},
770 {30, 0x04, 0x81, 0x02},
771 {15, 0x03, 0x41, 0x04},
773 static const struct rate_s rate_1
[] = { /* 320x240 */
774 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
775 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
776 {150, 0x01, 0xc1, 0x04},
777 {137, 0x02, 0xc1, 0x02},
778 {125, 0x02, 0x81, 0x02},
779 {100, 0x02, 0xc1, 0x04},
780 {75, 0x03, 0xc1, 0x04},
781 {60, 0x04, 0xc1, 0x04},
782 {50, 0x02, 0x41, 0x04},
783 {37, 0x03, 0x41, 0x04},
784 {30, 0x04, 0x41, 0x04},
787 if (sd
->sensor
!= SENSOR_OV772x
)
789 if (gspca_dev
->cam
.cam_mode
[gspca_dev
->curr_mode
].priv
== 0) {
791 i
= ARRAY_SIZE(rate_0
);
794 i
= ARRAY_SIZE(rate_1
);
797 if (sd
->frame_rate
>= r
->fps
)
802 sccb_reg_write(gspca_dev
, 0x11, r
->r11
);
803 sccb_reg_write(gspca_dev
, 0x0d, r
->r0d
);
804 ov534_reg_write(gspca_dev
, 0xe5, r
->re5
);
806 PDEBUG(D_PROBE
, "frame_rate: %d", r
->fps
);
809 static void sethue(struct gspca_dev
*gspca_dev
, s32 val
)
811 struct sd
*sd
= (struct sd
*) gspca_dev
;
813 if (sd
->sensor
== SENSOR_OV767x
) {
819 /* According to the datasheet the registers expect HUESIN and
820 * HUECOS to be the result of the trigonometric functions,
823 * The 0x7fff here represents the maximum absolute value
824 * returned byt fixp_sin and fixp_cos, so the scaling will
825 * consider the result like in the interval [-1.0, 1.0].
827 huesin
= fixp_sin16(val
) * 0x80 / 0x7fff;
828 huecos
= fixp_cos16(val
) * 0x80 / 0x7fff;
831 sccb_reg_write(gspca_dev
, 0xab,
832 sccb_reg_read(gspca_dev
, 0xab) | 0x2);
835 sccb_reg_write(gspca_dev
, 0xab,
836 sccb_reg_read(gspca_dev
, 0xab) & ~0x2);
839 sccb_reg_write(gspca_dev
, 0xa9, (u8
)huecos
);
840 sccb_reg_write(gspca_dev
, 0xaa, (u8
)huesin
);
844 static void setsaturation(struct gspca_dev
*gspca_dev
, s32 val
)
846 struct sd
*sd
= (struct sd
*) gspca_dev
;
848 if (sd
->sensor
== SENSOR_OV767x
) {
850 static u8 color_tb
[][6] = {
851 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
852 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
853 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
854 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
855 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
856 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
857 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
860 for (i
= 0; i
< ARRAY_SIZE(color_tb
[0]); i
++)
861 sccb_reg_write(gspca_dev
, 0x4f + i
, color_tb
[val
][i
]);
863 sccb_reg_write(gspca_dev
, 0xa7, val
); /* U saturation */
864 sccb_reg_write(gspca_dev
, 0xa8, val
); /* V saturation */
868 static void setbrightness(struct gspca_dev
*gspca_dev
, s32 val
)
870 struct sd
