Merge branches 'timers-core-for-linus' and 'timers-urgent-for-linus' of git://git...
[linux/fpc-iii.git] / include / net / sock.h
blob14d3c07340079b7a3e9de54ee635011589247ffd
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
81 return 0;
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 #endif
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 #endif
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
126 struct sock;
127 struct proto;
128 struct net;
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_flags: place holder for sk_flags
154 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156 * @skc_incoming_cpu: record/match cpu processing incoming packets
157 * @skc_refcnt: reference count
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
162 struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_nulls_node skc_portaddr_node;
197 struct proto *skc_prot;
198 possible_net_t skc_net;
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
205 atomic64_t skc_cookie;
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
228 int skc_tx_queue_mapping;
229 union {
230 int skc_incoming_cpu;
231 u32 skc_rcv_wnd;
232 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
235 atomic_t skc_refcnt;
236 /* private: */
237 int skc_dontcopy_end[0];
238 union {
239 u32 skc_rxhash;
240 u32 skc_window_clamp;
241 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 /* public: */
246 struct cg_proto;
248 * struct sock - network layer representation of sockets
249 * @__sk_common: shared layout with inet_timewait_sock
250 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252 * @sk_lock: synchronizer
253 * @sk_rcvbuf: size of receive buffer in bytes
254 * @sk_wq: sock wait queue and async head
255 * @sk_rx_dst: receive input route used by early demux
256 * @sk_dst_cache: destination cache
257 * @sk_policy: flow policy
258 * @sk_receive_queue: incoming packets
259 * @sk_wmem_alloc: transmit queue bytes committed
260 * @sk_write_queue: Packet sending queue
261 * @sk_omem_alloc: "o" is "option" or "other"
262 * @sk_wmem_queued: persistent queue size
263 * @sk_forward_alloc: space allocated forward
264 * @sk_napi_id: id of the last napi context to receive data for sk
265 * @sk_ll_usec: usecs to busypoll when there is no data
266 * @sk_allocation: allocation mode
267 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
268 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269 * @sk_sndbuf: size of send buffer in bytes
270 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271 * @sk_no_check_rx: allow zero checksum in RX packets
272 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
274 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275 * @sk_gso_max_size: Maximum GSO segment size to build
276 * @sk_gso_max_segs: Maximum number of GSO segments
277 * @sk_lingertime: %SO_LINGER l_linger setting
278 * @sk_backlog: always used with the per-socket spinlock held
279 * @sk_callback_lock: used with the callbacks in the end of this struct
280 * @sk_error_queue: rarely used
281 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
282 * IPV6_ADDRFORM for instance)
283 * @sk_err: last error
284 * @sk_err_soft: errors that don't cause failure but are the cause of a
285 * persistent failure not just 'timed out'
286 * @sk_drops: raw/udp drops counter
287 * @sk_ack_backlog: current listen backlog
288 * @sk_max_ack_backlog: listen backlog set in listen()
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_cgrp_prioidx: socket group's priority map index
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_pid: &struct pid for this socket's peer
294 * @sk_peer_cred: %SO_PEERCRED setting
295 * @sk_rcvlowat: %SO_RCVLOWAT setting
296 * @sk_rcvtimeo: %SO_RCVTIMEO setting
297 * @sk_sndtimeo: %SO_SNDTIMEO setting
298 * @sk_txhash: computed flow hash for use on transmit
299 * @sk_filter: socket filtering instructions
300 * @sk_timer: sock cleanup timer
301 * @sk_stamp: time stamp of last packet received
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_socket: Identd and reporting IO signals
305 * @sk_user_data: RPC layer private data
306 * @sk_frag: cached page frag
307 * @sk_peek_off: current peek_offset value
308 * @sk_send_head: front of stuff to transmit
309 * @sk_security: used by security modules
310 * @sk_mark: generic packet mark
311 * @sk_classid: this socket's cgroup classid
312 * @sk_cgrp: this socket's cgroup-specific proto data
313 * @sk_write_pending: a write to stream socket waits to start
314 * @sk_state_change: callback to indicate change in the state of the sock
315 * @sk_data_ready: callback to indicate there is data to be processed
316 * @sk_write_space: callback to indicate there is bf sending space available
317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318 * @sk_backlog_rcv: callback to process the backlog
319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 struct sock {
323 * Now struct inet_timewait_sock also uses sock_common, so please just
324 * don't add nothing before this first member (__sk_common) --acme
326 struct sock_common __sk_common;
327 #define sk_node __sk_common.skc_node
328 #define sk_nulls_node __sk_common.skc_nulls_node
329 #define sk_refcnt __sk_common.skc_refcnt
330 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
332 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
333 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
334 #define sk_hash __sk_common.skc_hash
335 #define sk_portpair __sk_common.skc_portpair
336 #define sk_num __sk_common.skc_num
337 #define sk_dport __sk_common.skc_dport
338 #define sk_addrpair __sk_common.skc_addrpair
339 #define sk_daddr __sk_common.skc_daddr
340 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
341 #define sk_family __sk_common.skc_family
342 #define sk_state __sk_common.skc_state
343 #define sk_reuse __sk_common.skc_reuse
344 #define sk_reuseport __sk_common.skc_reuseport
345 #define sk_ipv6only __sk_common.skc_ipv6only
346 #define sk_net_refcnt __sk_common.skc_net_refcnt
347 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
348 #define sk_bind_node __sk_common.skc_bind_node
349 #define sk_prot __sk_common.skc_prot
350 #define sk_net __sk_common.skc_net
351 #define sk_v6_daddr __sk_common.skc_v6_daddr
352 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
353 #define sk_cookie __sk_common.skc_cookie
354 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
355 #define sk_flags __sk_common.skc_flags
356 #define sk_rxhash __sk_common.skc_rxhash
358 socket_lock_t sk_lock;
359 struct sk_buff_head sk_receive_queue;
361 * The backlog queue is special, it is always used with
362 * the per-socket spinlock held and requires low latency
363 * access. Therefore we special case it's implementation.
364 * Note : rmem_alloc is in this structure to fill a hole
365 * on 64bit arches, not because its logically part of
366 * backlog.
