2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/clk.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/mtd/partitions.h>
27 #include <linux/of_device.h>
28 #include <linux/of_mtd.h>
29 #include "gpmi-nand.h"
32 /* Resource names for the GPMI NAND driver. */
33 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
34 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
35 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
37 /* add our owner bbt descriptor */
38 static uint8_t scan_ff_pattern
[] = { 0xff };
39 static struct nand_bbt_descr gpmi_bbt_descr
= {
43 .pattern
= scan_ff_pattern
47 * We may change the layout if we can get the ECC info from the datasheet,
48 * else we will use all the (page + OOB).
50 static struct nand_ecclayout gpmi_hw_ecclayout
= {
53 .oobfree
= { {.offset
= 0, .length
= 0} }
56 static const struct gpmi_devdata gpmi_devdata_imx23
= {
58 .bch_max_ecc_strength
= 20,
59 .max_chain_delay
= 16,
62 static const struct gpmi_devdata gpmi_devdata_imx28
= {
64 .bch_max_ecc_strength
= 20,
65 .max_chain_delay
= 16,
68 static const struct gpmi_devdata gpmi_devdata_imx6q
= {
70 .bch_max_ecc_strength
= 40,
71 .max_chain_delay
= 12,
74 static const struct gpmi_devdata gpmi_devdata_imx6sx
= {
76 .bch_max_ecc_strength
= 62,
77 .max_chain_delay
= 12,
80 static irqreturn_t
bch_irq(int irq
, void *cookie
)
82 struct gpmi_nand_data
*this = cookie
;
85 complete(&this->bch_done
);
90 * Calculate the ECC strength by hand:
91 * E : The ECC strength.
92 * G : the length of Galois Field.
93 * N : The chunk count of per page.
94 * O : the oobsize of the NAND chip.
95 * M : the metasize of per page.
99 * ------------ <= (O - M)
107 static inline int get_ecc_strength(struct gpmi_nand_data
*this)
109 struct bch_geometry
*geo
= &this->bch_geometry
;
110 struct mtd_info
*mtd
= &this->mtd
;
113 ecc_strength
= ((mtd
->oobsize
- geo
->metadata_size
) * 8)
114 / (geo
->gf_len
* geo
->ecc_chunk_count
);
116 /* We need the minor even number. */
117 return round_down(ecc_strength
, 2);
120 static inline bool gpmi_check_ecc(struct gpmi_nand_data
*this)
122 struct bch_geometry
*geo
= &this->bch_geometry
;
124 /* Do the sanity check. */
125 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
126 /* The mx23/mx28 only support the GF13. */
127 if (geo
->gf_len
== 14)
130 return geo
->ecc_strength
<= this->devdata
->bch_max_ecc_strength
;
134 * If we can get the ECC information from the nand chip, we do not
135 * need to calculate them ourselves.
137 * We may have available oob space in this case.
139 static bool set_geometry_by_ecc_info(struct gpmi_nand_data
*this)
141 struct bch_geometry
*geo
= &this->bch_geometry
;
142 struct mtd_info
*mtd
= &this->mtd
;
143 struct nand_chip
*chip
= mtd
->priv
;
144 struct nand_oobfree
*of
= gpmi_hw_ecclayout
.oobfree
;
145 unsigned int block_mark_bit_offset
;
147 if (!(chip
->ecc_strength_ds
> 0 && chip
->ecc_step_ds
> 0))
150 switch (chip
->ecc_step_ds
) {
159 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
160 chip
->ecc_strength_ds
, chip
->ecc_step_ds
);
163 geo
->ecc_chunk_size
= chip
->ecc_step_ds
;
164 geo
->ecc_strength
= round_up(chip
->ecc_strength_ds
, 2);
165 if (!gpmi_check_ecc(this))
168 /* Keep the C >= O */
169 if (geo
->ecc_chunk_size
< mtd
->oobsize
) {
171 "unsupported nand chip. ecc size: %d, oob size : %d\n",
172 chip
->ecc_step_ds
, mtd
->oobsize
);
176 /* The default value, see comment in the legacy_set_geometry(). */
177 geo
->metadata_size
= 10;
179 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
182 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
185 * |<----------------------------------------------------->|
189 * |<-------------------------------------------->| D | | O' |
192 * +---+----------+-+----------+-+----------+-+----------+-+-----+
193 * | M | data |E| data |E| data |E| data |E| |
194 * +---+----------+-+----------+-+----------+-+----------+-+-----+
200 * P : the page size for BCH module.
201 * E : The ECC strength.
202 * G : the length of Galois Field.
203 * N : The chunk count of per page.
204 * M : the metasize of per page.
205 * C : the ecc chunk size, aka the "data" above.
206 * P': the nand chip's page size.
207 * O : the nand chip's oob size.
210 * The formula for P is :
213 * P = ------------ + P' + M
216 * The position of block mark moves forward in the ECC-based view
217 * of page, and the delta is:
220 * D = (---------------- + M)
223 * Please see the comment in legacy_set_geometry().
224 * With the condition C >= O , we still can get same result.
225 * So the bit position of the physical block mark within the ECC-based
226 * view of the page is :
229 geo
->page_size
= mtd
->writesize
+ geo
->metadata_size
+
230 (geo
->gf_len
* geo
->ecc_strength
* geo
->ecc_chunk_count
) / 8;
232 /* The available oob size we have. */
233 if (geo
->page_size
< mtd
->writesize
+ mtd
->oobsize
) {
234 of
->offset
= geo
->page_size
- mtd
->writesize
;
235 of
->length
= mtd
->oobsize
- of
->offset
;
238 geo
->payload_size
= mtd
->writesize
;
240 geo
->auxiliary_status_offset
= ALIGN(geo
->metadata_size
, 4);
241 geo
->auxiliary_size
= ALIGN(geo
->metadata_size
, 4)
242 + ALIGN(geo
->ecc_chunk_count
, 4);
244 if (!this->swap_block_mark
)
248 block_mark_bit_offset
= mtd
->writesize
* 8 -
249 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
250 + geo
->metadata_size
* 8);
252 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
253 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
257 static int legacy_set_geometry(struct gpmi_nand_data
*this)
259 struct bch_geometry
*geo
= &this->bch_geometry
;
260 struct mtd_info
*mtd
= &this->mtd
;
261 unsigned int metadata_size
;
262 unsigned int status_size
;
263 unsigned int block_mark_bit_offset
;
266 * The size of the metadata can be changed, though we set it to 10
267 * bytes now. But it can't be too large, because we have to save
268 * enough space for BCH.
270 geo
->metadata_size
= 10;
272 /* The default for the length of Galois Field. */
275 /* The default for chunk size. */
276 geo
->ecc_chunk_size
= 512;
277 while (geo
->ecc_chunk_size
< mtd
->oobsize
) {
278 geo
->ecc_chunk_size
*= 2; /* keep C >= O */
282 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
284 /* We use the same ECC strength for all chunks. */
285 geo
->ecc_strength
= get_ecc_strength(this);
286 if (!gpmi_check_ecc(this)) {
288 "required ecc strength of the NAND chip: %d is not supported by the GPMI controller (%d)\n",
290 this->devdata
->bch_max_ecc_strength
);
294 geo
->page_size
= mtd
->writesize
+ mtd
->oobsize
;
295 geo
->payload_size
= mtd
->writesize
;
298 * The auxiliary buffer contains the metadata and the ECC status. The
299 * metadata is padded to the nearest 32-bit boundary. The ECC status
300 * contains one byte for every ECC chunk, and is also padded to the
301 * nearest 32-bit boundary.