*sd
= (struct sd
*) gspca_dev
;
872 if (sd
->sensor
== SENSOR_OV767x
) {
875 sccb_reg_write(gspca_dev
, 0x55, val
); /* bright */
877 sccb_reg_write(gspca_dev
, 0x9b, val
);
881 static void setcontrast(struct gspca_dev
*gspca_dev
, s32 val
)
883 struct sd
*sd
= (struct sd
*) gspca_dev
;
885 if (sd
->sensor
== SENSOR_OV767x
)
886 sccb_reg_write(gspca_dev
, 0x56, val
); /* contras */
888 sccb_reg_write(gspca_dev
, 0x9c, val
);
891 static void setgain(struct gspca_dev
*gspca_dev
, s32 val
)
893 switch (val
& 0x30) {
911 sccb_reg_write(gspca_dev
, 0x00, val
);
914 static s32
getgain(struct gspca_dev
*gspca_dev
)
916 return sccb_reg_read(gspca_dev
, 0x00);
919 static void setexposure(struct gspca_dev
*gspca_dev
, s32 val
)
921 struct sd
*sd
= (struct sd
*) gspca_dev
;
923 if (sd
->sensor
== SENSOR_OV767x
) {
925 /* set only aec[9:2] */
926 sccb_reg_write(gspca_dev
, 0x10, val
); /* aech */
929 /* 'val' is one byte and represents half of the exposure value
930 * we are going to set into registers, a two bytes value:
932 * MSB: ((u16) val << 1) >> 8 == val >> 7
933 * LSB: ((u16) val << 1) & 0xff == val << 1
935 sccb_reg_write(gspca_dev
, 0x08, val
>> 7);
936 sccb_reg_write(gspca_dev
, 0x10, val
<< 1);
940 static s32
getexposure(struct gspca_dev
*gspca_dev
)
942 struct sd
*sd
= (struct sd
*) gspca_dev
;
944 if (sd
->sensor
== SENSOR_OV767x
) {
945 /* get only aec[9:2] */
946 return sccb_reg_read(gspca_dev
, 0x10); /* aech */
948 u8 hi
= sccb_reg_read(gspca_dev
, 0x08);
949 u8 lo
= sccb_reg_read(gspca_dev
, 0x10);
950 return (hi
<< 8 | lo
) >> 1;
954 static void setagc(struct gspca_dev
*gspca_dev
, s32 val
)
957 sccb_reg_write(gspca_dev
, 0x13,
958 sccb_reg_read(gspca_dev
, 0x13) | 0x04);
959 sccb_reg_write(gspca_dev
, 0x64,
960 sccb_reg_read(gspca_dev
, 0x64) | 0x03);
962 sccb_reg_write(gspca_dev
, 0x13,
963 sccb_reg_read(gspca_dev
, 0x13) & ~0x04);
964 sccb_reg_write(gspca_dev
, 0x64,
965 sccb_reg_read(gspca_dev
, 0x64) & ~0x03);
969 static void setawb(struct gspca_dev
*gspca_dev
, s32 val
)
971 struct sd
*sd
= (struct sd
*) gspca_dev
;
974 sccb_reg_write(gspca_dev
, 0x13,
975 sccb_reg_read(gspca_dev
, 0x13) | 0x02);
976 if (sd
->sensor
== SENSOR_OV772x
)
977 sccb_reg_write(gspca_dev
, 0x63,
978 sccb_reg_read(gspca_dev
, 0x63) | 0xc0);
980 sccb_reg_write(gspca_dev
, 0x13,
981 sccb_reg_read(gspca_dev
, 0x13) & ~0x02);
982 if (sd
->sensor
== SENSOR_OV772x
)
983 sccb_reg_write(gspca_dev
, 0x63,
984 sccb_reg_read(gspca_dev
, 0x63) & ~0xc0);
988 static void setaec(struct gspca_dev
*gspca_dev
, s32 val
)
990 struct sd
*sd
= (struct sd
*) gspca_dev
;
993 data
= sd
->sensor
== SENSOR_OV767x
?