368 struct {
369 atomic_t rmem_alloc;
370 int len;
371 struct sk_buff *head;
372 struct sk_buff *tail;
373 } sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375 int sk_forward_alloc;
377 __u32 sk_txhash;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_napi_id;
380 unsigned int sk_ll_usec;
381 #endif
382 atomic_t sk_drops;
383 int sk_rcvbuf;
385 struct sk_filter __rcu *sk_filter;
386 union {
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
390 #ifdef CONFIG_XFRM
391 struct xfrm_policy __rcu *sk_policy[2];
392 #endif
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 /* Note: 32bit hole on 64bit arches */
396 atomic_t sk_wmem_alloc;
397 atomic_t sk_omem_alloc;
398 int sk_sndbuf;
399 struct sk_buff_head sk_write_queue;
400 kmemcheck_bitfield_begin(flags);
401 unsigned int sk_shutdown : 2,
402 sk_no_check_tx : 1,
403 sk_no_check_rx : 1,
404 sk_userlocks : 4,
405 sk_protocol : 8,
406 sk_type : 16;
407 #define SK_PROTOCOL_MAX U8_MAX
408 kmemcheck_bitfield_end(flags);
409 int sk_wmem_queued;
410 gfp_t sk_allocation;
411 u32 sk_pacing_rate; /* bytes per second */
412 u32 sk_max_pacing_rate;
413 netdev_features_t sk_route_caps;
414 netdev_features_t sk_route_nocaps;
415 int sk_gso_type;
416 unsigned int sk_gso_max_size;
417 u16 sk_gso_max_segs;
418 int sk_rcvlowat;
419 unsigned long sk_lingertime;
420 struct sk_buff_head sk_error_queue;
421 struct proto *sk_prot_creator;
422 rwlock_t sk_callback_lock;
423 int sk_err,
424 sk_err_soft;
425 u32 sk_ack_backlog;
426 u32 sk_max_ack_backlog;
427 __u32 sk_priority;
428 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
429 __u32 sk_cgrp_prioidx;
430 #endif
431 struct pid *sk_peer_pid;
432 const struct cred *sk_peer_cred;
433 long sk_rcvtimeo;
434 long sk_sndtimeo;
435 struct timer_list sk_timer;
436 ktime_t sk_stamp;
437 u16 sk_tsflags;
438 u32 sk_tskey;
439 struct socket *sk_socket;
440 void *sk_user_data;
441 struct page_frag sk_frag;
442 struct sk_buff *sk_send_head;
443 __s32 sk_peek_off;
444 int sk_write_pending;
445 #ifdef CONFIG_SECURITY
446 void *sk_security;
447 #endif
448 __u32 sk_mark;
449 #ifdef CONFIG_CGROUP_NET_CLASSID
450 u32 sk_classid;
451 #endif
452 struct cg_proto *sk_cgrp;
453 void (*sk_state_change)(struct sock *sk);
454 void (*sk_data_ready)(struct sock *sk);
455 void (*sk_write_space)(struct sock *sk);
456 void (*sk_error_report)(struct sock *sk);
457 int (*sk_backlog_rcv)(struct sock *sk,
458 struct sk_buff *skb);
459 void (*sk_destruct)(struct sock *sk);
462 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
464 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
465 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
468 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
469 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
470 * on a socket means that the socket will reuse everybody else's port
471 * without looking at the other's sk_reuse value.
474 #define SK_NO_REUSE 0
475 #define SK_CAN_REUSE 1
476 #define SK_FORCE_REUSE 2
478 static inline int sk_peek_offset(struct sock *sk, int flags)
480 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
481 return sk->sk_peek_off;
482 else
483 return 0;
486 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
488 if (sk->sk_peek_off >= 0) {
489 if (sk->sk_peek_off >= val)
490 sk->sk_peek_off -= val;
491 else
492 sk->sk_peek_off = 0;
496 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
498 if (sk->sk_peek_off >= 0)
499 sk->sk_peek_off += val;
503 * Hashed lists helper routines
505 static inline struct sock *sk_entry(const struct hlist_node *node)
507 return hlist_entry(node, struct sock, sk_node);
510 static inline struct sock *__sk_head(const struct hlist_head *head)
512 return hlist_entry(head->first, struct sock, sk_node);
515 static inline struct sock *sk_head(const struct hlist_head *head)
517 return hlist_empty(head) ? NULL : __sk_head(head);
520 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
522 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
525 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
527 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
530 static inline struct sock *sk_next(const struct sock *sk)
532 return sk->sk_node.next ?
533 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
536 static inline struct sock *sk_nulls_next(const struct sock *sk)
538 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
539 hlist_nulls_entry(sk->sk_nulls_node.next,
540 struct sock, sk_nulls_node) :
541 NULL;
544 static inline bool sk_unhashed(const struct sock *sk)
546 return hlist_unhashed(&sk->sk_node);
549 static inline bool sk_hashed(const struct sock *sk)
551 return !sk_unhashed(sk);
554 static inline void sk_node_init(struct hlist_node *node)
556 node->pprev = NULL;
559 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
561 node->pprev = NULL;
564 static inline void __sk_del_node(struct sock *sk)
566 __hlist_del(&sk->sk_node);
569 /* NB: equivalent to hlist_del_init_rcu */
570 static inline bool __sk_del_node_init(struct sock *sk)
572 if (sk_hashed(sk)) {
573 __sk_del_node(sk);
574 sk_node_init(&sk->sk_node);
575 return true;
577 return false;
580 /* Grab socket reference count. This operation is valid only
581 when sk is ALREADY grabbed f.e. it is found in hash table
582 or a list and the lookup is made under lock preventing hash table
583 modifications.
586 static inline void sock_hold(struct sock *sk)
588 atomic_inc(&sk->sk_refcnt);
591 /* Ungrab socket in the context, which assumes that socket refcnt
592 cannot hit zero, f.e. it is true in context of any socketcall.
594 static inline void __sock_put(struct sock *sk)
596 atomic_dec(&sk->sk_refcnt);
599 static inline bool sk_del_node_init(struct sock *sk)
601 bool rc = __sk_del_node_init(sk);
603 if (rc) {
604 /* paranoid for a while -acme */
605 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
606 __sock_put(sk);
608 return rc;
610 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
612 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
614 if (sk_hashed(sk)) {
615 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
616 return true;
618 return false;
621 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
623 bool rc = __sk_nulls_del_node_init_rcu(sk);
625 if (rc) {
626 /* paranoid for a while -acme */
627 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
628 __sock_put(sk);
630 return rc;
633 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
635 hlist_add_head(&sk->sk_node, list);
638 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
640 sock_hold(sk);
641 __sk_add_node(sk, list);
644 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
646 sock_hold(sk);
647 hlist_add_head_rcu(&sk->sk_node, list);
650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
652 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
655 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
657 sock_hold(sk);
658 __sk_nulls_add_node_rcu(sk, list);
661 static inline void __sk_del_bind_node(struct sock *sk)
663 __hlist_del(&sk->sk_bind_node);
666 static inline void sk_add_bind_node(struct sock *sk,
667 struct hlist_head *list)
669 hlist_add_head(&sk->sk_bind_node, list);
672 #define sk_for_each(__sk, list) \
673 hlist_for_each_entry(__sk, list, sk_node)
674 #define sk_for_each_rcu(__sk, list) \
675 hlist_for_each_entry_rcu(__sk, list, sk_node)
676 #define sk_nulls_for_each(__sk, node, list) \
677 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
678 #define sk_nulls_for_each_rcu(__sk, node, list) \
679 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
680 #define sk_for_each_from(__sk) \
681 hlist_for_each_entry_from(__sk, sk_node)
682 #define sk_nulls_for_each_from(__sk, node) \
683 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
684 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
685 #define sk_for_each_safe(__sk, tmp, list) \
686 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
687 #define sk_for_each_bound(__sk, list) \
688 hlist_for_each_entry(__sk, list, sk_bind_node)
691 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
692 * @tpos: the type * to use as a loop cursor.