303 metadata_size
= ALIGN(geo
->metadata_size
, 4);
304 status_size
= ALIGN(geo
->ecc_chunk_count
, 4);
306 geo
->auxiliary_size
= metadata_size
+ status_size
;
307 geo
->auxiliary_status_offset
= metadata_size
;
309 if (!this->swap_block_mark
)
313 * We need to compute the byte and bit offsets of
314 * the physical block mark within the ECC-based view of the page.
316 * NAND chip with 2K page shows below:
322 * +---+----------+-+----------+-+----------+-+----------+-+
323 * | M | data |E| data |E| data |E| data |E|
324 * +---+----------+-+----------+-+----------+-+----------+-+
326 * The position of block mark moves forward in the ECC-based view
327 * of page, and the delta is:
330 * D = (---------------- + M)
333 * With the formula to compute the ECC strength, and the condition
334 * : C >= O (C is the ecc chunk size)
336 * It's easy to deduce to the following result:
338 * E * G (O - M) C - M C - M
339 * ----------- <= ------- <= -------- < ---------
345 * D = (---------------- + M) < C
348 * The above inequality means the position of block mark
349 * within the ECC-based view of the page is still in the data chunk,
350 * and it's NOT in the ECC bits of the chunk.
352 * Use the following to compute the bit position of the
353 * physical block mark within the ECC-based view of the page:
354 * (page_size - D) * 8
358 block_mark_bit_offset
= mtd
->writesize
* 8 -
359 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
360 + geo
->metadata_size
* 8);
362 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
363 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
367 int common_nfc_set_geometry(struct gpmi_nand_data
*this)
369 if (of_property_read_bool(this->dev
->of_node
, "fsl,use-minimum-ecc")
370 && set_geometry_by_ecc_info(this))
372 return legacy_set_geometry(this);
375 struct dma_chan
*get_dma_chan(struct gpmi_nand_data
*this)
377 /* We use the DMA channel 0 to access all the nand chips. */
378 return this->dma_chans
[0];
381 /* Can we use the upper's buffer directly for DMA? */
382 void prepare_data_dma(struct gpmi_nand_data
*this, enum dma_data_direction dr
)
384 struct scatterlist
*sgl
= &this->data_sgl
;
387 /* first try to map the upper buffer directly */
388 if (virt_addr_valid(this->upper_buf
) &&
389 !object_is_on_stack(this->upper_buf
)) {
390 sg_init_one(sgl
, this->upper_buf
, this->upper_len
);
391 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
395 this->direct_dma_map_ok
= true;
400 /* We have to use our own DMA buffer. */
401 sg_init_one(sgl
, this->data_buffer_dma
, this->upper_len
);
403 if (dr
== DMA_TO_DEVICE
)
404 memcpy(this->data_buffer_dma
, this->upper_buf
, this->upper_len
);
406 dma_map_sg(this->dev
, sgl
, 1, dr
);
408 this->direct_dma_map_ok
= false;
411 /* This will be called after the DMA operation is finished. */
412 static void dma_irq_callback(void *param
)
414 struct gpmi_nand_data
*this = param
;
415 struct completion
*dma_c
= &this->dma_done
;
417 switch (this->dma_type
) {
418 case DMA_FOR_COMMAND
:
419 dma_unmap_sg(this->dev
, &this->cmd_sgl
, 1, DMA_TO_DEVICE
);
422 case DMA_FOR_READ_DATA
:
423 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_FROM_DEVICE
);
424 if (this->direct_dma_map_ok
== false)
425 memcpy(this->upper_buf
, this->data_buffer_dma
,
429 case DMA_FOR_WRITE_DATA
:
430 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_TO_DEVICE
);
433 case DMA_FOR_READ_ECC_PAGE
:
434 case DMA_FOR_WRITE_ECC_PAGE
:
435 /* We have to wait the BCH interrupt to finish. */
439 dev_err(this->dev
, "in wrong DMA operation.\n");
445 int start_dma_without_bch_irq(struct gpmi_nand_data
*this,
446 struct dma_async_tx_descriptor
*desc
)
448 struct completion
*dma_c
= &this->dma_done
;
449 unsigned long timeout
;
451 init_completion(dma_c
);
453 desc
->callback
= dma_irq_callback
;
454 desc
->callback_param
= this;
455 dmaengine_submit(desc
);
456 dma_async_issue_pending(get_dma_chan(this));
458 /* Wait for the interrupt from the DMA block. */
459 timeout
= wait_for_completion_timeout(dma_c
, msecs_to_jiffies(1000));
461 dev_err(this->dev
, "DMA timeout, last DMA :%d\n",
462 this->last_dma_type
);
463 gpmi_dump_info(this);
470 * This function is used in BCH reading or BCH writing pages.
471 * It will wait for the BCH interrupt as long as ONE second.
472 * Actually, we must wait for two interrupts :
473 * [1] firstly the DMA interrupt and
474 * [2] secondly the BCH interrupt.
476 int start_dma_with_bch_irq(struct gpmi_nand_data
*this,
477 struct dma_async_tx_descriptor
*desc
)
479 struct completion
*bch_c
= &this->bch_done
;
480 unsigned long timeout
;
482 /* Prepare to receive an interrupt from the BCH block. */
483 init_completion(bch_c
);
486 start_dma_without_bch_irq(this, desc
);
488 /* Wait for the interrupt from the BCH block. */
489 timeout
= wait_for_completion_timeout(bch_c
, msecs_to_jiffies(1000));
491 dev_err(this->dev
, "BCH timeout, last DMA :%d\n",
492 this->last_dma_type
);
493 gpmi_dump_info(this);
499 static int acquire_register_block(struct gpmi_nand_data
*this,
500 const char *res_name
)
502 struct platform_device
*pdev
= this->pdev
;
503 struct resources
*res
= &this->resources
;
507 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, res_name
);
508 p
= devm_ioremap_resource(&pdev
->dev
, r
);
512 if (!strcmp(res_name
, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
))
514 else if (!strcmp(res_name
, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
))
517 dev_err(this->dev
, "unknown resource name : %s\n", res_name
);
522 static int acquire_bch_irq(struct gpmi_nand_data
*this, irq_handler_t irq_h
)
524 struct platform_device
*pdev
= this->pdev
;
525 const char *res_name
= GPMI_NAND_BCH_INTERRUPT_RES_NAME
;
529 r
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
, res_name
);
531 dev_err(this->dev
, "Can't get resource for %s\n", res_name
);
535 err
= devm_request_irq(this->dev
, r
->start
, irq_h
, 0, res_name
, this);
537 dev_err(this->dev
, "error requesting BCH IRQ\n");
542 static void release_dma_channels(struct gpmi_nand_data
*this)
545 for (i
= 0; i
< DMA_CHANS
; i
++)
546 if (this->dma_chans
[i
]) {
547 dma_release_channel(this->dma_chans
[i
]);
548 this->dma_chans
[i
] = NULL
;
552 static int acquire_dma_channels(struct gpmi_nand_data
*this)
554 struct platform_device
*pdev
= this->pdev
;
555 struct dma_chan
*dma_chan
;
557 /* request dma channel */
558 dma_chan
= dma_request_slave_channel(&pdev
->dev
, "rx-tx");
560 dev_err(this->dev
, "Failed to request DMA channel.\n");
564 this->dma_chans
[0] = dma_chan
;
568 release_dma_channels(this);
572 static char *extra_clks_for_mx6q
[GPMI_CLK_MAX
] = {
573 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
576 static int gpmi_get_clks(struct gpmi_nand_data
*this)
578 struct resources
*r
= &this->resources
;
579 char **extra_clks
= NULL
;
583 /* The main clock is stored in the first. */
584 r
->clock
[0] = devm_clk_get(this->dev
, "gpmi_io");
585 if (IS_ERR(r
->clock
[0])) {
586 err
= PTR_ERR(r
->clock
[0]);
590 /* Get extra clocks */
591 if (GPMI_IS_MX6(this))
592 extra_clks
= extra_clks_for_mx6q
;
596 for (i
= 1; i
< GPMI_CLK_MAX
; i
++) {
597 if (extra_clks
[i
- 1] == NULL
)
600 clk
= devm_clk_get(this->dev
, extra_clks
[i
- 1]);
609 if (GPMI_IS_MX6(this))
611 * Set the default value for the gpmi clock.
