Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / net / wimax / i2400m / fw.c
blobc9c711dcd0e6bb9d7ce988f42bc7e6dd7877a37b
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
41 * THE PROCEDURE
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint.
56 * Upon entrance to boot mode, the device sends (preceded with a few
57 * zero length packets (ZLPs) on the notification endpoint in USB) a
58 * reboot barker (4 le32 words with the same value). We ack it by
59 * sending the same barker to the device. The device acks with a
60 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61 * then is fully booted. At this point we can upload the firmware.
63 * Note that different iterations of the device and EEPROM
64 * configurations will send different [re]boot barkers; these are
65 * collected in i2400m_barker_db along with the firmware
66 * characteristics they require.
68 * This process is accomplished by the i2400m_bootrom_init()
69 * function. All the device interaction happens through the
70 * i2400m_bm_cmd() [boot mode command]. Special return values will
71 * indicate if the device did reset during the process.
73 * After this, we read the MAC address and then (if needed)
74 * reinitialize the device. We need to read it ahead of time because
75 * in the future, we might not upload the firmware until userspace
76 * 'ifconfig up's the device.
78 * We can then upload the firmware file. The file is composed of a BCF
79 * header (basic data, keys and signatures) and a list of write
80 * commands and payloads. Optionally more BCF headers might follow the
81 * main payload. We first upload the header [i2400m_dnload_init()] and
82 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84 * the new firmware [i2400m_dnload_finalize()].
86 * Once firmware is uploaded, we are good to go :)
88 * When we don't know in which mode we are, we first try by sending a
89 * warm reset request that will take us to boot-mode. If we time out
90 * waiting for a reboot barker, that means maybe we are already in
91 * boot mode, so we send a reboot barker.
93 * COMMAND EXECUTION
95 * This code (and process) is single threaded; for executing commands,
96 * we post a URB to the notification endpoint, post the command, wait
97 * for data on the notification buffer. We don't need to worry about
98 * others as we know we are the only ones in there.
100 * BACKEND IMPLEMENTATION
102 * This code is bus-generic; the bus-specific driver provides back end
103 * implementations to send a boot mode command to the device and to
104 * read an acknolwedgement from it (or an asynchronous notification)
105 * from it.
107 * FIRMWARE LOADING
109 * Note that in some cases, we can't just load a firmware file (for
110 * example, when resuming). For that, we might cache the firmware
111 * file. Thus, when doing the bootstrap, if there is a cache firmware
112 * file, it is used; if not, loading from disk is attempted.
114 * ROADMAP
116 * i2400m_barker_db_init Called by i2400m_driver_init()
117 * i2400m_barker_db_add
119 * i2400m_barker_db_exit Called by i2400m_driver_exit()
121 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
122 * request_firmware
123 * i2400m_fw_bootstrap
124 * i2400m_fw_check
125 * i2400m_fw_hdr_check
126 * i2400m_fw_dnload
127 * release_firmware
129 * i2400m_fw_dnload
130 * i2400m_bootrom_init
131 * i2400m_bm_cmd
132 * i2400m_reset
133 * i2400m_dnload_init
134 * i2400m_dnload_init_signed
135 * i2400m_dnload_init_nonsigned
136 * i2400m_download_chunk
137 * i2400m_bm_cmd
138 * i2400m_dnload_bcf
139 * i2400m_bm_cmd
140 * i2400m_dnload_finalize
141 * i2400m_bm_cmd
143 * i2400m_bm_cmd
144 * i2400m->bus_bm_cmd_send()
145 * i2400m->bus_bm_wait_for_ack
146 * __i2400m_bm_ack_verify
147 * i2400m_is_boot_barker
149 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
150 * commands before sending
152 * i2400m_pm_notifier Called on Power Management events
153 * i2400m_fw_cache
154 * i2400m_fw_uncache
156 #include <linux/firmware.h>
157 #include <linux/sched.h>
158 #include <linux/slab.h>
159 #include <linux/usb.h>
160 #include <linux/export.h>
161 #include "i2400m.h"
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
168 static const __le32 i2400m_ACK_BARKER[4] = {
169 cpu_to_le32(I2400M_ACK_BARKER),
170 cpu_to_le32(I2400M_ACK_BARKER),
171 cpu_to_le32(I2400M_ACK_BARKER),
172 cpu_to_le32(I2400M_ACK_BARKER)
177 * Prepare a boot-mode command for delivery
179 * @cmd: pointer to bootrom header to prepare
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
190 if (i2400m_brh_get_use_checksum(cmd)) {
191 int i;
192 u32 checksum = 0;
193 const u32 *checksum_ptr = (void *) cmd->payload;
194 for (i = 0; i < cmd->data_size / 4; i++)
195 checksum += cpu_to_le32(*checksum_ptr++);
196 checksum += cmd->command + cmd->target_addr + cmd->data_size;
197 cmd->block_checksum = cpu_to_le32(checksum);
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
204 * Database of known barkers.
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
211 static struct i2400m_barker_db {
212 __le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
217 static
218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219 gfp_t gfp_flags)
221 size_t old_count = *_count,
222 new_count = old_count ? 2 * old_count : 2,
223 old_size = el_size * old_count,
224 new_size = el_size * new_count;
225 void *nptr = krealloc(*ptr, new_size, gfp_flags);
226 if (nptr) {
227 /* zero the other half or the whole thing if old_count
228 * was zero */
229 if (old_size == 0)
230 memset(nptr, 0, new_size);
231 else
232 memset(nptr + old_size, 0, old_size);
233 *_count = new_count;
234 *ptr = nptr;
235 return 0;
236 } else
237 return -ENOMEM;
242 * Add a barker to the database
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
247 static
248 int i2400m_barker_db_add(u32 barker_id)
250 int result;
252 struct i2400m_barker_db *barker;
253 if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254 result = i2400m_zrealloc_2x(
255 (void **) &i2400m_barker_db, &i2400m_barker_db_size,
256 sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257 if (result < 0)
258 return result;
260 barker = i2400m_barker_db + i2400m_barker_db_used++;
261 barker->data[0] = le32_to_cpu(barker_id);
262 barker->data[1] = le32_to_cpu(barker_id);
263 barker->data[2] = le32_to_cpu(barker_id);
264 barker->data[3] = le32_to_cpu(barker_id);
265 return 0;
269 void i2400m_barker_db_exit(void)
271 kfree(i2400m_barker_db);
272 i2400m_barker_db = NULL;
273 i2400m_barker_db_size = 0;
274 i2400m_barker_db_used = 0;
279 * Helper function to add all the known stable barkers to the barker
280 * database.
