Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / spi / spi-bitbang.c
blob3aa9e6e3dac82d63f1abf58e5b7eb4aacbb8f212
1 /*
2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
27 #define SPI_BITBANG_CS_DELAY 100
30 /*----------------------------------------------------------------------*/
33 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
34 * Use this for GPIO or shift-register level hardware APIs.
36 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
37 * to glue code. These bitbang setup() and cleanup() routines are always
38 * used, though maybe they're called from controller-aware code.
40 * chipselect() and friends may use spi_device->controller_data and
41 * controller registers as appropriate.
44 * NOTE: SPI controller pins can often be used as GPIO pins instead,
45 * which means you could use a bitbang driver either to get hardware
46 * working quickly, or testing for differences that aren't speed related.
49 struct spi_bitbang_cs {
50 unsigned nsecs; /* (clock cycle time)/2 */
51 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
52 u32 word, u8 bits);
53 unsigned (*txrx_bufs)(struct spi_device *,
54 u32 (*txrx_word)(
55 struct spi_device *spi,
56 unsigned nsecs,
57 u32 word, u8 bits),
58 unsigned, struct spi_transfer *);
61 static unsigned bitbang_txrx_8(
62 struct spi_device *spi,
63 u32 (*txrx_word)(struct spi_device *spi,
64 unsigned nsecs,
65 u32 word, u8 bits),
66 unsigned ns,
67 struct spi_transfer *t
68 ) {
69 unsigned bits = t->bits_per_word;
70 unsigned count = t->len;
71 const u8 *tx = t->tx_buf;
72 u8 *rx = t->rx_buf;
74 while (likely(count > 0)) {
75 u8 word = 0;
77 if (tx)
78 word = *tx++;
79 word = txrx_word(spi, ns, word, bits);
80 if (rx)
81 *rx++ = word;
82 count -= 1;
84 return t->len - count;
87 static unsigned bitbang_txrx_16(
88 struct spi_device *spi,
89 u32 (*txrx_word)(struct spi_device *spi,
90 unsigned nsecs,
91 u32 word, u8 bits),
92 unsigned ns,
93 struct spi_transfer *t
94 ) {
95 unsigned bits = t->bits_per_word;
96 unsigned count = t->len;
97 const u16 *tx = t->tx_buf;
98 u16 *rx = t->rx_buf;
100 while (likely(count > 1)) {
101 u16 word = 0;
103 if (tx)
104 word = *tx++;
105 word = txrx_word(spi, ns, word, bits);
106 if (rx)
107 *rx++ = word;
108 count -= 2;
110 return t->len - count;
113 static unsigned bitbang_txrx_32(
114 struct spi_device *spi,
115 u32 (*txrx_word)(struct spi_device *spi,
116 unsigned nsecs,
117 u32 word, u8 bits),
118 unsigned ns,
119 struct spi_transfer *t
121 unsigned bits = t->bits_per_word;
122 unsigned count = t->len;
123 const u32 *tx = t->tx_buf;
124 u32 *rx = t->rx_buf;
126 while (likely(count > 3)) {
127 u32 word = 0;
129 if (tx)
130 word = *tx++;
131 word = txrx_word(spi, ns, word, bits);
132 if (rx)
133 *rx++ = word;
134 count -= 4;
136 return t->len - count;
139 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
141 struct spi_bitbang_cs *cs = spi->controller_state;
142 u8 bits_per_word;
143 u32 hz;
145 if (t) {
146 bits_per_word = t->bits_per_word;
147 hz = t->speed_hz;
148 } else {
149 bits_per_word = 0;
150 hz = 0;
153 /* spi_transfer level calls that work per-word */
154 if (!bits_per_word)
155 bits_per_word = spi->bits_per_word;
156 if (bits_per_word <= 8)
157 cs->txrx_bufs = bitbang_txrx_8;
158 else if (bits_per_word <= 16)
159 cs->txrx_bufs = bitbang_txrx_16;
160 else if (bits_per_word <= 32)
161 cs->txrx_bufs = bitbang_txrx_32;
162 else
163 return -EINVAL;
165 /* nsecs = (clock period)/2 */
166 if (!hz)
167 hz = spi->max_speed_hz;
168 if (hz) {
169 cs->nsecs = (1000000000/2) / hz;
170 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
171 return -EINVAL;
174 return 0;
176 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179 * spi_bitbang_setup - default setup for per-word I/O loops
181 int spi_bitbang_setup(struct spi_device *spi)
183 struct spi_bitbang_cs *cs = spi->controller_state;
184 struct spi_bitbang *bitbang;
186 bitbang = spi_master_get_devdata(spi->master);
188 if (!cs) {
189 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
190 if (!cs)
191 return -ENOMEM;
192 spi->controller_state = cs;
195 /* per-word shift register access, in hardware or bitbanging */
196 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
197 if (!cs->txrx_word)
198 return -EINVAL;
200 if (bitbang->setup_transfer) {
201 int retval = bitbang->setup_transfer(spi, NULL);
202 if (retval < 0)
203 return retval;
206 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
208 /* NOTE we _need_ to call chipselect() early, ideally with adapter
209 * setup, unless the hardware defaults cooperate to avoid confusion
210 * between normal (active low) and inverted chipselects.