613 * If you want to use the ONFI nand which is in the
614 * Synchronous Mode, you should change the clock as you need.
616 clk_set_rate(r
->clock
[0], 22000000);
621 dev_dbg(this->dev
, "failed in finding the clocks.\n");
625 static int acquire_resources(struct gpmi_nand_data
*this)
629 ret
= acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
);
633 ret
= acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
);
637 ret
= acquire_bch_irq(this, bch_irq
);
641 ret
= acquire_dma_channels(this);
645 ret
= gpmi_get_clks(this);
651 release_dma_channels(this);
656 static void release_resources(struct gpmi_nand_data
*this)
658 release_dma_channels(this);
661 static int init_hardware(struct gpmi_nand_data
*this)
666 * This structure contains the "safe" GPMI timing that should succeed
667 * with any NAND Flash device
668 * (although, with less-than-optimal performance).
670 struct nand_timing safe_timing
= {
671 .data_setup_in_ns
= 80,
672 .data_hold_in_ns
= 60,
673 .address_setup_in_ns
= 25,
674 .gpmi_sample_delay_in_ns
= 6,
680 /* Initialize the hardwares. */
681 ret
= gpmi_init(this);
685 this->timing
= safe_timing
;
689 static int read_page_prepare(struct gpmi_nand_data
*this,
690 void *destination
, unsigned length
,
691 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
692 void **use_virt
, dma_addr_t
*use_phys
)
694 struct device
*dev
= this->dev
;
696 if (virt_addr_valid(destination
)) {
697 dma_addr_t dest_phys
;
699 dest_phys
= dma_map_single(dev
, destination
,
700 length
, DMA_FROM_DEVICE
);
701 if (dma_mapping_error(dev
, dest_phys
)) {
702 if (alt_size
< length
) {
703 dev_err(dev
, "Alternate buffer is too small\n");
708 *use_virt
= destination
;
709 *use_phys
= dest_phys
;
710 this->direct_dma_map_ok
= true;
715 *use_virt
= alt_virt
;
716 *use_phys
= alt_phys
;
717 this->direct_dma_map_ok
= false;
721 static inline void read_page_end(struct gpmi_nand_data
*this,
722 void *destination
, unsigned length
,
723 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
724 void *used_virt
, dma_addr_t used_phys
)
726 if (this->direct_dma_map_ok
)
727 dma_unmap_single(this->dev
, used_phys
, length
, DMA_FROM_DEVICE
);
730 static inline void read_page_swap_end(struct gpmi_nand_data
*this,
731 void *destination
, unsigned length
,
732 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
733 void *used_virt
, dma_addr_t used_phys
)
735 if (!this->direct_dma_map_ok
)
736 memcpy(destination
, alt_virt
, length
);
739 static int send_page_prepare(struct gpmi_nand_data
*this,
740 const void *source
, unsigned length
,
741 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
742 const void **use_virt
, dma_addr_t
*use_phys
)
744 struct device
*dev
= this->dev
;
746 if (virt_addr_valid(source
)) {
747 dma_addr_t source_phys
;
749 source_phys
= dma_map_single(dev
, (void *)source
, length
,
751 if (dma_mapping_error(dev
, source_phys
)) {
752 if (alt_size
< length
) {
753 dev_err(dev
, "Alternate buffer is too small\n");
759 *use_phys
= source_phys
;
764 * Copy the content of the source buffer into the alternate
765 * buffer and set up the return values accordingly.
767 memcpy(alt_virt
, source
, length
);
769 *use_virt
= alt_virt
;
770 *use_phys
= alt_phys
;
774 static void send_page_end(struct gpmi_nand_data
*this,
775 const void *source
, unsigned length
,
776 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
777 const void *used_virt
, dma_addr_t used_phys
)
779 struct device
*dev
= this->dev
;
780 if (used_virt
== source
)
781 dma_unmap_single(dev
, used_phys
, length
, DMA_TO_DEVICE
);
784 static void gpmi_free_dma_buffer(struct gpmi_nand_data
*this)
786 struct device
*dev
= this->dev
;
788 if (this->page_buffer_virt
&& virt_addr_valid(this->page_buffer_virt
))
789 dma_free_coherent(dev
, this->page_buffer_size
,
790 this->page_buffer_virt
,
791 this->page_buffer_phys
);
792 kfree(this->cmd_buffer
);
793 kfree(this->data_buffer_dma
);
794 kfree(this->raw_buffer
);
796 this->cmd_buffer
= NULL
;
797 this->data_buffer_dma
= NULL
;
798 this->page_buffer_virt
= NULL
;
799 this->page_buffer_size
= 0;
802 /* Allocate the DMA buffers */
803 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data
*this)
805 struct bch_geometry
*geo
= &this->bch_geometry
;
806 struct device
*dev
= this->dev
;
807 struct mtd_info
*mtd
= &this->mtd
;
809 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
810 this->cmd_buffer
= kzalloc(PAGE_SIZE
, GFP_DMA
| GFP_KERNEL
);
811 if (this->cmd_buffer
== NULL
)
815 * [2] Allocate a read/write data buffer.
816 * The gpmi_alloc_dma_buffer can be called twice.
817 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
818 * is called before the nand_scan_ident; and we allocate a buffer
819 * of the real NAND page size when the gpmi_alloc_dma_buffer is
820 * called after the nand_scan_ident.
822 this->data_buffer_dma
= kzalloc(mtd
->writesize
?: PAGE_SIZE
,
823 GFP_DMA
| GFP_KERNEL
);
824 if (this->data_buffer_dma
== NULL
)
828 * [3] Allocate the page buffer.
830 * Both the payload buffer and the auxiliary buffer must appear on
831 * 32-bit boundaries. We presume the size of the payload buffer is a
832 * power of two and is much larger than four, which guarantees the
833 * auxiliary buffer will appear on a 32-bit boundary.
835 this->page_buffer_size
= geo
->payload_size
+ geo
->auxiliary_size
;
836 this->page_buffer_virt
= dma_alloc_coherent(dev
, this->page_buffer_size
,
837 &this->page_buffer_phys
, GFP_DMA
);
838 if (!this->page_buffer_virt
)
841 this->raw_buffer
= kzalloc(mtd
->writesize
+ mtd
->oobsize
, GFP_KERNEL
);
842 if (!this->raw_buffer
)
845 /* Slice up the page buffer. */
846 this->payload_virt
= this->page_buffer_virt
;
847 this->payload_phys
= this->page_buffer_phys
;
848 this->auxiliary_virt
= this->payload_virt
+ geo
->payload_size
;
849 this->auxiliary_phys
= this->payload_phys
+ geo
->payload_size
;
853 gpmi_free_dma_buffer(this);
857 static void gpmi_cmd_ctrl(struct mtd_info
*mtd
, int data
, unsigned int ctrl
)
859 struct nand_chip
*chip
= mtd
->priv
;
860 struct gpmi_nand_data
*this = chip
->priv
;
864 * Every operation begins with a command byte and a series of zero or
865 * more address bytes. These are distinguished by either the Address
866 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
867 * asserted. When MTD is ready to execute the command, it will deassert
868 * both latch enables.
