Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / media / usb / uvc / uvc_video.c
blob2b276ab7764fc37ec0a2fc0cd5a31f8ac966a7d9
1 /*
2 * uvc_video.c -- USB Video Class driver - Video handling
4 * Copyright (C) 2005-2010
5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
25 #include <media/v4l2-common.h>
27 #include "uvcvideo.h"
29 /* ------------------------------------------------------------------------
30 * UVC Controls
33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
34 __u8 intfnum, __u8 cs, void *data, __u16 size,
35 int timeout)
37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
38 unsigned int pipe;
40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
41 : usb_sndctrlpipe(dev->udev, 0);
42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
45 unit << 8 | intfnum, data, size, timeout);
48 static const char *uvc_query_name(__u8 query)
50 switch (query) {
51 case UVC_SET_CUR:
52 return "SET_CUR";
53 case UVC_GET_CUR:
54 return "GET_CUR";
55 case UVC_GET_MIN:
56 return "GET_MIN";
57 case UVC_GET_MAX:
58 return "GET_MAX";
59 case UVC_GET_RES:
60 return "GET_RES";
61 case UVC_GET_LEN:
62 return "GET_LEN";
63 case UVC_GET_INFO:
64 return "GET_INFO";
65 case UVC_GET_DEF:
66 return "GET_DEF";
67 default:
68 return "<invalid>";
72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
73 __u8 intfnum, __u8 cs, void *data, __u16 size)
75 int ret;
77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 UVC_CTRL_CONTROL_TIMEOUT);
79 if (ret != size) {
80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
82 unit, ret, size);
83 return -EIO;
86 return 0;
89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
90 struct uvc_streaming_control *ctrl)
92 struct uvc_format *format = NULL;
93 struct uvc_frame *frame = NULL;
94 unsigned int i;
96 for (i = 0; i < stream->nformats; ++i) {
97 if (stream->format[i].index == ctrl->bFormatIndex) {
98 format = &stream->format[i];
99 break;
103 if (format == NULL)
104 return;
106 for (i = 0; i < format->nframes; ++i) {
107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
108 frame = &format->frame[i];
109 break;
113 if (frame == NULL)
114 return;
116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
117 (ctrl->dwMaxVideoFrameSize == 0 &&
118 stream->dev->uvc_version < 0x0110))
119 ctrl->dwMaxVideoFrameSize =
120 frame->dwMaxVideoFrameBufferSize;
122 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
123 * compute the bandwidth on 16 bits and erroneously sign-extend it to
124 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
125 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
127 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
128 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
130 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
131 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
132 stream->intf->num_altsetting > 1) {
133 u32 interval;
134 u32 bandwidth;
136 interval = (ctrl->dwFrameInterval > 100000)
137 ? ctrl->dwFrameInterval
138 : frame->dwFrameInterval[0];
140 /* Compute a bandwidth estimation by multiplying the frame
141 * size by the number of video frames per second, divide the
142 * result by the number of USB frames (or micro-frames for
143 * high-speed devices) per second and add the UVC header size
144 * (assumed to be 12 bytes long).
146 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
147 bandwidth *= 10000000 / interval + 1;
148 bandwidth /= 1000;
149 if (stream->dev->udev->speed == USB_SPEED_HIGH)
150 bandwidth /= 8;
151 bandwidth += 12;
153 /* The bandwidth estimate is too low for many cameras. Don't use
154 * maximum packet sizes lower than 1024 bytes to try and work
155 * around the problem. According to measurements done on two
156 * different camera models, the value is high enough to get most
157 * resolutions working while not preventing two simultaneous
158 * VGA streams at 15 fps.
160 bandwidth = max_t(u32, bandwidth, 1024);
162 ctrl->dwMaxPayloadTransferSize = bandwidth;
166 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
167 struct uvc_streaming_control *ctrl, int probe, __u8 query)
169 __u8 *data;
170 __u16 size;
171 int ret;
173 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
174 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
175 query == UVC_GET_DEF)
176 return -EIO;
178 data = kmalloc(size, GFP_KERNEL);
179 if (data == NULL)
180 return -ENOMEM;
182 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
183 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
184 size, uvc_timeout_param);
186 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
187 /* Some cameras, mostly based on Bison Electronics chipsets,
188 * answer a GET_MIN or GET_MAX request with the wCompQuality
189 * field only.
191 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
192 "compliance - GET_MIN/MAX(PROBE) incorrectly "
193 "supported. Enabling workaround.\n");
194 memset(ctrl, 0, sizeof *ctrl);
195 ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
196 ret = 0;
197 goto out;
198 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
199 /* Many cameras don't support the GET_DEF request on their
200 * video probe control. Warn once and return, the caller will
201 * fall back to GET_CUR.
203 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
204 "compliance - GET_DEF(PROBE) not supported. "
205 "Enabling workaround.\n");
206 ret = -EIO;
207 goto out;
208 } else if (ret != size) {
209 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
210 "%d (exp. %u).\n", query, probe ? "probe" : "commit",
211 ret, size);
212 ret = -EIO;
213 goto out;
216 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
217 ctrl->bFormatIndex = data[2];
218 ctrl->bFrameIndex = data[3];
219 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
220 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
221 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
222 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
223 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
224 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
225 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
226 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
228 if (size == 34) {
229 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
230 ctrl->bmFramingInfo = data[30];
231 ctrl->bPreferedVersion = data[31];
232 ctrl->bMinVersion = data[32];
233 ctrl->bMaxVersion = data[33];
234 } else {
235 ctrl->dwClockFrequency = stream->dev->clock_frequency;
236 ctrl->bmFramingInfo = 0;
237 ctrl->bPreferedVersion = 0;
238 ctrl->bMinVersion = 0;
239 ctrl->bMaxVersion = 0;
242 /* Some broken devices return null or wrong dwMaxVideoFrameSize and
243 * dwMaxPayloadTransferSize fields. Try to get the value from the
244 * format and frame descriptors.
246 uvc_fixup_video_ctrl(stream, ctrl);
247 ret = 0;
249 out:
250 kfree(data);
251 return ret;
254 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
255 struct uvc_streaming_control *ctrl, int probe)
257 __u8 *data;
258 __u16 size;
259 int ret;
261 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
262 data = kzalloc(size, GFP_KERNEL);
263 if (data == NULL)
264 return -ENOMEM;
266 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
267 data[2] = ctrl->bFormatIndex;
268 data[3] = ctrl->bFrameIndex;
269 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
270 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
271 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
272 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
273 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
274 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
275 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
276 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
278 if (size == 34) {
279 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
280 data[30] = ctrl->bmFramingInfo;
281 data[31] = ctrl->bPreferedVersion;
282 data[32] = ctrl->bMinVersion;
283 data[33] = ctrl->bMaxVersion;
286 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
287 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
288 size, uvc_timeout_param);
289 if (ret != size) {
290 uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
291 "%d (exp. %u).\n", probe ? "probe" : "commit",
292 ret, size);
293 ret = -EIO;
296 kfree(data);
297 return ret;
300 int uvc_probe_video(struct uvc_streaming *stream,
301 struct uvc_streaming_control *probe)
303 struct uvc_streaming_control probe_min, probe_max;
304 __u16 bandwidth;
305 unsigned int i;
306 int ret;
308 /* Perform probing. The device should adjust the requested values
309 * according to its capabilities. However, some devices, namely the
310 * first generation UVC Logitech webcams, don't implement the Video
311 * Probe control properly, and just return the needed bandwidth. For
312 * that reason, if the needed bandwidth exceeds the maximum available
313 * bandwidth, try to lower the quality.