693 * @pos: the &struct hlist_node to use as a loop cursor.
694 * @head: the head for your list.
695 * @offset: offset of hlist_node within the struct.
698 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
699 for (pos = (head)->first; \
700 (!is_a_nulls(pos)) && \
701 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
702 pos = pos->next)
704 static inline struct user_namespace *sk_user_ns(struct sock *sk)
706 /* Careful only use this in a context where these parameters
707 * can not change and must all be valid, such as recvmsg from
708 * userspace.
710 return sk->sk_socket->file->f_cred->user_ns;
713 /* Sock flags */
714 enum sock_flags {
715 SOCK_DEAD,
716 SOCK_DONE,
717 SOCK_URGINLINE,
718 SOCK_KEEPOPEN,
719 SOCK_LINGER,
720 SOCK_DESTROY,
721 SOCK_BROADCAST,
722 SOCK_TIMESTAMP,
723 SOCK_ZAPPED,
724 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
725 SOCK_DBG, /* %SO_DEBUG setting */
726 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
727 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
728 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
729 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
730 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
731 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
732 SOCK_FASYNC, /* fasync() active */
733 SOCK_RXQ_OVFL,
734 SOCK_ZEROCOPY, /* buffers from userspace */
735 SOCK_WIFI_STATUS, /* push wifi status to userspace */
736 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
737 * Will use last 4 bytes of packet sent from
738 * user-space instead.
740 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
741 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
744 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
746 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
748 nsk->sk_flags = osk->sk_flags;
751 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
753 __set_bit(flag, &sk->sk_flags);
756 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
758 __clear_bit(flag, &sk->sk_flags);
761 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
763 return test_bit(flag, &sk->sk_flags);
766 #ifdef CONFIG_NET
767 extern struct static_key memalloc_socks;
768 static inline int sk_memalloc_socks(void)
770 return static_key_false(&memalloc_socks);
772 #else
774 static inline int sk_memalloc_socks(void)
776 return 0;
779 #endif
781 static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
783 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
786 static inline void sk_acceptq_removed(struct sock *sk)
788 sk->sk_ack_backlog--;
791 static inline void sk_acceptq_added(struct sock *sk)
793 sk->sk_ack_backlog++;
796 static inline bool sk_acceptq_is_full(const struct sock *sk)
798 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
802 * Compute minimal free write space needed to queue new packets.
804 static inline int sk_stream_min_wspace(const struct sock *sk)
806 return sk->sk_wmem_queued >> 1;
809 static inline int sk_stream_wspace(const struct sock *sk)
811 return sk->sk_sndbuf - sk->sk_wmem_queued;
814 void sk_stream_write_space(struct sock *sk);
816 /* OOB backlog add */
817 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
819 /* dont let skb dst not refcounted, we are going to leave rcu lock */
820 skb_dst_force_safe(skb);
822 if (!sk->sk_backlog.tail)
823 sk->sk_backlog.head = skb;
824 else
825 sk->sk_backlog.tail->next = skb;
827 sk->sk_backlog.tail = skb;
828 skb->next = NULL;
832 * Take into account size of receive queue and backlog queue
833 * Do not take into account this skb truesize,
834 * to allow even a single big packet to come.
836 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
838 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
840 return qsize > limit;
843 /* The per-socket spinlock must be held here. */
844 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
845 unsigned int limit)
847 if (sk_rcvqueues_full(sk, limit))
848 return -ENOBUFS;
851 * If the skb was allocated from pfmemalloc reserves, only
852 * allow SOCK_MEMALLOC sockets to use it as this socket is
853 * helping free memory
855 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
856 return -ENOMEM;
858 __sk_add_backlog(sk, skb);
859 sk->sk_backlog.len += skb->truesize;
860 return 0;
863 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
865 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
867 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
868 return __sk_backlog_rcv(sk, skb);
870 return sk->sk_backlog_rcv(sk, skb);
873 static inline void sk_incoming_cpu_update(struct sock *sk)
875 sk->sk_incoming_cpu = raw_smp_processor_id();
878 static inline void sock_rps_record_flow_hash(__u32 hash)
880 #ifdef CONFIG_RPS
881 struct rps_sock_flow_table *sock_flow_table;
883 rcu_read_lock();
884 sock_flow_table = rcu_dereference(rps_sock_flow_table);
885 rps_record_sock_flow(sock_flow_table, hash);
886 rcu_read_unlock();
887 #endif
890 static inline void sock_rps_record_flow(const struct sock *sk)
892 #ifdef CONFIG_RPS
893 sock_rps_record_flow_hash(sk->sk_rxhash);
894 #endif
897 static inline void sock_rps_save_rxhash(struct sock *sk,
898 const struct sk_buff *skb)
900 #ifdef CONFIG_RPS
901 if (unlikely(sk->sk_rxhash != skb->hash))
902 sk->sk_rxhash = skb->hash;
903 #endif
906 static inline void sock_rps_reset_rxhash(struct sock *sk)
908 #ifdef CONFIG_RPS
909 sk->sk_rxhash = 0;
910 #endif
913 #define sk_wait_event(__sk, __timeo, __condition) \
914 ({ int __rc; \
915 release_sock(__sk); \
916 __rc = __condition; \
917 if (!__rc) { \
918 *(__timeo) = schedule_timeout(*(__timeo)); \
920 sched_annotate_sleep(); \
921 lock_sock(__sk); \
922 __rc = __condition; \
923 __rc; \
926 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
927 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
928 void sk_stream_wait_close(struct sock *sk, long timeo_p);
929 int sk_stream_error(struct sock *sk, int flags, int err);
930 void sk_stream_kill_queues(struct sock *sk);
931 void sk_set_memalloc(struct sock *sk);
932 void sk_clear_memalloc(struct sock *sk);
934 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
936 struct request_sock_ops;
937 struct timewait_sock_ops;
938 struct inet_hashinfo;
939 struct raw_hashinfo;
940 struct module;
943 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
944 * un-modified. Special care is taken when initializing object to zero.
946 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
948 if (offsetof(struct sock, sk_node.next) != 0)
949 memset(sk, 0, offsetof(struct sock, sk_node.next));
950 memset(&sk->sk_node.pprev, 0,
951 size - offsetof(struct sock, sk_node.pprev));
954 /* Networking protocol blocks we attach to sockets.
