2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
31 #define MOD_DESC "CAN device driver interface"
33 MODULE_DESCRIPTION(MOD_DESC
);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37 /* CAN DLC to real data length conversion helpers */
39 static const u8 dlc2len
[] = {0, 1, 2, 3, 4, 5, 6, 7,
40 8, 12, 16, 20, 24, 32, 48, 64};
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8
can_dlc2len(u8 can_dlc
)
45 return dlc2len
[can_dlc
& 0x0F];
47 EXPORT_SYMBOL_GPL(can_dlc2len
);
49 static const u8 len2dlc
[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
50 9, 9, 9, 9, /* 9 - 12 */
51 10, 10, 10, 10, /* 13 - 16 */
52 11, 11, 11, 11, /* 17 - 20 */
53 12, 12, 12, 12, /* 21 - 24 */
54 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
55 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
57 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
58 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60 /* map the sanitized data length to an appropriate data length code */
61 u8
can_len2dlc(u8 len
)
63 if (unlikely(len
> 64))
68 EXPORT_SYMBOL_GPL(can_len2dlc
);
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
74 * Bit-timing calculation derived from:
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005 Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
86 static int can_update_spt(const struct can_bittiming_const
*btc
,
87 int sampl_pt
, int tseg
, int *tseg1
, int *tseg2
)
89 *tseg2
= tseg
+ 1 - (sampl_pt
* (tseg
+ 1)) / 1000;
90 if (*tseg2
< btc
->tseg2_min
)
91 *tseg2
= btc
->tseg2_min
;
92 if (*tseg2
> btc
->tseg2_max
)
93 *tseg2
= btc
->tseg2_max
;
94 *tseg1
= tseg
- *tseg2
;
95 if (*tseg1
> btc
->tseg1_max
) {
96 *tseg1
= btc
->tseg1_max
;
97 *tseg2
= tseg
- *tseg1
;
99 return 1000 * (tseg
+ 1 - *tseg2
) / (tseg
+ 1);
102 static int can_calc_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
103 const struct can_bittiming_const
*btc
)
105 struct can_priv
*priv
= netdev_priv(dev
);
106 long best_error
= 1000000000, error
= 0;
107 int best_tseg
= 0, best_brp
= 0, brp
= 0;
108 int tsegall
, tseg
= 0, tseg1
= 0, tseg2
= 0;
109 int spt_error
= 1000, spt
= 0, sampl_pt
;
113 /* Use CiA recommended sample points */
114 if (bt
->sample_point
) {
115 sampl_pt
= bt
->sample_point
;
117 if (bt
->bitrate
> 800000)
119 else if (bt
->bitrate
> 500000)
125 /* tseg even = round down, odd = round up */
126 for (tseg
= (btc
->tseg1_max
+ btc
->tseg2_max
) * 2 + 1;
127 tseg
>= (btc
->tseg1_min
+ btc
->tseg2_min
) * 2; tseg
--) {
128 tsegall
= 1 + tseg
/ 2;
129 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130 brp
= priv
->clock
.freq
/ (tsegall
* bt
->bitrate
) + tseg
% 2;
131 /* chose brp step which is possible in system */
132 brp
= (brp
/ btc
->brp_inc
) * btc
->brp_inc
;
133 if ((brp
< btc
->brp_min
) || (brp
> btc
->brp_max
))
135 rate
= priv
->clock
.freq
/ (brp
* tsegall
);
136 error
= bt
->bitrate
- rate
;
137 /* tseg brp biterror */
140 if (error
