2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly
;
56 static unsigned int i_hash_shift __read_mostly
;
57 static struct hlist_head
*inode_hashtable __read_mostly
;
58 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned long, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
116 static int no_open(struct inode
*inode
, struct file
*file
)
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
131 static const struct inode_operations empty_iops
;
132 static const struct file_operations no_open_fops
= {.open
= no_open
};
133 struct address_space
*const mapping
= &inode
->i_data
;
136 inode
->i_blkbits
= sb
->s_blocksize_bits
;
138 atomic_set(&inode
->i_count
, 1);
139 inode
->i_op
= &empty_iops
;
140 inode
->i_fop
= &no_open_fops
;
141 inode
->__i_nlink
= 1;
142 inode
->i_opflags
= 0;
143 i_uid_write(inode
, 0);
144 i_gid_write(inode
, 0);
145 atomic_set(&inode
->i_writecount
, 0);
149 inode
->i_generation
= 0;
150 inode
->i_pipe
= NULL
;
151 inode
->i_bdev
= NULL
;
152 inode
->i_cdev
= NULL
;
153 inode
->i_link
= NULL
;
155 inode
->dirtied_when
= 0;
157 #ifdef CONFIG_CGROUP_WRITEBACK
158 inode
->i_wb_frn_winner
= 0;
159 inode
->i_wb_frn_avg_time
= 0;
160 inode
->i_wb_frn_history
= 0;
163 if (security_inode_alloc(inode
))
165 spin_lock_init(&inode
->i_lock
);
166 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
168 mutex_init(&inode
->i_mutex
);
169 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
171 atomic_set(&inode
->i_dio_count
, 0);
173 mapping
->a_ops
= &empty_aops
;
174 mapping
->host
= inode
;
176 atomic_set(&mapping
->i_mmap_writable
, 0);
177 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
178 mapping
->private_data
= NULL
;
179 mapping
->writeback_index
= 0;
180 inode
->i_private
= NULL
;
181 inode
->i_mapping
= mapping
;
182 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
183 #ifdef CONFIG_FS_POSIX_ACL
184 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
187 #ifdef CONFIG_FSNOTIFY
188 inode
->i_fsnotify_mask
= 0;
190 inode
->i_flctx
= NULL
;
191 this_cpu_inc(nr_inodes
);
197 EXPORT_SYMBOL(inode_init_always
);
199 static struct inode
*alloc_inode(struct super_block
*sb
)
203 if (sb
->s_op
->alloc_inode
)
204 inode
= sb
->s_op
->alloc_inode(sb
);
206 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
211 if (unlikely(inode_init_always(sb
, inode
))) {
212 if (inode
->i_sb
->s_op
->destroy_inode
)
213 inode
->i_sb
->s_op
->destroy_inode(inode
);
215 kmem_cache_free(inode_cachep
, inode
);
222 void free_inode_nonrcu(struct inode
*inode
)
224 kmem_cache_free(inode_cachep
, inode
);
226 EXPORT_SYMBOL(free_inode_nonrcu
);
228 void __destroy_inode(struct inode
*inode
)
230 BUG_ON(inode_has_buffers(inode
));
231 inode_detach_wb(inode
);
232 security_inode_free(inode
);
233 fsnotify_inode_delete(inode
);
234 locks_free_lock_context(inode
->i_flctx
);
235 if (!inode
->i_nlink
) {
236 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
237 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
240 #ifdef CONFIG_FS_POSIX_ACL
241 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
242 posix_acl_release(inode
->i_acl
);
243 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
244 posix_acl_release(inode
->i_default_acl
);
246 this_cpu_dec(nr_inodes
);
248 EXPORT_SYMBOL(__destroy_inode
);
250 static void i_callback(struct rcu_head
*head
)
252 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
253 kmem_cache_free(inode_cachep
, inode
);
256 static void destroy_inode(struct inode
*inode
)
258 BUG_ON(!list_empty(&inode
->i_lru
));
259 __destroy_inode(inode
);
260 if (inode
->i_sb
->s_op
->destroy_inode
)
261 inode
->i_sb
->s_op
->destroy_inode(inode
);
263 call_rcu(&inode
->i_rcu
, i_callback
);
267 * drop_nlink - directly drop an inode's link count
270 * This is a low-level filesystem helper to replace any
271 * direct filesystem manipulation of i_nlink. In cases
272 * where we are attempting to track writes to the
273 * filesystem, a decrement to zero means an imminent
274 * write when the file is truncated and actually unlinked
277 void drop_nlink(struct inode
*inode
)
279 WARN_ON(inode
->i_nlink
== 0);
282 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
284 EXPORT_SYMBOL(drop_nlink
);
287 * clear_nlink - directly zero an inode's link count
290 * This is a low-level filesystem helper to replace any
291 * direct filesystem manipulation of i_nlink. See
292 * drop_nlink() for why we care about i_nlink hitting zero.
294 void clear_nlink(struct inode
*inode
)
296 if (inode
->i_nlink
) {
297 inode
->__i_nlink
= 0;
298 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
301 EXPORT_SYMBOL(clear_nlink
);
304 * set_nlink - directly set an inode's link count
306 * @nlink: new nlink (should be non-zero)
308 * This is a low-level filesystem helper to replace any
309 * direct filesystem manipulation of i_nlink.
311 void set_nlink(struct inode
*inode
, unsigned int nlink
)
316 /* Yes, some filesystems do change nlink from zero to one */
317 if (inode
->i_nlink
== 0)
318 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
320 inode
->__i_nlink
= nlink
;
323 EXPORT_SYMBOL(set_nlink
);
326 * inc_nlink - directly increment an inode's link count
329 * This is a low-level filesystem helper to replace any
330 * direct filesystem manipulation of i_nlink. Currently,
331 * it is only here for parity with dec_nlink().
