1 // SPDX-License-Identifier: GPL-2.0
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype
;
55 static unsigned int hwbug_bitmask
;
57 EXPORT_SYMBOL(vac_cache_size
);
60 extern struct resource sparc_iomap
;
62 extern unsigned long last_valid_pfn
;
64 static pgd_t
*srmmu_swapper_pg_dir
;
66 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops
);
70 const struct sparc32_cachetlb_ops
*local_ops
;
72 #define FLUSH_BEGIN(mm)
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
79 int flush_page_for_dma_global
= 1;
83 ctxd_t
*srmmu_ctx_table_phys
;
84 static ctxd_t
*srmmu_context_table
;
86 int viking_mxcc_present
;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
89 static int is_hypersparc
;
91 static int srmmu_cache_pagetables
;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size
;
95 static unsigned long srmmu_nocache_end
;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool
;
104 static struct bit_map srmmu_nocache_map
;
106 static inline int srmmu_pmd_none(pmd_t pmd
)
107 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
114 pte
= __pte((SRMMU_ET_PTD
| (__nocache_pa(pgdp
) >> 4)));
115 set_pte((pte_t
*)ctxp
, pte
);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__
__volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN
),
134 "i" (ASI_M_CTL
), "r" (MSI_ASYNC_MODE
) : "g3");
137 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
139 unsigned long ptp
; /* Physical address, shifted right by 4 */
142 ptp
= __nocache_pa(ptep
) >> 4;
143 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
144 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
145 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
149 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
151 unsigned long ptp
; /* Physical address, shifted right by 4 */
154 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
155 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
156 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
157 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
161 /* Find an entry in the third-level page table.. */
162 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
166 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
167 return (pte_t
*) pte
+
168 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
176 static void *__srmmu_get_nocache(int size
, int align
)
181 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
182 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
184 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
186 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
187 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
189 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
191 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
193 offset
= bit_map_string_get(&srmmu_nocache_map
,
194 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
195 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
197 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
198 size
, (int) srmmu_nocache_size
,
199 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
203 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
207 void *srmmu_get_nocache(int size
, int align
)
211 tmp
= __srmmu_get_nocache(size
, align
);
214 memset(tmp
, 0, size
);
219 void srmmu_free_nocache(void *addr
, int size
)
224 vaddr
= (unsigned long)addr
;
225 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
230 if (vaddr
+ size
> srmmu_nocache_end
) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr
, srmmu_nocache_end
);
235 if (!is_power_of_2(size
)) {
236 printk("Size 0x%x is not a power of 2\n", size
);
239 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
240 printk("Size 0x%x is too small\n", size
);
243 if (vaddr
& (size
- 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
248 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
249 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
251 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
257 /* Return how much physical memory we have. */
258 static unsigned long __init
probe_memory(void)
260 unsigned long total
= 0;
263 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
264 total
+= sp_banks
[i
].num_bytes
;
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
273 static void __init
srmmu_nocache_calcsize(void)
275 unsigned long sysmemavail
= probe_memory() / 1024;
276 int srmmu_nocache_npages
;
278 srmmu_nocache_npages
=
279 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
284 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
288 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
290 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
291 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
294 static void __init
srmmu_nocache_init(void)
296 void *srmmu_nocache_bitmap
;
297 unsigned int bitmap_bits
;
301 unsigned long paddr
, vaddr
;
302 unsigned long pteval
;
304 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
306 srmmu_nocache_pool
= memblock_alloc(srmmu_nocache_size
,
307 SRMMU_NOCACHE_ALIGN_MAX
);
308 if (!srmmu_nocache_pool
)
309 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310 __func__
, srmmu_nocache_size
, SRMMU_NOCACHE_ALIGN_MAX
);
311 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
313 srmmu_nocache_bitmap
=
314 memblock_alloc(BITS_TO_LONGS(bitmap_bits
) * sizeof(long),
316 if (!srmmu_nocache_bitmap
)
317 panic("%s: Failed to allocate %zu bytes\n", __func__
,
318 BITS_TO_LONGS(bitmap_bits
) * sizeof(long));
319 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
321 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
322 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
323 init_mm
.pgd
= srmmu_swapper_pg_dir
;
325 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
327 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
328 vaddr
= SRMMU_NOCACHE_VADDR
;
330 while (vaddr
< srmmu_nocache_end
) {
331 pgd
= pgd_offset_k(vaddr
);
332 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
333 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
335 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
337 if (srmmu_cache_pagetables
)
338 pteval
|= SRMMU_CACHE
;
340 set_pte(__nocache_fix(pte
), __pte(pteval
));
350 pgd_t
*get_pgd_fast(void)
354 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
356 pgd_t
*init
= pgd_offset_k(0);
357 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
358 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
359 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
366 * Hardware needs alignment to 256 only, but we align to whole page size
367 * to reduce fragmentation problems due to the buddy principle.
368 * XXX Provide actual fragmentation statistics in /proc.
370 * Alignments up to the page size are the same for physical and virtual
371 * addresses of the nocache area.