282 static
283 int i2400m_barker_db_known_barkers(void)
285 int result;
287 result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288 if (result < 0)
289 goto error_add;
290 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291 if (result < 0)
292 goto error_add;
293 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294 if (result < 0)
295 goto error_add;
296 error_add:
297 return result;
302 * Initialize the barker database
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
307 * @options: command line argument with extra barkers to
308 * recognize. This is a comma-separated list of 32-bit hex
309 * numbers. They are appended to the existing list. Setting 0
310 * cleans the existing list and starts a new one.
312 int i2400m_barker_db_init(const char *_options)
314 int result;
315 char *options = NULL, *options_orig, *token;
317 i2400m_barker_db = NULL;
318 i2400m_barker_db_size = 0;
319 i2400m_barker_db_used = 0;
321 result = i2400m_barker_db_known_barkers();
322 if (result < 0)
323 goto error_add;
324 /* parse command line options from i2400m.barkers */
325 if (_options != NULL) {
326 unsigned barker;
328 options_orig = kstrdup(_options, GFP_KERNEL);
329 if (options_orig == NULL) {
330 result = -ENOMEM;
331 goto error_parse;
333 options = options_orig;
335 while ((token = strsep(&options, ",")) != NULL) {
336 if (*token == '\0') /* eat joint commas */
337 continue;
338 if (sscanf(token, "%x", &barker) != 1
339 || barker > 0xffffffff) {
340 printk(KERN_ERR "%s: can't recognize "
341 "i2400m.barkers value '%s' as "
342 "a 32-bit number\n",
343 __func__, token);
344 result = -EINVAL;
345 goto error_parse;
347 if (barker == 0) {
348 /* clean list and start new */
349 i2400m_barker_db_exit();
350 continue;
352 result = i2400m_barker_db_add(barker);
353 if (result < 0)
354 goto error_add;
356 kfree(options_orig);
358 return 0;
360 error_parse:
361 error_add:
362 kfree(i2400m_barker_db);
363 return result;
368 * Recognize a boot barker
370 * @buf: buffer where the boot barker.
371 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
372 * here so the function can check it for the caller.
374 * Note that as a side effect, upon identifying the obtained boot
375 * barker, this function will set i2400m->barker to point to the right
376 * barker database entry. Subsequent calls to the function will result
377 * in verifying that the same type of boot barker is returned when the
378 * device [re]boots (as long as the same device instance is used).
380 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
381 * buffer in @buf doesn't match any boot barker in the database or
382 * -EILSEQ if the buffer doesn't have the right size.
384 int i2400m_is_boot_barker(struct i2400m *i2400m,
385 const void *buf, size_t buf_size)
387 int result;
388 struct device *dev = i2400m_dev(i2400m);
389 struct i2400m_barker_db *barker;
390 int i;
392 result = -ENOENT;
393 if (buf_size != sizeof(i2400m_barker_db[i].data))
394 return result;
396 /* Short circuit if we have already discovered the barker
397 * associated with the device. */
398 if (i2400m->barker
399 && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
400 unsigned index = (i2400m->barker - i2400m_barker_db)
401 / sizeof(*i2400m->barker);
402 d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
403 index, le32_to_cpu(i2400m->barker->data[0]));
404 return 0;
407 for (i = 0; i < i2400m_barker_db_used; i++) {
408 barker = &i2400m_barker_db[i];
409 BUILD_BUG_ON(sizeof(barker->data) != 16);
410 if (memcmp(buf, barker->data, sizeof(barker->data)))
411 continue;
413 if (i2400m->barker == NULL) {
414 i2400m->barker = barker;
415 d_printf(1, dev, "boot barker set to #%u/%08x\n",
416 i, le32_to_cpu(barker->data[0]));
417 if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
418 i2400m->sboot = 0;
419 else
420 i2400m->sboot = 1;
421 } else if (i2400m->barker != barker) {
422 dev_err(dev, "HW inconsistency: device "
423 "reports a different boot barker "
424 "than set (from %08x to %08x)\n",
425 le32_to_cpu(i2400m->barker->data[0]),
426 le32_to_cpu(barker->data[0]));
427 result = -EIO;
428 } else
429 d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
430 i, le32_to_cpu(barker->data[0]));
431 result = 0;
432 break;
434 return result;
436 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
440 * Verify the ack data received
442 * Given a reply to a boot mode command, chew it and verify everything
443 * is ok.
445 * @opcode: opcode which generated this ack. For error messages.
446 * @ack: pointer to ack data we received
447 * @ack_size: size of that data buffer
448 * @flags: I2400M_BM_CMD_* flags we called the command with.