> best_error
)
144 spt
= can_update_spt(btc
, sampl_pt
, tseg
/ 2,
146 error
= sampl_pt
- spt
;
149 if (error
> spt_error
)
153 best_tseg
= tseg
/ 2;
160 /* Error in one-tenth of a percent */
161 error
= (best_error
* 1000) / bt
->bitrate
;
162 if (error
> CAN_CALC_MAX_ERROR
) {
164 "bitrate error %ld.%ld%% too high\n",
165 error
/ 10, error
% 10);
168 netdev_warn(dev
, "bitrate error %ld.%ld%%\n",
169 error
/ 10, error
% 10);
173 /* real sample point */
174 bt
->sample_point
= can_update_spt(btc
, sampl_pt
, best_tseg
,
177 v64
= (u64
)best_brp
* 1000000000UL;
178 do_div(v64
, priv
->clock
.freq
);
180 bt
->prop_seg
= tseg1
/ 2;
181 bt
->phase_seg1
= tseg1
- bt
->prop_seg
;
182 bt
->phase_seg2
= tseg2
;
184 /* check for sjw user settings */
185 if (!bt
->sjw
|| !btc
->sjw_max
)
188 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189 if (bt
->sjw
> btc
->sjw_max
)
190 bt
->sjw
= btc
->sjw_max
;
191 /* bt->sjw must not be higher than tseg2 */
198 bt
->bitrate
= priv
->clock
.freq
/ (bt
->brp
* (tseg1
+ tseg2
+ 1));
202 #else /* !CONFIG_CAN_CALC_BITTIMING */
203 static int can_calc_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
204 const struct can_bittiming_const
*btc
)
206 netdev_err(dev
, "bit-timing calculation not available\n");
209 #endif /* CONFIG_CAN_CALC_BITTIMING */
212 * Checks the validity of the specified bit-timing parameters prop_seg,
213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214 * prescaler value brp. You can find more information in the header
215 * file linux/can/netlink.h.
217 static int can_fixup_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
218 const struct can_bittiming_const
*btc
)
220 struct can_priv
*priv
= netdev_priv(dev
);
224 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
;
227 if (bt
->sjw
> btc
->sjw_max
||
228 tseg1
< btc
->tseg1_min
|| tseg1
> btc
->tseg1_max
||
229 bt
->phase_seg2
< btc
->tseg2_min
|| bt
->phase_seg2
> btc
->tseg2_max
)
232 brp64
= (u64
)priv
->clock
.freq
* (u64
)bt
->tq
;
233 if (btc
->brp_inc
> 1)
234 do_div(brp64
, btc
->brp_inc
);
235 brp64
+= 500000000UL - 1;
236 do_div(brp64
, 1000000000UL); /* the practicable BRP */
237 if (btc
->brp_inc
> 1)
238 brp64
*= btc
->brp_inc
;
239 bt
->brp
= (u32
)brp64
;
241 if (bt
->brp
< btc
->brp_min
|| bt
->brp
> btc
->brp_max
)
244 alltseg
= bt
->prop_seg
+ bt
->phase_seg1
+ bt
->phase_seg2
+ 1;
245 bt
->bitrate
= priv
->clock
.freq
/ (bt
->brp
* alltseg
);
246 bt
->sample_point
= ((tseg1
+ 1) * 1000) / alltseg
;
251 static int can_get_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
252 const struct can_bittiming_const
*btc
)
256 /* Check if the CAN device has bit-timing parameters */
261 * Depending on the given can_bittiming parameter structure the CAN
262 * timing parameters are calculated based on the provided bitrate OR
263 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264 * provided directly which are then checked and fixed up.