955 * socket layer -> transport layer interface
957 struct proto {
958 void (*close)(struct sock *sk,
959 long timeout);
960 int (*connect)(struct sock *sk,
961 struct sockaddr *uaddr,
962 int addr_len);
963 int (*disconnect)(struct sock *sk, int flags);
965 struct sock * (*accept)(struct sock *sk, int flags, int *err);
967 int (*ioctl)(struct sock *sk, int cmd,
968 unsigned long arg);
969 int (*init)(struct sock *sk);
970 void (*destroy)(struct sock *sk);
971 void (*shutdown)(struct sock *sk, int how);
972 int (*setsockopt)(struct sock *sk, int level,
973 int optname, char __user *optval,
974 unsigned int optlen);
975 int (*getsockopt)(struct sock *sk, int level,
976 int optname, char __user *optval,
977 int __user *option);
978 #ifdef CONFIG_COMPAT
979 int (*compat_setsockopt)(struct sock *sk,
980 int level,
981 int optname, char __user *optval,
982 unsigned int optlen);
983 int (*compat_getsockopt)(struct sock *sk,
984 int level,
985 int optname, char __user *optval,
986 int __user *option);
987 int (*compat_ioctl)(struct sock *sk,
988 unsigned int cmd, unsigned long arg);
989 #endif
990 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
991 size_t len);
992 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
993 size_t len, int noblock, int flags,
994 int *addr_len);
995 int (*sendpage)(struct sock *sk, struct page *page,
996 int offset, size_t size, int flags);
997 int (*bind)(struct sock *sk,
998 struct sockaddr *uaddr, int addr_len);
1000 int (*backlog_rcv) (struct sock *sk,
1001 struct sk_buff *skb);
1003 void (*release_cb)(struct sock *sk);
1005 /* Keeping track of sk's, looking them up, and port selection methods. */
1006 void (*hash)(struct sock *sk);
1007 void (*unhash)(struct sock *sk);
1008 void (*rehash)(struct sock *sk);
1009 int (*get_port)(struct sock *sk, unsigned short snum);
1010 void (*clear_sk)(struct sock *sk, int size);
1012 /* Keeping track of sockets in use */
1013 #ifdef CONFIG_PROC_FS
1014 unsigned int inuse_idx;
1015 #endif
1017 bool (*stream_memory_free)(const struct sock *sk);
1018 /* Memory pressure */
1019 void (*enter_memory_pressure)(struct sock *sk);
1020 atomic_long_t *memory_allocated; /* Current allocated memory. */
1021 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1023 * Pressure flag: try to collapse.
1024 * Technical note: it is used by multiple contexts non atomically.
1025 * All the __sk_mem_schedule() is of this nature: accounting
1026 * is strict, actions are advisory and have some latency.
1028 int *memory_pressure;
1029 long *sysctl_mem;
1030 int *sysctl_wmem;
1031 int *sysctl_rmem;
1032 int max_header;
1033 bool no_autobind;
1035 struct kmem_cache *slab;
1036 unsigned int obj_size;
1037 int slab_flags;
1039 struct percpu_counter *orphan_count;
1041 struct request_sock_ops *rsk_prot;
1042 struct timewait_sock_ops *twsk_prot;
1044 union {
1045 struct inet_hashinfo *hashinfo;
1046 struct udp_table *udp_table;
1047 struct raw_hashinfo *raw_hash;
1048 } h;
1050 struct module *owner;
1052 char name[32];
1054 struct list_head node;
1055 #ifdef SOCK_REFCNT_DEBUG
1056 atomic_t socks;
1057 #endif
1058 #ifdef CONFIG_MEMCG_KMEM
1060 * cgroup specific init/deinit functions. Called once for all
1061 * protocols that implement it, from cgroups populate function.
1062 * This function has to setup any files the protocol want to
1063 * appear in the kmem cgroup filesystem.
1065 int (*init_cgroup)(struct mem_cgroup *memcg,
1066 struct cgroup_subsys *ss);
1067 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1068 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1069 #endif
1072 int proto_register(struct proto *prot, int alloc_slab);
1073 void proto_unregister(struct proto *prot);
1075 #ifdef SOCK_REFCNT_DEBUG
1076 static inline void sk_refcnt_debug_inc(struct sock *sk)
1078 atomic_inc(&sk->sk_prot->socks);
1081 static inline void sk_refcnt_debug_dec(struct sock *sk)
1083 atomic_dec(&sk->sk_prot->socks);
1084 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1085 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1088 static inline void sk_refcnt_debug_release(const struct sock *sk)
1090 if (atomic_read(&sk->sk_refcnt) != 1)
1091 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1092 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1094 #else /* SOCK_REFCNT_DEBUG */
1095 #define sk_refcnt_debug_inc(sk) do { } while (0)
1096 #define sk_refcnt_debug_dec(sk) do { } while (0)
1097 #define sk_refcnt_debug_release(sk) do { } while (0)
1098 #endif /* SOCK_REFCNT_DEBUG */
1100 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1101 extern struct static_key memcg_socket_limit_enabled;
1102 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1103 struct cg_proto *cg_proto)
1105 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1107 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1108 #else
1109 #define mem_cgroup_sockets_enabled 0
1110 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1111 struct cg_proto *cg_proto)
1113 return NULL;
1115 #endif
1117 static inline bool sk_stream_memory_free(const struct sock *sk)
1119 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1120 return false;
1122 return sk->sk_prot->stream_memory_free ?