333 void inc_nlink(struct inode
*inode
)
335 if (unlikely(inode
->i_nlink
== 0)) {
336 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
337 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
342 EXPORT_SYMBOL(inc_nlink
);
344 void address_space_init_once(struct address_space
*mapping
)
346 memset(mapping
, 0, sizeof(*mapping
));
347 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
348 spin_lock_init(&mapping
->tree_lock
);
349 init_rwsem(&mapping
->i_mmap_rwsem
);
350 INIT_LIST_HEAD(&mapping
->private_list
);
351 spin_lock_init(&mapping
->private_lock
);
352 mapping
->i_mmap
= RB_ROOT
;
354 EXPORT_SYMBOL(address_space_init_once
);
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
361 void inode_init_once(struct inode
*inode
)
363 memset(inode
, 0, sizeof(*inode
));
364 INIT_HLIST_NODE(&inode
->i_hash
);
365 INIT_LIST_HEAD(&inode
->i_devices
);
366 INIT_LIST_HEAD(&inode
->i_io_list
);
367 INIT_LIST_HEAD(&inode
->i_lru
);
368 address_space_init_once(&inode
->i_data
);
369 i_size_ordered_init(inode
);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
374 EXPORT_SYMBOL(inode_init_once
);
376 static void init_once(void *foo
)
378 struct inode
*inode
= (struct inode
*) foo
;
380 inode_init_once(inode
);
384 * inode->i_lock must be held
386 void __iget(struct inode
*inode
)
388 atomic_inc(&inode
->i_count
);
392 * get additional reference to inode; caller must already hold one.
394 void ihold(struct inode
*inode
)
396 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
398 EXPORT_SYMBOL(ihold
);
400 static void inode_lru_list_add(struct inode
*inode
)
402 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
403 this_cpu_inc(nr_unused
);
407 * Add inode to LRU if needed (inode is unused and clean).
409 * Needs inode->i_lock held.
411 void inode_add_lru(struct inode
*inode
)
413 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
414 I_FREEING
| I_WILL_FREE
)) &&
415 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
416 inode_lru_list_add(inode
);
420 static void inode_lru_list_del(struct inode
*inode
)
423 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
424 this_cpu_dec(nr_unused
);
428 * inode_sb_list_add - add inode to the superblock list of inodes
429 * @inode: inode to add
431 void inode_sb_list_add(struct inode
*inode
)
433 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
434 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
435 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
437 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
439 static inline void inode_sb_list_del(struct inode
*inode
)
441 if (!list_empty(&inode
->i_sb_list
)) {
442 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
443 list_del_init(&inode
->i_sb_list
);
444 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
448 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
452 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
454 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
455 return tmp
& i_hash_mask
;
459 * __insert_inode_hash - hash an inode
460 * @inode: unhashed inode
461 * @hashval: unsigned long value used to locate this object in the
464 * Add an inode to the inode hash for this superblock.
466 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
468 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
470 spin_lock(&inode_hash_lock
);
471 spin_lock(&inode
->i_lock
);
472 hlist_add_head(&inode
->i_hash
, b
);
473 spin_unlock(&inode
->i_lock
);
474 spin_unlock(&inode_hash_lock
);
476 EXPORT_SYMBOL(__insert_inode_hash
);
479 * __remove_inode_hash - remove an inode from the hash
480 * @inode: inode to unhash
482 * Remove an inode from the superblock.
484 void __remove_inode_hash(struct inode
*inode
)
486 spin_lock(&inode_hash_lock
);
487 spin_lock(&inode
->i_lock
);
488 hlist_del_init(&inode
->i_hash
);
489 spin_unlock(&inode
->i_lock
);
490 spin_unlock(&inode_hash_lock
);
492 EXPORT_SYMBOL(__remove_inode_hash
);
494 void clear_inode(struct inode
*inode
)
498 * We have to cycle tree_lock here because reclaim can be still in the
499 * process of removing the last page (in __delete_from_page_cache())
500 * and we must not free mapping under it.
502 spin_lock_irq(&inode
->i_data
.tree_lock
);
503 BUG_ON(inode
->i_data
.nrpages
);
504 BUG_ON(inode
->i_data
.nrshadows
);
505 spin_unlock_irq(&inode
->i_data
.tree_lock
);
506 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
507 BUG_ON(!(inode
->i_state
& I_FREEING
));
508 BUG_ON(inode
->i_state
& I_CLEAR
);
509 /* don't need i_lock here, no concurrent mods to i_state */
510 inode
->i_state
= I_FREEING
| I_CLEAR
;
512 EXPORT_SYMBOL(clear_inode
);
515 * Free the inode passed in, removing it from the lists it is still connected
516 * to. We remove any pages still attached to the inode and wait for any IO that
517 * is still in progress before finally destroying the inode.
519 * An inode must already be marked I_FREEING so that we avoid the inode being
520 * moved back onto lists if we race with other code that manipulates the lists
521 * (e.g. writeback_single_inode). The caller is responsible for setting this.
523 * An inode must already be removed from the LRU list before being evicted from
524 * the cache. This should occur atomically with setting the I_FREEING state
525 * flag, so no inodes here should ever be on the LRU when being evicted.
527 static void evict(struct inode
*inode
)
529 const struct super_operations
*op
= inode
->i_sb
->s_op
;
531 BUG_ON(!(inode
->i_state
& I_FREEING
));
532 BUG_ON(!list_empty(&inode
->i_lru
));
534 if (!list_empty(&inode
->i_io_list
))
535 inode_io_list_del(inode
);
537 inode_sb_list_del(inode
);
540 * Wait for flusher thread to be done with the inode so that filesystem
541 * does not start destroying it while writeback is still running. Since
542 * the inode has I_FREEING set, flusher thread won't start new work on
543 * the inode. We just have to wait for running writeback to finish.