315 ret = uvc_set_video_ctrl(stream, probe, 1);
316 if (ret < 0)
317 goto done;
319 /* Get the minimum and maximum values for compression settings. */
320 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
321 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
322 if (ret < 0)
323 goto done;
324 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
325 if (ret < 0)
326 goto done;
328 probe->wCompQuality = probe_max.wCompQuality;
331 for (i = 0; i < 2; ++i) {
332 ret = uvc_set_video_ctrl(stream, probe, 1);
333 if (ret < 0)
334 goto done;
335 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
336 if (ret < 0)
337 goto done;
339 if (stream->intf->num_altsetting == 1)
340 break;
342 bandwidth = probe->dwMaxPayloadTransferSize;
343 if (bandwidth <= stream->maxpsize)
344 break;
346 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
347 ret = -ENOSPC;
348 goto done;
351 /* TODO: negotiate compression parameters */
352 probe->wKeyFrameRate = probe_min.wKeyFrameRate;
353 probe->wPFrameRate = probe_min.wPFrameRate;
354 probe->wCompQuality = probe_max.wCompQuality;
355 probe->wCompWindowSize = probe_min.wCompWindowSize;
358 done:
359 return ret;
362 static int uvc_commit_video(struct uvc_streaming *stream,
363 struct uvc_streaming_control *probe)
365 return uvc_set_video_ctrl(stream, probe, 0);
368 /* -----------------------------------------------------------------------------
369 * Clocks and timestamps
372 static inline void uvc_video_get_ts(struct timespec *ts)
374 if (uvc_clock_param == CLOCK_MONOTONIC)
375 ktime_get_ts(ts);
376 else
377 ktime_get_real_ts(ts);
380 static void
381 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
382 const __u8 *data, int len)
384 struct uvc_clock_sample *sample;
385 unsigned int header_size;
386 bool has_pts = false;
387 bool has_scr = false;
388 unsigned long flags;
389 struct timespec ts;
390 u16 host_sof;
391 u16 dev_sof;
393 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
394 case UVC_STREAM_PTS | UVC_STREAM_SCR:
395 header_size = 12;
396 has_pts = true;
397 has_scr = true;
398 break;
399 case UVC_STREAM_PTS:
400 header_size = 6;
401 has_pts = true;
402 break;
403 case UVC_STREAM_SCR:
404 header_size = 8;
405 has_scr = true;
406 break;
407 default:
408 header_size = 2;
409 break;
412 /* Check for invalid headers. */
413 if (len < header_size)
414 return;
416 /* Extract the timestamps:
418 * - store the frame PTS in the buffer structure
419 * - if the SCR field is present, retrieve the host SOF counter and
420 * kernel timestamps and store them with the SCR STC and SOF fields
421 * in the ring buffer
423 if (has_pts && buf != NULL)
424 buf->pts = get_unaligned_le32(&data[2]);
426 if (!has_scr)
427 return;
429 /* To limit the amount of data, drop SCRs with an SOF identical to the
430 * previous one.
432 dev_sof = get_unaligned_le16(&data[header_size - 2]);
433 if (dev_sof == stream->clock.last_sof)
434 return;
436 stream->clock.last_sof = dev_sof;
438 host_sof = usb_get_current_frame_number(stream->dev->udev);
439 uvc_video_get_ts(&ts);
441 /* The UVC specification allows device implementations that can't obtain
442 * the USB frame number to keep their own frame counters as long as they
443 * match the size and frequency of the frame number associated with USB
444 * SOF tokens. The SOF values sent by such devices differ from the USB
445 * SOF tokens by a fixed offset that needs to be estimated and accounted
446 * for to make timestamp recovery as accurate as possible.
448 * The offset is estimated the first time a device SOF value is received
449 * as the difference between the host and device SOF values. As the two
450 * SOF values can differ slightly due to transmission delays, consider
451 * that the offset is null if the difference is not higher than 10 ms
452 * (negative differences can not happen and are thus considered as an
453 * offset). The video commit control wDelay field should be used to
454 * compute a dynamic threshold instead of using a fixed 10 ms value, but
455 * devices don't report reliable wDelay values.
457 * See uvc_video_clock_host_sof() for an explanation regarding why only
458 * the 8 LSBs of the delta are kept.
460 if (stream->clock.sof_offset == (u16)-1) {
461 u16 delta_sof = (host_sof - dev_sof) & 255;
462 if (delta_sof >= 10)
463 stream->clock.sof_offset = delta_sof;
464 else
465 stream->clock.sof_offset = 0;
468 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
470 spin_lock_irqsave(&stream->clock.lock, flags);
472 sample = &stream->clock.samples[stream->clock.head];
473 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
474 sample->dev_sof = dev_sof;
475 sample->host_sof = host_sof;
476 sample->host_ts = ts;
478 /* Update the sliding window head and count. */
479 stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
481 if (stream->clock.count < stream->clock.size)
482 stream->clock.count++;
484 spin_unlock_irqrestore(&stream->clock.lock, flags);
487 static void uvc_video_clock_reset(struct uvc_streaming *stream)
489 struct uvc_clock *clock = &stream->clock;
491 clock->head = 0;
492 clock->count = 0;
493 clock->last_sof = -1;
494 clock->sof_offset = -1;
497 static int uvc_video_clock_init(struct uvc_streaming *stream)
499 struct uvc_clock *clock = &stream->clock;
501 spin_lock_init(&clock->lock);
502 clock->size = 32;
504 clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
505 GFP_KERNEL);
506 if (clock->samples == NULL)
507 return -ENOMEM;
509 uvc_video_clock_reset(stream);
511 return 0;
514 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
516 kfree(stream->clock.samples);
517 stream->clock.samples = NULL;
521 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
523 * Host SOF counters reported by usb_get_current_frame_number() usually don't
524 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
525 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
526 * controller and its configuration.
528 * We thus need to recover the SOF value corresponding to the host frame number.
529 * As the device and host frame numbers are sampled in a short interval, the
530 * difference between their values should be equal to a small delta plus an
531 * integer multiple of 256 caused by the host frame number limited precision.
533 * To obtain the recovered host SOF value, compute the small delta by masking
534 * the high bits of the host frame counter and device SOF difference and add it
535 * to the device SOF value.