1123 sk->sk_prot->stream_memory_free(sk) : true;
1126 static inline bool sk_stream_is_writeable(const struct sock *sk)
1128 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1129 sk_stream_memory_free(sk);
1133 static inline bool sk_has_memory_pressure(const struct sock *sk)
1135 return sk->sk_prot->memory_pressure != NULL;
1138 static inline bool sk_under_memory_pressure(const struct sock *sk)
1140 if (!sk->sk_prot->memory_pressure)
1141 return false;
1143 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1144 return !!sk->sk_cgrp->memory_pressure;
1146 return !!*sk->sk_prot->memory_pressure;
1149 static inline void sk_leave_memory_pressure(struct sock *sk)
1151 int *memory_pressure = sk->sk_prot->memory_pressure;
1153 if (!memory_pressure)
1154 return;
1156 if (*memory_pressure)
1157 *memory_pressure = 0;
1159 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1160 struct cg_proto *cg_proto = sk->sk_cgrp;
1161 struct proto *prot = sk->sk_prot;
1163 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1164 cg_proto->memory_pressure = 0;
1169 static inline void sk_enter_memory_pressure(struct sock *sk)
1171 if (!sk->sk_prot->enter_memory_pressure)
1172 return;
1174 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1175 struct cg_proto *cg_proto = sk->sk_cgrp;
1176 struct proto *prot = sk->sk_prot;
1178 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1179 cg_proto->memory_pressure = 1;
1182 sk->sk_prot->enter_memory_pressure(sk);
1185 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1187 long *prot = sk->sk_prot->sysctl_mem;
1188 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1189 prot = sk->sk_cgrp->sysctl_mem;
1190 return prot[index];
1193 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1194 unsigned long amt,
1195 int *parent_status)
1197 page_counter_charge(&prot->memory_allocated, amt);
1199 if (page_counter_read(&prot->memory_allocated) >
1200 prot->memory_allocated.limit)
1201 *parent_status = OVER_LIMIT;
1204 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1205 unsigned long amt)
1207 page_counter_uncharge(&prot->memory_allocated, amt);
1210 static inline long
1211 sk_memory_allocated(const struct sock *sk)
1213 struct proto *prot = sk->sk_prot;
1215 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1216 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1218 return atomic_long_read(prot->memory_allocated);
1221 static inline long
1222 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1224 struct proto *prot = sk->sk_prot;
1226 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1227 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1228 /* update the root cgroup regardless */
1229 atomic_long_add_return(amt, prot->memory_allocated);
1230 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1233 return atomic_long_add_return(amt, prot->memory_allocated);
1236 static inline void
1237 sk_memory_allocated_sub(struct sock *sk, int amt)
1239 struct proto *prot = sk->sk_prot;
1241 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1242 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1244 atomic_long_sub(amt, prot->memory_allocated);
1247 static inline void sk_sockets_allocated_dec(struct sock *sk)
1249 struct proto *prot = sk->sk_prot;
1251 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1252 struct cg_proto *cg_proto = sk->sk_cgrp;
1254 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1255 percpu_counter_dec(&cg_proto->sockets_allocated);
1258 percpu_counter_dec(prot->sockets_allocated);
1261 static inline void sk_sockets_allocated_inc(struct sock *sk)
1263 struct proto *prot = sk->sk_prot;
1265 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1266 struct cg_proto *cg_proto = sk->sk_cgrp;
1268 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1269 percpu_counter_inc(&cg_proto->sockets_allocated);
1272 percpu_counter_inc(prot->sockets_allocated);
1275 static inline int
1276 sk_sockets_allocated_read_positive(struct sock *sk)
1278 struct proto *prot = sk->sk_prot;
1280 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1281 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1283 return percpu_counter_read_positive(prot->sockets_allocated);
1286 static inline int
1287 proto_sockets_allocated_sum_positive(struct proto *prot)
1289 return percpu_counter_sum_positive(prot->sockets_allocated);
1292 static inline long
1293 proto_memory_allocated(struct proto *prot)
1295 return atomic_long_read(prot->memory_allocated);
1298 static inline bool
1299 proto_memory_pressure(struct proto *prot)
1301 if (!prot->memory_pressure)
1302 return false;
1303 return !!*prot->memory_pressure;
1307 #ifdef CONFIG_PROC_FS
1308 /* Called with local bh disabled */
1309 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1310 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1311 #else
1312 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1313 int inc)
1316 #endif
1319 /* With per-bucket locks this operation is not-atomic, so that
1320 * this version is not worse.
1322 static inline void __sk_prot_rehash(struct sock *sk)
1324 sk->sk_prot->unhash(sk);
1325 sk->sk_prot->hash(sk);
1328 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1330 /* About 10 seconds */
1331 #define SOCK_DESTROY_TIME (10*HZ)
1333 /* Sockets 0-1023 can't be bound to unless you are superuser */
1334 #define PROT_SOCK 1024
1336 #define SHUTDOWN_MASK 3
1337 #define RCV_SHUTDOWN 1
1338 #define SEND_SHUTDOWN 2
1340 #define SOCK_SNDBUF_LOCK 1
1341 #define SOCK_RCVBUF_LOCK 2
1342 #define SOCK_BINDADDR_LOCK 4
1343 #define SOCK_BINDPORT_LOCK 8
1345 struct socket_alloc {
1346 struct socket socket;
1347 struct inode vfs_inode;
1350 static inline struct socket *SOCKET_I(struct inode *inode)
1352 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1355 static inline struct inode *SOCK_INODE(struct socket *socket)
1357 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1361 * Functions for memory accounting
1363 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1364 void __sk_mem_reclaim(struct sock *sk, int amount);
1366 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1367 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1368 #define SK_MEM_SEND 0
1369 #define SK_MEM_RECV 1
1371 static inline int sk_mem_pages(int amt)
1373 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1376 static inline bool sk_has_account(struct sock *sk)
1378 /* return true if protocol supports memory accounting */
1379 return !!sk->sk_prot->memory_allocated;
1382 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1384 if (!sk_has_account(sk))
1385 return true;
1386 return size <= sk->sk_forward_alloc ||
1387 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1390 static inline bool
1391 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1393 if (!sk_has_account(sk))
1394 return true;
1395 return size<= sk->sk_forward_alloc ||
1396 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1397 skb_pfmemalloc(skb);
1400 static inline void sk_mem_reclaim(struct sock *sk)
1402 if (!sk_has_account(sk))
1403 return;
1404 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1405 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1408 static inline void sk_mem_reclaim_partial(struct sock *sk)
1410 if (!sk_has_account(sk))
1411 return;
1412 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1413 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1416 static inline void sk_mem_charge(struct sock *sk, int size)
1418 if (!sk_has_account(sk))
1419 return;
1420 sk->sk_forward_alloc -= size;
1423 static inline void sk_mem_uncharge(struct sock *sk, int size)
1425 if (!sk_has_account(sk))
1426 return;
1427 sk->sk_forward_alloc += size;
1430 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1432 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1433 sk->sk_wmem_queued -= skb->truesize;
1434 sk_mem_uncharge(sk, skb->truesize);
1435 __kfree_skb(skb);
1438 /* Used by processes to "lock" a socket state, so that
1439 * interrupts and bottom half handlers won't change it
1440 * from under us. It essentially blocks any incoming
1441 * packets, so that we won't get any new data or any
1442 * packets that change the state of the socket.
1444 * While locked, BH processing will add new packets to
1445 * the backlog queue. This queue is processed by the
1446 * owner of the socket lock right before it is released.
1448 * Since ~2.3.5 it is also exclusive sleep lock serializing
1449 * accesses from user process context.
1451 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1453 static inline void sock_release_ownership(struct sock *sk)
1455 sk->sk_lock.owned = 0;
1459 * Macro so as to not evaluate some arguments when
1460 * lockdep is not enabled.
1462 * Mark both the sk_lock and the sk_lock.slock as a
1463 * per-address-family lock class.