994 0x05 : /* agc + aec */
997 case V4L2_EXPOSURE_AUTO
:
998 sccb_reg_write(gspca_dev
, 0x13,
999 sccb_reg_read(gspca_dev
, 0x13) | data
);
1001 case V4L2_EXPOSURE_MANUAL
:
1002 sccb_reg_write(gspca_dev
, 0x13,
1003 sccb_reg_read(gspca_dev
, 0x13) & ~data
);
1008 static void setsharpness(struct gspca_dev
*gspca_dev
, s32 val
)
1010 sccb_reg_write(gspca_dev
, 0x91, val
); /* Auto de-noise threshold */
1011 sccb_reg_write(gspca_dev
, 0x8e, val
); /* De-noise threshold */
1014 static void sethvflip(struct gspca_dev
*gspca_dev
, s32 hflip
, s32 vflip
)
1016 struct sd
*sd
= (struct sd
*) gspca_dev
;
1019 if (sd
->sensor
== SENSOR_OV767x
) {
1020 val
= sccb_reg_read(gspca_dev
, 0x1e); /* mvfp */
1026 sccb_reg_write(gspca_dev
, 0x1e, val
);
1028 val
= sccb_reg_read(gspca_dev
, 0x0c);
1034 sccb_reg_write(gspca_dev
, 0x0c, val
);
1038 static void setlightfreq(struct gspca_dev
*gspca_dev
, s32 val
)
1040 struct sd
*sd
= (struct sd
*) gspca_dev
;
1042 val
= val
? 0x9e : 0x00;
1043 if (sd
->sensor
== SENSOR_OV767x
) {
1044 sccb_reg_write(gspca_dev
, 0x2a, 0x00);
1046 val
= 0x9d; /* insert dummy to 25fps for 50Hz */
1048 sccb_reg_write(gspca_dev
, 0x2b, val
);
1052 /* this function is called at probe time */
1053 static int sd_config(struct gspca_dev
*gspca_dev
,
1054 const struct usb_device_id
*id
)
1056 struct sd
*sd
= (struct sd
*) gspca_dev
;
1059 cam
= &gspca_dev
->cam
;
1061 cam
->cam_mode
= ov772x_mode
;
1062 cam
->nmodes
= ARRAY_SIZE(ov772x_mode
);
1064 sd
->frame_rate
= 30;
1069 static int ov534_g_volatile_ctrl(struct v4l2_ctrl
*ctrl
)
1071 struct sd
*sd
= container_of(ctrl
->handler
, struct sd
, ctrl_handler
);
1072 struct gspca_dev
*gspca_dev
= &sd
->gspca_dev
;
1075 case V4L2_CID_AUTOGAIN
:
1076 gspca_dev
->usb_err
= 0;
1077 if (ctrl
->val
&& sd
->gain
&& gspca_dev
->streaming
)
1078 sd
->gain
->val
= getgain(gspca_dev
);
1079 return gspca_dev
->usb_err
;
1081 case V4L2_CID_EXPOSURE_AUTO
:
1082 gspca_dev
->usb_err
= 0;
1083 if (ctrl
->val
== V4L2_EXPOSURE_AUTO
&& sd
->exposure
&&
1084 gspca_dev
->streaming
)
1085 sd
->exposure
->val
= getexposure(gspca_dev
);
1086 return gspca_dev
->usb_err
;
1091 static int ov534_s_ctrl(struct v4l2_ctrl
*ctrl
)
1093 struct sd
*sd
= container_of(ctrl
->handler
, struct sd
, ctrl_handler
);
1094 struct gspca_dev
*gspca_dev
= &sd
->gspca_dev
;
1096 gspca_dev
->usb_err
= 0;
1097 if (!gspca_dev
->streaming
)
1102 sethue(gspca_dev
, ctrl
->val
);
1104 case V4L2_CID_SATURATION
:
1105 setsaturation(gspca_dev
, ctrl
->val
);
1107 case V4L2_CID_BRIGHTNESS
:
1108 setbrightness(gspca_dev
, ctrl
->val
);
1110 case V4L2_CID_CONTRAST
:
1111 setcontrast(gspca_dev
, ctrl
->val
);
1113 case V4L2_CID_AUTOGAIN
:
1114 /* case V4L2_CID_GAIN: */
1115 setagc(gspca_dev
, ctrl
->val
);
1116 if (!gspca_dev
->usb_err
&& !ctrl
->val
&& sd
->gain
)
1117 setgain(gspca_dev
, sd
->gain
->val
);
1119 case V4L2_CID_AUTO_WHITE_BALANCE
:
1120 setawb(gspca_dev
, ctrl
->val
);
1122 case V4L2_CID_EXPOSURE_AUTO
:
1123 /* case V4L2_CID_EXPOSURE: */
1124 setaec(gspca_dev
