Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / mtd / nand / nuc900_nand.c
blobf0687f71fbd895eb90d8b7d880180450373197e2
1 /*
2 * Copyright © 2009 Nuvoton technology corporation.
4 * Wan ZongShun <mcuos.com@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation;version 2 of the License.
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/platform_device.h>
17 #include <linux/delay.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/partitions.h>
25 #define REG_FMICSR 0x00
26 #define REG_SMCSR 0xa0
27 #define REG_SMISR 0xac
28 #define REG_SMCMD 0xb0
29 #define REG_SMADDR 0xb4
30 #define REG_SMDATA 0xb8
32 #define RESET_FMI 0x01
33 #define NAND_EN 0x08
34 #define READYBUSY (0x01 << 18)
36 #define SWRST 0x01
37 #define PSIZE (0x01 << 3)
38 #define DMARWEN (0x03 << 1)
39 #define BUSWID (0x01 << 4)
40 #define ECC4EN (0x01 << 5)
41 #define WP (0x01 << 24)
42 #define NANDCS (0x01 << 25)
43 #define ENDADDR (0x01 << 31)
45 #define read_data_reg(dev) \
46 __raw_readl((dev)->reg + REG_SMDATA)
48 #define write_data_reg(dev, val) \
49 __raw_writel((val), (dev)->reg + REG_SMDATA)
51 #define write_cmd_reg(dev, val) \
52 __raw_writel((val), (dev)->reg + REG_SMCMD)
54 #define write_addr_reg(dev, val) \
55 __raw_writel((val), (dev)->reg + REG_SMADDR)
57 struct nuc900_nand {
58 struct mtd_info mtd;
59 struct nand_chip chip;
60 void __iomem *reg;
61 struct clk *clk;
62 spinlock_t lock;
65 static const struct mtd_partition partitions[] = {
67 .name = "NAND FS 0",
68 .offset = 0,
69 .size = 8 * 1024 * 1024
72 .name = "NAND FS 1",
73 .offset = MTDPART_OFS_APPEND,
74 .size = MTDPART_SIZ_FULL
78 static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd)
80 unsigned char ret;
81 struct nuc900_nand *nand;
83 nand = container_of(mtd, struct nuc900_nand, mtd);
85 ret = (unsigned char)read_data_reg(nand);
87 return ret;
90 static void nuc900_nand_read_buf(struct mtd_info *mtd,
91 unsigned char *buf, int len)
93 int i;
94 struct nuc900_nand *nand;
96 nand = container_of(mtd, struct nuc900_nand, mtd);
98 for (i = 0; i < len; i++)
99 buf[i] = (unsigned char)read_data_reg(nand);
102 static void nuc900_nand_write_buf(struct mtd_info *mtd,
103 const unsigned char *buf, int len)
105 int i;
106 struct nuc900_nand *nand;
108 nand = container_of(mtd, struct nuc900_nand, mtd);
110 for (i = 0; i < len; i++)
111 write_data_reg(nand, buf[i]);
114 static int nuc900_check_rb(struct nuc900_nand *nand)
116 unsigned int val;
117 spin_lock(&nand->lock);
118 val = __raw_readl(REG_SMISR);
119 val &= READYBUSY;
120 spin_unlock(&nand->lock);
122 return val;
125 static int nuc900_nand_devready(struct mtd_info *mtd)
127 struct nuc900_nand *nand;
128 int ready;
130 nand = container_of(mtd, struct nuc900_nand, mtd);
132 ready = (nuc900_check_rb(nand)) ? 1 : 0;
133 return ready;
136 static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
137 int column, int page_addr)
139 register struct nand_chip *chip = mtd->priv;
140 struct nuc900_nand *nand;
142 nand = container_of(mtd, struct nuc900_nand, mtd);
144 if (command == NAND_CMD_READOOB) {
145 column += mtd->writesize;
146 command = NAND_CMD_READ0;
149 write_cmd_reg(nand, command & 0xff);
151 if (column != -1 || page_addr != -1) {
153 if (column != -1) {
154 if (chip->options & NAND_BUSWIDTH_16 &&
155 !nand_opcode_8bits(command))
156 column >>= 1;
157 write_addr_reg(nand, column);
158 write_addr_reg(nand, column >> 8 | ENDADDR);
160 if (page_addr != -1) {
161 write_addr_reg(nand, page_addr);