373 pgtable_t
pte_alloc_one(struct mm_struct
*mm
)
378 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
)) == 0)
380 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
381 if (!pgtable_pte_page_ctor(page
)) {
388 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
392 pgtable_pte_page_dtor(pte
);
393 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
396 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
398 /* free non cached virtual address*/
399 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
402 /* context handling - a dynamically sized pool is used */
403 #define NO_CONTEXT -1
406 struct ctx_list
*next
;
407 struct ctx_list
*prev
;
408 unsigned int ctx_number
;
409 struct mm_struct
*ctx_mm
;
412 static struct ctx_list
*ctx_list_pool
;
413 static struct ctx_list ctx_free
;
414 static struct ctx_list ctx_used
;
416 /* At boot time we determine the number of contexts */
417 static int num_contexts
;
419 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
421 entry
->next
->prev
= entry
->prev
;
422 entry
->prev
->next
= entry
->next
;
425 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
428 (entry
->prev
= head
->prev
)->next
= entry
;
431 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
432 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
435 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
437 struct ctx_list
*ctxp
;
439 ctxp
= ctx_free
.next
;
440 if (ctxp
!= &ctx_free
) {
441 remove_from_ctx_list(ctxp
);
442 add_to_used_ctxlist(ctxp
);
443 mm
->context
= ctxp
->ctx_number
;
447 ctxp
= ctx_used
.next
;
448 if (ctxp
->ctx_mm
== old_mm
)
450 if (ctxp
== &ctx_used
)
451 panic("out of mmu contexts");
452 flush_cache_mm(ctxp
->ctx_mm
);
453 flush_tlb_mm(ctxp
->ctx_mm
);
454 remove_from_ctx_list(ctxp
);
455 add_to_used_ctxlist(ctxp
);
456 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
458 mm
->context
= ctxp
->ctx_number
;
461 static inline void free_context(int context
)
463 struct ctx_list
*ctx_old
;
465 ctx_old
= ctx_list_pool
+ context
;
466 remove_from_ctx_list(ctx_old
);
467 add_to_free_ctxlist(ctx_old
);
470 static void __init
sparc_context_init(int numctx
)
475 size
= numctx
* sizeof(struct ctx_list
);
476 ctx_list_pool
= memblock_alloc(size
, SMP_CACHE_BYTES
);
478 panic("%s: Failed to allocate %lu bytes\n", __func__
, size
);
480 for (ctx
= 0; ctx
< numctx
; ctx
++) {
481 struct ctx_list
*clist
;
483 clist
= (ctx_list_pool
+ ctx
);
484 clist
->ctx_number
= ctx
;
485 clist
->ctx_mm
= NULL
;
487 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
488 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
489 for (ctx
= 0; ctx
< numctx
; ctx
++)
490 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
493 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
494 struct task_struct
*tsk
)
498 if (mm
->context
== NO_CONTEXT
) {
499 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
500 alloc_context(old_mm
, mm
);
501 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
502 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
505 if (sparc_cpu_model
== sparc_leon
)
509 hyper_flush_whole_icache();
511 srmmu_set_context(mm
->context
);
514 /* Low level IO area allocation on the SRMMU. */
515 static inline void srmmu_mapioaddr(unsigned long physaddr
,
516 unsigned long virt_addr
, int bus_type
)
523 physaddr
&= PAGE_MASK
;
524 pgdp
= pgd_offset_k(virt_addr
);
525 pmdp
= pmd_offset(pgdp
, virt_addr
);
526 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
527 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
529 /* I need to test whether this is consistent over all
530 * sun4m's. The bus_type represents the upper 4 bits of
531 * 36-bit physical address on the I/O space lines...
533 tmp
|= (bus_type
<< 28);
535 __flush_page_to_ram(virt_addr
);
536 set_pte(ptep
, __pte(tmp
));
539 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
540 unsigned long xva
, unsigned int len
)
544 srmmu_mapioaddr(xpa
, xva
, bus
);
551 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
557 pgdp
= pgd_offset_k(virt_addr
);
558 pmdp
= pmd_offset(pgdp
, virt_addr
);
559 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
561 /* No need to flush uncacheable page. */
565 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
569 srmmu_unmapioaddr(virt_addr
);
570 virt_addr
+= PAGE_SIZE
;
576 extern void tsunami_flush_cache_all(void);
577 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
578 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
579 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
580 extern void tsunami_flush_page_to_ram(unsigned long page
);
581 extern void tsunami_flush_page_for_dma(unsigned long page
);
582 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
583 extern void tsunami_flush_tlb_all(void);
584 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
585 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
586 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
587 extern void tsunami_setup_blockops(void);
590 extern void swift_flush_cache_all(void);
591 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
592 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
593 unsigned long start
, unsigned long end
);
594 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
595 extern void swift_flush_page_to_ram(unsigned long page
);
596 extern void swift_flush_page_for_dma(unsigned long page
);
597 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
598 extern void swift_flush_tlb_all(void);
599 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
600 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
601 unsigned long start
, unsigned long end
);
602 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
604 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
605 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
610 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
611 cctx
= srmmu_get_context();
612 /* Is context # ever different from current context? P3 */
614 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
615 srmmu_set_context(ctx1
);
616 swift_flush_page(page
);
617 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
618 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
619 srmmu_set_context(cctx
);
621 /* Rm. prot. bits from virt. c. */
622 /* swift_flush_cache_all(); */
623 /* swift_flush_cache_page(vma, page); */
624 swift_flush_page(page
);
626 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
627 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
628 /* same as above: srmmu_flush_tlb_page() */
635 * The following are all MBUS based SRMMU modules, and therefore could
636 * be found in a multiprocessor configuration. On the whole, these
637 * chips seems to be much more touchy about DVMA and page tables
638 * with respect to cache coherency.