545 inode_wait_for_writeback(inode
);
547 if (op
->evict_inode
) {
548 op
->evict_inode(inode
);
550 truncate_inode_pages_final(&inode
->i_data
);
553 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
555 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
558 remove_inode_hash(inode
);
560 spin_lock(&inode
->i_lock
);
561 wake_up_bit(&inode
->i_state
, __I_NEW
);
562 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
563 spin_unlock(&inode
->i_lock
);
565 destroy_inode(inode
);
569 * dispose_list - dispose of the contents of a local list
570 * @head: the head of the list to free
572 * Dispose-list gets a local list with local inodes in it, so it doesn't
573 * need to worry about list corruption and SMP locks.
575 static void dispose_list(struct list_head
*head
)
577 while (!list_empty(head
)) {
580 inode
= list_first_entry(head
, struct inode
, i_lru
);
581 list_del_init(&inode
->i_lru
);
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
597 void evict_inodes(struct super_block
*sb
)
599 struct inode
*inode
, *next
;
603 spin_lock(&sb
->s_inode_list_lock
);
604 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
605 if (atomic_read(&inode
->i_count
))
608 spin_lock(&inode
->i_lock
);
609 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
610 spin_unlock(&inode
->i_lock
);
614 inode
->i_state
|= I_FREEING
;
615 inode_lru_list_del(inode
);
616 spin_unlock(&inode
->i_lock
);
617 list_add(&inode
->i_lru
, &dispose
);
620 * We can have a ton of inodes to evict at unmount time given
621 * enough memory, check to see if we need to go to sleep for a
622 * bit so we don't livelock.
624 if (need_resched()) {
625 spin_unlock(&sb
->s_inode_list_lock
);
627 dispose_list(&dispose
);
631 spin_unlock(&sb
->s_inode_list_lock
);
633 dispose_list(&dispose
);
637 * invalidate_inodes - attempt to free all inodes on a superblock
638 * @sb: superblock to operate on
639 * @kill_dirty: flag to guide handling of dirty inodes
641 * Attempts to free all inodes for a given superblock. If there were any
642 * busy inodes return a non-zero value, else zero.
643 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
646 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
649 struct inode
*inode
, *next
;
652 spin_lock(&sb
->s_inode_list_lock
);
653 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
654 spin_lock(&inode
->i_lock
);
655 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
656 spin_unlock(&inode
->i_lock
);
659 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
660 spin_unlock(&inode
->i_lock
);
664 if (atomic_read(&inode
->i_count
)) {
665 spin_unlock(&inode
->i_lock
);
670 inode
->i_state
|= I_FREEING
;
671 inode_lru_list_del(inode
);
672 spin_unlock(&inode
->i_lock
);
673 list_add(&inode
->i_lru
, &dispose
);
675 spin_unlock(&sb
->s_inode_list_lock
);
677 dispose_list(&dispose
);
683 * Isolate the inode from the LRU in preparation for freeing it.
685 * Any inodes which are pinned purely because of attached pagecache have their
686 * pagecache removed. If the inode has metadata buffers attached to
687 * mapping->private_list then try to remove them.
689 * If the inode has the I_REFERENCED flag set, then it means that it has been
690 * used recently - the flag is set in iput_final(). When we encounter such an
691 * inode, clear the flag and move it to the back of the LRU so it gets another
692 * pass through the LRU before it gets reclaimed. This is necessary because of
693 * the fact we are doing lazy LRU updates to minimise lock contention so the
694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695 * with this flag set because they are the inodes that are out of order.
697 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
698 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
700 struct list_head
*freeable
= arg
;
701 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
704 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
705 * If we fail to get the lock, just skip it.
707 if (!spin_trylock(&inode
->i_lock
))
711 * Referenced or dirty inodes are still in use. Give them another pass
712 * through the LRU as we canot reclaim them now.
714 if (atomic_read(&inode
->i_count
) ||
715 (inode
->i_state
& ~I_REFERENCED
)) {
716 list_lru_isolate(lru
, &inode
->i_lru
);
717 spin_unlock(&inode
->i_lock
);
718 this_cpu_dec(nr_unused
);
722 /* recently referenced inodes get one more pass */
723 if (inode
->i_state
& I_REFERENCED
) {
724 inode
->i_state
&= ~I_REFERENCED
;
725 spin_unlock(&inode
->i_lock
);
729 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
731 spin_unlock(&inode
->i_lock
);
732 spin_unlock(lru_lock
);
733 if (remove_inode_buffers(inode
)) {
735 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
736 if (current_is_kswapd())
737 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
739 __count_vm_events(PGINODESTEAL
, reap
);
740 if (current
->reclaim_state
)
741 current
->reclaim_state
->reclaimed_slab
+= reap
;
748 WARN_ON(inode
->i_state
& I_NEW
);
749 inode
->i_state
|= I_FREEING
;
750 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
751 spin_unlock(&inode
->i_lock
);
753 this_cpu_dec(nr_unused
);
758 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
759 * This is called from the superblock shrinker function with a number of inodes
760 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
761 * then are freed outside inode_lock by dispose_list().
763 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
768 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
769 inode_lru_isolate
, &freeable
);
770 dispose_list(&freeable
);
774 static void __wait_on_freeing_inode(struct inode
*inode
);
776 * Called with the inode lock held.
778 static struct inode
*find_inode(struct super_block
*sb
,
779 struct hlist_head
*head
,
780 int (*test
)(struct inode
*, void *),
783 struct inode
*inode
= NULL
;
786 hlist_for_each_entry(inode
, head
, i_hash
) {
787 if (inode
->i_sb
!= sb
)
789 if (!test(inode
, data
))
791 spin_lock(&inode
->i_lock
);
792 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
793 __wait_on_freeing_inode(inode
);
797 spin_unlock(&inode
->i_lock
);
804 * find_inode_fast is the fast path version of find_inode, see the comment at
805 * iget_locked for details.