537 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
539 /* The delta value can be negative. */
540 s8 delta_sof;
542 delta_sof = (sample->host_sof - sample->dev_sof) & 255;
544 return (sample->dev_sof + delta_sof) & 2047;
548 * uvc_video_clock_update - Update the buffer timestamp
550 * This function converts the buffer PTS timestamp to the host clock domain by
551 * going through the USB SOF clock domain and stores the result in the V4L2
552 * buffer timestamp field.
554 * The relationship between the device clock and the host clock isn't known.
555 * However, the device and the host share the common USB SOF clock which can be
556 * used to recover that relationship.
558 * The relationship between the device clock and the USB SOF clock is considered
559 * to be linear over the clock samples sliding window and is given by
561 * SOF = m * PTS + p
563 * Several methods to compute the slope (m) and intercept (p) can be used. As
564 * the clock drift should be small compared to the sliding window size, we
565 * assume that the line that goes through the points at both ends of the window
566 * is a good approximation. Naming those points P1 and P2, we get
568 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
569 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
571 * or
573 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
575 * to avoid losing precision in the division. Similarly, the host timestamp is
576 * computed with
578 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
580 * SOF values are coded on 11 bits by USB. We extend their precision with 16
581 * decimal bits, leading to a 11.16 coding.
583 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
584 * be normalized using the nominal device clock frequency reported through the
585 * UVC descriptors.
587 * Both the PTS/STC and SOF counters roll over, after a fixed but device
588 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
589 * sliding window size is smaller than the rollover period, differences computed
590 * on unsigned integers will produce the correct result. However, the p term in
591 * the linear relations will be miscomputed.
593 * To fix the issue, we subtract a constant from the PTS and STC values to bring
594 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
595 * the 32 bit range without any rollover.
597 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
598 * computed by (1) will never be smaller than 0. This offset is then compensated
599 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
600 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
601 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
602 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
603 * SOF value at the end of the sliding window.
605 * Finally we subtract a constant from the host timestamps to bring the first
606 * timestamp of the sliding window to 1s.
608 void uvc_video_clock_update(struct uvc_streaming *stream,
609 struct vb2_v4l2_buffer *vbuf,
610 struct uvc_buffer *buf)
612 struct uvc_clock *clock = &stream->clock;
613 struct uvc_clock_sample *first;
614 struct uvc_clock_sample *last;
615 unsigned long flags;
616 struct timespec ts;
617 u32 delta_stc;
618 u32 y1, y2;
619 u32 x1, x2;
620 u32 mean;
621 u32 sof;
622 u32 div;
623 u32 rem;
624 u64 y;
626 if (!uvc_hw_timestamps_param)
627 return;
629 spin_lock_irqsave(&clock->lock, flags);
631 if (clock->count < clock->size)
632 goto done;
634 first = &clock->samples[clock->head];
635 last = &clock->samples[(clock->head - 1) % clock->size];
637 /* First step, PTS to SOF conversion. */
638 delta_stc = buf->pts - (1UL << 31);
639 x1 = first->dev_stc - delta_stc;
640 x2 = last->dev_stc - delta_stc;
641 if (x1 == x2)
642 goto done;
644 y1 = (first->dev_sof + 2048) << 16;
645 y2 = (last->dev_sof + 2048) << 16;
646 if (y2 < y1)
647 y2 += 2048 << 16;
649 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
650 - (u64)y2 * (u64)x1;
651 y = div_u64(y, x2 - x1);
653 sof = y;
655 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
656 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
657 stream->dev->name, buf->pts,
658 y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
659 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
660 x1, x2, y1, y2, clock->sof_offset);
662 /* Second step, SOF to host clock conversion. */
663 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
664 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
665 if (x2 < x1)
666 x2 += 2048 << 16;
667 if (x1 == x2)
668 goto done;
670 ts = timespec_sub(last->host_ts, first->host_ts);
671 y1 = NSEC_PER_SEC;
672 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec;
674 /* Interpolated and host SOF timestamps can wrap around at slightly
675 * different times. Handle this by adding or removing 2048 to or from
676 * the computed SOF value to keep it close to the SOF samples mean
677 * value.
679 mean = (x1 + x2) / 2;
680 if (mean - (1024 << 16) > sof)
681 sof += 2048 << 16;
682 else if (sof > mean + (1024 << 16))
683 sof -= 2048 << 16;
685 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
686 - (u64)y2 * (u64)x1;
687 y = div_u64(y, x2 - x1);
689 div = div_u64_rem(y, NSEC_PER_SEC, &rem);
690 ts.tv_sec = first->host_ts.tv_sec - 1 + div;
691 ts.tv_nsec = first->host_ts.tv_nsec + rem;
692 if (ts.tv_nsec >= NSEC_PER_SEC) {
693 ts.tv_sec++;
694 ts.tv_nsec -= NSEC_PER_SEC;
697 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
698 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
699 stream->dev->name,
700 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
701 y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC,
702 vbuf->timestamp.tv_sec,
703 (unsigned long)vbuf->timestamp.tv_usec,
704 x1, first->host_sof, first->dev_sof,
705 x2, last->host_sof, last->dev_sof, y1, y2);
707 /* Update the V4L2 buffer. */
708 vbuf->timestamp.tv_sec = ts.tv_sec;
709 vbuf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
711 done:
712 spin_unlock_irqrestore(&stream->clock.lock, flags);
715 /* ------------------------------------------------------------------------
716 * Stream statistics
719 static void uvc_video_stats_decode(struct uvc_streaming *stream,
720 const __u8 *data, int len)
722 unsigned int header_size;
723 bool has_pts = false;
724 bool has_scr = false;
725 u16 uninitialized_var(scr_sof);
726 u32 uninitialized_var(scr_stc);
727 u32 uninitialized_var(pts);
729 if (stream->stats.stream.nb_frames == 0 &&
730 stream->stats.frame.nb_packets == 0)
731 ktime_get_ts(&stream->stats.stream.start_ts);
733 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
734 case UVC_STREAM_PTS | UVC_STREAM_SCR:
735 header_size = 12;
736 has_pts = true;
737 has_scr = true;
738 break;
739 case UVC_STREAM_PTS:
740 header_size = 6;
741 has_pts = true;
742 break;
743 case UVC_STREAM_SCR:
744 header_size = 8;
745 has_scr = true;
746 break;
747 default:
748 header_size = 2;
749 break;
752 /* Check for invalid headers. */
753 if (len < header_size || data[0] < header_size) {
754 stream->stats.frame.nb_invalid++;
755 return;
758 /* Extract the timestamps. */
759 if (has_pts)
760 pts = get_unaligned_le32(&data[2]);
762 if (has_scr) {
763 scr_stc = get_unaligned_le32(&data[header_size - 6]);
764 scr_sof = get_unaligned_le16(&data[header_size - 2]);
767 /* Is PTS constant through the whole frame ? */
768 if (has_pts && stream->stats.frame.nb_pts) {
769 if (stream->stats.frame.pts != pts) {
770 stream->stats.frame.nb_pts_diffs++;
771 stream->stats.frame.last_pts_diff =
772 stream->stats.frame.nb_packets;
776 if (has_pts) {
777 stream->stats.frame.nb_pts++;
778 stream->stats.frame.pts = pts;
781 /* Do all frames have a PTS in their first non-empty packet, or before
782 * their first empty packet ?
