Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / drivers / thermal / cpu_cooling.c
blobe3fbc5a5d88f166930e8633e671348614d00dd4d
1 /*
2 * linux/drivers/thermal/cpu_cooling.c
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
34 #include <trace/events/thermal.h>
37 * Cooling state <-> CPUFreq frequency
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
42 * Highest cooling state corresponds to lowest possible frequency.
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
50 /**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
58 struct power_table {
59 u32 frequency;
60 u32 power;
63 /**
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
71 * @clipped_freq: integer value representing the absolute value of the clipped
72 * frequency.
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
90 struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
94 unsigned int clipped_freq;
95 unsigned int max_level;
96 unsigned int *freq_table; /* In descending order */
97 struct cpumask allowed_cpus;
98 struct list_head node;
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
107 static DEFINE_IDR(cpufreq_idr);
108 static DEFINE_MUTEX(cooling_cpufreq_lock);
110 static unsigned int cpufreq_dev_count;
112 static DEFINE_MUTEX(cooling_list_lock);
113 static LIST_HEAD(cpufreq_dev_list);
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
120 * This function will populate @id with an unique
121 * id, using the idr API.
123 * Return: 0 on success, an error code on failure.
125 static int get_idr(struct idr *idr, int *id)
127 int ret;
129 mutex_lock(&cooling_cpufreq_lock);
130 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
131 mutex_unlock(&cooling_cpufreq_lock);
132 if (unlikely(ret < 0))
133 return ret;
134 *id = ret;
136 return 0;
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
144 static void release_idr(struct idr *idr, int id)
146 mutex_lock(&cooling_cpufreq_lock);
147 idr_remove(idr, id);
148 mutex_unlock(&cooling_cpufreq_lock);
151 /* Below code defines functions to be used for cpufreq as cooling device */
154 * get_level: Find the level for a particular frequency
155 * @cpufreq_dev: cpufreq_dev for which the property is required
156 * @freq: Frequency
158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
160 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 unsigned int freq)
163 unsigned long level;
165 for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 if (freq == cpufreq_dev->freq_table[level])
167 return level;
169 if (freq > cpufreq_dev->freq_table[level])
170 break;
173 return THERMAL_CSTATE_INVALID;
177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185 * otherwise.
187 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
189 struct cpufreq_cooling_device *cpufreq_dev;
191 mutex_lock(&cooling_list_lock);
192 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
194 mutex_unlock(&cooling_list_lock);
195 return get_level(cpufreq_dev, freq);
198 mutex_unlock(&cooling_list_lock);
200 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
201 return THERMAL_CSTATE_INVALID;
203 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
206 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207 * @nb: struct notifier_block * with callback info.
208 * @event: value showing cpufreq event for which this function invoked.
209 * @data: callback-specific data
211 * Callback to hijack the notification on cpufreq policy transition.
212 * Every time there is a change in policy, we will intercept and
213 * update the cpufreq policy with thermal constraints.
215 * Return: 0 (success)
217 static int cpufreq_thermal_notifier(struct notifier_block *nb,
218 unsigned long event, void *data)
220 struct cpufreq_policy *policy = data;
221 unsigned long clipped_freq;
222 struct cpufreq_cooling_device *cpufreq_dev;
224 if (event != CPUFREQ_ADJUST)
225 return NOTIFY_DONE;
227 mutex_lock(&cooling_list_lock);
228 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
229 if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
230 continue;
233 * policy->max is the maximum allowed frequency defined by user
234 * and clipped_freq is the maximum that thermal constraints
235 * allow.
237 * If clipped_freq is lower than policy->max, then we need to
238 * readjust policy->max.
240 * But, if clipped_freq is greater than policy->max, we don't
241 * need to do anything.
243 clipped_freq = cpufreq_dev->clipped_freq;
245 if (policy->max > clipped_freq)
246 cpufreq_verify_within_limits(policy, 0, clipped_freq);
247 break;
249 mutex_unlock(&cooling_list_lock);
251 return NOTIFY_OK;
255 * build_dyn_power_table() - create a dynamic power to frequency table
256 * @cpufreq_device: the cpufreq cooling device in which to store the table
257 * @capacitance: dynamic power coefficient for these cpus
259 * Build a dynamic power to frequency table for this cpu and store it
260 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
261 * cpu_freq_to_power() to convert between power and frequency
262 * efficiently. Power is stored in mW, frequency in KHz. The
263 * resulting table is in ascending order.