870 * Rather than run a separate DMA operation for every single byte, we
871 * queue them up and run a single DMA operation for the entire series
872 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
874 if ((ctrl
& (NAND_ALE
| NAND_CLE
))) {
875 if (data
!= NAND_CMD_NONE
)
876 this->cmd_buffer
[this->command_length
++] = data
;
880 if (!this->command_length
)
883 ret
= gpmi_send_command(this);
885 dev_err(this->dev
, "Chip: %u, Error %d\n",
886 this->current_chip
, ret
);
888 this->command_length
= 0;
891 static int gpmi_dev_ready(struct mtd_info
*mtd
)
893 struct nand_chip
*chip
= mtd
->priv
;
894 struct gpmi_nand_data
*this = chip
->priv
;
896 return gpmi_is_ready(this, this->current_chip
);
899 static void gpmi_select_chip(struct mtd_info
*mtd
, int chipnr
)
901 struct nand_chip
*chip
= mtd
->priv
;
902 struct gpmi_nand_data
*this = chip
->priv
;
904 if ((this->current_chip
< 0) && (chipnr
>= 0))
906 else if ((this->current_chip
>= 0) && (chipnr
< 0))
909 this->current_chip
= chipnr
;
912 static void gpmi_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
914 struct nand_chip
*chip
= mtd
->priv
;
915 struct gpmi_nand_data
*this = chip
->priv
;
917 dev_dbg(this->dev
, "len is %d\n", len
);
918 this->upper_buf
= buf
;
919 this->upper_len
= len
;
921 gpmi_read_data(this);
924 static void gpmi_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
926 struct nand_chip
*chip
= mtd
->priv
;
927 struct gpmi_nand_data
*this = chip
->priv
;
929 dev_dbg(this->dev
, "len is %d\n", len
);
930 this->upper_buf
= (uint8_t *)buf
;
931 this->upper_len
= len
;
933 gpmi_send_data(this);
936 static uint8_t gpmi_read_byte(struct mtd_info
*mtd
)
938 struct nand_chip
*chip
= mtd
->priv
;
939 struct gpmi_nand_data
*this = chip
->priv
;
940 uint8_t *buf
= this->data_buffer_dma
;
942 gpmi_read_buf(mtd
, buf
, 1);
947 * Handles block mark swapping.
948 * It can be called in swapping the block mark, or swapping it back,
949 * because the the operations are the same.
951 static void block_mark_swapping(struct gpmi_nand_data
*this,
952 void *payload
, void *auxiliary
)
954 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
959 unsigned char from_data
;
960 unsigned char from_oob
;
962 if (!this->swap_block_mark
)
966 * If control arrives here, we're swapping. Make some convenience
969 bit
= nfc_geo
->block_mark_bit_offset
;
970 p
= payload
+ nfc_geo
->block_mark_byte_offset
;
974 * Get the byte from the data area that overlays the block mark. Since
975 * the ECC engine applies its own view to the bits in the page, the
976 * physical block mark won't (in general) appear on a byte boundary in
979 from_data
= (p
[0] >> bit
) | (p
[1] << (8 - bit
));
981 /* Get the byte from the OOB. */
987 mask
= (0x1 << bit
) - 1;
988 p
[0] = (p
[0] & mask
) | (from_oob
<< bit
);
991 p
[1] = (p
[1] & mask
) | (from_oob
>> (8 - bit
));
994 static int gpmi_ecc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
995 uint8_t *buf
, int oob_required
, int page
)
997 struct gpmi_nand_data
*this = chip
->priv
;
998 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1000 dma_addr_t payload_phys
;
1001 void *auxiliary_virt
;
1002 dma_addr_t auxiliary_phys
;
1004 unsigned char *status
;
1005 unsigned int max_bitflips
= 0;
1008 dev_dbg(this->dev
, "page number is : %d\n", page
);
1009 ret
= read_page_prepare(this, buf
, nfc_geo
->payload_size
,
1010 this->payload_virt
, this->payload_phys
,
1011 nfc_geo
->payload_size
,
1012 &payload_virt
, &payload_phys
);
1014 dev_err(this->dev
, "Inadequate DMA buffer\n");
1018 auxiliary_virt
= this->auxiliary_virt
;
1019 auxiliary_phys
= this->auxiliary_phys
;
1022 ret
= gpmi_read_page(this, payload_phys
, auxiliary_phys
);
1023 read_page_end(this, buf
, nfc_geo
->payload_size
,
1024 this->payload_virt
, this->payload_phys
,
1025 nfc_geo
->payload_size
,
1026 payload_virt
, payload_phys
);
1028 dev_err(this->dev
, "Error in ECC-based read: %d\n", ret
);
1032 /* handle the block mark swapping */
1033 block_mark_swapping(this, payload_virt
, auxiliary_virt
);
1035 /* Loop over status bytes, accumulating ECC status. */
1036 status
= auxiliary_virt
+ nfc_geo
->auxiliary_status_offset
;
1038 for (i
= 0; i
< nfc_geo
->ecc_chunk_count
; i
++, status
++) {
1039 if ((*status
== STATUS_GOOD
) || (*status
== STATUS_ERASED
))
1042 if (*status
== STATUS_UNCORRECTABLE
) {
1043 mtd
->ecc_stats
.failed
++;
1046 mtd
->ecc_stats
.corrected
+= *status
;
1047 max_bitflips
= max_t(unsigned int, max_bitflips
, *status
);
1052 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1053 * for details about our policy for delivering the OOB.
1055 * We fill the caller's buffer with set bits, and then copy the
1056 * block mark to th caller's buffer. Note that, if block mark
1057 * swapping was necessary, it has already been done, so we can
1058 * rely on the first byte of the auxiliary buffer to contain
1061 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1062 chip
->oob_poi
[0] = ((uint8_t *) auxiliary_virt
)[0];
1065 read_page_swap_end(this, buf
, nfc_geo
->payload_size
,
1066 this->payload_virt
, this->payload_phys
,
1067 nfc_geo
->payload_size
,
1068 payload_virt
, payload_phys
);
1070 return max_bitflips
;
1073 /* Fake a virtual small page for the subpage read */
1074 static int gpmi_ecc_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1075 uint32_t offs
, uint32_t len
, uint8_t *buf
, int page
)
1077 struct gpmi_nand_data
*this = chip
->priv
;
1078 void __iomem
*bch_regs
= this->resources
.bch_regs
;
1079 struct bch_geometry old_geo
= this->bch_geometry
;
1080 struct bch_geometry
*geo
= &this->bch_geometry
;
1081 int size
= chip
->ecc
.size
; /* ECC chunk size */
1082 int meta
, n
, page_size
;
1083 u32 r1_old
, r2_old
, r1_new
, r2_new
;
1084 unsigned int max_bitflips
;
1085 int first
, last
, marker_pos
;
1086 int ecc_parity_size
;
1088 int old_swap_block_mark
= this->swap_block_mark
;
1090 /* The size of ECC parity */
1091 ecc_parity_size
= geo
->gf_len
* geo
->ecc_strength
/ 8;
1093 /* Align it with the chunk size */
1094 first
= offs
/ size
;
1095 last
= (offs
+ len
- 1) / size
;
1097 if (this->swap_block_mark
) {
1099 * Find the chunk which contains the Block Marker.
1100 * If this chunk is in the range of [first, last],
1101 * we have to read out the whole page.
1102 * Why? since we had swapped the data at the position of Block
1103 * Marker to the metadata which is bound with the chunk 0.