266 if (!bt
->tq
&& bt
->bitrate
)
267 err
= can_calc_bittiming(dev
, bt
, btc
);
268 else if (bt
->tq
&& !bt
->bitrate
)
269 err
= can_fixup_bittiming(dev
, bt
, btc
);
276 static void can_update_state_error_stats(struct net_device
*dev
,
277 enum can_state new_state
)
279 struct can_priv
*priv
= netdev_priv(dev
);
281 if (new_state
<= priv
->state
)
285 case CAN_STATE_ERROR_WARNING
:
286 priv
->can_stats
.error_warning
++;
288 case CAN_STATE_ERROR_PASSIVE
:
289 priv
->can_stats
.error_passive
++;
291 case CAN_STATE_BUS_OFF
:
292 priv
->can_stats
.bus_off
++;
299 static int can_tx_state_to_frame(struct net_device
*dev
, enum can_state state
)
302 case CAN_STATE_ERROR_ACTIVE
:
303 return CAN_ERR_CRTL_ACTIVE
;
304 case CAN_STATE_ERROR_WARNING
:
305 return CAN_ERR_CRTL_TX_WARNING
;
306 case CAN_STATE_ERROR_PASSIVE
:
307 return CAN_ERR_CRTL_TX_PASSIVE
;
313 static int can_rx_state_to_frame(struct net_device
*dev
, enum can_state state
)
316 case CAN_STATE_ERROR_ACTIVE
:
317 return CAN_ERR_CRTL_ACTIVE
;
318 case CAN_STATE_ERROR_WARNING
:
319 return CAN_ERR_CRTL_RX_WARNING
;
320 case CAN_STATE_ERROR_PASSIVE
:
321 return CAN_ERR_CRTL_RX_PASSIVE
;
327 void can_change_state(struct net_device
*dev
, struct can_frame
*cf
,
328 enum can_state tx_state
, enum can_state rx_state
)
330 struct can_priv
*priv
= netdev_priv(dev
);
331 enum can_state new_state
= max(tx_state
, rx_state
);
333 if (unlikely(new_state
== priv
->state
)) {
334 netdev_warn(dev
, "%s: oops, state did not change", __func__
);
338 netdev_dbg(dev
, "New error state: %d\n", new_state
);
340 can_update_state_error_stats(dev
, new_state
);
341 priv
->state
= new_state
;
343 if (unlikely(new_state
== CAN_STATE_BUS_OFF
)) {
344 cf
->can_id
|= CAN_ERR_BUSOFF
;
348 cf
->can_id
|= CAN_ERR_CRTL
;
349 cf
->data
[1] |= tx_state
>= rx_state
?
350 can_tx_state_to_frame(dev
, tx_state
) : 0;
351 cf
->data
[1] |= tx_state
<= rx_state
?
352 can_rx_state_to_frame(dev
, rx_state
) : 0;
354 EXPORT_SYMBOL_GPL(can_change_state
);
357 * Local echo of CAN messages
359 * CAN network devices *should* support a local echo functionality
360 * (see Documentation/networking/can.txt). To test the handling of CAN
361 * interfaces that do not support the local echo both driver types are
362 * implemented. In the case that the driver does not support the echo
363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
364 * to perform the echo as a fallback solution.
366 static void can_flush_echo_skb(struct net_device
*dev
)
368 struct can_priv
*priv
= netdev_priv(dev
);
369 struct net_device_stats
*stats
= &dev
->stats
;
372 for (i
= 0; i
< priv
->echo_skb_max
; i
++) {
373 if (priv
->echo_skb
[i
]) {
374 kfree_skb(priv
->echo_skb
[i
]);
375 priv
->echo_skb
[i
] = NULL
;
377 stats
->tx_aborted_errors
++;
383 * Put the skb on the stack to be looped backed locally lateron
385 * The function is typically called in the start_xmit function
386 * of the device driver. The driver must protect access to
387 * priv->echo_skb, if necessary.
389 void can_put_echo_skb(struct sk_buff
*skb
, struct net_device
*dev
,
392 struct can_priv
*priv
= netdev_priv(dev
);
394 BUG_ON(idx
>= priv
->echo_skb_max
);
396 /* check flag whether this packet has to be looped back */
397 if (!(dev
->flags
& IFF_ECHO
) || skb
->pkt_type
!= PACKET_LOOPBACK
||
398 (skb
->protocol
!= htons(ETH_P_CAN
) &&
399 skb
->protocol
!= htons(ETH_P_CANFD
))) {
404 if (!priv
->echo_skb
[idx
]) {
406 skb
= can_create_echo_skb(skb
);
410 /* make settings for echo to reduce code in irq context */
411 skb
->pkt_type
= PACKET_BROADCAST
;
412 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
415 /* save this skb for tx interrupt echo handling */
416 priv
->echo_skb
[idx
] = skb
;
418 /* locking problem with netif_stop_queue() ?? */
419 netdev_err(dev
, "%s: BUG! echo_skb is occupied!\n", __func__
);
423 EXPORT_SYMBOL_GPL(can_put_echo_skb
);
426 * Get the skb from the stack and loop it back locally
428 * The function is typically called when the TX done interrupt
429 * is handled in the device driver. The driver must protect
430 * access to priv->echo_skb, if necessary.