642 extern void viking_flush_cache_all(void);
643 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
644 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
646 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
647 extern void viking_flush_page_to_ram(unsigned long page
);
648 extern void viking_flush_page_for_dma(unsigned long page
);
649 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
650 extern void viking_flush_page(unsigned long page
);
651 extern void viking_mxcc_flush_page(unsigned long page
);
652 extern void viking_flush_tlb_all(void);
653 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
654 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
656 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
658 extern void sun4dsmp_flush_tlb_all(void);
659 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
660 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
662 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
666 extern void hypersparc_flush_cache_all(void);
667 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
668 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
669 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
670 extern void hypersparc_flush_page_to_ram(unsigned long page
);
671 extern void hypersparc_flush_page_for_dma(unsigned long page
);
672 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
673 extern void hypersparc_flush_tlb_all(void);
674 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
675 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
676 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
677 extern void hypersparc_setup_blockops(void);
680 * NOTE: All of this startup code assumes the low 16mb (approx.) of
681 * kernel mappings are done with one single contiguous chunk of
682 * ram. On small ram machines (classics mainly) we only get
683 * around 8mb mapped for us.
686 static void __init
early_pgtable_allocfail(char *type
)
688 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
692 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
699 while (start
< end
) {
700 pgdp
= pgd_offset_k(start
);
701 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
702 pmdp
= __srmmu_get_nocache(
703 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
705 early_pgtable_allocfail("pmd");
706 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
707 pgd_set(__nocache_fix(pgdp
), pmdp
);
709 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
710 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
711 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
713 early_pgtable_allocfail("pte");
714 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
715 pmd_set(__nocache_fix(pmdp
), ptep
);
717 if (start
> (0xffffffffUL
- PMD_SIZE
))
719 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
723 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
730 while (start
< end
) {
731 pgdp
= pgd_offset_k(start
);
732 if (pgd_none(*pgdp
)) {
733 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
735 early_pgtable_allocfail("pmd");
736 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
739 pmdp
= pmd_offset(pgdp
, start
);
740 if (srmmu_pmd_none(*pmdp
)) {
741 ptep
= __srmmu_get_nocache(PTE_SIZE
,
744 early_pgtable_allocfail("pte");
745 memset(ptep
, 0, PTE_SIZE
);
748 if (start
> (0xffffffffUL
- PMD_SIZE
))
750 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
754 /* These flush types are not available on all chips... */
755 static inline unsigned long srmmu_probe(unsigned long vaddr
)
757 unsigned long retval
;
759 if (sparc_cpu_model
!= sparc_leon
) {
762 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
764 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
766 retval
= leon_swprobe(vaddr
, NULL
);
772 * This is much cleaner than poking around physical address space
773 * looking at the prom's page table directly which is what most
774 * other OS's do. Yuck... this is much better.
776 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
779 unsigned long probed
;
784 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
786 while (start
<= end
) {
788 break; /* probably wrap around */
789 if (start
== 0xfef00000)
790 start
= KADB_DEBUGGER_BEGVM
;
791 probed
= srmmu_probe(start
);
793 /* continue probing until we find an entry */
798 /* A red snapper, see what it really is. */
800 addr
= start
- PAGE_SIZE
;
802 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
803 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
807 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
808 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
812 pgdp
= pgd_offset_k(start
);
814 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
815 start
+= SRMMU_PGDIR_SIZE
;
818 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
819 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
820 SRMMU_PMD_TABLE_SIZE
);
822 early_pgtable_allocfail("pmd");
823 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
824 pgd_set(__nocache_fix(pgdp
), pmdp
);
826 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
827 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
828 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
830 early_pgtable_allocfail("pte");
831 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
832 pmd_set(__nocache_fix(pmdp
), ptep
);
835 /* We bend the rule where all 16 PTPs in a pmd_t point
836 * inside the same PTE page, and we leak a perfectly
837 * good hardware PTE piece. Alternatives seem worse.