784 if (stream->stats.frame.size == 0) {
785 if (len > header_size)
786 stream->stats.frame.has_initial_pts = has_pts;
787 if (len == header_size && has_pts)
788 stream->stats.frame.has_early_pts = true;
791 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
792 if (has_scr && stream->stats.frame.nb_scr) {
793 if (stream->stats.frame.scr_stc != scr_stc)
794 stream->stats.frame.nb_scr_diffs++;
797 if (has_scr) {
798 /* Expand the SOF counter to 32 bits and store its value. */
799 if (stream->stats.stream.nb_frames > 0 ||
800 stream->stats.frame.nb_scr > 0)
801 stream->stats.stream.scr_sof_count +=
802 (scr_sof - stream->stats.stream.scr_sof) % 2048;
803 stream->stats.stream.scr_sof = scr_sof;
805 stream->stats.frame.nb_scr++;
806 stream->stats.frame.scr_stc = scr_stc;
807 stream->stats.frame.scr_sof = scr_sof;
809 if (scr_sof < stream->stats.stream.min_sof)
810 stream->stats.stream.min_sof = scr_sof;
811 if (scr_sof > stream->stats.stream.max_sof)
812 stream->stats.stream.max_sof = scr_sof;
815 /* Record the first non-empty packet number. */
816 if (stream->stats.frame.size == 0 && len > header_size)
817 stream->stats.frame.first_data = stream->stats.frame.nb_packets;
819 /* Update the frame size. */
820 stream->stats.frame.size += len - header_size;
822 /* Update the packets counters. */
823 stream->stats.frame.nb_packets++;
824 if (len > header_size)
825 stream->stats.frame.nb_empty++;
827 if (data[1] & UVC_STREAM_ERR)
828 stream->stats.frame.nb_errors++;
831 static void uvc_video_stats_update(struct uvc_streaming *stream)
833 struct uvc_stats_frame *frame = &stream->stats.frame;
835 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
836 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
837 "last pts/stc/sof %u/%u/%u\n",
838 stream->sequence, frame->first_data,
839 frame->nb_packets - frame->nb_empty, frame->nb_packets,
840 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
841 frame->has_early_pts ? "" : "!",
842 frame->has_initial_pts ? "" : "!",
843 frame->nb_scr_diffs, frame->nb_scr,
844 frame->pts, frame->scr_stc, frame->scr_sof);
846 stream->stats.stream.nb_frames++;
847 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
848 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
849 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
850 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
852 if (frame->has_early_pts)
853 stream->stats.stream.nb_pts_early++;
854 if (frame->has_initial_pts)
855 stream->stats.stream.nb_pts_initial++;
856 if (frame->last_pts_diff <= frame->first_data)
857 stream->stats.stream.nb_pts_constant++;
858 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
859 stream->stats.stream.nb_scr_count_ok++;
860 if (frame->nb_scr_diffs + 1 == frame->nb_scr)
861 stream->stats.stream.nb_scr_diffs_ok++;
863 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
866 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
867 size_t size)
869 unsigned int scr_sof_freq;
870 unsigned int duration;
871 struct timespec ts;
872 size_t count = 0;
874 ts.tv_sec = stream->stats.stream.stop_ts.tv_sec
875 - stream->stats.stream.start_ts.tv_sec;
876 ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec
877 - stream->stats.stream.start_ts.tv_nsec;
878 if (ts.tv_nsec < 0) {
879 ts.tv_sec--;
880 ts.tv_nsec += 1000000000;
883 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
884 * frequency this will not overflow before more than 1h.
886 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
887 if (duration != 0)
888 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
889 / duration;
890 else
891 scr_sof_freq = 0;
893 count += scnprintf(buf + count, size - count,
894 "frames: %u\npackets: %u\nempty: %u\n"
895 "errors: %u\ninvalid: %u\n",
896 stream->stats.stream.nb_frames,
897 stream->stats.stream.nb_packets,
898 stream->stats.stream.nb_empty,
899 stream->stats.stream.nb_errors,
900 stream->stats.stream.nb_invalid);
901 count += scnprintf(buf + count, size - count,
902 "pts: %u early, %u initial, %u ok\n",
903 stream->stats.stream.nb_pts_early,
904 stream->stats.stream.nb_pts_initial,
905 stream->stats.stream.nb_pts_constant);
906 count += scnprintf(buf + count, size - count,
907 "scr: %u count ok, %u diff ok\n",
908 stream->stats.stream.nb_scr_count_ok,
909 stream->stats.stream.nb_scr_diffs_ok);
910 count += scnprintf(buf + count, size - count,
911 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
912 stream->stats.stream.min_sof,
913 stream->stats.stream.max_sof,
914 scr_sof_freq / 1000, scr_sof_freq % 1000);
916 return count;
919 static void uvc_video_stats_start(struct uvc_streaming *stream)
921 memset(&stream->stats, 0, sizeof(stream->stats));
922 stream->stats.stream.min_sof = 2048;
925 static void uvc_video_stats_stop(struct uvc_streaming *stream)
927 ktime_get_ts(&stream->stats.stream.stop_ts);
930 /* ------------------------------------------------------------------------
931 * Video codecs
934 /* Video payload decoding is handled by uvc_video_decode_start(),
935 * uvc_video_decode_data() and uvc_video_decode_end().
937 * uvc_video_decode_start is called with URB data at the start of a bulk or
938 * isochronous payload. It processes header data and returns the header size
939 * in bytes if successful. If an error occurs, it returns a negative error
940 * code. The following error codes have special meanings.
942 * - EAGAIN informs the caller that the current video buffer should be marked
943 * as done, and that the function should be called again with the same data
944 * and a new video buffer. This is used when end of frame conditions can be
945 * reliably detected at the beginning of the next frame only.
947 * If an error other than -EAGAIN is returned, the caller will drop the current
948 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
949 * made until the next payload. -ENODATA can be used to drop the current
950 * payload if no other error code is appropriate.
952 * uvc_video_decode_data is called for every URB with URB data. It copies the
953 * data to the video buffer.
955 * uvc_video_decode_end is called with header data at the end of a bulk or
956 * isochronous payload. It performs any additional header data processing and
957 * returns 0 or a negative error code if an error occurred. As header data have
958 * already been processed by uvc_video_decode_start, this functions isn't
959 * required to perform sanity checks a second time.
961 * For isochronous transfers where a payload is always transferred in a single
962 * URB, the three functions will be called in a row.
964 * To let the decoder process header data and update its internal state even
965 * when no video buffer is available, uvc_video_decode_start must be prepared
966 * to be called with a NULL buf parameter. uvc_video_decode_data and
967 * uvc_video_decode_end will never be called with a NULL buffer.