432 unsigned int can_get_echo_skb(struct net_device
*dev
, unsigned int idx
)
434 struct can_priv
*priv
= netdev_priv(dev
);
436 BUG_ON(idx
>= priv
->echo_skb_max
);
438 if (priv
->echo_skb
[idx
]) {
439 struct sk_buff
*skb
= priv
->echo_skb
[idx
];
440 struct can_frame
*cf
= (struct can_frame
*)skb
->data
;
441 u8 dlc
= cf
->can_dlc
;
443 netif_rx(priv
->echo_skb
[idx
]);
444 priv
->echo_skb
[idx
] = NULL
;
451 EXPORT_SYMBOL_GPL(can_get_echo_skb
);
454 * Remove the skb from the stack and free it.
456 * The function is typically called when TX failed.
458 void can_free_echo_skb(struct net_device
*dev
, unsigned int idx
)
460 struct can_priv
*priv
= netdev_priv(dev
);
462 BUG_ON(idx
>= priv
->echo_skb_max
);
464 if (priv
->echo_skb
[idx
]) {
465 dev_kfree_skb_any(priv
->echo_skb
[idx
]);
466 priv
->echo_skb
[idx
] = NULL
;
469 EXPORT_SYMBOL_GPL(can_free_echo_skb
);
472 * CAN device restart for bus-off recovery
474 static void can_restart(unsigned long data
)
476 struct net_device
*dev
= (struct net_device
*)data
;
477 struct can_priv
*priv
= netdev_priv(dev
);
478 struct net_device_stats
*stats
= &dev
->stats
;
480 struct can_frame
*cf
;
483 BUG_ON(netif_carrier_ok(dev
));
486 * No synchronization needed because the device is bus-off and
487 * no messages can come in or go out.
489 can_flush_echo_skb(dev
);
491 /* send restart message upstream */
492 skb
= alloc_can_err_skb(dev
, &cf
);
497 cf
->can_id
|= CAN_ERR_RESTARTED
;
502 stats
->rx_bytes
+= cf
->can_dlc
;
505 netdev_dbg(dev
, "restarted\n");
506 priv
->can_stats
.restarts
++;
508 /* Now restart the device */
509 err
= priv
->do_set_mode(dev
, CAN_MODE_START
);
511 netif_carrier_on(dev
);
513 netdev_err(dev
, "Error %d during restart", err
);
516 int can_restart_now(struct net_device
*dev
)
518 struct can_priv
*priv
= netdev_priv(dev
);
521 * A manual restart is only permitted if automatic restart is
522 * disabled and the device is in the bus-off state
524 if (priv
->restart_ms
)
526 if (priv
->state
!= CAN_STATE_BUS_OFF
)
529 /* Runs as soon as possible in the timer context */
530 mod_timer(&priv
->restart_timer
, jiffies
);
538 * This functions should be called when the device goes bus-off to
539 * tell the netif layer that no more packets can be sent or received.
540 * If enabled, a timer is started to trigger bus-off recovery.