1465 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1466 do { \
1467 sk->sk_lock.owned = 0; \
1468 init_waitqueue_head(&sk->sk_lock.wq); \
1469 spin_lock_init(&(sk)->sk_lock.slock); \
1470 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1471 sizeof((sk)->sk_lock)); \
1472 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1473 (skey), (sname)); \
1474 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1475 } while (0)
1477 void lock_sock_nested(struct sock *sk, int subclass);
1479 static inline void lock_sock(struct sock *sk)
1481 lock_sock_nested(sk, 0);
1484 void release_sock(struct sock *sk);
1486 /* BH context may only use the following locking interface. */
1487 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1488 #define bh_lock_sock_nested(__sk) \
1489 spin_lock_nested(&((__sk)->sk_lock.slock), \
1490 SINGLE_DEPTH_NESTING)
1491 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1493 bool lock_sock_fast(struct sock *sk);
1495 * unlock_sock_fast - complement of lock_sock_fast
1496 * @sk: socket
1497 * @slow: slow mode
1499 * fast unlock socket for user context.
1500 * If slow mode is on, we call regular release_sock()
1502 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1504 if (slow)
1505 release_sock(sk);
1506 else
1507 spin_unlock_bh(&sk->sk_lock.slock);
1511 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1512 struct proto *prot, int kern);
1513 void sk_free(struct sock *sk);
1514 void sk_destruct(struct sock *sk);
1515 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1517 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1518 gfp_t priority);
1519 void sock_wfree(struct sk_buff *skb);
1520 void skb_orphan_partial(struct sk_buff *skb);
1521 void sock_rfree(struct sk_buff *skb);
1522 void sock_efree(struct sk_buff *skb);
1523 #ifdef CONFIG_INET
1524 void sock_edemux(struct sk_buff *skb);
1525 #else
1526 #define sock_edemux(skb) sock_efree(skb)
1527 #endif
1529 int sock_setsockopt(struct socket *sock, int level, int op,
1530 char __user *optval, unsigned int optlen);
1532 int sock_getsockopt(struct socket *sock, int level, int op,
1533 char __user *optval, int __user *optlen);
1534 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1535 int noblock, int *errcode);
1536 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1537 unsigned long data_len, int noblock,
1538 int *errcode, int max_page_order);
1539 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1540 void sock_kfree_s(struct sock *sk, void *mem, int size);
1541 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1542 void sk_send_sigurg(struct sock *sk);
1544 struct sockcm_cookie {
1545 u32 mark;
1548 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1549 struct sockcm_cookie *sockc);
1552 * Functions to fill in entries in struct proto_ops when a protocol
1553 * does not implement a particular function.
1555 int sock_no_bind(struct socket *, struct sockaddr *, int);
1556 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1557 int sock_no_socketpair(struct socket *, struct socket *);
1558 int sock_no_accept(struct socket *, struct socket *, int);
1559 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1560 unsigned int sock_no_poll(struct file *, struct socket *,
1561 struct poll_table_struct *);
1562 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1563 int sock_no_listen(struct socket *, int);
1564 int sock_no_shutdown(struct socket *, int);
1565 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1566 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1567 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1568 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1569 int sock_no_mmap(struct file *file, struct socket *sock,
1570 struct vm_area_struct *vma);
1571 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1572 size_t size, int flags);
1575 * Functions to fill in entries in struct proto_ops when a protocol
1576 * uses the inet style.
1578 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1579 char __user *optval, int __user *optlen);
1580 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1581 int flags);
1582 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1583 char __user *optval, unsigned int optlen);
1584 int compat_sock_common_getsockopt(struct socket *sock, int level,
1585 int optname, char __user *optval, int __user *optlen);
1586 int compat_sock_common_setsockopt(struct socket *sock, int level,
1587 int optname, char __user *optval, unsigned int optlen);
1589 void sk_common_release(struct sock *sk);
1592 * Default socket callbacks and setup code
1595 /* Initialise core socket variables */
1596 void sock_init_data(struct socket *sock, struct sock *sk);
1599 * Socket reference counting postulates.
1601 * * Each user of socket SHOULD hold a reference count.
1602 * * Each access point to socket (an hash table bucket, reference from a list,
1603 * running timer, skb in flight MUST hold a reference count.
1604 * * When reference count hits 0, it means it will never increase back.
1605 * * When reference count hits 0, it means that no references from
1606 * outside exist to this socket and current process on current CPU
1607 * is last user and may/should destroy this socket.
1608 * * sk_free is called from any context: process, BH, IRQ. When
1609 * it is called, socket has no references from outside -> sk_free
1610 * may release descendant resources allocated by the socket, but
1611 * to the time when it is called, socket is NOT referenced by any
1612 * hash tables, lists etc.
1613 * * Packets, delivered from outside (from network or from another process)
1614 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1615 * when they sit in queue. Otherwise, packets will leak to hole, when
1616 * socket is looked up by one cpu and unhasing is made by another CPU.
1617 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1618 * (leak to backlog). Packet socket does all the processing inside
1619 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1620 * use separate SMP lock, so that they are prone too.
1623 /* Ungrab socket and destroy it, if it was the last reference. */
1624 static inline void sock_put(struct sock *sk)
1626 if (atomic_dec_and_test(&sk->sk_refcnt))
1627 sk_free(sk);
1629 /* Generic version of sock_put(), dealing with all sockets
1630 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1632 void sock_gen_put(struct sock *sk);
1634 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1636 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1638 sk->sk_tx_queue_mapping = tx_queue;
1641 static inline void sk_tx_queue_clear(struct sock *sk)
1643 sk->sk_tx_queue_mapping = -1;
1646 static inline int sk_tx_queue_get(const struct sock *sk)
1648 return sk ? sk->sk_tx_queue_mapping : -1;
1651 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1653 sk_tx_queue_clear(sk);
1654 sk->sk_socket = sock;
1657 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1659 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1660 return &rcu_dereference_raw(sk->sk_wq)->wait;
1662 /* Detach socket from process context.
1663 * Announce socket dead, detach it from wait queue and inode.
1664 * Note that parent inode held reference count on this struct sock,
1665 * we do not release it in this function, because protocol
1666 * probably wants some additional cleanups or even continuing
1667 * to work with this socket (TCP).