213 /* deselect chip (low or high) */
214 mutex_lock(&bitbang->lock);
215 if (!bitbang->busy) {
216 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
217 ndelay(cs->nsecs);
219 mutex_unlock(&bitbang->lock);
221 return 0;
223 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
226 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
228 void spi_bitbang_cleanup(struct spi_device *spi)
230 kfree(spi->controller_state);
232 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
234 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
236 struct spi_bitbang_cs *cs = spi->controller_state;
237 unsigned nsecs = cs->nsecs;
239 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
242 /*----------------------------------------------------------------------*/
245 * SECOND PART ... simple transfer queue runner.
247 * This costs a task context per controller, running the queue by
248 * performing each transfer in sequence. Smarter hardware can queue
249 * several DMA transfers at once, and process several controller queues
250 * in parallel; this driver doesn't match such hardware very well.
252 * Drivers can provide word-at-a-time i/o primitives, or provide
253 * transfer-at-a-time ones to leverage dma or fifo hardware.
256 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
258 struct spi_bitbang *bitbang;
260 bitbang = spi_master_get_devdata(spi);
262 mutex_lock(&bitbang->lock);
263 bitbang->busy = 1;
264 mutex_unlock(&bitbang->lock);
266 return 0;
269 static int spi_bitbang_transfer_one(struct spi_master *master,
270 struct spi_device *spi,
271 struct spi_transfer *transfer)
273 struct spi_bitbang *bitbang = spi_master_get_devdata(master);
274 int status = 0;
276 if (bitbang->setup_transfer) {
277 status = bitbang->setup_transfer(spi, transfer);
278 if (status < 0)
279 goto out;
282 if (transfer->len)
283 status = bitbang->txrx_bufs(spi, transfer);
285 if (status == transfer->len)
286 status = 0;
287 else if (status >= 0)
288 status = -EREMOTEIO;
290 out:
291 spi_finalize_current_transfer(master);
293 return status;
296 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
298 struct spi_bitbang *bitbang;
300 bitbang = spi_master_get_devdata(spi);
302 mutex_lock(&bitbang->lock);
303 bitbang->busy = 0;
304 mutex_unlock(&bitbang->lock);
306 return 0;
309 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
311 struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
313 /* SPI core provides CS high / low, but bitbang driver
314 * expects CS active
315 * spi device driver takes care of handling SPI_CS_HIGH
317 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
319 ndelay(SPI_BITBANG_CS_DELAY);
320 bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
321 BITBANG_CS_INACTIVE);
322 ndelay(SPI_BITBANG_CS_DELAY);
325 /*----------------------------------------------------------------------*/
328 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
329 * @bitbang: driver handle
331 * Caller should have zero-initialized all parts of the structure, and then
332 * provided callbacks for chip selection and I/O loops. If the master has
333 * a transfer method, its final step should call spi_bitbang_transfer; or,
334 * that's the default if the transfer routine is not initialized. It should
335 * also set up the bus number and number of chipselects.
337 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
338 * hardware that basically exposes a shift register) or per-spi_transfer
339 * (which takes better advantage of hardware like fifos or DMA engines).
341 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
342 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
343 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
344 * routine isn't initialized.
346 * This routine registers the spi_master, which will process requests in a
347 * dedicated task, keeping IRQs unblocked most of the time. To stop
348 * processing those requests, call spi_bitbang_stop().
350 * On success, this routine will take a reference to master. The caller is
351 * responsible for calling spi_bitbang_stop() to decrement the reference and
352 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
353 * leak.
355 int spi_bitbang_start(struct spi_bitbang *bitbang)
357 struct spi_master *master = bitbang->master;
358 int ret;
360 if (!master || !bitbang->chipselect)
361 return -EINVAL;
363 mutex_init(&bitbang->lock);
365 if (!master->mode_bits)
366 master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
368 if (master->transfer || master->transfer_one_message)
369 return -EINVAL;
371 master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
372 master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
373 master->transfer_one = spi_bitbang_transfer_one;
374 master->set_cs = spi_bitbang_set_cs;
376 if (!bitbang->txrx_bufs) {
377 bitbang->use_dma = 0;
378 bitbang->txrx_bufs = spi_bitbang_bufs;
379 if (!master->setup) {
380 if (!bitbang->setup_transfer)
381 bitbang->setup_transfer =
382 spi_bitbang_setup_transfer;
383 master->setup = spi_bitbang_setup;
384 master->cleanup = spi_bitbang_cleanup;
388 /* driver may get busy before register() returns, especially
389 * if someone registered boardinfo for devices
391 ret = spi_register_master(spi_master_get(master));
392 if (ret)
393 spi_master_put(master);
395 return 0;
397 EXPORT_SYMBOL_GPL(spi_bitbang_start);
400 * spi_bitbang_stop - stops the task providing spi communication
402 void spi_bitbang_stop(struct spi_bitbang *bitbang)
404 spi_unregister_master(bitbang->master);
406 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
408 MODULE_LICENSE("GPL");