542 void can_bus_off(struct net_device
*dev
)
544 struct can_priv
*priv
= netdev_priv(dev
);
546 netdev_dbg(dev
, "bus-off\n");
548 netif_carrier_off(dev
);
550 if (priv
->restart_ms
)
551 mod_timer(&priv
->restart_timer
,
552 jiffies
+ (priv
->restart_ms
* HZ
) / 1000);
554 EXPORT_SYMBOL_GPL(can_bus_off
);
556 static void can_setup(struct net_device
*dev
)
558 dev
->type
= ARPHRD_CAN
;
560 dev
->hard_header_len
= 0;
562 dev
->tx_queue_len
= 10;
564 /* New-style flags. */
565 dev
->flags
= IFF_NOARP
;
566 dev
->features
= NETIF_F_HW_CSUM
;
569 struct sk_buff
*alloc_can_skb(struct net_device
*dev
, struct can_frame
**cf
)
573 skb
= netdev_alloc_skb(dev
, sizeof(struct can_skb_priv
) +
574 sizeof(struct can_frame
));
578 skb
->protocol
= htons(ETH_P_CAN
);
579 skb
->pkt_type
= PACKET_BROADCAST
;
580 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
582 skb_reset_mac_header(skb
);
583 skb_reset_network_header(skb
);
584 skb_reset_transport_header(skb
);
586 can_skb_reserve(skb
);
587 can_skb_prv(skb
)->ifindex
= dev
->ifindex
;
588 can_skb_prv(skb
)->skbcnt
= 0;
590 *cf
= (struct can_frame
*)skb_put(skb
, sizeof(struct can_frame
));
591 memset(*cf
, 0, sizeof(struct can_frame
));
595 EXPORT_SYMBOL_GPL(alloc_can_skb
);
597 struct sk_buff
*alloc_canfd_skb(struct net_device
*dev
,
598 struct canfd_frame
**cfd
)
602 skb
= netdev_alloc_skb(dev
, sizeof(struct can_skb_priv
) +
603 sizeof(struct canfd_frame
));
607 skb
->protocol
= htons(ETH_P_CANFD
);
608 skb
->pkt_type
= PACKET_BROADCAST
;
609 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
611 skb_reset_mac_header(skb
);
612 skb_reset_network_header(skb
);
613 skb_reset_transport_header(skb
);
615 can_skb_reserve(skb
);
616 can_skb_prv(skb
)->ifindex
= dev
->ifindex
;
617 can_skb_prv(skb
)->skbcnt
= 0;
619 *cfd
= (struct canfd_frame
*)skb_put(skb
, sizeof(struct canfd_frame
));
620 memset(*cfd
, 0, sizeof(struct canfd_frame
));
624 EXPORT_SYMBOL_GPL(alloc_canfd_skb
);
626 struct sk_buff
*alloc_can_err_skb(struct net_device
*dev
, struct can_frame
**cf
)
630 skb
= alloc_can_skb(dev
, cf
);
634 (*cf
)->can_id
= CAN_ERR_FLAG
;
635 (*cf
)->can_dlc
= CAN_ERR_DLC
;
639 EXPORT_SYMBOL_GPL(alloc_can_err_skb
);
642 * Allocate and setup space for the CAN network device
644 struct net_device
*alloc_candev(int sizeof_priv
, unsigned int echo_skb_max
)
646 struct net_device
*dev
;
647 struct can_priv
*priv
;
651 size
= ALIGN(sizeof_priv
, sizeof(struct sk_buff
*)) +
652 echo_skb_max
* sizeof(struct sk_buff
*);
656 dev
= alloc_netdev(size
, "can%d", NET_NAME_UNKNOWN
, can_setup
);
660 priv
= netdev_priv(dev
);
663 priv
->echo_skb_max
= echo_skb_max
;
664 priv
->echo_skb
= (void *)priv
+
665 ALIGN(sizeof_priv
, sizeof(struct sk_buff
*));
668 priv
->state
= CAN_STATE_STOPPED
;
670 init_timer(&priv
->restart_timer
);
674 EXPORT_SYMBOL_GPL(alloc_candev
);
677 * Free space of the CAN network device
679 void free_candev(struct net_device
*dev
)
683 EXPORT_SYMBOL_GPL(free_candev
);
686 * changing MTU and control mode for CAN/CANFD devices
688 int can_change_mtu(struct net_device
*dev
, int new_mtu
)
690 struct can_priv
*priv
= netdev_priv(dev
);
692 /* Do not allow changing the MTU while running */
693 if (dev
->flags
& IFF_UP
)
696 /* allow change of MTU according to the CANFD ability of the device */
699 priv
->ctrlmode
&= ~CAN_CTRLMODE_FD
;
703 if (!(priv
->ctrlmode_supported
& CAN_CTRLMODE_FD
))
706 priv
->ctrlmode
|= CAN_CTRLMODE_FD
;
716 EXPORT_SYMBOL_GPL(can_change_mtu
);
719 * Common open function when the device gets opened.