265 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
266 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
267 * added/enabled while the function was executing.
269 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
270 u32 capacitance)
272 struct power_table *power_table;
273 struct dev_pm_opp *opp;
274 struct device *dev = NULL;
275 int num_opps = 0, cpu, i, ret = 0;
276 unsigned long freq;
278 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
279 dev = get_cpu_device(cpu);
280 if (!dev) {
281 dev_warn(&cpufreq_device->cool_dev->device,
282 "No cpu device for cpu %d\n", cpu);
283 continue;
286 num_opps = dev_pm_opp_get_opp_count(dev);
287 if (num_opps > 0)
288 break;
289 else if (num_opps < 0)
290 return num_opps;
293 if (num_opps == 0)
294 return -EINVAL;
296 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
297 if (!power_table)
298 return -ENOMEM;
300 rcu_read_lock();
302 for (freq = 0, i = 0;
303 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
304 freq++, i++) {
305 u32 freq_mhz, voltage_mv;
306 u64 power;
308 if (i >= num_opps) {
309 rcu_read_unlock();
310 ret = -EAGAIN;
311 goto free_power_table;
314 freq_mhz = freq / 1000000;
315 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
318 * Do the multiplication with MHz and millivolt so as
319 * to not overflow.
321 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
322 do_div(power, 1000000000);
324 /* frequency is stored in power_table in KHz */
325 power_table[i].frequency = freq / 1000;
327 /* power is stored in mW */
328 power_table[i].power = power;
331 rcu_read_unlock();
333 if (i != num_opps) {
334 ret = PTR_ERR(opp);
335 goto free_power_table;
338 cpufreq_device->cpu_dev = dev;
339 cpufreq_device->dyn_power_table = power_table;
340 cpufreq_device->dyn_power_table_entries = i;
342 return 0;
344 free_power_table:
345 kfree(power_table);
347 return ret;
350 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
351 u32 freq)
353 int i;
354 struct power_table *pt = cpufreq_device->dyn_power_table;
356 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
357 if (freq < pt[i].frequency)
358 break;
360 return pt[i - 1].power;
363 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
364 u32 power)
366 int i;
367 struct power_table *pt = cpufreq_device->dyn_power_table;
369 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
370 if (power < pt[i].power)
371 break;
373 return pt[i - 1].frequency;
377 * get_load() - get load for a cpu since last updated
378 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
379 * @cpu: cpu number
381 * Return: The average load of cpu @cpu in percentage since this
382 * function was last called.
384 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
386 u32 load;
387 u64 now, now_idle, delta_time, delta_idle;
389 now_idle = get_cpu_idle_time(cpu, &now, 0);
390 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
391 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
393 if (delta_time <= delta_idle)
394 load = 0;
395 else
396 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
398 cpufreq_device->time_in_idle[cpu] = now_idle;
399 cpufreq_device->time_in_idle_timestamp[cpu] = now;
401 return load;
405 * get_static_power() - calculate the static power consumed by the cpus
406 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
407 * @tz: thermal zone device in which we're operating
408 * @freq: frequency in KHz
409 * @power: pointer in which to store the calculated static power
411 * Calculate the static power consumed by the cpus described by
412 * @cpu_actor running at frequency @freq. This function relies on a
413 * platform specific function that should have been provided when the
414 * actor was registered. If it wasn't, the static power is assumed to
415 * be negligible. The calculated static power is stored in @power.
417 * Return: 0 on success, -E* on failure.
419 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
420 struct thermal_zone_device *tz, unsigned long freq,
421 u32 *power)
423 struct dev_pm_opp *opp;
424 unsigned long voltage;
425 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
426 unsigned long freq_hz = freq * 1000;
428 if (!cpufreq_device->plat_get_static_power ||
429 !cpufreq_device->cpu_dev) {
430 *power = 0;
431 return 0;
434 rcu_read_lock();
436 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
437 true);
438 voltage = dev_pm_opp_get_voltage(opp);
440 rcu_read_unlock();
442 if (voltage == 0) {
443 dev_warn_ratelimited(cpufreq_device->cpu_dev,
444 "Failed to get voltage for frequency %lu: %ld\n",
445 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
446 return -EINVAL;
449 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
450 voltage, power);
454 * get_dynamic_power() - calculate the dynamic power
455 * @cpufreq_device: &cpufreq_cooling_device for this cdev
456 * @freq: current frequency
458 * Return: the dynamic power consumed by the cpus described by
459 * @cpufreq_device.