807 static struct inode
*find_inode_fast(struct super_block
*sb
,
808 struct hlist_head
*head
, unsigned long ino
)
810 struct inode
*inode
= NULL
;
813 hlist_for_each_entry(inode
, head
, i_hash
) {
814 if (inode
->i_ino
!= ino
)
816 if (inode
->i_sb
!= sb
)
818 spin_lock(&inode
->i_lock
);
819 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
820 __wait_on_freeing_inode(inode
);
824 spin_unlock(&inode
->i_lock
);
831 * Each cpu owns a range of LAST_INO_BATCH numbers.
832 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
833 * to renew the exhausted range.
835 * This does not significantly increase overflow rate because every CPU can
836 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
837 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
838 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
839 * overflow rate by 2x, which does not seem too significant.
841 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
842 * error if st_ino won't fit in target struct field. Use 32bit counter
843 * here to attempt to avoid that.
845 #define LAST_INO_BATCH 1024
846 static DEFINE_PER_CPU(unsigned int, last_ino
);
848 unsigned int get_next_ino(void)
850 unsigned int *p
= &get_cpu_var(last_ino
);
851 unsigned int res
= *p
;
854 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
855 static atomic_t shared_last_ino
;
856 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
858 res
= next
- LAST_INO_BATCH
;
863 /* get_next_ino should not provide a 0 inode number */
867 put_cpu_var(last_ino
);
870 EXPORT_SYMBOL(get_next_ino
);
873 * new_inode_pseudo - obtain an inode
876 * Allocates a new inode for given superblock.
877 * Inode wont be chained in superblock s_inodes list
879 * - fs can't be unmount
880 * - quotas, fsnotify, writeback can't work
882 struct inode
*new_inode_pseudo(struct super_block
*sb
)
884 struct inode
*inode
= alloc_inode(sb
);
887 spin_lock(&inode
->i_lock
);
889 spin_unlock(&inode
->i_lock
);
890 INIT_LIST_HEAD(&inode
->i_sb_list
);
896 * new_inode - obtain an inode
899 * Allocates a new inode for given superblock. The default gfp_mask
900 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
901 * If HIGHMEM pages are unsuitable or it is known that pages allocated
902 * for the page cache are not reclaimable or migratable,
903 * mapping_set_gfp_mask() must be called with suitable flags on the
904 * newly created inode's mapping
907 struct inode
*new_inode(struct super_block
*sb
)
911 spin_lock_prefetch(&sb
->s_inode_list_lock
);
913 inode
= new_inode_pseudo(sb
);
915 inode_sb_list_add(inode
);
918 EXPORT_SYMBOL(new_inode
);
920 #ifdef CONFIG_DEBUG_LOCK_ALLOC
921 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
923 if (S_ISDIR(inode
->i_mode
)) {
924 struct file_system_type
*type
= inode
->i_sb
->s_type
;
926 /* Set new key only if filesystem hasn't already changed it */
927 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
929 * ensure nobody is actually holding i_mutex
931 mutex_destroy(&inode
->i_mutex
);
932 mutex_init(&inode
->i_mutex
);
933 lockdep_set_class(&inode
->i_mutex
,
934 &type
->i_mutex_dir_key
);
938 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
942 * unlock_new_inode - clear the I_NEW state and wake up any waiters
943 * @inode: new inode to unlock
945 * Called when the inode is fully initialised to clear the new state of the
946 * inode and wake up anyone waiting for the inode to finish initialisation.
948 void unlock_new_inode(struct inode
*inode
)
950 lockdep_annotate_inode_mutex_key(inode
);
951 spin_lock(&inode
->i_lock
);
952 WARN_ON(!(inode
->i_state
& I_NEW
));
953 inode
->i_state
&= ~I_NEW
;
955 wake_up_bit(&inode
->i_state
, __I_NEW
);
956 spin_unlock(&inode
->i_lock
);
958 EXPORT_SYMBOL(unlock_new_inode
);
961 * lock_two_nondirectories - take two i_mutexes on non-directory objects
963 * Lock any non-NULL argument that is not a directory.
964 * Zero, one or two objects may be locked by this function.
966 * @inode1: first inode to lock
967 * @inode2: second inode to lock
969 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
972 swap(inode1
, inode2
);
974 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
975 mutex_lock(&inode1
->i_mutex
);
976 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
977 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_NONDIR2
);
979 EXPORT_SYMBOL(lock_two_nondirectories
);
982 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
983 * @inode1: first inode to unlock
984 * @inode2: second inode to unlock
986 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
988 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
989 mutex_unlock(&inode1
->i_mutex
);
990 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
991 mutex_unlock(&inode2
->i_mutex
);
993 EXPORT_SYMBOL(unlock_two_nondirectories
);
996 * iget5_locked - obtain an inode from a mounted file system
997 * @sb: super block of file system
998 * @hashval: hash value (usually inode number) to get
999 * @test: callback used for comparisons between inodes
1000 * @set: callback used to initialize a new struct inode
1001 * @data: opaque data pointer to pass to @test and @set
1003 * Search for the inode specified by @hashval and @data in the inode cache,
1004 * and if present it is return it with an increased reference count. This is
1005 * a generalized version of iget_locked() for file systems where the inode
1006 * number is not sufficient for unique identification of an inode.
1008 * If the inode is not in cache, allocate a new inode and return it locked,
1009 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1010 * before unlocking it via unlock_new_inode().