1669 static inline void sock_orphan(struct sock *sk)
1671 write_lock_bh(&sk->sk_callback_lock);
1672 sock_set_flag(sk, SOCK_DEAD);
1673 sk_set_socket(sk, NULL);
1674 sk->sk_wq = NULL;
1675 write_unlock_bh(&sk->sk_callback_lock);
1678 static inline void sock_graft(struct sock *sk, struct socket *parent)
1680 write_lock_bh(&sk->sk_callback_lock);
1681 sk->sk_wq = parent->wq;
1682 parent->sk = sk;
1683 sk_set_socket(sk, parent);
1684 security_sock_graft(sk, parent);
1685 write_unlock_bh(&sk->sk_callback_lock);
1688 kuid_t sock_i_uid(struct sock *sk);
1689 unsigned long sock_i_ino(struct sock *sk);
1691 static inline u32 net_tx_rndhash(void)
1693 u32 v = prandom_u32();
1695 return v ?: 1;
1698 static inline void sk_set_txhash(struct sock *sk)
1700 sk->sk_txhash = net_tx_rndhash();
1703 static inline void sk_rethink_txhash(struct sock *sk)
1705 if (sk->sk_txhash)
1706 sk_set_txhash(sk);
1709 static inline struct dst_entry *
1710 __sk_dst_get(struct sock *sk)
1712 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1713 lockdep_is_held(&sk->sk_lock.slock));
1716 static inline struct dst_entry *
1717 sk_dst_get(struct sock *sk)
1719 struct dst_entry *dst;
1721 rcu_read_lock();
1722 dst = rcu_dereference(sk->sk_dst_cache);
1723 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1724 dst = NULL;
1725 rcu_read_unlock();
1726 return dst;
1729 static inline void dst_negative_advice(struct sock *sk)
1731 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1733 sk_rethink_txhash(sk);
1735 if (dst && dst->ops->negative_advice) {
1736 ndst = dst->ops->negative_advice(dst);
1738 if (ndst != dst) {
1739 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1740 sk_tx_queue_clear(sk);
1745 static inline void
1746 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1748 struct dst_entry *old_dst;
1750 sk_tx_queue_clear(sk);
1752 * This can be called while sk is owned by the caller only,
1753 * with no state that can be checked in a rcu_dereference_check() cond
1755 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1756 rcu_assign_pointer(sk->sk_dst_cache, dst);
1757 dst_release(old_dst);
1760 static inline void
1761 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1763 struct dst_entry *old_dst;
1765 sk_tx_queue_clear(sk);
1766 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1767 dst_release(old_dst);
1770 static inline void
1771 __sk_dst_reset(struct sock *sk)
1773 __sk_dst_set(sk, NULL);
1776 static inline void
1777 sk_dst_reset(struct sock *sk)
1779 sk_dst_set(sk, NULL);
1782 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1784 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1786 bool sk_mc_loop(struct sock *sk);
1788 static inline bool sk_can_gso(const struct sock *sk)
1790 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1793 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1795 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1797 sk->sk_route_nocaps |= flags;
1798 sk->sk_route_caps &= ~flags;
1801 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1802 struct iov_iter *from, char *to,
1803 int copy, int offset)
1805 if (skb->ip_summed == CHECKSUM_NONE) {
1806 __wsum csum = 0;
1807 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1808 return -EFAULT;
1809 skb->csum = csum_block_add(skb->csum, csum, offset);
1810 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1811 if (copy_from_iter_nocache(to, copy, from) != copy)
1812 return -EFAULT;
1813 } else if (copy_from_iter(to, copy, from) != copy)
1814 return -EFAULT;
1816 return 0;
1819 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1820 struct iov_iter *from, int copy)
1822 int err, offset = skb->len;
1824 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1825 copy, offset);
1826 if (err)
1827 __skb_trim(skb, offset);
1829 return err;
1832 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1833 struct sk_buff *skb,
1834 struct page *page,
1835 int off, int copy)
1837 int err;
1839 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1840 copy, skb->len);
1841 if (err)
1842 return err;
1844 skb->len += copy;
1845 skb->data_len += copy;
1846 skb->truesize += copy;
1847 sk->sk_wmem_queued += copy;
1848 sk_mem_charge(sk, copy);
1849 return 0;
1853 * sk_wmem_alloc_get - returns write allocations
1854 * @sk: socket
1856 * Returns sk_wmem_alloc minus initial offset of one
1858 static inline int sk_wmem_alloc_get(const struct sock *sk)
1860 return atomic_read(&sk->sk_wmem_alloc) - 1;
1864 * sk_rmem_alloc_get - returns read allocations
1865 * @sk: socket
1867 * Returns sk_rmem_alloc
1869 static inline int sk_rmem_alloc_get(const struct sock *sk)
1871 return atomic_read(&sk->sk_rmem_alloc);
1875 * sk_has_allocations - check if allocations are outstanding
1876 * @sk: socket
1878 * Returns true if socket has write or read allocations
1880 static inline bool sk_has_allocations(const struct sock *sk)
1882 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1886 * wq_has_sleeper - check if there are any waiting processes
1887 * @wq: struct socket_wq
1889 * Returns true if socket_wq has waiting processes
1891 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1892 * barrier call. They were added due to the race found within the tcp code.
1894 * Consider following tcp code paths:
1896 * CPU1 CPU2
1898 * sys_select receive packet
1899 * ... ...
1900 * __add_wait_queue update tp->rcv_nxt
1901 * ... ...
1902 * tp->rcv_nxt check sock_def_readable
1903 * ... {
1904 * schedule rcu_read_lock();
1905 * wq = rcu_dereference(sk->sk_wq);
1906 * if (wq && waitqueue_active(&wq->wait))
1907 * wake_up_interruptible(&wq->wait)
1908 * ...
1911 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1912 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1913 * could then endup calling schedule and sleep forever if there are no more
1914 * data on the socket.
1917 static inline bool wq_has_sleeper(struct socket_wq *wq)
1919 /* We need to be sure we are in sync with the
1920 * add_wait_queue modifications to the wait queue.
1922 * This memory barrier is paired in the sock_poll_wait.
1924 smp_mb();
1925 return wq && waitqueue_active(&wq->wait);
1929 * sock_poll_wait - place memory barrier behind the poll_wait call.
1930 * @filp: file
1931 * @wait_address: socket wait queue
1932 * @p: poll_table
1934 * See the comments in the wq_has_sleeper function.
1936 static inline void sock_poll_wait(struct file *filp,
1937 wait_queue_head_t *wait_address, poll_table *p)
1939 if (!poll_does_not_wait(p) && wait_address) {
1940 poll_wait(filp, wait_address, p);
1941 /* We need to be sure we are in sync with the
1942 * socket flags modification.
1944 * This memory barrier is paired in the wq_has_sleeper.
1946 smp_mb();
1950 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1952 if (sk->sk_txhash) {
1953 skb->l4_hash = 1;
1954 skb->hash = sk->sk_txhash;
1958 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1961 * Queue a received datagram if it will fit. Stream and sequenced
1962 * protocols can't normally use this as they need to fit buffers in
1963 * and play with them.
1965 * Inlined as it's very short and called for pretty much every
1966 * packet ever received.