450 * Way too long function -- maybe it should be further split
452 static
453 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
454 struct i2400m_bootrom_header *ack,
455 size_t ack_size, int flags)
457 ssize_t result = -ENOMEM;
458 struct device *dev = i2400m_dev(i2400m);
460 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
461 i2400m, opcode, ack, ack_size);
462 if (ack_size < sizeof(*ack)) {
463 result = -EIO;
464 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
465 "return enough data (%zu bytes vs %zu expected)\n",
466 opcode, ack_size, sizeof(*ack));
467 goto error_ack_short;
469 result = i2400m_is_boot_barker(i2400m, ack, ack_size);
470 if (result >= 0) {
471 result = -ERESTARTSYS;
472 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
473 goto error_reboot;
475 if (ack_size == sizeof(i2400m_ACK_BARKER)
476 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
477 result = -EISCONN;
478 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
479 opcode);
480 goto error_reboot_ack;
482 result = 0;
483 if (flags & I2400M_BM_CMD_RAW)
484 goto out_raw;
485 ack->data_size = le32_to_cpu(ack->data_size);
486 ack->target_addr = le32_to_cpu(ack->target_addr);
487 ack->block_checksum = le32_to_cpu(ack->block_checksum);
488 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
489 "response %u csum %u rr %u da %u\n",
490 opcode, i2400m_brh_get_opcode(ack),
491 i2400m_brh_get_response(ack),
492 i2400m_brh_get_use_checksum(ack),
493 i2400m_brh_get_response_required(ack),
494 i2400m_brh_get_direct_access(ack));
495 result = -EIO;
496 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
497 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
498 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
499 goto error_ack_signature;
501 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
502 dev_err(dev, "boot-mode cmd %d: HW BUG? "
503 "received response for opcode %u, expected %u\n",
504 opcode, i2400m_brh_get_opcode(ack), opcode);
505 goto error_ack_opcode;
507 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
508 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
509 opcode, i2400m_brh_get_response(ack));
510 goto error_ack_failed;
512 if (ack_size < ack->data_size + sizeof(*ack)) {
513 dev_err(dev, "boot-mode cmd %d: SW BUG "
514 "driver provided only %zu bytes for %zu bytes "
515 "of data\n", opcode, ack_size,
516 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
517 goto error_ack_short_buffer;
519 result = ack_size;
520 /* Don't you love this stack of empty targets? Well, I don't
521 * either, but it helps track exactly who comes in here and
522 * why :) */
523 error_ack_short_buffer:
524 error_ack_failed:
525 error_ack_opcode:
526 error_ack_signature:
527 out_raw:
528 error_reboot_ack:
529 error_reboot:
530 error_ack_short:
531 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
532 i2400m, opcode, ack, ack_size, (int) result);
533 return result;
538 * i2400m_bm_cmd - Execute a boot mode command
540 * @cmd: buffer containing the command data (pointing at the header).
541 * This data can be ANYWHERE (for USB, we will copy it to an
542 * specific buffer). Make sure everything is in proper little
543 * endian.
545 * A raw buffer can be also sent, just cast it and set flags to
546 * I2400M_BM_CMD_RAW.
548 * This function will generate a checksum for you if the
549 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
550 * is set).
552 * You can use the i2400m->bm_cmd_buf to stage your commands and
553 * send them.
555 * If NULL, no command is sent (we just wait for an ack).
557 * @cmd_size: size of the command. Will be auto padded to the
558 * bus-specific drivers padding requirements.
560 * @ack: buffer where to place the acknowledgement. If it is a regular
561 * command response, all fields will be returned with the right,
562 * native endianess.
564 * You *cannot* use i2400m->bm_ack_buf for this buffer.
566 * @ack_size: size of @ack, 16 aligned; you need to provide at least
567 * sizeof(*ack) bytes and then enough to contain the return data
568 * from the command
570 * @flags: see I2400M_BM_CMD_* above.
572 * @returns: bytes received by the notification; if < 0, an errno code
573 * denoting an error or:
575 * -ERESTARTSYS The device has rebooted
577 * Executes a boot-mode command and waits for a response, doing basic
578 * validation on it; if a zero length response is received, it retries
579 * waiting for a response until a non-zero one is received (timing out
580 * after %I2400M_BOOT_RETRIES retries).
582 static
583 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
584 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
585 struct i2400m_bootrom_header *ack, size_t ack_size,
586 int flags)
588 ssize_t result = -ENOMEM, rx_bytes;
589 struct device *dev = i2400m_dev(i2400m);
590 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
592 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
593 i2400m, cmd, cmd_size, ack, ack_size);
594 BUG_ON(ack_size < sizeof(*ack));
595 BUG_ON(i2400m->boot_mode == 0);
597 if (cmd != NULL) { /* send the command */
598 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
599 if (result < 0)
600 goto error_cmd_send;
601 if ((flags & I2400M_BM_CMD_RAW) == 0)
602 d_printf(5, dev,
603 "boot-mode cmd %d csum %u rr %u da %u: "
604 "addr 0x%04x size %u block csum 0x%04x\n",
605 opcode, i2400m_brh_get_use_checksum(cmd),
606 i2400m_brh_get_response_required(cmd),
607 i2400m_brh_get_direct_access(cmd),
608 cmd->target_addr, cmd->data_size,
609 cmd->block_checksum);
611 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
612 if (result < 0) {
613 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
614 opcode, (int) result); /* bah, %zd doesn't work */
615 goto error_wait_for_ack;
617 rx_bytes = result;
618 /* verify the ack and read more if necessary [result is the
619 * final amount of bytes we get in the ack] */
620 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
621 if (result < 0)
622 goto error_bad_ack;
623 /* Don't you love this stack of empty targets? Well, I don't
624 * either, but it helps track exactly who comes in here and
625 * why :) */
626 result = rx_bytes;
627 error_bad_ack:
628 error_wait_for_ack:
629 error_cmd_send:
630 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
631 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
632 return result;
637 * i2400m_download_chunk - write a single chunk of data to the device's memory
639 * @i2400m: device descriptor
640 * @buf: the buffer to write
641 * @buf_len: length of the buffer to write
642 * @addr: address in the device memory space
643 * @direct: bootrom write mode
644 * @do_csum: should a checksum validation be performed
646 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
647 size_t __chunk_len, unsigned long addr,
648 unsigned int direct, unsigned int do_csum)
650 int ret;
651 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
652 struct device *dev = i2400m_dev(i2400m);
653 struct {
654 struct i2400m_bootrom_header cmd;
655 u8 cmd_payload[chunk_len];
656 } __packed *buf;
657 struct i2400m_bootrom_header ack;
659 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
660 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
661 addr, direct, do_csum);
662 buf = i2400m->bm_cmd_buf;
663 memcpy(buf->cmd_payload, chunk, __chunk_len);
664 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
666 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
667 __chunk_len & 0x3 ? 0 : do_csum,
668 __chunk_len & 0xf ? 0 : direct);
669 buf->cmd.target_addr = cpu_to_le32(addr);
670 buf->cmd.data_size = cpu_to_le32(__chunk_len);
671 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
672 &ack, sizeof(ack), 0);
673 if (ret >= 0)
674 ret = 0;
675 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
676 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
677 addr, direct, do_csum, ret);
678 return ret;
683 * Download a BCF file's sections to the device
685 * @i2400m: device descriptor
686 * @bcf: pointer to firmware data (first header followed by the
687 * payloads). Assumed verified and consistent.