969 static int uvc_video_decode_start(struct uvc_streaming *stream,
970 struct uvc_buffer *buf, const __u8 *data, int len)
972 __u8 fid;
974 /* Sanity checks:
975 * - packet must be at least 2 bytes long
976 * - bHeaderLength value must be at least 2 bytes (see above)
977 * - bHeaderLength value can't be larger than the packet size.
979 if (len < 2 || data[0] < 2 || data[0] > len) {
980 stream->stats.frame.nb_invalid++;
981 return -EINVAL;
984 fid = data[1] & UVC_STREAM_FID;
986 /* Increase the sequence number regardless of any buffer states, so
987 * that discontinuous sequence numbers always indicate lost frames.
989 if (stream->last_fid != fid) {
990 stream->sequence++;
991 if (stream->sequence)
992 uvc_video_stats_update(stream);
995 uvc_video_clock_decode(stream, buf, data, len);
996 uvc_video_stats_decode(stream, data, len);
998 /* Store the payload FID bit and return immediately when the buffer is
999 * NULL.
1001 if (buf == NULL) {
1002 stream->last_fid = fid;
1003 return -ENODATA;
1006 /* Mark the buffer as bad if the error bit is set. */
1007 if (data[1] & UVC_STREAM_ERR) {
1008 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
1009 "set).\n");
1010 buf->error = 1;
1013 /* Synchronize to the input stream by waiting for the FID bit to be
1014 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
1015 * stream->last_fid is initialized to -1, so the first isochronous
1016 * frame will always be in sync.
1018 * If the device doesn't toggle the FID bit, invert stream->last_fid
1019 * when the EOF bit is set to force synchronisation on the next packet.
1021 if (buf->state != UVC_BUF_STATE_ACTIVE) {
1022 struct timespec ts;
1024 if (fid == stream->last_fid) {
1025 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1026 "sync).\n");
1027 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1028 (data[1] & UVC_STREAM_EOF))
1029 stream->last_fid ^= UVC_STREAM_FID;
1030 return -ENODATA;
1033 uvc_video_get_ts(&ts);
1035 buf->buf.field = V4L2_FIELD_NONE;
1036 buf->buf.sequence = stream->sequence;
1037 buf->buf.timestamp.tv_sec = ts.tv_sec;
1038 buf->buf.timestamp.tv_usec =
1039 ts.tv_nsec / NSEC_PER_USEC;
1041 /* TODO: Handle PTS and SCR. */
1042 buf->state = UVC_BUF_STATE_ACTIVE;
1045 /* Mark the buffer as done if we're at the beginning of a new frame.
1046 * End of frame detection is better implemented by checking the EOF
1047 * bit (FID bit toggling is delayed by one frame compared to the EOF
1048 * bit), but some devices don't set the bit at end of frame (and the
1049 * last payload can be lost anyway). We thus must check if the FID has
1050 * been toggled.
1052 * stream->last_fid is initialized to -1, so the first isochronous
1053 * frame will never trigger an end of frame detection.
1055 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1056 * as it doesn't make sense to return an empty buffer. This also
1057 * avoids detecting end of frame conditions at FID toggling if the
1058 * previous payload had the EOF bit set.
1060 if (fid != stream->last_fid && buf->bytesused != 0) {
1061 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1062 "toggled).\n");
1063 buf->state = UVC_BUF_STATE_READY;
1064 return -EAGAIN;
1067 stream->last_fid = fid;
1069 return data[0];
1072 static void uvc_video_decode_data(struct uvc_streaming *stream,
1073 struct uvc_buffer *buf, const __u8 *data, int len)
1075 unsigned int maxlen, nbytes;
1076 void *mem;
1078 if (len <= 0)
1079 return;
1081 /* Copy the video data to the buffer. */
1082 maxlen = buf->length - buf->bytesused;
1083 mem = buf->mem + buf->bytesused;
1084 nbytes = min((unsigned int)len, maxlen);
1085 memcpy(mem, data, nbytes);
1086 buf->bytesused += nbytes;
1088 /* Complete the current frame if the buffer size was exceeded. */
1089 if (len > maxlen) {
1090 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1091 buf->state = UVC_BUF_STATE_READY;
1095 static void uvc_video_decode_end(struct uvc_streaming *stream,
1096 struct uvc_buffer *buf, const __u8 *data, int len)
1098 /* Mark the buffer as done if the EOF marker is set. */
1099 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1100 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1101 if (data[0] == len)
1102 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1103 buf->state = UVC_BUF_STATE_READY;
1104 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1105 stream->last_fid ^= UVC_STREAM_FID;
1109 /* Video payload encoding is handled by uvc_video_encode_header() and
1110 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1112 * uvc_video_encode_header is called at the start of a payload. It adds header
1113 * data to the transfer buffer and returns the header size. As the only known
1114 * UVC output device transfers a whole frame in a single payload, the EOF bit
1115 * is always set in the header.
1117 * uvc_video_encode_data is called for every URB and copies the data from the
1118 * video buffer to the transfer buffer.
1120 static int uvc_video_encode_header(struct uvc_streaming *stream,
1121 struct uvc_buffer *buf, __u8 *data, int len)
1123 data[0] = 2; /* Header length */
1124 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1125 | (stream->last_fid & UVC_STREAM_FID);
1126 return 2;
1129 static int uvc_video_encode_data(struct uvc_streaming *stream,
1130 struct uvc_buffer *buf, __u8 *data, int len)
1132 struct uvc_video_queue *queue = &stream->queue;
1133 unsigned int nbytes;
1134 void *mem;
1136 /* Copy video data to the URB buffer. */
1137 mem = buf->mem + queue->buf_used;
1138 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1139 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1140 nbytes);
1141 memcpy(data, mem, nbytes);
1143 queue->buf_used += nbytes;
1145 return nbytes;
1148 /* ------------------------------------------------------------------------
1149 * URB handling
1153 * Set error flag for incomplete buffer.
1155 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1156 struct uvc_buffer *buf)
1158 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1159 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1160 buf->error = 1;
1164 * Completion handler for video URBs.
1166 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
1167 struct uvc_buffer *buf)
1169 u8 *mem;
1170 int ret, i;
1172 for (i = 0; i < urb->number_of_packets; ++i) {
1173 if (urb->iso_frame_desc[i].status < 0) {
1174 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1175 "lost (%d).\n", urb->iso_frame_desc[i].status);
1176 /* Mark the buffer as faulty. */
1177 if (buf != NULL)
1178 buf->error = 1;
1179 continue;
1182 /* Decode the payload header. */
1183 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1184 do {
1185 ret = uvc_video_decode_start(stream, buf, mem,
1186 urb->iso_frame_desc[i].actual_length);
1187 if (ret == -EAGAIN) {
1188 uvc_video_validate_buffer(stream, buf);
1189 buf = uvc_queue_next_buffer(&stream->queue,
1190 buf);
1192 } while (ret == -EAGAIN);
1194 if (ret < 0)
1195 continue;
1197 /* Decode the payload data. */
1198 uvc_video_decode_data(stream, buf, mem + ret,
1199 urb->iso_frame_desc[i].actual_length - ret);
1201 /* Process the header again. */
1202 uvc_video_decode_end(stream, buf, mem,
1203 urb->iso_frame_desc[i].actual_length);
1205 if (buf->state == UVC_BUF_STATE_READY) {
1206 uvc_video_validate_buffer(stream, buf);
1207 buf = uvc_queue_next_buffer(&stream->queue, buf);
1212 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
1213 struct uvc_buffer *buf)
1215 u8 *mem;
1216 int len, ret;
1219 * Ignore ZLPs if they're not part of a frame, otherwise process them
1220 * to trigger the end of payload detection.