839 unsigned int x
; /* Index of HW PMD in soft cluster */
841 x
= (start
>> PMD_SHIFT
) & 15;
842 val
= &pmdp
->pmdv
[x
];
843 *(unsigned long *)__nocache_fix(val
) = probed
;
844 start
+= SRMMU_REAL_PMD_SIZE
;
847 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
848 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
853 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
855 /* Create a third-level SRMMU 16MB page mapping. */
856 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
858 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
859 unsigned long big_pte
;
861 big_pte
= KERNEL_PTE(phys_base
>> 4);
862 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
865 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
866 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
868 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
869 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
870 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
871 /* Map "low" memory only */
872 const unsigned long min_vaddr
= PAGE_OFFSET
;
873 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
875 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
878 if (vend
> max_vaddr
|| vend
< min_vaddr
)
881 while (vstart
< vend
) {
882 do_large_mapping(vstart
, pstart
);
883 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
888 static void __init
map_kernel(void)
893 do_large_mapping(PAGE_OFFSET
, phys_base
);
896 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
897 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
901 void (*poke_srmmu
)(void) = NULL
;
903 void __init
srmmu_paging_init(void)
911 unsigned long pages_avail
;
913 init_mm
.context
= (unsigned long) NO_CONTEXT
;
914 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
916 if (sparc_cpu_model
== sun4d
)
917 num_contexts
= 65536; /* We know it is Viking */
919 /* Find the number of contexts on the srmmu. */
920 cpunode
= prom_getchild(prom_root_node
);
922 while (cpunode
!= 0) {
923 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
924 if (!strcmp(node_str
, "cpu")) {
925 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
928 cpunode
= prom_getsibling(cpunode
);
933 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
938 last_valid_pfn
= bootmem_init(&pages_avail
);
940 srmmu_nocache_calcsize();
941 srmmu_nocache_init();
942 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
945 /* ctx table has to be physically aligned to its size */
946 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
947 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa(srmmu_context_table
);
949 for (i
= 0; i
< num_contexts
; i
++)
950 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
953 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
955 /* Stop from hanging here... */
956 local_ops
->tlb_all();
962 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
963 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
965 srmmu_allocate_ptable_skeleton(
966 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
967 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
969 pgd
= pgd_offset_k(PKMAP_BASE
);
970 pmd
= pmd_offset(pgd
, PKMAP_BASE
);
971 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
972 pkmap_page_table
= pte
;
977 sparc_context_init(num_contexts
);
982 unsigned long zones_size
[MAX_NR_ZONES
];
983 unsigned long zholes_size
[MAX_NR_ZONES
];
984 unsigned long npages
;
987 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
988 zones_size
[znum
] = zholes_size
[znum
] = 0;
990 npages
= max_low_pfn
- pfn_base
;
992 zones_size
[ZONE_DMA
] = npages
;
993 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
995 npages
= highend_pfn
- max_low_pfn
;
996 zones_size
[ZONE_HIGHMEM
] = npages
;
997 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
999 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
1003 void mmu_info(struct seq_file
*m
)
1008 "nocache total\t: %ld\n"
1009 "nocache used\t: %d\n",
1013 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
1016 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
1018 mm
->context
= NO_CONTEXT
;
1022 void destroy_context(struct mm_struct
*mm
)
1024 unsigned long flags
;
1026 if (mm
->context
!= NO_CONTEXT
) {
1028 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1030 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
1031 free_context(mm
->context
);
1032 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
1033 mm
->context
= NO_CONTEXT
;
1037 /* Init various srmmu chip types. */
1038 static void __init
srmmu_is_bad(void)
1040 prom_printf("Could not determine SRMMU chip type.\n");
1044 static void __init
init_vac_layout(void)
1051 unsigned long max_size
= 0;
1052 unsigned long min_line_size
= 0x10000000;
1055 nd
= prom_getchild(prom_root_node
);
1056 while ((nd
= prom_getsibling(nd
)) != 0) {
1057 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1058 if (!strcmp(node_str
, "cpu")) {
1059 vac_line_size
= prom_getint(nd
, "cache-line-size");
1060 if (vac_line_size
== -1) {
1061 prom_printf("can't determine cache-line-size, halting.\n");
1064 cache_lines
= prom_getint(nd
, "cache-nlines");
1065 if (cache_lines
== -1) {
1066 prom_printf("can't determine cache-nlines, halting.\n");
1070 vac_cache_size
= cache_lines
* vac_line_size
;
1072 if (vac_cache_size
> max_size
)
1073 max_size
= vac_cache_size
;
1074 if (vac_line_size
< min_line_size
)
1075 min_line_size
= vac_line_size
;
1076 //FIXME: cpus not contiguous!!