1012 * Note both @test and @set are called with the inode_hash_lock held, so can't
1015 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1016 int (*test
)(struct inode
*, void *),
1017 int (*set
)(struct inode
*, void *), void *data
)
1019 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1020 struct inode
*inode
;
1022 spin_lock(&inode_hash_lock
);
1023 inode
= find_inode(sb
, head
, test
, data
);
1024 spin_unlock(&inode_hash_lock
);
1027 wait_on_inode(inode
);
1031 inode
= alloc_inode(sb
);
1035 spin_lock(&inode_hash_lock
);
1036 /* We released the lock, so.. */
1037 old
= find_inode(sb
, head
, test
, data
);
1039 if (set(inode
, data
))
1042 spin_lock(&inode
->i_lock
);
1043 inode
->i_state
= I_NEW
;
1044 hlist_add_head(&inode
->i_hash
, head
);
1045 spin_unlock(&inode
->i_lock
);
1046 inode_sb_list_add(inode
);
1047 spin_unlock(&inode_hash_lock
);
1049 /* Return the locked inode with I_NEW set, the
1050 * caller is responsible for filling in the contents
1056 * Uhhuh, somebody else created the same inode under
1057 * us. Use the old inode instead of the one we just
1060 spin_unlock(&inode_hash_lock
);
1061 destroy_inode(inode
);
1063 wait_on_inode(inode
);
1068 spin_unlock(&inode_hash_lock
);
1069 destroy_inode(inode
);
1072 EXPORT_SYMBOL(iget5_locked
);
1075 * iget_locked - obtain an inode from a mounted file system
1076 * @sb: super block of file system
1077 * @ino: inode number to get
1079 * Search for the inode specified by @ino in the inode cache and if present
1080 * return it with an increased reference count. This is for file systems
1081 * where the inode number is sufficient for unique identification of an inode.
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1087 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1089 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1090 struct inode
*inode
;
1092 spin_lock(&inode_hash_lock
);
1093 inode
= find_inode_fast(sb
, head
, ino
);
1094 spin_unlock(&inode_hash_lock
);
1096 wait_on_inode(inode
);
1100 inode
= alloc_inode(sb
);
1104 spin_lock(&inode_hash_lock
);
1105 /* We released the lock, so.. */
1106 old
= find_inode_fast(sb
, head
, ino
);
1109 spin_lock(&inode
->i_lock
);
1110 inode
->i_state
= I_NEW
;
1111 hlist_add_head(&inode
->i_hash
, head
);
1112 spin_unlock(&inode
->i_lock
);
1113 inode_sb_list_add(inode
);
1114 spin_unlock(&inode_hash_lock
);
1116 /* Return the locked inode with I_NEW set, the
1117 * caller is responsible for filling in the contents
1123 * Uhhuh, somebody else created the same inode under
1124 * us. Use the old inode instead of the one we just
1127 spin_unlock(&inode_hash_lock
);
1128 destroy_inode(inode
);
1130 wait_on_inode(inode
);
1134 EXPORT_SYMBOL(iget_locked
);
1137 * search the inode cache for a matching inode number.
1138 * If we find one, then the inode number we are trying to
1139 * allocate is not unique and so we should not use it.
1141 * Returns 1 if the inode number is unique, 0 if it is not.
1143 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1145 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1146 struct inode
*inode
;
1148 spin_lock(&inode_hash_lock
);
1149 hlist_for_each_entry(inode
, b
, i_hash
) {
1150 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1151 spin_unlock(&inode_hash_lock
);
1155 spin_unlock(&inode_hash_lock
);
1161 * iunique - get a unique inode number
1163 * @max_reserved: highest reserved inode number
1165 * Obtain an inode number that is unique on the system for a given
1166 * superblock. This is used by file systems that have no natural
1167 * permanent inode numbering system. An inode number is returned that
1168 * is higher than the reserved limit but unique.
1171 * With a large number of inodes live on the file system this function
1172 * currently becomes quite slow.
1174 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1177 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1178 * error if st_ino won't fit in target struct field. Use 32bit counter
1179 * here to attempt to avoid that.
1181 static DEFINE_SPINLOCK(iunique_lock
);
1182 static unsigned int counter
;
1185 spin_lock(&iunique_lock
);
1187 if (counter
<= max_reserved
)
1188 counter
= max_reserved
+ 1;
1190 } while (!test_inode_iunique(sb
, res
));
1191 spin_unlock(&iunique_lock
);
1195 EXPORT_SYMBOL(iunique
);
1197 struct inode
*igrab(struct inode
*inode
)
1199 spin_lock(&inode
->i_lock
);
1200 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1202 spin_unlock(&inode
->i_lock
);
1204 spin_unlock(&inode
->i_lock
);
1206 * Handle the case where s_op->clear_inode is not been
1207 * called yet, and somebody is calling igrab
1208 * while the inode is getting freed.
1214 EXPORT_SYMBOL(igrab
);
1217 * ilookup5_nowait - search for an inode in the inode cache
1218 * @sb: super block of file system to search
1219 * @hashval: hash value (usually inode number) to search for
1220 * @test: callback used for comparisons between inodes
1221 * @data: opaque data pointer to pass to @test
1223 * Search for the inode specified by @hashval and @data in the inode cache.
1224 * If the inode is in the cache, the inode is returned with an incremented
1227 * Note: I_NEW is not waited upon so you have to be very careful what you do
1228 * with the returned inode. You probably should be using ilookup5() instead.
1230 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1232 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1233 int (*test
)(struct inode
*, void *), void *data
)
1235 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1236 struct inode
*inode
;
1238 spin_lock(&inode_hash_lock
);
1239 inode
= find_inode(sb
, head
, test
, data
);
1240 spin_unlock(&inode_hash_lock
);
1244 EXPORT_SYMBOL(ilookup5_nowait
);
1247 * ilookup5 - search for an inode in the inode cache
1248 * @sb: super block of file system to search
1249 * @hashval: hash value (usually inode number) to search for
1250 * @test: callback used for comparisons between inodes
1251 * @data: opaque data pointer to pass to @test
1253 * Search for the inode specified by @hashval and @data in the inode cache,
1254 * and if the inode is in the cache, return the inode with an incremented
1255 * reference count. Waits on I_NEW before returning the inode.
1256 * returned with an incremented reference count.
1258 * This is a generalized version of ilookup() for file systems where the
1259 * inode number is not sufficient for unique identification of an inode.
1261 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1263 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1264 int (*test
)(struct inode
*, void *), void *data
)
1266 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1269 wait_on_inode(inode
);
1272 EXPORT_SYMBOL(ilookup5
);
1275 * ilookup - search for an inode in the inode cache
1276 * @sb: super block of file system to search
1277 * @ino: inode number to search for
1279 * Search for the inode @ino in the inode cache, and if the inode is in the
1280 * cache, the inode is returned with an incremented reference count.