, ctrl
->val
);
1125 if (!gspca_dev
->usb_err
&& ctrl
->val
== V4L2_EXPOSURE_MANUAL
&&
1127 setexposure(gspca_dev
, sd
->exposure
->val
);
1129 case V4L2_CID_SHARPNESS
:
1130 setsharpness(gspca_dev
, ctrl
->val
);
1132 case V4L2_CID_HFLIP
:
1133 sethvflip(gspca_dev
, ctrl
->val
, sd
->vflip
->val
);
1135 case V4L2_CID_VFLIP
:
1136 sethvflip(gspca_dev
, sd
->hflip
->val
, ctrl
->val
);
1138 case V4L2_CID_POWER_LINE_FREQUENCY
:
1139 setlightfreq(gspca_dev
, ctrl
->val
);
1142 return gspca_dev
->usb_err
;
1145 static const struct v4l2_ctrl_ops ov534_ctrl_ops
= {
1146 .g_volatile_ctrl
= ov534_g_volatile_ctrl
,
1147 .s_ctrl
= ov534_s_ctrl
,
1150 static int sd_init_controls(struct gspca_dev
*gspca_dev
)
1152 struct sd
*sd
= (struct sd
*) gspca_dev
;
1153 struct v4l2_ctrl_handler
*hdl
= &sd
->ctrl_handler
;
1154 /* parameters with different values between the supported sensors */
1168 if (sd
->sensor
== SENSOR_OV767x
) {
1172 brightness_min
= -127;
1173 brightness_max
= 127;
1175 contrast_max
= 0x80;
1176 contrast_def
= 0x40;
1177 exposure_min
= 0x08;
1178 exposure_max
= 0x60;
1179 exposure_def
= 0x13;
1183 saturation_max
= 255,
1184 saturation_def
= 64,
1186 brightness_max
= 255;
1196 gspca_dev
->vdev
.ctrl_handler
= hdl
;
1198 v4l2_ctrl_handler_init(hdl
, 13);
1200 if (sd
->sensor
== SENSOR_OV772x
)
1201 sd
->hue
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1202 V4L2_CID_HUE
, -90, 90, 1, 0);
1204 sd
->saturation
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1205 V4L2_CID_SATURATION
, saturation_min
, saturation_max
, 1,
1207 sd
->brightness
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1208 V4L2_CID_BRIGHTNESS
, brightness_min
, brightness_max
, 1,
1210 sd
->contrast
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1211 V4L2_CID_CONTRAST
, 0, contrast_max
, 1, contrast_def
);
1213 if (sd
->sensor
== SENSOR_OV772x
) {
1214 sd
->autogain
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1215 V4L2_CID_AUTOGAIN
, 0, 1, 1, 1);
1216 sd
->gain
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1217 V4L2_CID_GAIN
, 0, 63, 1, 20);
1220 sd
->autoexposure
= v4l2_ctrl_new_std_menu(hdl
, &ov534_ctrl_ops
,
1221 V4L2_CID_EXPOSURE_AUTO
,
1222 V4L2_EXPOSURE_MANUAL
, 0,
1223 V4L2_EXPOSURE_AUTO
);
1224 sd
->exposure
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1225 V4L2_CID_EXPOSURE
, exposure_min
, exposure_max
, 1,
1228 sd
->autowhitebalance
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1229 V4L2_CID_AUTO_WHITE_BALANCE
, 0, 1, 1, 1);
1231 if (sd
->sensor
== SENSOR_OV772x
)
1232 sd
->sharpness
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1233 V4L2_CID_SHARPNESS
, 0, 63, 1, 0);
1235 sd
->hflip
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1236 V4L2_CID_HFLIP
, 0, 1, 1, hflip_def
);
1237 sd
->vflip
= v4l2_ctrl_new_std(hdl
, &ov534_ctrl_ops
,
1238 V4L2_CID_VFLIP
, 0, 1, 1, 0);
1239 sd
->plfreq
= v4l2_ctrl_new_std_menu(hdl
, &ov534_ctrl_ops
,
1240 V4L2_CID_POWER_LINE_FREQUENCY
,
1241 V4L2_CID_POWER_LINE_FREQUENCY_50HZ