721 * This function should be called in the open function of the device
724 int open_candev(struct net_device
*dev
)
726 struct can_priv
*priv
= netdev_priv(dev
);
728 if (!priv
->bittiming
.bitrate
) {
729 netdev_err(dev
, "bit-timing not yet defined\n");
733 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
734 if ((priv
->ctrlmode
& CAN_CTRLMODE_FD
) &&
735 (!priv
->data_bittiming
.bitrate
||
736 (priv
->data_bittiming
.bitrate
< priv
->bittiming
.bitrate
))) {
737 netdev_err(dev
, "incorrect/missing data bit-timing\n");
741 /* Switch carrier on if device was stopped while in bus-off state */
742 if (!netif_carrier_ok(dev
))
743 netif_carrier_on(dev
);
745 setup_timer(&priv
->restart_timer
, can_restart
, (unsigned long)dev
);
749 EXPORT_SYMBOL_GPL(open_candev
);
752 * Common close function for cleanup before the device gets closed.
754 * This function should be called in the close function of the device
757 void close_candev(struct net_device
*dev
)
759 struct can_priv
*priv
= netdev_priv(dev
);
761 del_timer_sync(&priv
->restart_timer
);
762 can_flush_echo_skb(dev
);
764 EXPORT_SYMBOL_GPL(close_candev
);
767 * CAN netlink interface
769 static const struct nla_policy can_policy
[IFLA_CAN_MAX
+ 1] = {
770 [IFLA_CAN_STATE
] = { .type
= NLA_U32
},
771 [IFLA_CAN_CTRLMODE
] = { .len
= sizeof(struct can_ctrlmode
) },
772 [IFLA_CAN_RESTART_MS
] = { .type
= NLA_U32
},
773 [IFLA_CAN_RESTART
] = { .type
= NLA_U32
},
774 [IFLA_CAN_BITTIMING
] = { .len
= sizeof(struct can_bittiming
) },
775 [IFLA_CAN_BITTIMING_CONST
]
776 = { .len
= sizeof(struct can_bittiming_const
) },
777 [IFLA_CAN_CLOCK
] = { .len
= sizeof(struct can_clock
) },
778 [IFLA_CAN_BERR_COUNTER
] = { .len
= sizeof(struct can_berr_counter
) },
779 [IFLA_CAN_DATA_BITTIMING
]
780 = { .len
= sizeof(struct can_bittiming
) },
781 [IFLA_CAN_DATA_BITTIMING_CONST
]
782 = { .len
= sizeof(struct can_bittiming_const
) },
785 static int can_changelink(struct net_device
*dev
,
786 struct nlattr
*tb
[], struct nlattr
*data
[])
788 struct can_priv
*priv
= netdev_priv(dev
);
791 /* We need synchronization with dev->stop() */
794 if (data
[IFLA_CAN_BITTIMING
]) {
795 struct can_bittiming bt
;
797 /* Do not allow changing bittiming while running */
798 if (dev
->flags
& IFF_UP
)
800 memcpy(&bt
, nla_data(data
[IFLA_CAN_BITTIMING
]), sizeof(bt
));
801 err
= can_get_bittiming(dev
, &bt
, priv
->bittiming_const
);
804 memcpy(&priv
->bittiming
, &bt
, sizeof(bt
));
806 if (priv
->do_set_bittiming
) {
807 /* Finally, set the bit-timing registers */
808 err
= priv
->do_set_bittiming(dev
);
814 if (data
[IFLA_CAN_CTRLMODE
]) {
815 struct can_ctrlmode
*cm
;
817 /* Do not allow changing controller mode while running */
818 if (dev
->flags
& IFF_UP
)
820 cm
= nla_data(data