1282 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1284 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1285 struct inode
*inode
;
1287 spin_lock(&inode_hash_lock
);
1288 inode
= find_inode_fast(sb
, head
, ino
);
1289 spin_unlock(&inode_hash_lock
);
1292 wait_on_inode(inode
);
1295 EXPORT_SYMBOL(ilookup
);
1298 * find_inode_nowait - find an inode in the inode cache
1299 * @sb: super block of file system to search
1300 * @hashval: hash value (usually inode number) to search for
1301 * @match: callback used for comparisons between inodes
1302 * @data: opaque data pointer to pass to @match
1304 * Search for the inode specified by @hashval and @data in the inode
1305 * cache, where the helper function @match will return 0 if the inode
1306 * does not match, 1 if the inode does match, and -1 if the search
1307 * should be stopped. The @match function must be responsible for
1308 * taking the i_lock spin_lock and checking i_state for an inode being
1309 * freed or being initialized, and incrementing the reference count
1310 * before returning 1. It also must not sleep, since it is called with
1311 * the inode_hash_lock spinlock held.
1313 * This is a even more generalized version of ilookup5() when the
1314 * function must never block --- find_inode() can block in
1315 * __wait_on_freeing_inode() --- or when the caller can not increment
1316 * the reference count because the resulting iput() might cause an
1317 * inode eviction. The tradeoff is that the @match funtion must be
1318 * very carefully implemented.
1320 struct inode
*find_inode_nowait(struct super_block
*sb
,
1321 unsigned long hashval
,
1322 int (*match
)(struct inode
*, unsigned long,
1326 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1327 struct inode
*inode
, *ret_inode
= NULL
;
1330 spin_lock(&inode_hash_lock
);
1331 hlist_for_each_entry(inode
, head
, i_hash
) {
1332 if (inode
->i_sb
!= sb
)
1334 mval
= match(inode
, hashval
, data
);
1342 spin_unlock(&inode_hash_lock
);
1345 EXPORT_SYMBOL(find_inode_nowait
);
1347 int insert_inode_locked(struct inode
*inode
)
1349 struct super_block
*sb
= inode
->i_sb
;
1350 ino_t ino
= inode
->i_ino
;
1351 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1354 struct inode
*old
= NULL
;
1355 spin_lock(&inode_hash_lock
);
1356 hlist_for_each_entry(old
, head
, i_hash
) {
1357 if (old
->i_ino
!= ino
)
1359 if (old
->i_sb
!= sb
)
1361 spin_lock(&old
->i_lock
);
1362 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1363 spin_unlock(&old
->i_lock
);
1369 spin_lock(&inode
->i_lock
);
1370 inode
->i_state
|= I_NEW
;
1371 hlist_add_head(&inode
->i_hash
, head
);
1372 spin_unlock(&inode
->i_lock
);
1373 spin_unlock(&inode_hash_lock
);
1377 spin_unlock(&old
->i_lock
);
1378 spin_unlock(&inode_hash_lock
);
1380 if (unlikely(!inode_unhashed(old
))) {
1387 EXPORT_SYMBOL(insert_inode_locked
);
1389 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1390 int (*test
)(struct inode
*, void *), void *data
)
1392 struct super_block
*sb
= inode
->i_sb
;
1393 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1396 struct inode
*old
= NULL
;
1398 spin_lock(&inode_hash_lock
);
1399 hlist_for_each_entry(old
, head
, i_hash
) {
1400 if (old
->i_sb
!= sb
)
1402 if (!test(old
, data
))
1404 spin_lock(&old
->i_lock
);
1405 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1406 spin_unlock(&old
->i_lock
);
1412 spin_lock(&inode
->i_lock
);
1413 inode
->i_state
|= I_NEW
;
1414 hlist_add_head(&inode
->i_hash
, head
);
1415 spin_unlock(&inode
->i_lock
);
1416 spin_unlock(&inode_hash_lock
);
1420 spin_unlock(&old
->i_lock
);
1421 spin_unlock(&inode_hash_lock
);
1423 if (unlikely(!inode_unhashed(old
))) {
1430 EXPORT_SYMBOL(insert_inode_locked4
);
1433 int generic_delete_inode(struct inode
*inode
)
1437 EXPORT_SYMBOL(generic_delete_inode
);
1440 * Called when we're dropping the last reference
1443 * Call the FS "drop_inode()" function, defaulting to
1444 * the legacy UNIX filesystem behaviour. If it tells
1445 * us to evict inode, do so. Otherwise, retain inode
1446 * in cache if fs is alive, sync and evict if fs is
1449 static void iput_final(struct inode
*inode
)
1451 struct super_block
*sb
= inode
->i_sb
;
1452 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1455 WARN_ON(inode
->i_state
& I_NEW
);
1458 drop
= op
->drop_inode(inode
);
1460 drop
= generic_drop_inode(inode
);
1462 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1463 inode
->i_state
|= I_REFERENCED
;
1464 inode_add_lru(inode
);
1465 spin_unlock(&inode
->i_lock
);
1470 inode
->i_state
|= I_WILL_FREE
;
1471 spin_unlock(&inode
->i_lock
);
1472 write_inode_now(inode
, 1);
1473 spin_lock(&inode
->i_lock
);
1474 WARN_ON(inode
->i_state
& I_NEW
);
1475 inode
->i_state
&= ~I_WILL_FREE
;
1478 inode
->i_state
|= I_FREEING
;
1479 if (!list_empty(&inode
->i_lru
))
1480 inode_lru_list_del(inode
);
1481 spin_unlock(&inode
->i_lock
);
1487 * iput - put an inode
1488 * @inode: inode to put
1490 * Puts an inode, dropping its usage count. If the inode use count hits
1491 * zero, the inode is then freed and may also be destroyed.
1493 * Consequently, iput() can sleep.