, 0,
1242 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED
);
1245 pr_err("Could not initialize controls\n");
1249 if (sd
->sensor
== SENSOR_OV772x
)
1250 v4l2_ctrl_auto_cluster(2, &sd
->autogain
, 0, true);
1252 v4l2_ctrl_auto_cluster(2, &sd
->autoexposure
, V4L2_EXPOSURE_MANUAL
,
1258 /* this function is called at probe and resume time */
1259 static int sd_init(struct gspca_dev
*gspca_dev
)
1261 struct sd
*sd
= (struct sd
*) gspca_dev
;
1263 static const struct reg_array bridge_init
[NSENSORS
] = {
1264 [SENSOR_OV767x
] = {bridge_init_767x
, ARRAY_SIZE(bridge_init_767x
)},
1265 [SENSOR_OV772x
] = {bridge_init_772x
, ARRAY_SIZE(bridge_init_772x
)},
1267 static const struct reg_array sensor_init
[NSENSORS
] = {
1268 [SENSOR_OV767x
] = {sensor_init_767x
, ARRAY_SIZE(sensor_init_767x
)},
1269 [SENSOR_OV772x
] = {sensor_init_772x
, ARRAY_SIZE(sensor_init_772x
)},
1273 ov534_reg_write(gspca_dev
, 0xe7, 0x3a);
1274 ov534_reg_write(gspca_dev
, 0xe0, 0x08);
1277 /* initialize the sensor address */
1278 ov534_reg_write(gspca_dev
, OV534_REG_ADDRESS
, 0x42);
1281 sccb_reg_write(gspca_dev
, 0x12, 0x80);
1284 /* probe the sensor */
1285 sccb_reg_read(gspca_dev
, 0x0a);
1286 sensor_id
= sccb_reg_read(gspca_dev
, 0x0a) << 8;
1287 sccb_reg_read(gspca_dev
, 0x0b);
1288 sensor_id
|= sccb_reg_read(gspca_dev
, 0x0b);
1289 PDEBUG(D_PROBE
, "Sensor ID: %04x", sensor_id
);
1291 if ((sensor_id
& 0xfff0) == 0x7670) {
1292 sd
->sensor
= SENSOR_OV767x
;
1293 gspca_dev
->cam
.cam_mode
= ov767x_mode
;
1294 gspca_dev
->cam
.nmodes
= ARRAY_SIZE(ov767x_mode
);
1296 sd
->sensor
= SENSOR_OV772x
;
1297 gspca_dev
->cam
.bulk
= 1;
1298 gspca_dev
->cam
.bulk_size
= 16384;
1299 gspca_dev
->cam
.bulk_nurbs
= 2;
1300 gspca_dev
->cam
.mode_framerates
= ov772x_framerates
;
1304 reg_w_array(gspca_dev
, bridge_init
[sd
->sensor
].val
,
1305 bridge_init
[sd
->sensor
].len
);
1306 ov534_set_led(gspca_dev
, 1);
1307 sccb_w_array(gspca_dev
, sensor_init
[sd
->sensor
].val
,
1308 sensor_init
[sd
->sensor
].len
);
1310 sd_stopN(gspca_dev
);
1311 /* set_frame_rate(gspca_dev); */
1313 return gspca_dev
->usb_err
;
1316 static int sd_start(struct gspca_dev
*gspca_dev
)
1318 struct sd
*sd
= (struct sd
*) gspca_dev
;
1320 static const struct reg_array bridge_start
[NSENSORS
][2] = {
1321 [SENSOR_OV767x
] = {{bridge_start_qvga_767x
,
1322 ARRAY_SIZE(bridge_start_qvga_767x
)},
1323 {bridge_start_vga_767x
,
1324 ARRAY_SIZE(bridge_start_vga_767x
)}},
1325 [SENSOR_OV772x
] = {{bridge_start_qvga_772x
,
1326 ARRAY_SIZE(bridge_start_qvga_772x
)},
1327 {bridge_start_vga_772x
,
1328 ARRAY_SIZE(bridge_start_vga_772x
)}},
1330 static const struct reg_array sensor_start
[NSENSORS
][2] = {
1331 [SENSOR_OV767x
] = {{sensor_start_qvga_767x
,
1332 ARRAY_SIZE(sensor_start_qvga_767x
)},
1333 {sensor_start_vga_767x
,
1334 ARRAY_SIZE(sensor_start_vga_767x
)}},
1335 [SENSOR_OV772x
] = {{sensor_start_qvga_772x
,
1336 ARRAY_SIZE(sensor_start_qvga_772x
)},
1337 {sensor_start_vga_772x
,
1338 ARRAY_SIZE(sensor_start_vga_772x