163 if (chip->chipsize > (128 << 20)) {
164 write_addr_reg(nand, page_addr >> 8);
165 write_addr_reg(nand, page_addr >> 16 | ENDADDR);
166 } else {
167 write_addr_reg(nand, page_addr >> 8 | ENDADDR);
172 switch (command) {
173 case NAND_CMD_CACHEDPROG:
174 case NAND_CMD_PAGEPROG:
175 case NAND_CMD_ERASE1:
176 case NAND_CMD_ERASE2:
177 case NAND_CMD_SEQIN:
178 case NAND_CMD_RNDIN:
179 case NAND_CMD_STATUS:
180 return;
182 case NAND_CMD_RESET:
183 if (chip->dev_ready)
184 break;
185 udelay(chip->chip_delay);
187 write_cmd_reg(nand, NAND_CMD_STATUS);
188 write_cmd_reg(nand, command);
190 while (!nuc900_check_rb(nand))
193 return;
195 case NAND_CMD_RNDOUT:
196 write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
197 return;
199 case NAND_CMD_READ0:
201 write_cmd_reg(nand, NAND_CMD_READSTART);
202 default:
204 if (!chip->dev_ready) {
205 udelay(chip->chip_delay);
206 return;
210 /* Apply this short delay always to ensure that we do wait tWB in
211 * any case on any machine. */
212 ndelay(100);
214 while (!chip->dev_ready(mtd))
219 static void nuc900_nand_enable(struct nuc900_nand *nand)
221 unsigned int val;
222 spin_lock(&nand->lock);
223 __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
225 val = __raw_readl(nand->reg + REG_FMICSR);
227 if (!(val & NAND_EN))
228 __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
230 val = __raw_readl(nand->reg + REG_SMCSR);
232 val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
233 val |= WP;
235 __raw_writel(val, nand->reg + REG_SMCSR);
237 spin_unlock(&nand->lock);
240 static int nuc900_nand_probe(struct platform_device *pdev)
242 struct nuc900_nand *nuc900_nand;
243 struct nand_chip *chip;
244 struct resource *res;
246 nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
247 GFP_KERNEL);
248 if (!nuc900_nand)
249 return -ENOMEM;
250 chip = &(nuc900_nand->chip);
252 nuc900_nand->mtd.priv = chip;
253 nuc900_nand->mtd.dev.parent = &pdev->dev;
254 spin_lock_init(&nuc900_nand->lock);
256 nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
257 if (IS_ERR(nuc900_nand->clk))
258 return -ENOENT;
259 clk_enable(nuc900_nand->clk);
261 chip->cmdfunc = nuc900_nand_command_lp;
262 chip->dev_ready = nuc900_nand_devready;
263 chip->read_byte = nuc900_nand_read_byte;
264 chip->write_buf = nuc900_nand_write_buf;
265 chip->read_buf = nuc900_nand_read_buf;
266 chip->chip_delay = 50;
267 chip->options = 0;
268 chip->ecc.mode = NAND_ECC_SOFT;
270 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
271 nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
272 if (IS_ERR(nuc900_nand->reg))
273 return PTR_ERR(nuc900_nand->reg);
275 nuc900_nand_enable(nuc900_nand);
277 if (nand_scan(&(nuc900_nand->mtd), 1))
278 return -ENXIO;
280 mtd_device_register(&(nuc900_nand->mtd), partitions,
281 ARRAY_SIZE(partitions));
283 platform_set_drvdata(pdev, nuc900_nand);
285 return 0;
288 static int nuc900_nand_remove(struct platform_device *pdev)
290 struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
292 nand_release(&nuc900_nand->mtd);
293 clk_disable(nuc900_nand->clk);
295 return 0;
298 static struct platform_driver nuc900_nand_driver = {
299 .probe = nuc900_nand_probe,
300 .remove = nuc900_nand_remove,
301 .driver = {
302 .name = "nuc900-fmi",
306 module_platform_driver(nuc900_nand_driver);
308 MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
309 MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
310 MODULE_LICENSE("GPL");
311 MODULE_ALIAS("platform:nuc900-fmi");