688 * @bcf_len: length (in bytes) of the @bcf buffer.
690 * Returns: < 0 errno code on error or the offset to the jump instruction.
692 * Given a BCF file, downloads each section (a command and a payload)
693 * to the device's address space. Actually, it just executes each
694 * command i the BCF file.
696 * The section size has to be aligned to 4 bytes AND the padding has
697 * to be taken from the firmware file, as the signature takes it into
698 * account.
700 static
701 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
702 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
704 ssize_t ret;
705 struct device *dev = i2400m_dev(i2400m);
706 size_t offset, /* iterator offset */
707 data_size, /* Size of the data payload */
708 section_size, /* Size of the whole section (cmd + payload) */
709 section = 1;
710 const struct i2400m_bootrom_header *bh;
711 struct i2400m_bootrom_header ack;
713 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
714 i2400m, bcf, bcf_len);
715 /* Iterate over the command blocks in the BCF file that start
716 * after the header */
717 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
718 while (1) { /* start sending the file */
719 bh = (void *) bcf + offset;
720 data_size = le32_to_cpu(bh->data_size);
721 section_size = ALIGN(sizeof(*bh) + data_size, 4);
722 d_printf(7, dev,
723 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
724 section, offset, sizeof(*bh) + data_size,
725 le32_to_cpu(bh->target_addr));
727 * We look for JUMP cmd from the bootmode header,
728 * either I2400M_BRH_SIGNED_JUMP for secure boot
729 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
730 * should be the bootmode header with JUMP cmd.
732 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
733 i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
734 d_printf(5, dev, "jump found @%zu\n", offset);
735 break;
737 if (offset + section_size > bcf_len) {
738 dev_err(dev, "fw %s: bad section #%zu, "
739 "end (@%zu) beyond EOF (@%zu)\n",
740 i2400m->fw_name, section,
741 offset + section_size, bcf_len);
742 ret = -EINVAL;
743 goto error_section_beyond_eof;
745 __i2400m_msleep(20);
746 ret = i2400m_bm_cmd(i2400m, bh, section_size,
747 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
748 if (ret < 0) {
749 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
750 "failed %d\n", i2400m->fw_name, section,
751 offset, sizeof(*bh) + data_size, (int) ret);
752 goto error_send;
754 offset += section_size;
755 section++;
757 ret = offset;
758 error_section_beyond_eof:
759 error_send:
760 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
761 i2400m, bcf, bcf_len, (int) ret);
762 return ret;
767 * Indicate if the device emitted a reboot barker that indicates
768 * "signed boot"
770 static
771 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
773 return likely(i2400m->sboot);
778 * Do the final steps of uploading firmware
780 * @bcf_hdr: BCF header we are actually using
781 * @bcf: pointer to the firmware image (which matches the first header
782 * that is followed by the actual payloads).
783 * @offset: [byte] offset into @bcf for the command we need to send.
785 * Depending on the boot mode (signed vs non-signed), different
786 * actions need to be taken.
788 static
789 int i2400m_dnload_finalize(struct i2400m *i2400m,
790 const struct i2400m_bcf_hdr *bcf_hdr,
791 const struct i2400m_bcf_hdr *bcf, size_t offset)
793 int ret = 0;
794 struct device *dev = i2400m_dev(i2400m);
795 struct i2400m_bootrom_header *cmd, ack;
796 struct {
797 struct i2400m_bootrom_header cmd;
798 u8 cmd_pl[0];
799 } __packed *cmd_buf;
800 size_t signature_block_offset, signature_block_size;
802 d_fnstart(3, dev, "offset %zu\n", offset);
803 cmd = (void *) bcf + offset;
804 if (i2400m_boot_is_signed(i2400m) == 0) {
805 struct i2400m_bootrom_header jump_ack;
806 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
807 le32_to_cpu(cmd->target_addr));
808 cmd_buf = i2400m->bm_cmd_buf;
809 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
810 cmd = &cmd_buf->cmd;
811 /* now cmd points to the actual bootrom_header in cmd_buf */
812 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
813 cmd->data_size = 0;
814 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
815 &jump_ack, sizeof(jump_ack), 0);
816 } else {
817 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
818 le32_to_cpu(cmd->target_addr));
819 cmd_buf = i2400m->bm_cmd_buf;
820 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
821 signature_block_offset =
822 sizeof(*bcf_hdr)
823 + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
824 + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
825 signature_block_size =
826 le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
827 memcpy(cmd_buf->cmd_pl,
828 (void *) bcf_hdr + signature_block_offset,
829 signature_block_size);
830 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
831 sizeof(cmd_buf->cmd) + signature_block_size,
832 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
834 d_fnend(3, dev, "returning %d\n", ret);
835 return ret;
840 * i2400m_bootrom_init - Reboots a powered device into boot mode
842 * @i2400m: device descriptor
843 * @flags:
844 * I2400M_BRI_SOFT: a reboot barker has been seen
845 * already, so don't wait for it.
847 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
848 * for a reboot barker notification. This is a one shot; if
849 * the state machine needs to send a reboot command it will.
851 * Returns:
853 * < 0 errno code on error, 0 if ok.