1105 marker_pos
= geo
->block_mark_byte_offset
/ size
;
1106 if (last
>= marker_pos
&& first
<= marker_pos
) {
1108 "page:%d, first:%d, last:%d, marker at:%d\n",
1109 page
, first
, last
, marker_pos
);
1110 return gpmi_ecc_read_page(mtd
, chip
, buf
, 0, page
);
1114 meta
= geo
->metadata_size
;
1116 col
= meta
+ (size
+ ecc_parity_size
) * first
;
1117 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, col
, -1);
1120 buf
= buf
+ first
* size
;
1123 /* Save the old environment */
1124 r1_old
= r1_new
= readl(bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
1125 r2_old
= r2_new
= readl(bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
1127 /* change the BCH registers and bch_geometry{} */
1128 n
= last
- first
+ 1;
1129 page_size
= meta
+ (size
+ ecc_parity_size
) * n
;
1131 r1_new
&= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS
|
1132 BM_BCH_FLASH0LAYOUT0_META_SIZE
);
1133 r1_new
|= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n
- 1)
1134 | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta
);
1135 writel(r1_new
, bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
1137 r2_new
&= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE
;
1138 r2_new
|= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size
);
1139 writel(r2_new
, bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
1141 geo
->ecc_chunk_count
= n
;
1142 geo
->payload_size
= n
* size
;
1143 geo
->page_size
= page_size
;
1144 geo
->auxiliary_status_offset
= ALIGN(meta
, 4);
1146 dev_dbg(this->dev
, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1147 page
, offs
, len
, col
, first
, n
, page_size
);
1149 /* Read the subpage now */
1150 this->swap_block_mark
= false;
1151 max_bitflips
= gpmi_ecc_read_page(mtd
, chip
, buf
, 0, page
);
1154 writel(r1_old
, bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
1155 writel(r2_old
, bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
1156 this->bch_geometry
= old_geo
;
1157 this->swap_block_mark
= old_swap_block_mark
;
1159 return max_bitflips
;
1162 static int gpmi_ecc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1163 const uint8_t *buf
, int oob_required
, int page
)
1165 struct gpmi_nand_data
*this = chip
->priv
;
1166 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1167 const void *payload_virt
;
1168 dma_addr_t payload_phys
;
1169 const void *auxiliary_virt
;
1170 dma_addr_t auxiliary_phys
;
1173 dev_dbg(this->dev
, "ecc write page.\n");
1174 if (this->swap_block_mark
) {
1176 * If control arrives here, we're doing block mark swapping.
1177 * Since we can't modify the caller's buffers, we must copy them
1180 memcpy(this->payload_virt
, buf
, mtd
->writesize
);
1181 payload_virt
= this->payload_virt
;
1182 payload_phys
= this->payload_phys
;
1184 memcpy(this->auxiliary_virt
, chip
->oob_poi
,
1185 nfc_geo
->auxiliary_size
);
1186 auxiliary_virt
= this->auxiliary_virt
;
1187 auxiliary_phys
= this->auxiliary_phys
;
1189 /* Handle block mark swapping. */
1190 block_mark_swapping(this,
1191 (void *)payload_virt
, (void *)auxiliary_virt
);
1194 * If control arrives here, we're not doing block mark swapping,
1195 * so we can to try and use the caller's buffers.
1197 ret
= send_page_prepare(this,
1198 buf
, mtd
->writesize
,
1199 this->payload_virt
, this->payload_phys
,
1200 nfc_geo
->payload_size
,
1201 &payload_virt
, &payload_phys
);
1203 dev_err(this->dev
, "Inadequate payload DMA buffer\n");
1207 ret
= send_page_prepare(this,
1208 chip
->oob_poi
, mtd
->oobsize
,
1209 this->auxiliary_virt
, this->auxiliary_phys
,
1210 nfc_geo
->auxiliary_size
,
1211 &auxiliary_virt
, &auxiliary_phys
);
1213 dev_err(this->dev
, "Inadequate auxiliary DMA buffer\n");
1214 goto exit_auxiliary
;
1219 ret
= gpmi_send_page(this, payload_phys
, auxiliary_phys
);
1221 dev_err(this->dev
, "Error in ECC-based write: %d\n", ret
);
1223 if (!this->swap_block_mark
) {
1224 send_page_end(this, chip
->oob_poi
, mtd
->oobsize
,
1225 this->auxiliary_virt
, this->auxiliary_phys
,
1226 nfc_geo
->auxiliary_size
,
1227 auxiliary_virt
, auxiliary_phys
);
1229 send_page_end(this, buf
, mtd
->writesize
,
1230 this->payload_virt
, this->payload_phys
,
1231 nfc_geo
->payload_size
,
1232 payload_virt
, payload_phys
);
1239 * There are several places in this driver where we have to handle the OOB and
1240 * block marks. This is the function where things are the most complicated, so
1241 * this is where we try to explain it all. All the other places refer back to
1244 * These are the rules, in order of decreasing importance:
1246 * 1) Nothing the caller does can be allowed to imperil the block mark.
1248 * 2) In read operations, the first byte of the OOB we return must reflect the
1249 * true state of the block mark, no matter where that block mark appears in
1250 * the physical page.
1252 * 3) ECC-based read operations return an OOB full of set bits (since we never
1253 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1256 * 4) "Raw" read operations return a direct view of the physical bytes in the
1257 * page, using the conventional definition of which bytes are data and which
1258 * are OOB. This gives the caller a way to see the actual, physical bytes
1259 * in the page, without the distortions applied by our ECC engine.
1262 * What we do for this specific read operation depends on two questions:
1264 * 1) Are we doing a "raw" read, or an ECC-based read?
1266 * 2) Are we using block mark swapping or transcription?
1268 * There are four cases, illustrated by the following Karnaugh map:
1270 * | Raw | ECC-based |
1271 * -------------+-------------------------+-------------------------+
1272 * | Read the conventional | |
1273 * | OOB at the end of the | |
1274 * Swapping | page and return it. It | |
1275 * | contains exactly what | |
1276 * | we want. | Read the block mark and |
1277 * -------------+-------------------------+ return it in a buffer |
1278 * | Read the conventional | full of set bits. |
1279 * | OOB at the end of the | |
1280 * | page and also the block | |
1281 * Transcribing | mark in the metadata. | |
1282 * | Copy the block mark | |
1283 * | into the first byte of | |
1285 * -------------+-------------------------+-------------------------+
1287 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1288 * giving an accurate view of the actual, physical bytes in the page (we're
1289 * overwriting the block mark). That's OK because it's more important to follow
1292 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1293 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1294 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1295 * ECC-based or raw view of the page is implicit in which function it calls
1296 * (there is a similar pair of ECC-based/raw functions for writing).
1298 static int gpmi_ecc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1301 struct gpmi_nand_data
*this = chip
->priv
;
1303 dev_dbg(this->dev
, "page number is %d\n", page
);
1304 /* clear the OOB buffer */
1305 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1307 /* Read out the conventional OOB. */
1308 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1309 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1312 * Now, we want to make sure the block mark is correct. In the
1313 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1314 * Otherwise, we need to explicitly read it.
1316 if (GPMI_IS_MX23(this)) {
1317 /* Read the block mark into the first byte of the OOB buffer. */
1318 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1319 chip
->oob_poi
[0] = chip
->read_byte(mtd
);
1326 gpmi_ecc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1328 struct nand_oobfree
*of
= mtd
->ecclayout
->oobfree
;
1331 /* Do we have available oob area? */
1335 if (!nand_is_slc(chip
))
1338 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
+ of
->offset
, page
);
1339 chip
->write_buf(mtd
, chip
->oob_poi
+ of
->offset
, of
->length
);
1340 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1342 status
= chip
->waitfunc(mtd
, chip
);
1343 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1347 * This function reads a NAND page without involving the ECC engine (no HW
1349 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1350 * inline (interleaved with payload DATA), and do not align data chunk on
1352 * We thus need to take care moving the payload data and ECC bits stored in the
1353 * page into the provided buffers, which is why we're using gpmi_copy_bits.