1078 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1086 prom_printf("No CPU nodes found, halting.\n");
1090 vac_cache_size
= max_size
;
1091 vac_line_size
= min_line_size
;
1093 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094 (int)vac_cache_size
, (int)vac_line_size
);
1097 static void poke_hypersparc(void)
1099 volatile unsigned long clear
;
1100 unsigned long mreg
= srmmu_get_mmureg();
1102 hyper_flush_unconditional_combined();
1104 mreg
&= ~(HYPERSPARC_CWENABLE
);
1105 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1106 mreg
|= (HYPERSPARC_CMODE
);
1108 srmmu_set_mmureg(mreg
);
1110 #if 0 /* XXX I think this is bad news... -DaveM */
1111 hyper_clear_all_tags();
1114 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1115 hyper_flush_whole_icache();
1116 clear
= srmmu_get_faddr();
1117 clear
= srmmu_get_fstatus();
1120 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1121 .cache_all
= hypersparc_flush_cache_all
,
1122 .cache_mm
= hypersparc_flush_cache_mm
,
1123 .cache_page
= hypersparc_flush_cache_page
,
1124 .cache_range
= hypersparc_flush_cache_range
,
1125 .tlb_all
= hypersparc_flush_tlb_all
,
1126 .tlb_mm
= hypersparc_flush_tlb_mm
,
1127 .tlb_page
= hypersparc_flush_tlb_page
,
1128 .tlb_range
= hypersparc_flush_tlb_range
,
1129 .page_to_ram
= hypersparc_flush_page_to_ram
,
1130 .sig_insns
= hypersparc_flush_sig_insns
,
1131 .page_for_dma
= hypersparc_flush_page_for_dma
,
1134 static void __init
init_hypersparc(void)
1136 srmmu_name
= "ROSS HyperSparc";
1137 srmmu_modtype
= HyperSparc
;
1142 sparc32_cachetlb_ops
= &hypersparc_ops
;
1144 poke_srmmu
= poke_hypersparc
;
1146 hypersparc_setup_blockops();
1149 static void poke_swift(void)
1153 /* Clear any crap from the cache or else... */
1154 swift_flush_cache_all();
1156 /* Enable I & D caches */
1157 mreg
= srmmu_get_mmureg();
1158 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1160 * The Swift branch folding logic is completely broken. At
1161 * trap time, if things are just right, if can mistakenly
1162 * think that a trap is coming from kernel mode when in fact
1163 * it is coming from user mode (it mis-executes the branch in
1164 * the trap code). So you see things like crashme completely
1165 * hosing your machine which is completely unacceptable. Turn
1166 * this shit off... nice job Fujitsu.
1168 mreg
&= ~(SWIFT_BF
);
1169 srmmu_set_mmureg(mreg
);
1172 static const struct sparc32_cachetlb_ops swift_ops
= {
1173 .cache_all
= swift_flush_cache_all
,
1174 .cache_mm
= swift_flush_cache_mm
,
1175 .cache_page
= swift_flush_cache_page
,
1176 .cache_range
= swift_flush_cache_range
,
1177 .tlb_all
= swift_flush_tlb_all
,
1178 .tlb_mm
= swift_flush_tlb_mm
,
1179 .tlb_page
= swift_flush_tlb_page
,
1180 .tlb_range
= swift_flush_tlb_range
,
1181 .page_to_ram
= swift_flush_page_to_ram
,
1182 .sig_insns
= swift_flush_sig_insns
,
1183 .page_for_dma
= swift_flush_page_for_dma
,
1186 #define SWIFT_MASKID_ADDR 0x10003018
1187 static void __init
init_swift(void)
1189 unsigned long swift_rev
;
1191 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1192 "srl %0, 0x18, %0\n\t" :
1194 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1195 srmmu_name
= "Fujitsu Swift";
1196 switch (swift_rev
) {
1201 srmmu_modtype
= Swift_lots_o_bugs
;
1202 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1204 * Gee george, I wonder why Sun is so hush hush about
1205 * this hardware bug... really braindamage stuff going
1206 * on here. However I think we can find a way to avoid
1207 * all of the workaround overhead under Linux. Basically,
1208 * any page fault can cause kernel pages to become user
1209 * accessible (the mmu gets confused and clears some of
1210 * the ACC bits in kernel ptes). Aha, sounds pretty
1211 * horrible eh? But wait, after extensive testing it appears
1212 * that if you use pgd_t level large kernel pte's (like the
1213 * 4MB pages on the Pentium) the bug does not get tripped
1214 * at all. This avoids almost all of the major overhead.
1215 * Welcome to a world where your vendor tells you to,
1216 * "apply this kernel patch" instead of "sorry for the
1217 * broken hardware, send it back and we'll give you
1218 * properly functioning parts"
1223 srmmu_modtype
= Swift_bad_c
;
1224 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1226 * You see Sun allude to this hardware bug but never
1227 * admit things directly, they'll say things like,
1228 * "the Swift chip cache problems" or similar.
1232 srmmu_modtype
= Swift_ok
;
1236 sparc32_cachetlb_ops
= &swift_ops
;
1237 flush_page_for_dma_global
= 0;
1240 * Are you now convinced that the Swift is one of the
1241 * biggest VLSI abortions of all time? Bravo Fujitsu!
1242 * Fujitsu, the !#?!%$'d up processor people. I bet if
1243 * you examined the microcode of the Swift you'd find
1244 * XXX's all over the place.