[IFLA_CAN_CTRLMODE
]);
822 /* check whether changed bits are allowed to be modified */
823 if (cm
->mask
& ~priv
->ctrlmode_supported
)
826 /* clear bits to be modified and copy the flag values */
827 priv
->ctrlmode
&= ~cm
->mask
;
828 priv
->ctrlmode
|= (cm
->flags
& cm
->mask
);
830 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
831 if (priv
->ctrlmode
& CAN_CTRLMODE_FD
)
832 dev
->mtu
= CANFD_MTU
;
837 if (data
[IFLA_CAN_RESTART_MS
]) {
838 /* Do not allow changing restart delay while running */
839 if (dev
->flags
& IFF_UP
)
841 priv
->restart_ms
= nla_get_u32(data
[IFLA_CAN_RESTART_MS
]);
844 if (data
[IFLA_CAN_RESTART
]) {
845 /* Do not allow a restart while not running */
846 if (!(dev
->flags
& IFF_UP
))
848 err
= can_restart_now(dev
);
853 if (data
[IFLA_CAN_DATA_BITTIMING
]) {
854 struct can_bittiming dbt
;
856 /* Do not allow changing bittiming while running */
857 if (dev
->flags
& IFF_UP
)
859 memcpy(&dbt
, nla_data(data
[IFLA_CAN_DATA_BITTIMING
]),
861 err
= can_get_bittiming(dev
, &dbt
, priv
->data_bittiming_const
);
864 memcpy(&priv
->data_bittiming
, &dbt
, sizeof(dbt
));
866 if (priv
->do_set_data_bittiming
) {
867 /* Finally, set the bit-timing registers */
868 err
= priv
->do_set_data_bittiming(dev
);
877 static size_t can_get_size(const struct net_device
*dev
)
879 struct can_priv
*priv
= netdev_priv(dev
);
882 if (priv
->bittiming
.bitrate
) /* IFLA_CAN_BITTIMING */
883 size
+= nla_total_size(sizeof(struct can_bittiming
));
884 if (priv
->bittiming_const
) /* IFLA_CAN_BITTIMING_CONST */
885 size
+= nla_total_size(sizeof(struct can_bittiming_const
));
886 size
+= nla_total_size(sizeof(struct can_clock
)); /* IFLA_CAN_CLOCK */
887 size
+= nla_total_size(sizeof(u32
)); /* IFLA_CAN_STATE */
888 size
+= nla_total_size(sizeof(struct can_ctrlmode
)); /* IFLA_CAN_CTRLMODE */
889 size
+= nla_total_size(sizeof(u32
)); /* IFLA_CAN_RESTART_MS */
890 if (priv
->do_get_berr_counter
) /* IFLA_CAN_BERR_COUNTER */
891 size
+= nla_total_size(sizeof(struct can_berr_counter
));
892 if (priv
->data_bittiming
.bitrate
) /* IFLA_CAN_DATA_BITTIMING */
893 size
+= nla_total_size(sizeof(struct can_bittiming
));
894 if (priv
->data_bittiming_const
) /* IFLA_CAN_DATA_BITTIMING_CONST */
895 size
+= nla_total_size(sizeof(struct can_bittiming_const
));
900 static int can_fill_info(struct sk_buff
*skb
, const struct net_device
*dev
)
902 struct can_priv
*priv
= netdev_priv(dev
);
903 struct can_ctrlmode cm
= {.flags
= priv
->ctrlmode
};
904 struct can_berr_counter bec
;
905 enum can_state state
= priv
->state
;
907 if (priv
->do_get_state
)
908 priv
->do_get_state(dev
, &state
);
910 if ((priv
->bittiming
.bitrate
&&
911 nla_put(skb
, IFLA_CAN_BITTIMING
,
912 sizeof(priv
->bittiming
), &priv