1355 * See set_geometry_by_ecc_info inline comments to have a full description
1356 * of the layout used by the GPMI controller.
1358 static int gpmi_ecc_read_page_raw(struct mtd_info
*mtd
,
1359 struct nand_chip
*chip
, uint8_t *buf
,
1360 int oob_required
, int page
)
1362 struct gpmi_nand_data
*this = chip
->priv
;
1363 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1364 int eccsize
= nfc_geo
->ecc_chunk_size
;
1365 int eccbits
= nfc_geo
->ecc_strength
* nfc_geo
->gf_len
;
1366 u8
*tmp_buf
= this->raw_buffer
;
1369 size_t oob_byte_off
;
1370 uint8_t *oob
= chip
->oob_poi
;
1373 chip
->read_buf(mtd
, tmp_buf
,
1374 mtd
->writesize
+ mtd
->oobsize
);
1377 * If required, swap the bad block marker and the data stored in the
1378 * metadata section, so that we don't wrongly consider a block as bad.
1380 * See the layout description for a detailed explanation on why this
1383 if (this->swap_block_mark
) {
1384 u8 swap
= tmp_buf
[0];
1386 tmp_buf
[0] = tmp_buf
[mtd
->writesize
];
1387 tmp_buf
[mtd
->writesize
] = swap
;
1391 * Copy the metadata section into the oob buffer (this section is
1392 * guaranteed to be aligned on a byte boundary).
1395 memcpy(oob
, tmp_buf
, nfc_geo
->metadata_size
);
1397 oob_bit_off
= nfc_geo
->metadata_size
* 8;
1398 src_bit_off
= oob_bit_off
;
1400 /* Extract interleaved payload data and ECC bits */
1401 for (step
= 0; step
< nfc_geo
->ecc_chunk_count
; step
++) {
1403 gpmi_copy_bits(buf
, step
* eccsize
* 8,
1404 tmp_buf
, src_bit_off
,
1406 src_bit_off
+= eccsize
* 8;
1408 /* Align last ECC block to align a byte boundary */
1409 if (step
== nfc_geo
->ecc_chunk_count
- 1 &&
1410 (oob_bit_off
+ eccbits
) % 8)
1411 eccbits
+= 8 - ((oob_bit_off
+ eccbits
) % 8);
1414 gpmi_copy_bits(oob
, oob_bit_off
,
1415 tmp_buf
, src_bit_off
,
1418 src_bit_off
+= eccbits
;
1419 oob_bit_off
+= eccbits
;
1423 oob_byte_off
= oob_bit_off
/ 8;
1425 if (oob_byte_off
< mtd
->oobsize
)
1426 memcpy(oob
+ oob_byte_off
,
1427 tmp_buf
+ mtd
->writesize
+ oob_byte_off
,
1428 mtd
->oobsize
- oob_byte_off
);
1435 * This function writes a NAND page without involving the ECC engine (no HW
1437 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1438 * inline (interleaved with payload DATA), and do not align data chunk on
1440 * We thus need to take care moving the OOB area at the right place in the
1441 * final page, which is why we're using gpmi_copy_bits.
1443 * See set_geometry_by_ecc_info inline comments to have a full description
1444 * of the layout used by the GPMI controller.
1446 static int gpmi_ecc_write_page_raw(struct mtd_info
*mtd
,
1447 struct nand_chip
*chip
,
1449 int oob_required
, int page
)
1451 struct gpmi_nand_data
*this = chip
->priv
;
1452 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1453 int eccsize
= nfc_geo
->ecc_chunk_size
;
1454 int eccbits
= nfc_geo
->ecc_strength
* nfc_geo
->gf_len
;
1455 u8
*tmp_buf
= this->raw_buffer
;
1456 uint8_t *oob
= chip
->oob_poi
;
1459 size_t oob_byte_off
;
1463 * Initialize all bits to 1 in case we don't have a buffer for the
1464 * payload or oob data in order to leave unspecified bits of data
1465 * to their initial state.
1467 if (!buf
|| !oob_required
)
1468 memset(tmp_buf
, 0xff, mtd
->writesize
+ mtd
->oobsize
);
1471 * First copy the metadata section (stored in oob buffer) at the
1472 * beginning of the page, as imposed by the GPMI layout.
1474 memcpy(tmp_buf
, oob
, nfc_geo
->metadata_size
);
1475 oob_bit_off
= nfc_geo
->metadata_size
* 8;
1476 dst_bit_off
= oob_bit_off
;
1478 /* Interleave payload data and ECC bits */
1479 for (step
= 0; step
< nfc_geo
->ecc_chunk_count
; step
++) {
1481 gpmi_copy_bits(tmp_buf
, dst_bit_off
,
1482 buf
, step
* eccsize
* 8, eccsize
* 8);
1483 dst_bit_off
+= eccsize
* 8;
1485 /* Align last ECC block to align a byte boundary */
1486 if (step
== nfc_geo
->ecc_chunk_count
- 1 &&
1487 (oob_bit_off
+ eccbits
) % 8)
1488 eccbits
+= 8 - ((oob_bit_off
+ eccbits
) % 8);
1491 gpmi_copy_bits(tmp_buf
, dst_bit_off
,
1492 oob
, oob_bit_off
, eccbits
);
1494 dst_bit_off
+= eccbits
;
1495 oob_bit_off
+= eccbits
;
1498 oob_byte_off
= oob_bit_off
/ 8;
1500 if (oob_required
&& oob_byte_off
< mtd
->oobsize
)
1501 memcpy(tmp_buf
+ mtd
->writesize
+ oob_byte_off
,
1502 oob
+ oob_byte_off
, mtd
->oobsize
- oob_byte_off
);
1505 * If required, swap the bad block marker and the first byte of the
1506 * metadata section, so that we don't modify the bad block marker.
1508 * See the layout description for a detailed explanation on why this
1511 if (this->swap_block_mark
) {
1512 u8 swap
= tmp_buf
[0];
1514 tmp_buf
[0] = tmp_buf
[mtd
->writesize
];
1515 tmp_buf
[mtd
->writesize
] = swap
;
1518 chip
->write_buf(mtd
, tmp_buf
, mtd
->writesize
+ mtd
->oobsize
);
1523 static int gpmi_ecc_read_oob_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1526 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1528 return gpmi_ecc_read_page_raw(mtd
, chip
, NULL
, 1, page
);
1531 static int gpmi_ecc_write_oob_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1534 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0, page
);
1536 return gpmi_ecc_write_page_raw(mtd
, chip
, NULL
, 1, page
);
1539 static int gpmi_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1541 struct nand_chip
*chip
= mtd
->priv
;
1542 struct gpmi_nand_data
*this = chip
->priv
;
1544 uint8_t *block_mark
;
1545 int column
, page
, status
, chipnr
;
1547 chipnr
= (int)(ofs
>> chip
->chip_shift
);
1548 chip
->select_chip(mtd
, chipnr
);
1550 column
= !GPMI_IS_MX23(this) ? mtd
->writesize
: 0;
1552 /* Write the block mark. */
1553 block_mark
= this->data_buffer_dma
;
1554 block_mark
[0] = 0; /* bad block marker */
1556 /* Shift to get page */
1557 page
= (int)(ofs
>> chip
->page_shift
);
1559 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, column
, page
);
1560 chip
->write_buf(mtd
, block_mark
, 1);
1561 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1563 status
= chip
->waitfunc(mtd
, chip
);
1564 if (status
& NAND_STATUS_FAIL
)
1567 chip
->select_chip(mtd
, -1);
1572 static int nand_boot_set_geometry(struct gpmi_nand_data
*this)
1574 struct boot_rom_geometry
*geometry
= &this->rom_geometry
;
1577 * Set the boot block stride size.