1246 poke_srmmu
= poke_swift
;
1249 static void turbosparc_flush_cache_all(void)
1251 flush_user_windows();
1252 turbosparc_idflash_clear();
1255 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1258 flush_user_windows();
1259 turbosparc_idflash_clear();
1263 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1265 FLUSH_BEGIN(vma
->vm_mm
)
1266 flush_user_windows();
1267 turbosparc_idflash_clear();
1271 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1273 FLUSH_BEGIN(vma
->vm_mm
)
1274 flush_user_windows();
1275 if (vma
->vm_flags
& VM_EXEC
)
1276 turbosparc_flush_icache();
1277 turbosparc_flush_dcache();
1281 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282 static void turbosparc_flush_page_to_ram(unsigned long page
)
1284 #ifdef TURBOSPARC_WRITEBACK
1285 volatile unsigned long clear
;
1287 if (srmmu_probe(page
))
1288 turbosparc_flush_page_cache(page
);
1289 clear
= srmmu_get_fstatus();
1293 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1297 static void turbosparc_flush_page_for_dma(unsigned long page
)
1299 turbosparc_flush_dcache();
1302 static void turbosparc_flush_tlb_all(void)
1304 srmmu_flush_whole_tlb();
1307 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1310 srmmu_flush_whole_tlb();
1314 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1316 FLUSH_BEGIN(vma
->vm_mm
)
1317 srmmu_flush_whole_tlb();
1321 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1323 FLUSH_BEGIN(vma
->vm_mm
)
1324 srmmu_flush_whole_tlb();
1329 static void poke_turbosparc(void)
1331 unsigned long mreg
= srmmu_get_mmureg();
1332 unsigned long ccreg
;
1334 /* Clear any crap from the cache or else... */
1335 turbosparc_flush_cache_all();
1336 /* Temporarily disable I & D caches */
1337 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1338 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1339 srmmu_set_mmureg(mreg
);
1341 ccreg
= turbosparc_get_ccreg();
1343 #ifdef TURBOSPARC_WRITEBACK
1344 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1345 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1346 /* Write-back D-cache, emulate VLSI
1347 * abortion number three, not number one */
1349 /* For now let's play safe, optimize later */
1350 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1351 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1352 ccreg
&= ~(TURBOSPARC_uS2
);
1353 /* Emulate VLSI abortion number three, not number one */
1356 switch (ccreg
& 7) {
1357 case 0: /* No SE cache */
1358 case 7: /* Test mode */
1361 ccreg
|= (TURBOSPARC_SCENABLE
);
1363 turbosparc_set_ccreg(ccreg
);
1365 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1366 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1367 srmmu_set_mmureg(mreg
);
1370 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1371 .cache_all
= turbosparc_flush_cache_all
,
1372 .cache_mm
= turbosparc_flush_cache_mm
,
1373 .cache_page
= turbosparc_flush_cache_page
,
1374 .cache_range
= turbosparc_flush_cache_range
,
1375 .tlb_all
= turbosparc_flush_tlb_all
,
1376 .tlb_mm
= turbosparc_flush_tlb_mm
,
1377 .tlb_page
= turbosparc_flush_tlb_page
,
1378 .tlb_range
= turbosparc_flush_tlb_range
,
1379 .page_to_ram
= turbosparc_flush_page_to_ram
,
1380 .sig_insns
= turbosparc_flush_sig_insns
,
1381 .page_for_dma
= turbosparc_flush_page_for_dma
,
1384 static void __init
init_turbosparc(void)
1386 srmmu_name
= "Fujitsu TurboSparc";
1387 srmmu_modtype
= TurboSparc
;
1388 sparc32_cachetlb_ops
= &turbosparc_ops
;
1389 poke_srmmu
= poke_turbosparc
;
1392 static void poke_tsunami(void)
1394 unsigned long mreg
= srmmu_get_mmureg();
1396 tsunami_flush_icache();
1397 tsunami_flush_dcache();
1398 mreg
&= ~TSUNAMI_ITD
;
1399 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1400 srmmu_set_mmureg(mreg
);
1403 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1404 .cache_all
= tsunami_flush_cache_all
,
1405 .cache_mm
= tsunami_flush_cache_mm
,
1406 .cache_page
= tsunami_flush_cache_page
,
1407 .cache_range
= tsunami_flush_cache_range
,
1408 .tlb_all
= tsunami_flush_tlb_all
,
1409 .tlb_mm
= tsunami_flush_tlb_mm
,
1410 .tlb_page
= tsunami_flush_tlb_page
,
1411 .tlb_range
= tsunami_flush_tlb_range
,
1412 .page_to_ram
= tsunami_flush_page_to_ram
,
1413 .sig_insns
= tsunami_flush_sig_insns
,
1414 .page_for_dma
= tsunami_flush_page_for_dma
,
1417 static void __init
init_tsunami(void)
1420 * Tsunami's pretty sane, Sun and TI actually got it
1421 * somewhat right this time. Fujitsu should have
1422 * taken some lessons from them.
1425 srmmu_name
= "TI Tsunami";
1426 srmmu_modtype
= Tsunami
;
1427 sparc32_cachetlb_ops
= &tsunami_ops
;
1428 poke_srmmu
= poke_tsunami
;
1430 tsunami_setup_blockops();
1433 static void poke_viking(void)
1435 unsigned long mreg
= srmmu_get_mmureg();
1436 static int smp_catch
;
1438 if (viking_mxcc_present
) {
1439 unsigned long mxcc_control
= mxcc_get_creg();
1441 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1442 mxcc_control
&= ~(MXCC_CTL_RRC
);
1443 mxcc_set_creg(mxcc_control
);
1446 * We don't need memory parity checks.