855 * Description:
857 * Tries hard enough to put the device in boot-mode. There are two
858 * main phases to this:
860 * a. (1) send a reboot command and (2) get a reboot barker
862 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
863 * getting an ack barker in return
865 * We want to skip (a) in some cases [soft]. The state machine is
866 * horrible, but it is basically: on each phase, send what has to be
867 * sent (if any), wait for the answer and act on the answer. We might
868 * have to backtrack and retry, so we keep a max tries counter for
869 * that.
871 * It sucks because we don't know ahead of time which is going to be
872 * the reboot barker (the device might send different ones depending
873 * on its EEPROM config) and once the device reboots and waits for the
874 * echo/ack reboot barker being sent back, it doesn't understand
875 * anything else. So we can be left at the point where we don't know
876 * what to send to it -- cold reset and bus reset seem to have little
877 * effect. So the function iterates (in this case) through all the
878 * known barkers and tries them all until an ACK is
879 * received. Otherwise, it gives up.
881 * If we get a timeout after sending a warm reset, we do it again.
883 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
885 int result;
886 struct device *dev = i2400m_dev(i2400m);
887 struct i2400m_bootrom_header *cmd;
888 struct i2400m_bootrom_header ack;
889 int count = i2400m->bus_bm_retries;
890 int ack_timeout_cnt = 1;
891 unsigned i;
893 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
894 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
896 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
897 result = -ENOMEM;
898 cmd = i2400m->bm_cmd_buf;
899 if (flags & I2400M_BRI_SOFT)
900 goto do_reboot_ack;
901 do_reboot:
902 ack_timeout_cnt = 1;
903 if (--count < 0)
904 goto error_timeout;
905 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
906 count);
907 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
908 i2400m_reset(i2400m, I2400M_RT_WARM);
909 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
910 I2400M_BM_CMD_RAW);
911 flags &= ~I2400M_BRI_NO_REBOOT;
912 switch (result) {
913 case -ERESTARTSYS:
915 * at this point, i2400m_bm_cmd(), through
916 * __i2400m_bm_ack_process(), has updated
917 * i2400m->barker and we are good to go.
919 d_printf(4, dev, "device reboot: got reboot barker\n");
920 break;
921 case -EISCONN: /* we don't know how it got here...but we follow it */
922 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
923 goto do_reboot;
924 case -ETIMEDOUT:
926 * Device has timed out, we might be in boot mode
927 * already and expecting an ack; if we don't know what
928 * the barker is, we just send them all. Cold reset
929 * and bus reset don't work. Beats me.
931 if (i2400m->barker != NULL) {
932 dev_err(dev, "device boot: reboot barker timed out, "
933 "trying (set) %08x echo/ack\n",
934 le32_to_cpu(i2400m->barker->data[0]));
935 goto do_reboot_ack;
937 for (i = 0; i < i2400m_barker_db_used; i++) {
938 struct i2400m_barker_db *barker = &i2400m_barker_db[i];
939 memcpy(cmd, barker->data, sizeof(barker->data));
940 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
941 &ack, sizeof(ack),
942 I2400M_BM_CMD_RAW);
943 if (result == -EISCONN) {
944 dev_warn(dev, "device boot: got ack barker "
945 "after sending echo/ack barker "
946 "#%d/%08x; rebooting j.i.c.\n",
947 i, le32_to_cpu(barker->data[0]));
948 flags &= ~I2400M_BRI_NO_REBOOT;
949 goto do_reboot;
952 dev_err(dev, "device boot: tried all the echo/acks, could "
953 "not get device to respond; giving up");
954 result = -ESHUTDOWN;
955 case -EPROTO:
956 case -ESHUTDOWN: /* dev is gone */
957 case -EINTR: /* user cancelled */
958 goto error_dev_gone;
959 default:
960 dev_err(dev, "device reboot: error %d while waiting "
961 "for reboot barker - rebooting\n", result);
962 d_dump(1, dev, &ack, result);
963 goto do_reboot;
965 /* At this point we ack back with 4 REBOOT barkers and expect
966 * 4 ACK barkers. This is ugly, as we send a raw command --
967 * hence the cast. _bm_cmd() will catch the reboot ack
968 * notification and report it as -EISCONN. */
969 do_reboot_ack:
970 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
971 memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
972 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
973 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
974 switch (result) {
975 case -ERESTARTSYS:
976 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
977 if (--count < 0)
978 goto error_timeout;
979 goto do_reboot_ack;
980 case -EISCONN:
981 d_printf(4, dev, "reboot ack: got ack barker - good\n");
982 break;
983 case -ETIMEDOUT: /* no response, maybe it is the other type? */
984 if (ack_timeout_cnt-- < 0) {
985 d_printf(4, dev, "reboot ack timedout: retrying\n");
986 goto do_reboot_ack;
987 } else {
988 dev_err(dev, "reboot ack timedout too long: "
989 "trying reboot\n");
990 goto do_reboot;
992 break;
993 case -EPROTO:
994 case -ESHUTDOWN: /* dev is gone */
995 goto error_dev_gone;
996 default:
997 dev_err(dev, "device reboot ack: error %d while waiting for "
998 "reboot ack barker - rebooting\n", result);
999 goto do_reboot;
1001 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1002 result = 0;
1003 exit_timeout:
1004 error_dev_gone:
1005 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1006 i2400m, flags, result);
1007 return result;
1009 error_timeout:
1010 dev_err(dev, "Timed out waiting for reboot ack\n");
1011 result = -ETIMEDOUT;
1012 goto exit_timeout;
1017 * Read the MAC addr
1019 * The position this function reads is fixed in device memory and
1020 * always available, even without firmware.
1022 * Note we specify we want to read only six bytes, but provide space
1023 * for 16, as we always get it rounded up.