461 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
462 unsigned long freq)
464 u32 raw_cpu_power;
466 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
467 return (raw_cpu_power * cpufreq_device->last_load) / 100;
470 /* cpufreq cooling device callback functions are defined below */
473 * cpufreq_get_max_state - callback function to get the max cooling state.
474 * @cdev: thermal cooling device pointer.
475 * @state: fill this variable with the max cooling state.
477 * Callback for the thermal cooling device to return the cpufreq
478 * max cooling state.
480 * Return: 0 on success, an error code otherwise.
482 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
483 unsigned long *state)
485 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
487 *state = cpufreq_device->max_level;
488 return 0;
492 * cpufreq_get_cur_state - callback function to get the current cooling state.
493 * @cdev: thermal cooling device pointer.
494 * @state: fill this variable with the current cooling state.
496 * Callback for the thermal cooling device to return the cpufreq
497 * current cooling state.
499 * Return: 0 on success, an error code otherwise.
501 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
502 unsigned long *state)
504 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
506 *state = cpufreq_device->cpufreq_state;
508 return 0;
512 * cpufreq_set_cur_state - callback function to set the current cooling state.
513 * @cdev: thermal cooling device pointer.
514 * @state: set this variable to the current cooling state.
516 * Callback for the thermal cooling device to change the cpufreq
517 * current cooling state.
519 * Return: 0 on success, an error code otherwise.
521 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
522 unsigned long state)
524 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
525 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
526 unsigned int clip_freq;
528 /* Request state should be less than max_level */
529 if (WARN_ON(state > cpufreq_device->max_level))
530 return -EINVAL;
532 /* Check if the old cooling action is same as new cooling action */
533 if (cpufreq_device->cpufreq_state == state)
534 return 0;
536 clip_freq = cpufreq_device->freq_table[state];
537 cpufreq_device->cpufreq_state = state;
538 cpufreq_device->clipped_freq = clip_freq;
540 cpufreq_update_policy(cpu);
542 return 0;
546 * cpufreq_get_requested_power() - get the current power
547 * @cdev: &thermal_cooling_device pointer
548 * @tz: a valid thermal zone device pointer
549 * @power: pointer in which to store the resulting power
551 * Calculate the current power consumption of the cpus in milliwatts
552 * and store it in @power. This function should actually calculate
553 * the requested power, but it's hard to get the frequency that
554 * cpufreq would have assigned if there were no thermal limits.
555 * Instead, we calculate the current power on the assumption that the
556 * immediate future will look like the immediate past.
558 * We use the current frequency and the average load since this
559 * function was last called. In reality, there could have been
560 * multiple opps since this function was last called and that affects
561 * the load calculation. While it's not perfectly accurate, this
562 * simplification is good enough and works. REVISIT this, as more
563 * complex code may be needed if experiments show that it's not
564 * accurate enough.
566 * Return: 0 on success, -E* if getting the static power failed.
568 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
569 struct thermal_zone_device *tz,
570 u32 *power)
572 unsigned long freq;
573 int i = 0, cpu, ret;
574 u32 static_power, dynamic_power, total_load = 0;
575 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
576 u32 *load_cpu = NULL;
578 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
581 * All the CPUs are offline, thus the requested power by
582 * the cdev is 0
584 if (cpu >= nr_cpu_ids) {
585 *power = 0;
586 return 0;
589 freq = cpufreq_quick_get(cpu);
591 if (trace_thermal_power_cpu_get_power_enabled()) {
592 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
594 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
597 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
598 u32 load;
600 if (cpu_online(cpu))
601 load = get_load(cpufreq_device, cpu);
602 else
603 load = 0;
605 total_load += load;
606 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
607 load_cpu[i] = load;
609 i++;
612 cpufreq_device->last_load = total_load;
614 dynamic_power = get_dynamic_power(cpufreq_device, freq);
615 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
616 if (ret) {
617 kfree(load_cpu);
618 return ret;
621 if (load_cpu) {
622 trace_thermal_power_cpu_get_power(
623 &cpufreq_device->allowed_cpus,
624 freq, load_cpu, i, dynamic_power, static_power);
626 kfree(load_cpu);
629 *power = static_power + dynamic_power;
630 return 0;
634 * cpufreq_state2power() - convert a cpu cdev state to power consumed
635 * @cdev: &thermal_cooling_device pointer
636 * @tz: a valid thermal zone device pointer
637 * @state: cooling device state to be converted
638 * @power: pointer in which to store the resulting power
640 * Convert cooling device state @state into power consumption in
641 * milliwatts assuming 100% load. Store the calculated power in
642 * @power.