1447 * XXX This is a mess, have to dig out later. ecd.
1448 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1451 /* We do cache ptables on MXCC. */
1452 mreg
|= VIKING_TCENABLE
;
1454 unsigned long bpreg
;
1456 mreg
&= ~(VIKING_TCENABLE
);
1458 /* Must disable mixed-cmd mode here for other cpu's. */
1459 bpreg
= viking_get_bpreg();
1460 bpreg
&= ~(VIKING_ACTION_MIX
);
1461 viking_set_bpreg(bpreg
);
1463 /* Just in case PROM does something funny. */
1468 mreg
|= VIKING_SPENABLE
;
1469 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1470 mreg
|= VIKING_SBENABLE
;
1471 mreg
&= ~(VIKING_ACENABLE
);
1472 srmmu_set_mmureg(mreg
);
1475 static struct sparc32_cachetlb_ops viking_ops __ro_after_init
= {
1476 .cache_all
= viking_flush_cache_all
,
1477 .cache_mm
= viking_flush_cache_mm
,
1478 .cache_page
= viking_flush_cache_page
,
1479 .cache_range
= viking_flush_cache_range
,
1480 .tlb_all
= viking_flush_tlb_all
,
1481 .tlb_mm
= viking_flush_tlb_mm
,
1482 .tlb_page
= viking_flush_tlb_page
,
1483 .tlb_range
= viking_flush_tlb_range
,
1484 .page_to_ram
= viking_flush_page_to_ram
,
1485 .sig_insns
= viking_flush_sig_insns
,
1486 .page_for_dma
= viking_flush_page_for_dma
,
1490 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491 * perform the local TLB flush and all the other cpus will see it.
1492 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493 * that requires that we add some synchronization to these flushes.
1495 * The bug is that the fifo which keeps track of all the pending TLB
1496 * broadcasts in the system is an entry or two too small, so if we
1497 * have too many going at once we'll overflow that fifo and lose a TLB
1498 * flush resulting in corruption.
1500 * Our workaround is to take a global spinlock around the TLB flushes,
1501 * which guarentees we won't ever have too many pending. It's a big
1502 * hammer, but a semaphore like system to make sure we only have N TLB
1503 * flushes going at once will require SMP locking anyways so there's
1504 * no real value in trying any harder than this.
1506 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init
= {
1507 .cache_all
= viking_flush_cache_all
,
1508 .cache_mm
= viking_flush_cache_mm
,
1509 .cache_page
= viking_flush_cache_page
,
1510 .cache_range
= viking_flush_cache_range
,
1511 .tlb_all
= sun4dsmp_flush_tlb_all
,
1512 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1513 .tlb_page
= sun4dsmp_flush_tlb_page
,
1514 .tlb_range
= sun4dsmp_flush_tlb_range
,
1515 .page_to_ram
= viking_flush_page_to_ram
,
1516 .sig_insns
= viking_flush_sig_insns
,
1517 .page_for_dma
= viking_flush_page_for_dma
,
1521 static void __init
init_viking(void)
1523 unsigned long mreg
= srmmu_get_mmureg();
1525 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1526 if (mreg
& VIKING_MMODE
) {
1527 srmmu_name
= "TI Viking";
1528 viking_mxcc_present
= 0;
1532 * We need this to make sure old viking takes no hits
1533 * on it's cache for dma snoops to workaround the
1534 * "load from non-cacheable memory" interrupt bug.
1535 * This is only necessary because of the new way in
1536 * which we use the IOMMU.
1538 viking_ops
.page_for_dma
= viking_flush_page
;
1540 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1542 flush_page_for_dma_global
= 0;
1544 srmmu_name
= "TI Viking/MXCC";
1545 viking_mxcc_present
= 1;
1546 srmmu_cache_pagetables
= 1;
1549 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1552 if (sparc_cpu_model
== sun4d
)
1553 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1554 &viking_sun4d_smp_ops
;
1557 poke_srmmu
= poke_viking
;
1560 /* Probe for the srmmu chip version. */
1561 static void __init
get_srmmu_type(void)
1563 unsigned long mreg
, psr
;
1564 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1566 srmmu_modtype
= SRMMU_INVAL_MOD
;
1569 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1570 mod_typ
= (mreg
& 0xf0000000) >> 28;
1571 mod_rev
= (mreg
& 0x0f000000) >> 24;
1572 psr_typ
= (psr
>> 28) & 0xf;
1573 psr_vers
= (psr
>> 24) & 0xf;
1575 /* First, check for sparc-leon. */
1576 if (sparc_cpu_model
== sparc_leon
) {
1581 /* Second, check for HyperSparc or Cypress. */
1585 /* UP or MP Hypersparc */
1597 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1604 /* Now Fujitsu TurboSparc. It might happen that it is
1605 * in Swift emulation mode, so we will check later...