)}},
1341 /* (from ms-win trace) */
1342 if (sd
->sensor
== SENSOR_OV767x
)
1343 sccb_reg_write(gspca_dev
, 0x1e, 0x04);
1344 /* black sun enable ? */
1346 mode
= gspca_dev
->curr_mode
; /* 0: 320x240, 1: 640x480 */
1347 reg_w_array(gspca_dev
, bridge_start
[sd
->sensor
][mode
].val
,
1348 bridge_start
[sd
->sensor
][mode
].len
);
1349 sccb_w_array(gspca_dev
, sensor_start
[sd
->sensor
][mode
].val
,
1350 sensor_start
[sd
->sensor
][mode
].len
);
1352 set_frame_rate(gspca_dev
);
1355 sethue(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->hue
));
1356 setsaturation(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->saturation
));
1358 setagc(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->autogain
));
1359 setawb(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->autowhitebalance
));
1360 setaec(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->autoexposure
));
1362 setgain(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->gain
));
1363 setexposure(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->exposure
));
1364 setbrightness(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->brightness
));
1365 setcontrast(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->contrast
));
1367 setsharpness(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->sharpness
));
1368 sethvflip(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->hflip
),
1369 v4l2_ctrl_g_ctrl(sd
->vflip
));
1370 setlightfreq(gspca_dev
, v4l2_ctrl_g_ctrl(sd
->plfreq
));
1372 ov534_set_led(gspca_dev
, 1);
1373 ov534_reg_write(gspca_dev
, 0xe0, 0x00);
1374 return gspca_dev
->usb_err
;
1377 static void sd_stopN(struct gspca_dev
*gspca_dev
)
1379 ov534_reg_write(gspca_dev
, 0xe0, 0x09);
1380 ov534_set_led(gspca_dev
, 0);
1383 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1384 #define UVC_STREAM_EOH (1 << 7)
1385 #define UVC_STREAM_ERR (1 << 6)
1386 #define UVC_STREAM_STI (1 << 5)
1387 #define UVC_STREAM_RES (1 << 4)
1388 #define UVC_STREAM_SCR (1 << 3)
1389 #define UVC_STREAM_PTS (1 << 2)
1390 #define UVC_STREAM_EOF (1 << 1)
1391 #define UVC_STREAM_FID (1 << 0)
1393 static void sd_pkt_scan(struct gspca_dev
*gspca_dev
,
1396 struct sd
*sd
= (struct sd
*) gspca_dev
;
1399 int remaining_len
= len
;
1402 payload_len
= gspca_dev
->cam
.bulk
? 2048 : 2040;
1404 len
= min(remaining_len
, payload_len
);
1406 /* Payloads are prefixed with a UVC-style header. We
1407 consider a frame to start when the FID toggles, or the PTS
1408 changes. A frame ends when EOF is set, and we've received
1409 the correct number of bytes. */
1411 /* Verify UVC header. Header length is always 12 */
1412 if (data
[0] != 12 || len
< 12) {
1413 PDEBUG(D_PACK
, "bad header");
1418 if (data
[1] & UVC_STREAM_ERR
) {
1419 PDEBUG(D_PACK
, "payload error");
1423 /* Extract PTS and FID */
1424 if (!(data
[1] & UVC_STREAM_PTS
)) {
1425 PDEBUG(D_PACK
, "PTS not present");
1428 this_pts
= (data
[5] << 24) | (data
[4] << 16)
1429 | (data
[3] << 8) | data
[2];
1430 this_fid
= (data