644 * Return: 0 on success, -EINVAL if the cooling device state could not
645 * be converted into a frequency or other -E* if there was an error
646 * when calculating the static power.
648 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
649 struct thermal_zone_device *tz,
650 unsigned long state, u32 *power)
652 unsigned int freq, num_cpus;
653 cpumask_t cpumask;
654 u32 static_power, dynamic_power;
655 int ret;
656 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
658 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
659 num_cpus = cpumask_weight(&cpumask);
661 /* None of our cpus are online, so no power */
662 if (num_cpus == 0) {
663 *power = 0;
664 return 0;
667 freq = cpufreq_device->freq_table[state];
668 if (!freq)
669 return -EINVAL;
671 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
672 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
673 if (ret)
674 return ret;
676 *power = static_power + dynamic_power;
677 return 0;
681 * cpufreq_power2state() - convert power to a cooling device state
682 * @cdev: &thermal_cooling_device pointer
683 * @tz: a valid thermal zone device pointer
684 * @power: power in milliwatts to be converted
685 * @state: pointer in which to store the resulting state
687 * Calculate a cooling device state for the cpus described by @cdev
688 * that would allow them to consume at most @power mW and store it in
689 * @state. Note that this calculation depends on external factors
690 * such as the cpu load or the current static power. Calling this
691 * function with the same power as input can yield different cooling
692 * device states depending on those external factors.
694 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
695 * the calculated frequency could not be converted to a valid state.
696 * The latter should not happen unless the frequencies available to
697 * cpufreq have changed since the initialization of the cpu cooling
698 * device.
700 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
701 struct thermal_zone_device *tz, u32 power,
702 unsigned long *state)
704 unsigned int cpu, cur_freq, target_freq;
705 int ret;
706 s32 dyn_power;
707 u32 last_load, normalised_power, static_power;
708 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
710 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
712 /* None of our cpus are online */
713 if (cpu >= nr_cpu_ids)
714 return -ENODEV;
716 cur_freq = cpufreq_quick_get(cpu);
717 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
718 if (ret)
719 return ret;
721 dyn_power = power - static_power;
722 dyn_power = dyn_power > 0 ? dyn_power : 0;
723 last_load = cpufreq_device->last_load ?: 1;
724 normalised_power = (dyn_power * 100) / last_load;
725 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
727 *state = cpufreq_cooling_get_level(cpu, target_freq);
728 if (*state == THERMAL_CSTATE_INVALID) {
729 dev_warn_ratelimited(&cdev->device,
730 "Failed to convert %dKHz for cpu %d into a cdev state\n",
731 target_freq, cpu);
732 return -EINVAL;
735 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
736 target_freq, *state, power);
737 return 0;
740 /* Bind cpufreq callbacks to thermal cooling device ops */
741 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
742 .get_max_state = cpufreq_get_max_state,
743 .get_cur_state = cpufreq_get_cur_state,
744 .set_cur_state = cpufreq_set_cur_state,
747 /* Notifier for cpufreq policy change */
748 static struct notifier_block thermal_cpufreq_notifier_block = {
749 .notifier_call = cpufreq_thermal_notifier,
752 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
753 unsigned int prev_max)
755 struct cpufreq_frequency_table *pos;
756 unsigned int max = 0;
758 cpufreq_for_each_valid_entry(pos, table) {
759 if (pos->frequency > max && pos->frequency < prev_max)
760 max = pos->frequency;
763 return max;
767 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
768 * @np: a valid struct device_node to the cooling device device tree node
769 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
770 * Normally this should be same as cpufreq policy->related_cpus.
771 * @capacitance: dynamic power coefficient for these cpus
772 * @plat_static_func: function to calculate the static power consumed by these
773 * cpus (optional)
775 * This interface function registers the cpufreq cooling device with the name
776 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
777 * cooling devices. It also gives the opportunity to link the cooling device
778 * with a device tree node, in order to bind it via the thermal DT code.