1607 if (psr_typ
== 0 && psr_vers
== 5) {
1612 /* Next check for Fujitsu Swift. */
1613 if (psr_typ
== 0 && psr_vers
== 4) {
1617 /* Look if it is not a TurboSparc emulating Swift... */
1618 cpunode
= prom_getchild(prom_root_node
);
1619 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1620 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1621 if (!strcmp(node_str
, "cpu")) {
1622 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1623 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1635 /* Now the Viking family of srmmu. */
1638 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1643 /* Finally the Tsunami. */
1644 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1654 /* Local cross-calls. */
1655 static void smp_flush_page_for_dma(unsigned long page
)
1657 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1658 local_ops
->page_for_dma(page
);
1661 static void smp_flush_cache_all(void)
1663 xc0((smpfunc_t
) local_ops
->cache_all
);
1664 local_ops
->cache_all();
1667 static void smp_flush_tlb_all(void)
1669 xc0((smpfunc_t
) local_ops
->tlb_all
);
1670 local_ops
->tlb_all();
1673 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1675 if (mm
->context
!= NO_CONTEXT
) {
1677 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1678 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1679 if (!cpumask_empty(&cpu_mask
))
1680 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1681 local_ops
->cache_mm(mm
);
1685 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1687 if (mm
->context
!= NO_CONTEXT
) {
1689 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1690 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1691 if (!cpumask_empty(&cpu_mask
)) {
1692 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1693 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1694 cpumask_copy(mm_cpumask(mm
),
1695 cpumask_of(smp_processor_id()));
1697 local_ops
->tlb_mm(mm
);
1701 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1702 unsigned long start
,
1705 struct mm_struct
*mm
= vma
->vm_mm
;
1707 if (mm
->context
!= NO_CONTEXT
) {
1709 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1710 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1711 if (!cpumask_empty(&cpu_mask
))
1712 xc3((smpfunc_t
) local_ops
->cache_range
,
1713 (unsigned long) vma
, start
, end
);
1714 local_ops
->cache_range(vma
, start
, end
);
1718 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1719 unsigned long start
,
1722 struct mm_struct
*mm
= vma
->vm_mm
;
1724 if (mm
->context
!= NO_CONTEXT
) {
1726 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1727 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1728 if (!cpumask_empty(&cpu_mask
))
1729 xc3((smpfunc_t
) local_ops
->tlb_range
,
1730 (unsigned long) vma
, start
, end
);
1731 local_ops
->tlb_range(vma
, start
, end
);
1735 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1737 struct mm_struct
*mm
= vma
->vm_mm
;
1739 if (mm
->context
!= NO_CONTEXT
) {
1741 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1742 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1743 if (!cpumask_empty(&cpu_mask
))
1744 xc2((smpfunc_t
) local_ops
->cache_page
,
1745 (unsigned long) vma
, page
);
1746 local_ops
->cache_page(vma
, page
);
1750 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1752 struct mm_struct
*mm
= vma
->vm_mm
;
1754 if (mm
->context
!= NO_CONTEXT
) {
1756 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1758 if (!cpumask_empty(&cpu_mask
))
1759 xc2((smpfunc_t
) local_ops
->tlb_page
,
1760 (unsigned long) vma
, page
);
1761 local_ops
->tlb_page(vma
, page
);
1765 static void smp_flush_page_to_ram(unsigned long page
)
1767 /* Current theory is that those who call this are the one's
1768 * who have just dirtied their cache with the pages contents
1769 * in kernel space, therefore we only run this on local cpu.
1771 * XXX This experiment failed, research further... -DaveM
1774 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1776 local_ops
->page_to_ram(page
);
1779 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1782 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1783 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1784 if (!cpumask_empty(&cpu_mask
))
1785 xc2((smpfunc_t
) local_ops
->sig_insns
,
1786 (unsigned long) mm
, insn_addr
);
1787 local_ops
->sig_insns(mm
, insn_addr
);
1790 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init
= {
1791 .cache_all
= smp_flush_cache_all
,
1792 .cache_mm
= smp_flush_cache_mm
,
1793 .cache_page
= smp_flush_cache_page
,
1794 .cache_range
= smp_flush_cache_range
,
1795 .tlb_all
= smp_flush_tlb_all
,
1796 .tlb_mm
= smp_flush_tlb_mm
,
1797 .tlb_page
= smp_flush_tlb_page
,
1798 .tlb_range
= smp_flush_tlb_range
,
1799 .page_to_ram
= smp_flush_page_to_ram
,
1800 .sig_insns
= smp_flush_sig_insns
,
1801 .page_for_dma
= smp_flush_page_for_dma
,
1805 /* Load up routines and constants for sun4m and sun4d mmu */
1806 void __init
load_mmu(void)
1812 /* El switcheroo... */
1813 local_ops
= sparc32_cachetlb_ops
;
1815 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1816 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1817 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1818 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1819 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1822 if (poke_srmmu
== poke_viking
) {
1823 /* Avoid unnecessary cross calls. */
1824 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1825 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1826 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1827 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1829 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1830 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1831 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1834 /* It really is const after this point. */
1835 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1839 if (sparc_cpu_model
== sun4d
)
1844 if (sparc_cpu_model
== sun4d
)
1846 else if (sparc_cpu_model
== sparc_leon
)