1222 if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1223 return;
1225 mem = urb->transfer_buffer;
1226 len = urb->actual_length;
1227 stream->bulk.payload_size += len;
1229 /* If the URB is the first of its payload, decode and save the
1230 * header.
1232 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1233 do {
1234 ret = uvc_video_decode_start(stream, buf, mem, len);
1235 if (ret == -EAGAIN)
1236 buf = uvc_queue_next_buffer(&stream->queue,
1237 buf);
1238 } while (ret == -EAGAIN);
1240 /* If an error occurred skip the rest of the payload. */
1241 if (ret < 0 || buf == NULL) {
1242 stream->bulk.skip_payload = 1;
1243 } else {
1244 memcpy(stream->bulk.header, mem, ret);
1245 stream->bulk.header_size = ret;
1247 mem += ret;
1248 len -= ret;
1252 /* The buffer queue might have been cancelled while a bulk transfer
1253 * was in progress, so we can reach here with buf equal to NULL. Make
1254 * sure buf is never dereferenced if NULL.
1257 /* Process video data. */
1258 if (!stream->bulk.skip_payload && buf != NULL)
1259 uvc_video_decode_data(stream, buf, mem, len);
1261 /* Detect the payload end by a URB smaller than the maximum size (or
1262 * a payload size equal to the maximum) and process the header again.
1264 if (urb->actual_length < urb->transfer_buffer_length ||
1265 stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1266 if (!stream->bulk.skip_payload && buf != NULL) {
1267 uvc_video_decode_end(stream, buf, stream->bulk.header,
1268 stream->bulk.payload_size);
1269 if (buf->state == UVC_BUF_STATE_READY)
1270 buf = uvc_queue_next_buffer(&stream->queue,
1271 buf);
1274 stream->bulk.header_size = 0;
1275 stream->bulk.skip_payload = 0;
1276 stream->bulk.payload_size = 0;
1280 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
1281 struct uvc_buffer *buf)
1283 u8 *mem = urb->transfer_buffer;
1284 int len = stream->urb_size, ret;
1286 if (buf == NULL) {
1287 urb->transfer_buffer_length = 0;
1288 return;
1291 /* If the URB is the first of its payload, add the header. */
1292 if (stream->bulk.header_size == 0) {
1293 ret = uvc_video_encode_header(stream, buf, mem, len);
1294 stream->bulk.header_size = ret;
1295 stream->bulk.payload_size += ret;
1296 mem += ret;
1297 len -= ret;
1300 /* Process video data. */
1301 ret = uvc_video_encode_data(stream, buf, mem, len);
1303 stream->bulk.payload_size += ret;
1304 len -= ret;
1306 if (buf->bytesused == stream->queue.buf_used ||
1307 stream->bulk.payload_size == stream->bulk.max_payload_size) {
1308 if (buf->bytesused == stream->queue.buf_used) {
1309 stream->queue.buf_used = 0;
1310 buf->state = UVC_BUF_STATE_READY;
1311 buf->buf.sequence = ++stream->sequence;
1312 uvc_queue_next_buffer(&stream->queue, buf);
1313 stream->last_fid ^= UVC_STREAM_FID;
1316 stream->bulk.header_size = 0;
1317 stream->bulk.payload_size = 0;
1320 urb->transfer_buffer_length = stream->urb_size - len;
1323 static void uvc_video_complete(struct urb *urb)
1325 struct uvc_streaming *stream = urb->context;
1326 struct uvc_video_queue *queue = &stream->queue;
1327 struct uvc_buffer *buf = NULL;
1328 unsigned long flags;
1329 int ret;
1331 switch (urb->status) {
1332 case 0:
1333 break;
1335 default:
1336 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1337 "completion handler.\n", urb->status);
1339 case -ENOENT: /* usb_kill_urb() called. */
1340 if (stream->frozen)
1341 return;
1343 case -ECONNRESET: /* usb_unlink_urb() called. */
1344 case -ESHUTDOWN: /* The endpoint is being disabled. */
1345 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1346 return;
1349 spin_lock_irqsave(&queue->irqlock, flags);
1350 if (!list_empty(&queue->irqqueue))
1351 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
1352 queue);
1353 spin_unlock_irqrestore(&queue->irqlock, flags);
1355 stream->decode(urb, stream, buf);
1357 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
1358 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1359 ret);
1364 * Free transfer buffers.
1366 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1368 unsigned int i;
1370 for (i = 0; i < UVC_URBS; ++i) {
1371 if (stream->urb_buffer[i]) {
1372 #ifndef CONFIG_DMA_NONCOHERENT
1373 usb_free_coherent(stream->dev->udev, stream->urb_size,
1374 stream->urb_buffer[i], stream->urb_dma[i]);
1375 #else
1376 kfree(stream->urb_buffer[i]);
1377 #endif
1378 stream->urb_buffer[i] = NULL;
1382 stream->urb_size = 0;
1386 * Allocate transfer buffers. This function can be called with buffers
1387 * already allocated when resuming from suspend, in which case it will
1388 * return without touching the buffers.
1390 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1391 * system is too low on memory try successively smaller numbers of packets
1392 * until allocation succeeds.
1394 * Return the number of allocated packets on success or 0 when out of memory.
1396 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1397 unsigned int size, unsigned int psize, gfp_t gfp_flags)
1399 unsigned int npackets;
1400 unsigned int i;
1402 /* Buffers are already allocated, bail out. */
1403 if (stream->urb_size)
1404 return stream->urb_size / psize;
1406 /* Compute the number of packets. Bulk endpoints might transfer UVC
1407 * payloads across multiple URBs.