780 * Return: a valid struct thermal_cooling_device pointer on success,
781 * on failure, it returns a corresponding ERR_PTR().
783 static struct thermal_cooling_device *
784 __cpufreq_cooling_register(struct device_node *np,
785 const struct cpumask *clip_cpus, u32 capacitance,
786 get_static_t plat_static_func)
788 struct thermal_cooling_device *cool_dev;
789 struct cpufreq_cooling_device *cpufreq_dev;
790 char dev_name[THERMAL_NAME_LENGTH];
791 struct cpufreq_frequency_table *pos, *table;
792 unsigned int freq, i, num_cpus;
793 int ret;
795 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
796 if (!table) {
797 pr_debug("%s: CPUFreq table not found\n", __func__);
798 return ERR_PTR(-EPROBE_DEFER);
801 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
802 if (!cpufreq_dev)
803 return ERR_PTR(-ENOMEM);
805 num_cpus = cpumask_weight(clip_cpus);
806 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
807 sizeof(*cpufreq_dev->time_in_idle),
808 GFP_KERNEL);
809 if (!cpufreq_dev->time_in_idle) {
810 cool_dev = ERR_PTR(-ENOMEM);
811 goto free_cdev;
814 cpufreq_dev->time_in_idle_timestamp =
815 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
816 GFP_KERNEL);
817 if (!cpufreq_dev->time_in_idle_timestamp) {
818 cool_dev = ERR_PTR(-ENOMEM);
819 goto free_time_in_idle;
822 /* Find max levels */
823 cpufreq_for_each_valid_entry(pos, table)
824 cpufreq_dev->max_level++;
826 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
827 cpufreq_dev->max_level, GFP_KERNEL);
828 if (!cpufreq_dev->freq_table) {
829 cool_dev = ERR_PTR(-ENOMEM);
830 goto free_time_in_idle_timestamp;
833 /* max_level is an index, not a counter */
834 cpufreq_dev->max_level--;
836 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
838 if (capacitance) {
839 cpufreq_cooling_ops.get_requested_power =
840 cpufreq_get_requested_power;
841 cpufreq_cooling_ops.state2power = cpufreq_state2power;
842 cpufreq_cooling_ops.power2state = cpufreq_power2state;
843 cpufreq_dev->plat_get_static_power = plat_static_func;
845 ret = build_dyn_power_table(cpufreq_dev, capacitance);
846 if (ret) {
847 cool_dev = ERR_PTR(ret);
848 goto free_table;
852 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
853 if (ret) {
854 cool_dev = ERR_PTR(ret);
855 goto free_power_table;
858 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
859 cpufreq_dev->id);
861 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
862 &cpufreq_cooling_ops);
863 if (IS_ERR(cool_dev))
864 goto remove_idr;
866 /* Fill freq-table in descending order of frequencies */
867 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
868 freq = find_next_max(table, freq);
869 cpufreq_dev->freq_table[i] = freq;
871 /* Warn for duplicate entries */
872 if (!freq)
873 pr_warn("%s: table has duplicate entries\n", __func__);
874 else
875 pr_debug("%s: freq:%u KHz\n", __func__, freq);
878 cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
879 cpufreq_dev->cool_dev = cool_dev;
881 mutex_lock(&cooling_cpufreq_lock);
883 mutex_lock(&cooling_list_lock);
884 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
885 mutex_unlock(&cooling_list_lock);
887 /* Register the notifier for first cpufreq cooling device */
888 if (!cpufreq_dev_count++)
889 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
890 CPUFREQ_POLICY_NOTIFIER);
891 mutex_unlock(&cooling_cpufreq_lock);
893 return cool_dev;
895 remove_idr:
896 release_idr(&cpufreq_idr, cpufreq_dev->id);
897 free_power_table:
898 kfree(cpufreq_dev->dyn_power_table);
899 free_table:
900 kfree(cpufreq_dev->freq_table);
901 free_time_in_idle_timestamp:
902 kfree(cpufreq_dev->time_in_idle_timestamp);
903 free_time_in_idle:
904 kfree(cpufreq_dev->time_in_idle);
905 free_cdev:
906 kfree(cpufreq_dev);
908 return cool_dev;
912 * cpufreq_cooling_register - function to create cpufreq cooling device.