1968 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1970 skb_orphan(skb);
1971 skb->sk = sk;
1972 skb->destructor = sock_rfree;
1973 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1974 sk_mem_charge(sk, skb->truesize);
1977 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1978 unsigned long expires);
1980 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1982 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1984 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1985 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1988 * Recover an error report and clear atomically
1991 static inline int sock_error(struct sock *sk)
1993 int err;
1994 if (likely(!sk->sk_err))
1995 return 0;
1996 err = xchg(&sk->sk_err, 0);
1997 return -err;
2000 static inline unsigned long sock_wspace(struct sock *sk)
2002 int amt = 0;
2004 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2005 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2006 if (amt < 0)
2007 amt = 0;
2009 return amt;
2012 /* Note:
2013 * We use sk->sk_wq_raw, from contexts knowing this
2014 * pointer is not NULL and cannot disappear/change.
2016 static inline void sk_set_bit(int nr, struct sock *sk)
2018 set_bit(nr, &sk->sk_wq_raw->flags);
2021 static inline void sk_clear_bit(int nr, struct sock *sk)
2023 clear_bit(nr, &sk->sk_wq_raw->flags);
2026 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2028 if (sock_flag(sk, SOCK_FASYNC)) {
2029 rcu_read_lock();
2030 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2031 rcu_read_unlock();
2035 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2036 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2037 * Note: for send buffers, TCP works better if we can build two skbs at
2038 * minimum.
2040 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2042 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2043 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2045 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2047 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2048 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2049 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2053 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2054 bool force_schedule);
2057 * sk_page_frag - return an appropriate page_frag
2058 * @sk: socket
2060 * If socket allocation mode allows current thread to sleep, it means its
2061 * safe to use the per task page_frag instead of the per socket one.
2063 static inline struct page_frag *sk_page_frag(struct sock *sk)
2065 if (gfpflags_allow_blocking(sk->sk_allocation))
2066 return &current->task_frag;
2068 return &sk->sk_frag;
2071 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2074 * Default write policy as shown to user space via poll/select/SIGIO
2076 static inline bool sock_writeable(const struct sock *sk)
2078 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2081 static inline gfp_t gfp_any(void)
2083 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2086 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2088 return noblock ? 0 : sk->sk_rcvtimeo;
2091 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2093 return noblock ? 0 : sk->sk_sndtimeo;
2096 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2098 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2101 /* Alas, with timeout socket operations are not restartable.
2102 * Compare this to poll().
2104 static inline int sock_intr_errno(long timeo)
2106 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2109 struct sock_skb_cb {
2110 u32 dropcount;
2113 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2114 * using skb->cb[] would keep using it directly and utilize its
2115 * alignement guarantee.
2117 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2118 sizeof(struct sock_skb_cb)))
2120 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2121 SOCK_SKB_CB_OFFSET))
2123 #define sock_skb_cb_check_size(size) \
2124 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2126 static inline void
2127 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2129 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2132 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2133 struct sk_buff *skb);
2134 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2135 struct sk_buff *skb);
2137 static inline void
2138 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2140 ktime_t kt = skb->tstamp;
2141 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2144 * generate control messages if
2145 * - receive time stamping in software requested
2146 * - software time stamp available and wanted
2147 * - hardware time stamps available and wanted
2149 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2150 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2151 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2152 (hwtstamps->hwtstamp.tv64 &&
2153 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2154 __sock_recv_timestamp(msg, sk, skb);
2155 else
2156 sk->sk_stamp = kt;
2158 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2159 __sock_recv_wifi_status(msg, sk, skb);
2162 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2163 struct sk_buff *skb);
2165 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2166 struct sk_buff *skb)
2168 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2169 (1UL << SOCK_RCVTSTAMP))
2170 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2171 SOF_TIMESTAMPING_RAW_HARDWARE)
2173 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2174 __sock_recv_ts_and_drops(msg, sk, skb);
2175 else
2176 sk->sk_stamp = skb->tstamp;
2179 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2182 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2183 * @sk: socket sending this packet
2184 * @tx_flags: completed with instructions for time stamping
2186 * Note : callers should take care of initial *tx_flags value (usually 0)
2188 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2190 if (unlikely(sk->sk_tsflags))
2191 __sock_tx_timestamp(sk, tx_flags);
2192 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2193 *tx_flags |= SKBTX_WIFI_STATUS;
2197 * sk_eat_skb - Release a skb if it is no longer needed
2198 * @sk: socket to eat this skb from
2199 * @skb: socket buffer to eat
2201 * This routine must be called with interrupts disabled or with the socket
2202 * locked so that the sk_buff queue operation is ok.
2204 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2206 __skb_unlink(skb, &sk->sk_receive_queue);
2207 __kfree_skb(skb);
2210 static inline
2211 struct net *sock_net(const struct sock *sk)
2213 return read_pnet(&sk->sk_net);
2216 static inline
2217 void sock_net_set(struct sock *sk, struct net *net)
2219 write_pnet(&sk->sk_net, net);
2222 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2224 if (skb->sk) {
2225 struct sock *sk = skb->sk;
2227 skb->destructor = NULL;
2228 skb->sk = NULL;
2229 return sk;
2231 return NULL;
2234 /* This helper checks if a socket is a full socket,
2235 * ie _not_ a timewait or request socket.
2237 static inline bool sk_fullsock(const struct sock *sk)
2239 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2242 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2243 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2245 static inline bool sk_listener(const struct sock *sk)
2247 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2251 * sk_state_load - read sk->sk_state for lockless contexts
2252 * @sk: socket pointer
2254 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2255 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2257 static inline int sk_state_load(const struct sock *sk)
2259 return smp_load_acquire(&sk->sk_state);
2263 * sk_state_store - update sk->sk_state
2264 * @sk: socket pointer
2265 * @newstate: new state
2267 * Paired with sk_state_load(). Should be used in contexts where
2268 * state change might impact lockless readers.
2270 static inline void sk_state_store(struct sock *sk, int newstate)
2272 smp_store_release(&sk->sk_state, newstate);
2275 void sock_enable_timestamp(struct sock *sk, int flag);
2276 int sock_get_timestamp(struct sock *, struct timeval __user *);
2277 int sock_get_timestampns(struct sock *, struct timespec __user *);
2278 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2279 int type);
2281 bool sk_ns_capable(const struct sock *sk,
2282 struct user_namespace *user_ns, int cap);
2283 bool sk_capable(const struct sock *sk, int cap);
2284 bool sk_net_capable(const struct sock *sk, int cap);
2286 extern __u32 sysctl_wmem_max;
2287 extern __u32 sysctl_rmem_max;
2289 extern int sysctl_tstamp_allow_data;
2290 extern int sysctl_optmem_max;
2292 extern __u32 sysctl_wmem_default;
2293 extern __u32 sysctl_rmem_default;
2295 #endif /* _SOCK_H */