1025 int i2400m_read_mac_addr(struct i2400m *i2400m)
1027 int result;
1028 struct device *dev = i2400m_dev(i2400m);
1029 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1030 struct i2400m_bootrom_header *cmd;
1031 struct {
1032 struct i2400m_bootrom_header ack;
1033 u8 ack_pl[16];
1034 } __packed ack_buf;
1036 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1037 cmd = i2400m->bm_cmd_buf;
1038 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1039 cmd->target_addr = cpu_to_le32(0x00203fe8);
1040 cmd->data_size = cpu_to_le32(6);
1041 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1042 &ack_buf.ack, sizeof(ack_buf), 0);
1043 if (result < 0) {
1044 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1045 goto error_read_mac;
1047 d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1048 if (i2400m->bus_bm_mac_addr_impaired == 1) {
1049 ack_buf.ack_pl[0] = 0x00;
1050 ack_buf.ack_pl[1] = 0x16;
1051 ack_buf.ack_pl[2] = 0xd3;
1052 get_random_bytes(&ack_buf.ack_pl[3], 3);
1053 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1054 "mac addr is %pM\n", ack_buf.ack_pl);
1055 result = 0;
1057 net_dev->addr_len = ETH_ALEN;
1058 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1059 error_read_mac:
1060 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1061 return result;
1066 * Initialize a non signed boot
1068 * This implies sending some magic values to the device's memory. Note
1069 * we convert the values to little endian in the same array
1070 * declaration.
1072 static
1073 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1075 unsigned i = 0;
1076 int ret = 0;
1077 struct device *dev = i2400m_dev(i2400m);
1078 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1079 if (i2400m->bus_bm_pokes_table) {
1080 while (i2400m->bus_bm_pokes_table[i].address) {
1081 ret = i2400m_download_chunk(
1082 i2400m,
1083 &i2400m->bus_bm_pokes_table[i].data,
1084 sizeof(i2400m->bus_bm_pokes_table[i].data),
1085 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1086 if (ret < 0)
1087 break;
1088 i++;
1091 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1092 return ret;
1097 * Initialize the signed boot process
1099 * @i2400m: device descriptor
1101 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1102 * memory (it has gone through basic validation).
1104 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1105 * rebooted.
1107 * This writes the firmware BCF header to the device using the
1108 * HASH_PAYLOAD_ONLY command.
1110 static
1111 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1112 const struct i2400m_bcf_hdr *bcf_hdr)
1114 int ret;
1115 struct device *dev = i2400m_dev(i2400m);
1116 struct {
1117 struct i2400m_bootrom_header cmd;
1118 struct i2400m_bcf_hdr cmd_pl;
1119 } __packed *cmd_buf;
1120 struct i2400m_bootrom_header ack;
1122 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1123 cmd_buf = i2400m->bm_cmd_buf;
1124 cmd_buf->cmd.command =
1125 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1126 cmd_buf->cmd.target_addr = 0;
1127 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1128 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1129 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1130 &ack, sizeof(ack), 0);
1131 if (ret >= 0)
1132 ret = 0;
1133 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1134 return ret;
1139 * Initialize the firmware download at the device size
1141 * Multiplex to the one that matters based on the device's mode
1142 * (signed or non-signed).
1144 static
1145 int i2400m_dnload_init(struct i2400m *i2400m,
1146 const struct i2400m_bcf_hdr *bcf_hdr)
1148 int result;
1149 struct device *dev = i2400m_dev(i2400m);
1151 if (i2400m_boot_is_signed(i2400m)) {
1152 d_printf(1, dev, "signed boot\n");
1153 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1154 if (result == -ERESTARTSYS)
1155 return result;
1156 if (result < 0)
1157 dev_err(dev, "firmware %s: signed boot download "
1158 "initialization failed: %d\n",
1159 i2400m->fw_name, result);
1160 } else {
1161 /* non-signed boot process without pokes */
1162 d_printf(1, dev, "non-signed boot\n");
1163 result = i2400m_dnload_init_nonsigned(i2400m);
1164 if (result == -ERESTARTSYS)
1165 return result;
1166 if (result < 0)
1167 dev_err(dev, "firmware %s: non-signed download "
1168 "initialization failed: %d\n",
1169 i2400m->fw_name, result);
1171 return result;
1176 * Run consistency tests on the firmware file and load up headers
1178 * Check for the firmware being made for the i2400m device,
1179 * etc...These checks are mostly informative, as the device will make
1180 * them too; but the driver's response is more informative on what
1181 * went wrong.
1183 * This will also look at all the headers present on the firmware
1184 * file, and update i2400m->fw_bcf_hdr to point to them.
1186 static
1187 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1188 const struct i2400m_bcf_hdr *bcf_hdr,
1189 size_t index, size_t offset)
1191 struct device *dev = i2400m_dev(i2400m);
1193 unsigned module_type, header_len, major_version, minor_version,
1194 module_id, module_vendor, date, size;
1196 module_type = le32_to_cpu(bcf_hdr->module_type);
1197 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1198 major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1199 >> 16;
1200 minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1201 module_id = le32_to_cpu(bcf_hdr->module_id);
1202 module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1203 date = le32_to_cpu(bcf_hdr->date);
1204 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1206 d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1207 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1208 i2400m->fw_name, index, offset,
1209 module_type, module_vendor, module_id,
1210 major_version, minor_version, header_len, size, date);
1212 /* Hard errors */
1213 if (major_version != 1) {
1214 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1215 "v%u.%u not supported\n",
1216 i2400m->fw_name, index, offset,
1217 major_version, minor_version);
1218 return -EBADF;
1221 if (module_type != 6) { /* built for the right hardware? */
1222 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1223 "type 0x%x; aborting\n",
1224 i2400m->fw_name, index, offset,
1225 module_type);
1226 return -EBADF;
1229 if (module_vendor != 0x8086) {
1230 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1231 "vendor 0x%x; aborting\n",
1232 i2400m->fw_name, index, offset, module_vendor);
1233 return -EBADF;
1236 if (date < 0x20080300)
1237 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1238 "too old; unsupported\n",
1239 i2400m->fw_name, index, offset, date);
1240 return 0;
1245 * Run consistency tests on the firmware file and load up headers
1247 * Check for the firmware being made for the i2400m device,
1248 * etc...These checks are mostly informative, as the device will make
1249 * them too; but the driver's response is more informative on what
1250 * went wrong.