913 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
915 * This interface function registers the cpufreq cooling device with the name
916 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
917 * cooling devices.
919 * Return: a valid struct thermal_cooling_device pointer on success,
920 * on failure, it returns a corresponding ERR_PTR().
922 struct thermal_cooling_device *
923 cpufreq_cooling_register(const struct cpumask *clip_cpus)
925 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
927 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
930 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
931 * @np: a valid struct device_node to the cooling device device tree node
932 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
934 * This interface function registers the cpufreq cooling device with the name
935 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
936 * cooling devices. Using this API, the cpufreq cooling device will be
937 * linked to the device tree node provided.
939 * Return: a valid struct thermal_cooling_device pointer on success,
940 * on failure, it returns a corresponding ERR_PTR().
942 struct thermal_cooling_device *
943 of_cpufreq_cooling_register(struct device_node *np,
944 const struct cpumask *clip_cpus)
946 if (!np)
947 return ERR_PTR(-EINVAL);
949 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
951 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
954 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
955 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
956 * @capacitance: dynamic power coefficient for these cpus
957 * @plat_static_func: function to calculate the static power consumed by these
958 * cpus (optional)
960 * This interface function registers the cpufreq cooling device with
961 * the name "thermal-cpufreq-%x". This api can support multiple
962 * instances of cpufreq cooling devices. Using this function, the
963 * cooling device will implement the power extensions by using a
964 * simple cpu power model. The cpus must have registered their OPPs
965 * using the OPP library.
967 * An optional @plat_static_func may be provided to calculate the
968 * static power consumed by these cpus. If the platform's static
969 * power consumption is unknown or negligible, make it NULL.
971 * Return: a valid struct thermal_cooling_device pointer on success,
972 * on failure, it returns a corresponding ERR_PTR().
974 struct thermal_cooling_device *
975 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
976 get_static_t plat_static_func)
978 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
979 plat_static_func);
981 EXPORT_SYMBOL(cpufreq_power_cooling_register);
984 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
985 * @np: a valid struct device_node to the cooling device device tree node
986 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
987 * @capacitance: dynamic power coefficient for these cpus
988 * @plat_static_func: function to calculate the static power consumed by these
989 * cpus (optional)
991 * This interface function registers the cpufreq cooling device with
992 * the name "thermal-cpufreq-%x". This api can support multiple
993 * instances of cpufreq cooling devices. Using this API, the cpufreq
994 * cooling device will be linked to the device tree node provided.
995 * Using this function, the cooling device will implement the power
996 * extensions by using a simple cpu power model. The cpus must have
997 * registered their OPPs using the OPP library.
999 * An optional @plat_static_func may be provided to calculate the
1000 * static power consumed by these cpus. If the platform's static
1001 * power consumption is unknown or negligible, make it NULL.
1003 * Return: a valid struct thermal_cooling_device pointer on success,
1004 * on failure, it returns a corresponding ERR_PTR().
1006 struct thermal_cooling_device *
1007 of_cpufreq_power_cooling_register(struct device_node *np,
1008 const struct cpumask *clip_cpus,
1009 u32 capacitance,
1010 get_static_t plat_static_func)
1012 if (!np)
1013 return ERR_PTR(-EINVAL);
1015 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1016 plat_static_func);
1018 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1021 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1022 * @cdev: thermal cooling device pointer.
1024 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1026 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1028 struct cpufreq_cooling_device *cpufreq_dev;
1030 if (!cdev)
1031 return;
1033 cpufreq_dev = cdev->devdata;
1035 /* Unregister the notifier for the last cpufreq cooling device */
1036 mutex_lock(&cooling_cpufreq_lock);
1037 if (!--cpufreq_dev_count)
1038 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1039 CPUFREQ_POLICY_NOTIFIER);
1041 mutex_lock(&cooling_list_lock);
1042 list_del(&cpufreq_dev->node);
1043 mutex_unlock(&cooling_list_lock);
1045 mutex_unlock(&cooling_cpufreq_lock);
1047 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1048 release_idr(&cpufreq_idr, cpufreq_dev->id);
1049 kfree(cpufreq_dev->dyn_power_table);
1050 kfree(cpufreq_dev->time_in_idle_timestamp);
1051 kfree(cpufreq_dev->time_in_idle);
1052 kfree(cpufreq_dev->freq_table);
1053 kfree(cpufreq_dev);
1055 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);