[1] & UVC_STREAM_FID
) ? 1 : 0;
1432 /* If PTS or FID has changed, start a new frame. */
1433 if (this_pts
!= sd
->last_pts
|| this_fid
!= sd
->last_fid
) {
1434 if (gspca_dev
->last_packet_type
== INTER_PACKET
)
1435 gspca_frame_add(gspca_dev
, LAST_PACKET
,
1437 sd
->last_pts
= this_pts
;
1438 sd
->last_fid
= this_fid
;
1439 gspca_frame_add(gspca_dev
, FIRST_PACKET
,
1440 data
+ 12, len
- 12);
1441 /* If this packet is marked as EOF, end the frame */
1442 } else if (data
[1] & UVC_STREAM_EOF
) {
1444 if (gspca_dev
->pixfmt
.pixelformat
== V4L2_PIX_FMT_YUYV
1445 && gspca_dev
->image_len
+ len
- 12 !=
1446 gspca_dev
->pixfmt
.width
*
1447 gspca_dev
->pixfmt
.height
* 2) {
1448 PDEBUG(D_PACK
, "wrong sized frame");
1451 gspca_frame_add(gspca_dev
, LAST_PACKET
,
1452 data
+ 12, len
- 12);
1455 /* Add the data from this payload */
1456 gspca_frame_add(gspca_dev
, INTER_PACKET
,
1457 data
+ 12, len
- 12);
1460 /* Done this payload */
1464 /* Discard data until a new frame starts. */
1465 gspca_dev
->last_packet_type
= DISCARD_PACKET
;
1468 remaining_len
-= len
;
1470 } while (remaining_len
> 0);
1473 /* get stream parameters (framerate) */
1474 static void sd_get_streamparm(struct gspca_dev
*gspca_dev
,
1475 struct v4l2_streamparm
*parm
)
1477 struct v4l2_captureparm
*cp
= &parm
->parm
.capture
;
1478 struct v4l2_fract
*tpf
= &cp
->timeperframe
;
1479 struct sd
*sd
= (struct sd
*) gspca_dev
;
1481 cp
->capability
|= V4L2_CAP_TIMEPERFRAME
;
1483 tpf
->denominator
= sd
->frame_rate
;
1486 /* set stream parameters (framerate) */
1487 static void sd_set_streamparm(struct gspca_dev
*gspca_dev
,
1488 struct v4l2_streamparm
*parm
)
1490 struct v4l2_captureparm
*cp
= &parm
->parm
.capture
;
1491 struct v4l2_fract
*tpf
= &cp
->timeperframe
;
1492 struct sd
*sd
= (struct sd
*) gspca_dev
;
1494 /* Set requested framerate */
1495 sd
->frame_rate
= tpf
->denominator
/ tpf
->numerator
;
1496 if (gspca_dev
->streaming
)
1497 set_frame_rate(gspca_dev
);
1499 /* Return the actual framerate */
1501 tpf
->denominator
= sd
->frame_rate
;
1504 /* sub-driver description */
1505 static const struct sd_desc sd_desc
= {
1506 .name
= MODULE_NAME
,
1507 .config
= sd_config
,
1509 .init_controls
= sd_init_controls
,
1512 .pkt_scan
= sd_pkt_scan
,
1513 .get_streamparm
= sd_get_streamparm
,
1514 .set_streamparm
= sd_set_streamparm
,
1517 /* -- module initialisation -- */
1518 static const struct usb_device_id device_table
[] = {
1519 {USB_DEVICE(0x1415, 0x2000)},
1520 {USB_DEVICE(0x06f8, 0x3002)},
1524 MODULE_DEVICE_TABLE(usb
, device_table
);
1526 /* -- device connect -- */
1527 static int sd_probe(struct usb_interface
*intf
, const struct usb_device_id
*id
)
1529 return gspca_dev_probe(intf
, id
, &sd_desc
, sizeof(struct sd
),
1533 static struct usb_driver sd_driver
= {
1534 .name
= MODULE_NAME
,
1535 .id_table
= device_table
,
1537 .disconnect
= gspca_disconnect
,
1539 .suspend
= gspca_suspend
,
1540 .resume
= gspca_resume
,
1541 .reset_resume
= gspca_resume
,
1545 module_usb_driver(sd_driver
);