1252 * This will also look at all the headers present on the firmware
1253 * file, and update i2400m->fw_hdrs to point to them.
1255 static
1256 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1258 int result;
1259 struct device *dev = i2400m_dev(i2400m);
1260 size_t headers = 0;
1261 const struct i2400m_bcf_hdr *bcf_hdr;
1262 const void *itr, *next, *top;
1263 size_t slots = 0, used_slots = 0;
1265 for (itr = bcf, top = itr + bcf_size;
1266 itr < top;
1267 headers++, itr = next) {
1268 size_t leftover, offset, header_len, size;
1270 leftover = top - itr;
1271 offset = itr - bcf;
1272 if (leftover <= sizeof(*bcf_hdr)) {
1273 dev_err(dev, "firmware %s: %zu B left at @%zx, "
1274 "not enough for BCF header\n",
1275 i2400m->fw_name, leftover, offset);
1276 break;
1278 bcf_hdr = itr;
1279 /* Only the first header is supposed to be followed by
1280 * payload */
1281 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1282 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1283 if (headers == 0)
1284 next = itr + size;
1285 else
1286 next = itr + header_len;
1288 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1289 if (result < 0)
1290 continue;
1291 if (used_slots + 1 >= slots) {
1292 /* +1 -> we need to account for the one we'll
1293 * occupy and at least an extra one for
1294 * always being NULL */
1295 result = i2400m_zrealloc_2x(
1296 (void **) &i2400m->fw_hdrs, &slots,
1297 sizeof(i2400m->fw_hdrs[0]),
1298 GFP_KERNEL);
1299 if (result < 0)
1300 goto error_zrealloc;
1302 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1303 used_slots++;
1305 if (headers == 0) {
1306 dev_err(dev, "firmware %s: no usable headers found\n",
1307 i2400m->fw_name);
1308 result = -EBADF;
1309 } else
1310 result = 0;
1311 error_zrealloc:
1312 return result;
1317 * Match a barker to a BCF header module ID
1319 * The device sends a barker which tells the firmware loader which
1320 * header in the BCF file has to be used. This does the matching.
1322 static
1323 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1324 const struct i2400m_bcf_hdr *bcf_hdr)
1326 u32 barker = le32_to_cpu(i2400m->barker->data[0])
1327 & 0x7fffffff;
1328 u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1329 & 0x7fffffff; /* high bit used for something else */
1331 /* special case for 5x50 */
1332 if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1333 return 1;
1334 if (module_id == barker)
1335 return 1;
1336 return 0;
1339 static
1340 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1342 struct device *dev = i2400m_dev(i2400m);
1343 const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1344 unsigned i = 0;
1345 u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1347 d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1348 if (barker == I2400M_NBOOT_BARKER) {
1349 bcf_hdr = i2400m->fw_hdrs[0];
1350 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1351 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1352 return bcf_hdr;
1354 for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1355 bcf_hdr = *bcf_itr;
1356 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1357 d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1358 i, le32_to_cpu(bcf_hdr->module_id));
1359 return bcf_hdr;
1360 } else
1361 d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1362 i, le32_to_cpu(bcf_hdr->module_id));
1364 dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1365 barker);
1366 return NULL;
1371 * Download the firmware to the device
1373 * @i2400m: device descriptor
1374 * @bcf: pointer to loaded (and minimally verified for consistency)
1375 * firmware
1376 * @bcf_size: size of the @bcf buffer (header plus payloads)
1378 * The process for doing this is described in this file's header.
1380 * Note we only reinitialize boot-mode if the flags say so. Some hw
1381 * iterations need it, some don't. In any case, if we loop, we always
1382 * need to reinitialize the boot room, hence the flags modification.
1384 static
1385 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1386 size_t fw_size, enum i2400m_bri flags)
1388 int ret = 0;
1389 struct device *dev = i2400m_dev(i2400m);
1390 int count = i2400m->bus_bm_retries;
1391 const struct i2400m_bcf_hdr *bcf_hdr;
1392 size_t bcf_size;
1394 d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1395 i2400m, bcf, fw_size);
1396 i2400m->boot_mode = 1;
1397 wmb(); /* Make sure other readers see it */
1398 hw_reboot:
1399 if (count-- == 0) {
1400 ret = -ERESTARTSYS;
1401 dev_err(dev, "device rebooted too many times, aborting\n");
1402 goto error_too_many_reboots;
1404 if (flags & I2400M_BRI_MAC_REINIT) {
1405 ret = i2400m_bootrom_init(i2400m, flags);
1406 if (ret < 0) {
1407 dev_err(dev, "bootrom init failed: %d\n", ret);
1408 goto error_bootrom_init;
1411 flags |= I2400M_BRI_MAC_REINIT;
1414 * Initialize the download, push the bytes to the device and
1415 * then jump to the new firmware. Note @ret is passed with the
1416 * offset of the jump instruction to _dnload_finalize()
1418 * Note we need to use the BCF header in the firmware image
1419 * that matches the barker that the device sent when it
1420 * rebooted, so it has to be passed along.