1409 npackets = DIV_ROUND_UP(size, psize);
1410 if (npackets > UVC_MAX_PACKETS)
1411 npackets = UVC_MAX_PACKETS;
1413 /* Retry allocations until one succeed. */
1414 for (; npackets > 1; npackets /= 2) {
1415 for (i = 0; i < UVC_URBS; ++i) {
1416 stream->urb_size = psize * npackets;
1417 #ifndef CONFIG_DMA_NONCOHERENT
1418 stream->urb_buffer[i] = usb_alloc_coherent(
1419 stream->dev->udev, stream->urb_size,
1420 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
1421 #else
1422 stream->urb_buffer[i] =
1423 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1424 #endif
1425 if (!stream->urb_buffer[i]) {
1426 uvc_free_urb_buffers(stream);
1427 break;
1431 if (i == UVC_URBS) {
1432 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1433 "of %ux%u bytes each.\n", UVC_URBS, npackets,
1434 psize);
1435 return npackets;
1439 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1440 "per packet).\n", psize);
1441 return 0;
1445 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1447 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
1449 struct urb *urb;
1450 unsigned int i;
1452 uvc_video_stats_stop(stream);
1454 for (i = 0; i < UVC_URBS; ++i) {
1455 urb = stream->urb[i];
1456 if (urb == NULL)
1457 continue;
1459 usb_kill_urb(urb);
1460 usb_free_urb(urb);
1461 stream->urb[i] = NULL;
1464 if (free_buffers)
1465 uvc_free_urb_buffers(stream);
1469 * Compute the maximum number of bytes per interval for an endpoint.
1471 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1472 struct usb_host_endpoint *ep)
1474 u16 psize;
1476 switch (dev->speed) {
1477 case USB_SPEED_SUPER:
1478 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1479 case USB_SPEED_HIGH:
1480 psize = usb_endpoint_maxp(&ep->desc);
1481 return (psize & 0x07ff) * (1 + ((psize >> 11) & 3));
1482 case USB_SPEED_WIRELESS:
1483 psize = usb_endpoint_maxp(&ep->desc);
1484 return psize;
1485 default:
1486 psize = usb_endpoint_maxp(&ep->desc);
1487 return psize & 0x07ff;
1492 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1493 * is given by the endpoint.
1495 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1496 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1498 struct urb *urb;
1499 unsigned int npackets, i, j;
1500 u16 psize;
1501 u32 size;
1503 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1504 size = stream->ctrl.dwMaxVideoFrameSize;
1506 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1507 if (npackets == 0)
1508 return -ENOMEM;
1510 size = npackets * psize;
1512 for (i = 0; i < UVC_URBS; ++i) {
1513 urb = usb_alloc_urb(npackets, gfp_flags);
1514 if (urb == NULL) {
1515 uvc_uninit_video(stream, 1);
1516 return -ENOMEM;
1519 urb->dev = stream->dev->udev;
1520 urb->context = stream;
1521 urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1522 ep->desc.bEndpointAddress);
1523 #ifndef CONFIG_DMA_NONCOHERENT
1524 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1525 urb->transfer_dma = stream->urb_dma[i];
1526 #else
1527 urb->transfer_flags = URB_ISO_ASAP;
1528 #endif
1529 urb->interval = ep->desc.bInterval;
1530 urb->transfer_buffer = stream->urb_buffer[i];
1531 urb->complete = uvc_video_complete;
1532 urb->number_of_packets = npackets;
1533 urb->transfer_buffer_length = size;
1535 for (j = 0; j < npackets; ++j) {
1536 urb->iso_frame_desc[j].offset = j * psize;
1537 urb->iso_frame_desc[j].length = psize;
1540 stream->urb[i] = urb;
1543 return 0;
1547 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1548 * given by the endpoint.
1550 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1551 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1553 struct urb *urb;
1554 unsigned int npackets, pipe, i;
1555 u16 psize;
1556 u32 size;
1558 psize = usb_endpoint_maxp(&ep->desc) & 0x7ff;
1559 size = stream->ctrl.dwMaxPayloadTransferSize;
1560 stream->bulk.max_payload_size = size;
1562 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1563 if (npackets == 0)
1564 return -ENOMEM;
1566 size = npackets * psize;
1568 if (usb_endpoint_dir_in(&ep->desc))
1569 pipe = usb_rcvbulkpipe(stream->dev->udev,
1570 ep->desc.bEndpointAddress);
1571 else
1572 pipe = usb_sndbulkpipe(stream->dev->udev,
1573 ep->desc.bEndpointAddress);
1575 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1576 size = 0;
1578 for (i = 0; i < UVC_URBS; ++i) {
1579 urb = usb_alloc_urb(0, gfp_flags);
1580 if (urb == NULL) {
1581 uvc_uninit_video(stream, 1);
1582 return -ENOMEM;
1585 usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
1586 stream->urb_buffer[i], size, uvc_video_complete,
1587 stream);
1588 #ifndef CONFIG_DMA_NONCOHERENT
1589 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1590 urb->transfer_dma = stream->urb_dma[i];
1591 #endif
1593 stream->urb[i] = urb;
1596 return 0;
1600 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1602 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
1604 struct usb_interface *intf = stream->intf;
1605 struct usb_host_endpoint *ep;
1606 unsigned int i;
1607 int ret;
1609 stream->sequence = -1;
1610 stream->last_fid = -1;
1611 stream->bulk.header_size = 0;
1612 stream->bulk.skip_payload = 0;
1613 stream->bulk.payload_size = 0;
1615 uvc_video_stats_start(stream);
1617 if (intf->num_altsetting > 1) {
1618 struct usb_host_endpoint *best_ep = NULL;
1619 unsigned int best_psize = UINT_MAX;
1620 unsigned int bandwidth;
1621 unsigned int uninitialized_var(altsetting);
1622 int intfnum = stream->intfnum;
1624 /* Isochronous endpoint, select the alternate setting. */
1625 bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1627 if (bandwidth == 0) {
1628 uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1629 "bandwidth, defaulting to lowest.\n");
1630 bandwidth = 1;
1631 } else {
1632 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1633 "B/frame bandwidth.\n", bandwidth);
1636 for (i = 0; i < intf->num_altsetting; ++i) {
1637 struct usb_host_interface *alts;
1638 unsigned int psize;
1640 alts = &intf->altsetting[i];
1641 ep = uvc_find_endpoint(alts,
1642 stream->header.bEndpointAddress);
1643 if (ep == NULL)
1644 continue;
1646 /* Check if the bandwidth is high enough. */
1647 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1648 if (psize >= bandwidth && psize <= best_psize) {
1649 altsetting = alts->desc.bAlternateSetting;
1650 best_psize = psize;
1651 best_ep = ep;
1655 if (best_ep == NULL) {
1656 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1657 "for requested bandwidth.\n");
1658 return -EIO;
1661 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1662 "(%u B/frame bandwidth).\n", altsetting, best_psize);
1664 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1665 if (ret < 0)
1666 return ret;
1668 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1669 } else {
1670 /* Bulk endpoint, proceed to URB initialization. */
1671 ep = uvc_find_endpoint(&intf->altsetting[0],
1672 stream->header.bEndpointAddress);
1673 if (ep == NULL)
1674 return -EIO;
1676 ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1679 if (ret < 0)
1680 return ret;
1682 /* Submit the URBs. */
1683 for (i = 0; i < UVC_URBS; ++i) {
1684 ret = usb_submit_urb(stream->urb[i], gfp_flags);
1685 if (ret < 0) {
1686 uvc_printk(KERN_ERR, "Failed to submit URB %u "
1687 "(%d).\n", i, ret);
1688 uvc_uninit_video(stream, 1);
1689 return ret;
1693 /* The Logitech C920 temporarily forgets that it should not be adjusting
1694 * Exposure Absolute during init so restore controls to stored values.