1495 void iput(struct inode
*inode
)
1499 BUG_ON(inode
->i_state
& I_CLEAR
);
1501 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1502 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1503 atomic_inc(&inode
->i_count
);
1504 inode
->i_state
&= ~I_DIRTY_TIME
;
1505 spin_unlock(&inode
->i_lock
);
1506 trace_writeback_lazytime_iput(inode
);
1507 mark_inode_dirty_sync(inode
);
1513 EXPORT_SYMBOL(iput
);
1516 * bmap - find a block number in a file
1517 * @inode: inode of file
1518 * @block: block to find
1520 * Returns the block number on the device holding the inode that
1521 * is the disk block number for the block of the file requested.
1522 * That is, asked for block 4 of inode 1 the function will return the
1523 * disk block relative to the disk start that holds that block of the
1526 sector_t
bmap(struct inode
*inode
, sector_t block
)
1529 if (inode
->i_mapping
->a_ops
->bmap
)
1530 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1533 EXPORT_SYMBOL(bmap
);
1536 * With relative atime, only update atime if the previous atime is
1537 * earlier than either the ctime or mtime or if at least a day has
1538 * passed since the last atime update.
1540 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1541 struct timespec now
)
1544 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1547 * Is mtime younger than atime? If yes, update atime:
1549 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1552 * Is ctime younger than atime? If yes, update atime:
1554 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1558 * Is the previous atime value older than a day? If yes,
1561 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1564 * Good, we can skip the atime update:
1569 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1571 int iflags
= I_DIRTY_TIME
;
1573 if (flags
& S_ATIME
)
1574 inode
->i_atime
= *time
;
1575 if (flags
& S_VERSION
)
1576 inode_inc_iversion(inode
);
1577 if (flags
& S_CTIME
)
1578 inode
->i_ctime
= *time
;
1579 if (flags
& S_MTIME
)
1580 inode
->i_mtime
= *time
;
1582 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
) || (flags
& S_VERSION
))
1583 iflags
|= I_DIRTY_SYNC
;
1584 __mark_inode_dirty(inode
, iflags
);
1587 EXPORT_SYMBOL(generic_update_time
);
1590 * This does the actual work of updating an inodes time or version. Must have
1591 * had called mnt_want_write() before calling this.
1593 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1595 int (*update_time
)(struct inode
*, struct timespec
*, int);
1597 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1598 generic_update_time
;
1600 return update_time(inode
, time
, flags
);
1604 * touch_atime - update the access time
1605 * @path: the &struct path to update
1606 * @inode: inode to update
1608 * Update the accessed time on an inode and mark it for writeback.
1609 * This function automatically handles read only file systems and media,
1610 * as well as the "noatime" flag and inode specific "noatime" markers.
1612 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1614 struct vfsmount
*mnt
= path
->mnt
;
1615 struct timespec now
;
1617 if (inode
->i_flags
& S_NOATIME
)
1619 if (IS_NOATIME(inode
))
1621 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1624 if (mnt
->mnt_flags
& MNT_NOATIME
)
1626 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1629 now
= current_fs_time(inode
->i_sb
);
1631 if (!relatime_need_update(mnt
, inode
, now
))
1634 if (timespec_equal(&inode
->i_atime
, &now
))
1640 void touch_atime(const struct path
*path
)
1642 struct vfsmount
*mnt
= path
->mnt
;
1643 struct inode
*inode
= d_inode(path
->dentry
);
1644 struct timespec now
;
1646 if (!atime_needs_update(path
, inode
))
1649 if (!sb_start_write_trylock(inode
->i_sb
))
1652 if (__mnt_want_write(mnt
) != 0)
1655 * File systems can error out when updating inodes if they need to
1656 * allocate new space to modify an inode (such is the case for
1657 * Btrfs), but since we touch atime while walking down the path we
1658 * really don't care if we failed to update the atime of the file,
1659 * so just ignore the return value.
1660 * We may also fail on filesystems that have the ability to make parts
1661 * of the fs read only, e.g. subvolumes in Btrfs.
1663 now
= current_fs_time(inode
->i_sb
);
1664 update_time(inode
, &now
, S_ATIME
);
1665 __mnt_drop_write(mnt
);
1667 sb_end_write(inode
->i_sb
);
1669 EXPORT_SYMBOL(touch_atime
);
1672 * The logic we want is
1674 * if suid or (sgid and xgrp)
1677 int should_remove_suid(struct dentry
*dentry
)
1679 umode_t mode
= d_inode(dentry
)->i_mode
;
1682 /* suid always must be killed */
1683 if (unlikely(mode
& S_ISUID
))
1684 kill
= ATTR_KILL_SUID
;
1687 * sgid without any exec bits is just a mandatory locking mark; leave
1688 * it alone. If some exec bits are set, it's a real sgid; kill it.
1690 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1691 kill
|= ATTR_KILL_SGID
;
1693 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1698 EXPORT_SYMBOL(should_remove_suid
);
1701 * Return mask of changes for notify_change() that need to be done as a
1702 * response to write or truncate. Return 0 if nothing has to be changed.
1703 * Negative value on error (change should be denied).
1705 int dentry_needs_remove_privs(struct dentry
*dentry
)
1707 struct inode
*inode
= d_inode(dentry
);
1711 if (IS_NOSEC(inode
))
1714 mask
= should_remove_suid(dentry
);
1715 ret
= security_inode_need_killpriv(dentry
);
1719 mask
|= ATTR_KILL_PRIV
;
1722 EXPORT_SYMBOL(dentry_needs_remove_privs
);
1724 static int __remove_privs(struct dentry
*dentry
, int kill
)
1726 struct iattr newattrs
;
1728 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1730 * Note we call this on write, so notify_change will not
1731 * encounter any conflicting delegations:
1733 return notify_change(dentry
, &newattrs
, NULL
);
1737 * Remove special file priviledges (suid, capabilities) when file is written
1740 int file_remove_privs(struct file
*file
)
1742 struct dentry
*dentry
= file_dentry(file
);
1743 struct inode
*inode
= file_inode(file
);
1748 * Fast path for nothing security related.