1579 * In principle, we should be reading this from the OTP bits, since
1580 * that's where the ROM is going to get it. In fact, we don't have any
1581 * way to read the OTP bits, so we go with the default and hope for the
1584 geometry
->stride_size_in_pages
= 64;
1587 * Set the search area stride exponent.
1589 * In principle, we should be reading this from the OTP bits, since
1590 * that's where the ROM is going to get it. In fact, we don't have any
1591 * way to read the OTP bits, so we go with the default and hope for the
1594 geometry
->search_area_stride_exponent
= 2;
1598 static const char *fingerprint
= "STMP";
1599 static int mx23_check_transcription_stamp(struct gpmi_nand_data
*this)
1601 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1602 struct device
*dev
= this->dev
;
1603 struct mtd_info
*mtd
= &this->mtd
;
1604 struct nand_chip
*chip
= &this->nand
;
1605 unsigned int search_area_size_in_strides
;
1606 unsigned int stride
;
1608 uint8_t *buffer
= chip
->buffers
->databuf
;
1609 int saved_chip_number
;
1610 int found_an_ncb_fingerprint
= false;
1612 /* Compute the number of strides in a search area. */
1613 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1615 saved_chip_number
= this->current_chip
;
1616 chip
->select_chip(mtd
, 0);
1619 * Loop through the first search area, looking for the NCB fingerprint.
1621 dev_dbg(dev
, "Scanning for an NCB fingerprint...\n");
1623 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1624 /* Compute the page addresses. */
1625 page
= stride
* rom_geo
->stride_size_in_pages
;
1627 dev_dbg(dev
, "Looking for a fingerprint in page 0x%x\n", page
);
1630 * Read the NCB fingerprint. The fingerprint is four bytes long
1631 * and starts in the 12th byte of the page.
1633 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 12, page
);
1634 chip
->read_buf(mtd
, buffer
, strlen(fingerprint
));
1636 /* Look for the fingerprint. */
1637 if (!memcmp(buffer
, fingerprint
, strlen(fingerprint
))) {
1638 found_an_ncb_fingerprint
= true;
1644 chip
->select_chip(mtd
, saved_chip_number
);
1646 if (found_an_ncb_fingerprint
)
1647 dev_dbg(dev
, "\tFound a fingerprint\n");
1649 dev_dbg(dev
, "\tNo fingerprint found\n");
1650 return found_an_ncb_fingerprint
;
1653 /* Writes a transcription stamp. */
1654 static int mx23_write_transcription_stamp(struct gpmi_nand_data
*this)
1656 struct device
*dev
= this->dev
;
1657 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1658 struct mtd_info
*mtd
= &this->mtd
;
1659 struct nand_chip
*chip
= &this->nand
;
1660 unsigned int block_size_in_pages
;
1661 unsigned int search_area_size_in_strides
;
1662 unsigned int search_area_size_in_pages
;
1663 unsigned int search_area_size_in_blocks
;
1665 unsigned int stride
;
1667 uint8_t *buffer
= chip
->buffers
->databuf
;
1668 int saved_chip_number
;
1671 /* Compute the search area geometry. */
1672 block_size_in_pages
= mtd
->erasesize
/ mtd
->writesize
;
1673 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1674 search_area_size_in_pages
= search_area_size_in_strides
*
1675 rom_geo
->stride_size_in_pages
;
1676 search_area_size_in_blocks
=
1677 (search_area_size_in_pages
+ (block_size_in_pages
- 1)) /
1678 block_size_in_pages
;
1680 dev_dbg(dev
, "Search Area Geometry :\n");
1681 dev_dbg(dev
, "\tin Blocks : %u\n", search_area_size_in_blocks
);
1682 dev_dbg(dev
, "\tin Strides: %u\n", search_area_size_in_strides
);
1683 dev_dbg(dev
, "\tin Pages : %u\n", search_area_size_in_pages
);
1685 /* Select chip 0. */
1686 saved_chip_number
= this->current_chip
;
1687 chip
->select_chip(mtd
, 0);
1689 /* Loop over blocks in the first search area, erasing them. */
1690 dev_dbg(dev
, "Erasing the search area...\n");
1692 for (block
= 0; block
< search_area_size_in_blocks
; block
++) {
1693 /* Compute the page address. */
1694 page
= block
* block_size_in_pages
;
1696 /* Erase this block. */
1697 dev_dbg(dev
, "\tErasing block 0x%x\n", block
);
1698 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1699 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1701 /* Wait for the erase to finish. */
1702 status
= chip
->waitfunc(mtd
, chip
);
1703 if (status
& NAND_STATUS_FAIL
)
1704 dev_err(dev
, "[%s] Erase failed.\n", __func__
);
1707 /* Write the NCB fingerprint into the page buffer. */
1708 memset(buffer
, ~0, mtd
->writesize
);
1709 memcpy(buffer
+ 12, fingerprint
, strlen(fingerprint
));
1711 /* Loop through the first search area, writing NCB fingerprints. */
1712 dev_dbg(dev
, "Writing NCB fingerprints...\n");
1713 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1714 /* Compute the page addresses. */
1715 page
= stride
* rom_geo
->stride_size_in_pages
;
1717 /* Write the first page of the current stride. */
1718 dev_dbg(dev
, "Writing an NCB fingerprint in page 0x%x\n", page
);
1719 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1720 chip
->ecc
.write_page_raw(mtd
, chip
, buffer
, 0, page
);
1721 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1723 /* Wait for the write to finish. */
1724 status
= chip
->waitfunc(mtd
, chip
);
1725 if (status
& NAND_STATUS_FAIL
)
1726 dev_err(dev
, "[%s] Write failed.\n", __func__
);
1729 /* Deselect chip 0. */
1730 chip
->select_chip(mtd
, saved_chip_number
);
1734 static int mx23_boot_init(struct gpmi_nand_data
*this)
1736 struct device
*dev
= this->dev
;
1737 struct nand_chip
*chip
= &this->nand
;
1738 struct mtd_info
*mtd
= &this->mtd
;
1739 unsigned int block_count
;
1748 * If control arrives here, we can't use block mark swapping, which
1749 * means we're forced to use transcription. First, scan for the
1750 * transcription stamp. If we find it, then we don't have to do
1751 * anything -- the block marks are already transcribed.
1753 if (mx23_check_transcription_stamp(this))
1757 * If control arrives here, we couldn't find a transcription stamp, so
1758 * so we presume the block marks are in the conventional location.
1760 dev_dbg(dev
, "Transcribing bad block marks...\n");
1762 /* Compute the number of blocks in the entire medium. */
1763 block_count
= chip
->chipsize
>> chip
->phys_erase_shift
;
1766 * Loop over all the blocks in the medium, transcribing block marks as
1769 for (block
= 0; block
< block_count
; block
++) {
1771 * Compute the chip, page and byte addresses for this block's
1772 * conventional mark.
1774 chipnr
= block
>> (chip
->chip_shift
- chip
->phys_erase_shift
);
1775 page
= block
<< (chip
->phys_erase_shift
- chip
->page_shift
);
1776 byte
= block
<< chip
->phys_erase_shift
;
1778 /* Send the command to read the conventional block mark. */
1779 chip
->select_chip(mtd
, chipnr
);
1780 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1781 block_mark
= chip
->read_byte(mtd
);
1782 chip
->select_chip(mtd
, -1);
1785 * Check if the block is marked bad. If so, we need to mark it
1786 * again, but this time the result will be a mark in the
1787 * location where we transcribe block marks.