->bittiming
)) ||
914 (priv
->bittiming_const
&&
915 nla_put(skb
, IFLA_CAN_BITTIMING_CONST
,
916 sizeof(*priv
->bittiming_const
), priv
->bittiming_const
)) ||
918 nla_put(skb
, IFLA_CAN_CLOCK
, sizeof(priv
->clock
), &priv
->clock
) ||
919 nla_put_u32(skb
, IFLA_CAN_STATE
, state
) ||
920 nla_put(skb
, IFLA_CAN_CTRLMODE
, sizeof(cm
), &cm
) ||
921 nla_put_u32(skb
, IFLA_CAN_RESTART_MS
, priv
->restart_ms
) ||
923 (priv
->do_get_berr_counter
&&
924 !priv
->do_get_berr_counter(dev
, &bec
) &&
925 nla_put(skb
, IFLA_CAN_BERR_COUNTER
, sizeof(bec
), &bec
)) ||
927 (priv
->data_bittiming
.bitrate
&&
928 nla_put(skb
, IFLA_CAN_DATA_BITTIMING
,
929 sizeof(priv
->data_bittiming
), &priv
->data_bittiming
)) ||
931 (priv
->data_bittiming_const
&&
932 nla_put(skb
, IFLA_CAN_DATA_BITTIMING_CONST
,
933 sizeof(*priv
->data_bittiming_const
),
934 priv
->data_bittiming_const
)))
940 static size_t can_get_xstats_size(const struct net_device
*dev
)
942 return sizeof(struct can_device_stats
);
945 static int can_fill_xstats(struct sk_buff
*skb
, const struct net_device
*dev
)
947 struct can_priv
*priv
= netdev_priv(dev
);
949 if (nla_put(skb
, IFLA_INFO_XSTATS
,
950 sizeof(priv
->can_stats
), &priv
->can_stats
))
951 goto nla_put_failure
;
958 static int can_newlink(struct net
*src_net
, struct net_device
*dev
,
959 struct nlattr
*tb
[], struct nlattr
*data
[])
964 static struct rtnl_link_ops can_link_ops __read_mostly
= {
966 .maxtype
= IFLA_CAN_MAX
,
967 .policy
= can_policy
,
969 .newlink
= can_newlink
,
970 .changelink
= can_changelink
,
971 .get_size
= can_get_size
,
972 .fill_info
= can_fill_info
,
973 .get_xstats_size
= can_get_xstats_size
,
974 .fill_xstats
= can_fill_xstats
,
978 * Register the CAN network device
980 int register_candev(struct net_device
*dev
)
982 dev
->rtnl_link_ops
= &can_link_ops
;
983 return register_netdev(dev
);
985 EXPORT_SYMBOL_GPL(register_candev
);
988 * Unregister the CAN network device
990 void unregister_candev(struct net_device
*dev
)
992 unregister_netdev(dev
);
994 EXPORT_SYMBOL_GPL(unregister_candev
);
997 * Test if a network device is a candev based device
998 * and return the can_priv* if so.
1000 struct can_priv
*safe_candev_priv(struct net_device
*dev
)
1002 if ((dev
->type
!= ARPHRD_CAN
) || (dev
->rtnl_link_ops
!= &can_link_ops
))
1005 return netdev_priv(dev
);
1007 EXPORT_SYMBOL_GPL(safe_candev_priv
);
1009 static __init
int can_dev_init(void)
1013 can_led_notifier_init();
1015 err
= rtnl_link_register(&can_link_ops
);
1017 printk(KERN_INFO MOD_DESC
"\n");
1021 module_init(can_dev_init
);
1023 static __exit
void can_dev_exit(void)
1025 rtnl_link_unregister(&can_link_ops
);
1027 can_led_notifier_exit();
1029 module_exit(can_dev_exit
);
1031 MODULE_ALIAS_RTNL_LINK("can");