1422 ret = -EBADF;
1423 bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1424 if (bcf_hdr == NULL)
1425 goto error_bcf_hdr_find;
1427 ret = i2400m_dnload_init(i2400m, bcf_hdr);
1428 if (ret == -ERESTARTSYS)
1429 goto error_dev_rebooted;
1430 if (ret < 0)
1431 goto error_dnload_init;
1434 * bcf_size refers to one header size plus the fw sections size
1435 * indicated by the header,ie. if there are other extended headers
1436 * at the tail, they are not counted
1438 bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1439 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1440 if (ret == -ERESTARTSYS)
1441 goto error_dev_rebooted;
1442 if (ret < 0) {
1443 dev_err(dev, "fw %s: download failed: %d\n",
1444 i2400m->fw_name, ret);
1445 goto error_dnload_bcf;
1448 ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1449 if (ret == -ERESTARTSYS)
1450 goto error_dev_rebooted;
1451 if (ret < 0) {
1452 dev_err(dev, "fw %s: "
1453 "download finalization failed: %d\n",
1454 i2400m->fw_name, ret);
1455 goto error_dnload_finalize;
1458 d_printf(2, dev, "fw %s successfully uploaded\n",
1459 i2400m->fw_name);
1460 i2400m->boot_mode = 0;
1461 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1462 error_dnload_finalize:
1463 error_dnload_bcf:
1464 error_dnload_init:
1465 error_bcf_hdr_find:
1466 error_bootrom_init:
1467 error_too_many_reboots:
1468 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1469 i2400m, bcf, fw_size, ret);
1470 return ret;
1472 error_dev_rebooted:
1473 dev_err(dev, "device rebooted, %d tries left\n", count);
1474 /* we got the notification already, no need to wait for it again */
1475 flags |= I2400M_BRI_SOFT;
1476 goto hw_reboot;
1479 static
1480 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1481 enum i2400m_bri flags)
1483 int ret;
1484 struct device *dev = i2400m_dev(i2400m);
1485 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1487 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1488 bcf = (void *) fw->data;
1489 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1490 if (ret >= 0)
1491 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1492 if (ret < 0)
1493 dev_err(dev, "%s: cannot use: %d, skipping\n",
1494 i2400m->fw_name, ret);
1495 kfree(i2400m->fw_hdrs);
1496 i2400m->fw_hdrs = NULL;
1497 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1498 return ret;
1502 /* Refcounted container for firmware data */
1503 struct i2400m_fw {
1504 struct kref kref;
1505 const struct firmware *fw;
1509 static
1510 void i2400m_fw_destroy(struct kref *kref)
1512 struct i2400m_fw *i2400m_fw =
1513 container_of(kref, struct i2400m_fw, kref);
1514 release_firmware(i2400m_fw->fw);
1515 kfree(i2400m_fw);
1519 static
1520 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1522 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1523 kref_get(&i2400m_fw->kref);
1524 return i2400m_fw;
1528 static
1529 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1531 kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1536 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1538 * @i2400m: device descriptor
1540 * Returns: >= 0 if ok, < 0 errno code on error.
1542 * This sets up the firmware upload environment, loads the firmware
1543 * file from disk, verifies and then calls the firmware upload process
1544 * per se.
1546 * Can be called either from probe, or after a warm reset. Can not be
1547 * called from within an interrupt. All the flow in this code is
1548 * single-threade; all I/Os are synchronous.
1550 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1552 int ret, itr;
1553 struct device *dev = i2400m_dev(i2400m);
1554 struct i2400m_fw *i2400m_fw;
1555 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1556 const struct firmware *fw;
1557 const char *fw_name;
1559 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1561 ret = -ENODEV;
1562 spin_lock(&i2400m->rx_lock);
1563 i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1564 spin_unlock(&i2400m->rx_lock);
1565 if (i2400m_fw == (void *) ~0) {
1566 dev_err(dev, "can't load firmware now!");
1567 goto out;
1568 } else if (i2400m_fw != NULL) {
1569 dev_info(dev, "firmware %s: loading from cache\n",
1570 i2400m->fw_name);
1571 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1572 i2400m_fw_put(i2400m_fw);
1573 goto out;
1576 /* Load firmware files to memory. */
1577 for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1578 fw_name = i2400m->bus_fw_names[itr];
1579 if (fw_name == NULL) {
1580 dev_err(dev, "Could not find a usable firmware image\n");
1581 break;
1583 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1584 ret = request_firmware(&fw, fw_name, dev);
1585 if (ret < 0) {
1586 dev_err(dev, "fw %s: cannot load file: %d\n",
1587 fw_name, ret);
1588 continue;
1590 i2400m->fw_name = fw_name;
1591 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1592 release_firmware(fw);
1593 if (ret >= 0) /* firmware loaded successfully */
1594 break;
1595 i2400m->fw_name = NULL;
1597 out:
1598 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1599 return ret;
1601 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1604 void i2400m_fw_cache(struct i2400m *i2400m)
1606 int result;
1607 struct i2400m_fw *i2400m_fw;
1608 struct device *dev = i2400m_dev(i2400m);
1610 /* if there is anything there, free it -- now, this'd be weird */
1611 spin_lock(&i2400m->rx_lock);
1612 i2400m_fw = i2400m->fw_cached;
1613 spin_unlock(&i2400m->rx_lock);
1614 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1615 i2400m_fw_put(i2400m_fw);
1616 WARN(1, "%s:%u: still cached fw still present?\n",
1617 __func__, __LINE__);
1620 if (i2400m->fw_name == NULL) {
1621 dev_err(dev, "firmware n/a: can't cache\n");
1622 i2400m_fw = (void *) ~0;
1623 goto out;
1626 i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1627 if (i2400m_fw == NULL)
1628 goto out;
1629 kref_init(&i2400m_fw->kref);
1630 result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1631 if (result < 0) {
1632 dev_err(dev, "firmware %s: failed to cache: %d\n",
1633 i2400m->fw_name, result);
1634 kfree(i2400m_fw);
1635 i2400m_fw = (void *) ~0;
1636 } else
1637 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1638 out:
1639 spin_lock(&i2400m->rx_lock);
1640 i2400m->fw_cached = i2400m_fw;
1641 spin_unlock(&i2400m->rx_lock);
1645 void i2400m_fw_uncache(struct i2400m *i2400m)
1647 struct i2400m_fw *i2400m_fw;
1649 spin_lock(&i2400m->rx_lock);
1650 i2400m_fw = i2400m->fw_cached;
1651 i2400m->fw_cached = NULL;
1652 spin_unlock(&i2400m->rx_lock);
1654 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1655 i2400m_fw_put(i2400m_fw);