1789 if (block_mark
!= 0xff) {
1790 dev_dbg(dev
, "Transcribing mark in block %u\n", block
);
1791 ret
= chip
->block_markbad(mtd
, byte
);
1794 "Failed to mark block bad with ret %d\n",
1799 /* Write the stamp that indicates we've transcribed the block marks. */
1800 mx23_write_transcription_stamp(this);
1804 static int nand_boot_init(struct gpmi_nand_data
*this)
1806 nand_boot_set_geometry(this);
1808 /* This is ROM arch-specific initilization before the BBT scanning. */
1809 if (GPMI_IS_MX23(this))
1810 return mx23_boot_init(this);
1814 static int gpmi_set_geometry(struct gpmi_nand_data
*this)
1818 /* Free the temporary DMA memory for reading ID. */
1819 gpmi_free_dma_buffer(this);
1821 /* Set up the NFC geometry which is used by BCH. */
1822 ret
= bch_set_geometry(this);
1824 dev_err(this->dev
, "Error setting BCH geometry : %d\n", ret
);
1828 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1829 return gpmi_alloc_dma_buffer(this);
1832 static void gpmi_nand_exit(struct gpmi_nand_data
*this)
1834 nand_release(&this->mtd
);
1835 gpmi_free_dma_buffer(this);
1838 static int gpmi_init_last(struct gpmi_nand_data
*this)
1840 struct mtd_info
*mtd
= &this->mtd
;
1841 struct nand_chip
*chip
= mtd
->priv
;
1842 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1843 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
1846 /* Set up the medium geometry */
1847 ret
= gpmi_set_geometry(this);
1851 /* Init the nand_ecc_ctrl{} */
1852 ecc
->read_page
= gpmi_ecc_read_page
;
1853 ecc
->write_page
= gpmi_ecc_write_page
;
1854 ecc
->read_oob
= gpmi_ecc_read_oob
;
1855 ecc
->write_oob
= gpmi_ecc_write_oob
;
1856 ecc
->read_page_raw
= gpmi_ecc_read_page_raw
;
1857 ecc
->write_page_raw
= gpmi_ecc_write_page_raw
;
1858 ecc
->read_oob_raw
= gpmi_ecc_read_oob_raw
;
1859 ecc
->write_oob_raw
= gpmi_ecc_write_oob_raw
;
1860 ecc
->mode
= NAND_ECC_HW
;
1861 ecc
->size
= bch_geo
->ecc_chunk_size
;
1862 ecc
->strength
= bch_geo
->ecc_strength
;
1863 ecc
->layout
= &gpmi_hw_ecclayout
;
1866 * We only enable the subpage read when:
1867 * (1) the chip is imx6, and
1868 * (2) the size of the ECC parity is byte aligned.
1870 if (GPMI_IS_MX6(this) &&
1871 ((bch_geo
->gf_len
* bch_geo
->ecc_strength
) % 8) == 0) {
1872 ecc
->read_subpage
= gpmi_ecc_read_subpage
;
1873 chip
->options
|= NAND_SUBPAGE_READ
;
1877 * Can we enable the extra features? such as EDO or Sync mode.
1879 * We do not check the return value now. That's means if we fail in
1880 * enable the extra features, we still can run in the normal way.
1882 gpmi_extra_init(this);
1887 static int gpmi_nand_init(struct gpmi_nand_data
*this)
1889 struct mtd_info
*mtd
= &this->mtd
;
1890 struct nand_chip
*chip
= &this->nand
;
1891 struct mtd_part_parser_data ppdata
= {};
1894 /* init current chip */
1895 this->current_chip
= -1;
1897 /* init the MTD data structures */
1899 mtd
->name
= "gpmi-nand";
1900 mtd
->dev
.parent
= this->dev
;
1902 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1904 chip
->select_chip
= gpmi_select_chip
;
1905 chip
->cmd_ctrl
= gpmi_cmd_ctrl
;
1906 chip
->dev_ready
= gpmi_dev_ready
;
1907 chip
->read_byte
= gpmi_read_byte
;
1908 chip
->read_buf
= gpmi_read_buf
;
1909 chip
->write_buf
= gpmi_write_buf
;
1910 chip
->badblock_pattern
= &gpmi_bbt_descr
;
1911 chip
->block_markbad
= gpmi_block_markbad
;
1912 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1914 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1915 this->swap_block_mark
= !GPMI_IS_MX23(this);
1917 if (of_get_nand_on_flash_bbt(this->dev
->of_node
)) {
1918 chip
->bbt_options
|= NAND_BBT_USE_FLASH
| NAND_BBT_NO_OOB
;
1920 if (of_property_read_bool(this->dev
->of_node
,
1921 "fsl,no-blockmark-swap"))
1922 this->swap_block_mark
= false;
1924 dev_dbg(this->dev
, "Blockmark swapping %sabled\n",
1925 this->swap_block_mark
? "en" : "dis");
1928 * Allocate a temporary DMA buffer for reading ID in the
1929 * nand_scan_ident().
1931 this->bch_geometry
.payload_size
= 1024;
1932 this->bch_geometry
.auxiliary_size
= 128;
1933 ret
= gpmi_alloc_dma_buffer(this);
1937 ret
= nand_scan_ident(mtd
, GPMI_IS_MX6(this) ? 2 : 1, NULL
);
1941 ret
= gpmi_init_last(this);
1945 chip
->options
|= NAND_SKIP_BBTSCAN
;
1946 ret
= nand_scan_tail(mtd
);
1950 ret
= nand_boot_init(this);
1953 ret
= chip
->scan_bbt(mtd
);
1957 ppdata
.of_node
= this->pdev
->dev
.of_node
;
1958 ret
= mtd_device_parse_register(mtd
, NULL
, &ppdata
, NULL
, 0);
1964 gpmi_nand_exit(this);
1968 static const struct of_device_id gpmi_nand_id_table
[] = {
1970 .compatible
= "fsl,imx23-gpmi-nand",
1971 .data
= &gpmi_devdata_imx23
,
1973 .compatible
= "fsl,imx28-gpmi-nand",
1974 .data
= &gpmi_devdata_imx28
,
1976 .compatible
= "fsl,imx6q-gpmi-nand",
1977 .data
= &gpmi_devdata_imx6q
,
1979 .compatible
= "fsl,imx6sx-gpmi-nand",
1980 .data
= &gpmi_devdata_imx6sx
,
1983 MODULE_DEVICE_TABLE(of
, gpmi_nand_id_table
);
1985 static int gpmi_nand_probe(struct platform_device
*pdev
)
1987 struct gpmi_nand_data
*this;
1988 const struct of_device_id
*of_id
;
1991 this = devm_kzalloc(&pdev
->dev
, sizeof(*this), GFP_KERNEL
);
1995 of_id
= of_match_device(gpmi_nand_id_table
, &pdev
->dev
);
1997 this->devdata
= of_id
->data
;
1999 dev_err(&pdev
->dev
, "Failed to find the right device id.\n");
2003 platform_set_drvdata(pdev
, this);
2005 this->dev
= &pdev
->dev
;
2007 ret
= acquire_resources(this);
2009 goto exit_acquire_resources
;
2011 ret
= init_hardware(this);
2015 ret
= gpmi_nand_init(this);
2019 dev_info(this->dev
, "driver registered.\n");
2024 release_resources(this);
2025 exit_acquire_resources
:
2030 static int gpmi_nand_remove(struct platform_device
*pdev
)
2032 struct gpmi_nand_data
*this = platform_get_drvdata(pdev
);
2034 gpmi_nand_exit(this);
2035 release_resources(this);
2039 static struct platform_driver gpmi_nand_driver
= {
2041 .name
= "gpmi-nand",
2042 .of_match_table
= gpmi_nand_id_table
,
2044 .probe
= gpmi_nand_probe
,
2045 .remove
= gpmi_nand_remove
,
2047 module_platform_driver(gpmi_nand_driver
);
2049 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2050 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2051 MODULE_LICENSE("GPL");