1696 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1697 uvc_ctrl_restore_values(stream->dev);
1699 return 0;
1702 /* --------------------------------------------------------------------------
1703 * Suspend/resume
1707 * Stop streaming without disabling the video queue.
1709 * To let userspace applications resume without trouble, we must not touch the
1710 * video buffers in any way. We mark the device as frozen to make sure the URB
1711 * completion handler won't try to cancel the queue when we kill the URBs.
1713 int uvc_video_suspend(struct uvc_streaming *stream)
1715 if (!uvc_queue_streaming(&stream->queue))
1716 return 0;
1718 stream->frozen = 1;
1719 uvc_uninit_video(stream, 0);
1720 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1721 return 0;
1725 * Reconfigure the video interface and restart streaming if it was enabled
1726 * before suspend.
1728 * If an error occurs, disable the video queue. This will wake all pending
1729 * buffers, making sure userspace applications are notified of the problem
1730 * instead of waiting forever.
1732 int uvc_video_resume(struct uvc_streaming *stream, int reset)
1734 int ret;
1736 /* If the bus has been reset on resume, set the alternate setting to 0.
1737 * This should be the default value, but some devices crash or otherwise
1738 * misbehave if they don't receive a SET_INTERFACE request before any
1739 * other video control request.
1741 if (reset)
1742 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1744 stream->frozen = 0;
1746 uvc_video_clock_reset(stream);
1748 if (!uvc_queue_streaming(&stream->queue))
1749 return 0;
1751 ret = uvc_commit_video(stream, &stream->ctrl);
1752 if (ret < 0)
1753 return ret;
1755 return uvc_init_video(stream, GFP_NOIO);
1758 /* ------------------------------------------------------------------------
1759 * Video device
1763 * Initialize the UVC video device by switching to alternate setting 0 and
1764 * retrieve the default format.
1766 * Some cameras (namely the Fuji Finepix) set the format and frame
1767 * indexes to zero. The UVC standard doesn't clearly make this a spec
1768 * violation, so try to silently fix the values if possible.
1770 * This function is called before registering the device with V4L.
1772 int uvc_video_init(struct uvc_streaming *stream)
1774 struct uvc_streaming_control *probe = &stream->ctrl;
1775 struct uvc_format *format = NULL;
1776 struct uvc_frame *frame = NULL;
1777 unsigned int i;
1778 int ret;
1780 if (stream->nformats == 0) {
1781 uvc_printk(KERN_INFO, "No supported video formats found.\n");
1782 return -EINVAL;
1785 atomic_set(&stream->active, 0);
1787 /* Alternate setting 0 should be the default, yet the XBox Live Vision
1788 * Cam (and possibly other devices) crash or otherwise misbehave if
1789 * they don't receive a SET_INTERFACE request before any other video
1790 * control request.
1792 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1794 /* Set the streaming probe control with default streaming parameters
1795 * retrieved from the device. Webcams that don't suport GET_DEF
1796 * requests on the probe control will just keep their current streaming
1797 * parameters.
1799 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
1800 uvc_set_video_ctrl(stream, probe, 1);
1802 /* Initialize the streaming parameters with the probe control current
1803 * value. This makes sure SET_CUR requests on the streaming commit
1804 * control will always use values retrieved from a successful GET_CUR
1805 * request on the probe control, as required by the UVC specification.
1807 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
1808 if (ret < 0)
1809 return ret;
1811 /* Check if the default format descriptor exists. Use the first
1812 * available format otherwise.
1814 for (i = stream->nformats; i > 0; --i) {
1815 format = &stream->format[i-1];
1816 if (format->index == probe->bFormatIndex)
1817 break;
1820 if (format->nframes == 0) {
1821 uvc_printk(KERN_INFO, "No frame descriptor found for the "
1822 "default format.\n");
1823 return -EINVAL;
1826 /* Zero bFrameIndex might be correct. Stream-based formats (including
1827 * MPEG-2 TS and DV) do not support frames but have a dummy frame
1828 * descriptor with bFrameIndex set to zero. If the default frame
1829 * descriptor is not found, use the first available frame.
1831 for (i = format->nframes; i > 0; --i) {
1832 frame = &format->frame[i-1];
1833 if (frame->bFrameIndex == probe->bFrameIndex)
1834 break;
1837 probe->bFormatIndex = format->index;
1838 probe->bFrameIndex = frame->bFrameIndex;
1840 stream->def_format = format;
1841 stream->cur_format = format;
1842 stream->cur_frame = frame;
1844 /* Select the video decoding function */
1845 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
1846 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
1847 stream->decode = uvc_video_decode_isight;
1848 else if (stream->intf->num_altsetting > 1)
1849 stream->decode = uvc_video_decode_isoc;
1850 else
1851 stream->decode = uvc_video_decode_bulk;
1852 } else {
1853 if (stream->intf->num_altsetting == 1)
1854 stream->decode = uvc_video_encode_bulk;
1855 else {
1856 uvc_printk(KERN_INFO, "Isochronous endpoints are not "
1857 "supported for video output devices.\n");
1858 return -EINVAL;
1862 return 0;
1866 * Enable or disable the video stream.
1868 int uvc_video_enable(struct uvc_streaming *stream, int enable)
1870 int ret;
1872 if (!enable) {
1873 uvc_uninit_video(stream, 1);
1874 if (stream->intf->num_altsetting > 1) {
1875 usb_set_interface(stream->dev->udev,
1876 stream->intfnum, 0);
1877 } else {
1878 /* UVC doesn't specify how to inform a bulk-based device
1879 * when the video stream is stopped. Windows sends a
1880 * CLEAR_FEATURE(HALT) request to the video streaming
1881 * bulk endpoint, mimic the same behaviour.
1883 unsigned int epnum = stream->header.bEndpointAddress
1884 & USB_ENDPOINT_NUMBER_MASK;
1885 unsigned int dir = stream->header.bEndpointAddress
1886 & USB_ENDPOINT_DIR_MASK;
1887 unsigned int pipe;
1889 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
1890 usb_clear_halt(stream->dev->udev, pipe);
1893 uvc_video_clock_cleanup(stream);
1894 return 0;
1897 ret = uvc_video_clock_init(stream);
1898 if (ret < 0)
1899 return ret;
1901 /* Commit the streaming parameters. */
1902 ret = uvc_commit_video(stream, &stream->ctrl);
1903 if (ret < 0)
1904 goto error_commit;
1906 ret = uvc_init_video(stream, GFP_KERNEL);
1907 if (ret < 0)
1908 goto error_video;
1910 return 0;
1912 error_video:
1913 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1914 error_commit:
1915 uvc_video_clock_cleanup(stream);
1917 return ret;