1749 * As well for non-regular files, e.g. blkdev inodes.
1750 * For example, blkdev_write_iter() might get here
1751 * trying to remove privs which it is not allowed to.
1753 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
1756 kill
= dentry_needs_remove_privs(dentry
);
1760 error
= __remove_privs(dentry
, kill
);
1762 inode_has_no_xattr(inode
);
1766 EXPORT_SYMBOL(file_remove_privs
);
1769 * file_update_time - update mtime and ctime time
1770 * @file: file accessed
1772 * Update the mtime and ctime members of an inode and mark the inode
1773 * for writeback. Note that this function is meant exclusively for
1774 * usage in the file write path of filesystems, and filesystems may
1775 * choose to explicitly ignore update via this function with the
1776 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1777 * timestamps are handled by the server. This can return an error for
1778 * file systems who need to allocate space in order to update an inode.
1781 int file_update_time(struct file
*file
)
1783 struct inode
*inode
= file_inode(file
);
1784 struct timespec now
;
1788 /* First try to exhaust all avenues to not sync */
1789 if (IS_NOCMTIME(inode
))
1792 now
= current_fs_time(inode
->i_sb
);
1793 if (!timespec_equal(&inode
->i_mtime
, &now
))
1796 if (!timespec_equal(&inode
->i_ctime
, &now
))
1799 if (IS_I_VERSION(inode
))
1800 sync_it
|= S_VERSION
;
1805 /* Finally allowed to write? Takes lock. */
1806 if (__mnt_want_write_file(file
))
1809 ret
= update_time(inode
, &now
, sync_it
);
1810 __mnt_drop_write_file(file
);
1814 EXPORT_SYMBOL(file_update_time
);
1816 int inode_needs_sync(struct inode
*inode
)
1820 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1824 EXPORT_SYMBOL(inode_needs_sync
);
1827 * If we try to find an inode in the inode hash while it is being
1828 * deleted, we have to wait until the filesystem completes its
1829 * deletion before reporting that it isn't found. This function waits
1830 * until the deletion _might_ have completed. Callers are responsible
1831 * to recheck inode state.
1833 * It doesn't matter if I_NEW is not set initially, a call to
1834 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1837 static void __wait_on_freeing_inode(struct inode
*inode
)
1839 wait_queue_head_t
*wq
;
1840 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1841 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1842 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1843 spin_unlock(&inode
->i_lock
);
1844 spin_unlock(&inode_hash_lock
);
1846 finish_wait(wq
, &wait
.wait
);
1847 spin_lock(&inode_hash_lock
);
1850 static __initdata
unsigned long ihash_entries
;
1851 static int __init
set_ihash_entries(char *str
)
1855 ihash_entries
= simple_strtoul(str
, &str
, 0);
1858 __setup("ihash_entries=", set_ihash_entries
);
1861 * Initialize the waitqueues and inode hash table.
1863 void __init
inode_init_early(void)
1867 /* If hashes are distributed across NUMA nodes, defer
1868 * hash allocation until vmalloc space is available.
1874 alloc_large_system_hash("Inode-cache",
1875 sizeof(struct hlist_head
),
1884 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1885 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1888 void __init
inode_init(void)
1892 /* inode slab cache */
1893 inode_cachep
= kmem_cache_create("inode_cache",
1894 sizeof(struct inode
),
1896 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1900 /* Hash may have been set up in inode_init_early */
1905 alloc_large_system_hash("Inode-cache",
1906 sizeof(struct hlist_head
),
1915 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1916 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1919 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1921 inode
->i_mode
= mode
;
1922 if (S_ISCHR(mode
)) {
1923 inode
->i_fop
= &def_chr_fops
;
1924 inode
->i_rdev
= rdev
;
1925 } else if (S_ISBLK(mode
)) {
1926 inode
->i_fop
= &def_blk_fops
;
1927 inode
->i_rdev
= rdev
;
1928 } else if (S_ISFIFO(mode
))
1929 inode
->i_fop
= &pipefifo_fops
;
1930 else if (S_ISSOCK(mode
))
1931 ; /* leave it no_open_fops */
1933 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1934 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1937 EXPORT_SYMBOL(init_special_inode
);
1940 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1942 * @dir: Directory inode
1943 * @mode: mode of the new inode
1945 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1948 inode
->i_uid
= current_fsuid();
1949 if (dir
&& dir
->i_mode
& S_ISGID
) {
1950 inode
->i_gid
= dir
->i_gid
;
1952 /* Directories are special, and always inherit S_ISGID */
1955 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
1956 !in_group_p(inode
->i_gid
) &&
1957 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
1960 inode
->i_gid
= current_fsgid();
1961 inode
->i_mode
= mode
;
1963 EXPORT_SYMBOL(inode_init_owner
);
1966 * inode_owner_or_capable - check current task permissions to inode
1967 * @inode: inode being checked
1969 * Return true if current either has CAP_FOWNER in a namespace with the
1970 * inode owner uid mapped, or owns the file.
1972 bool inode_owner_or_capable(const struct inode
*inode
)
1974 struct user_namespace
*ns
;
1976 if (uid_eq(current_fsuid(), inode
->i_uid
))
1979 ns
= current_user_ns();
1980 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
1984 EXPORT_SYMBOL(inode_owner_or_capable
);
1987 * Direct i/o helper functions
1989 static void __inode_dio_wait(struct inode
*inode
)
1991 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1992 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1995 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1996 if (atomic_read(&inode
->i_dio_count
))
1998 } while (atomic_read(&inode
->i_dio_count
));
1999 finish_wait(wq
, &q
.wait
);
2003 * inode_dio_wait - wait for outstanding DIO requests to finish
2004 * @inode: inode to wait for
2006 * Waits for all pending direct I/O requests to finish so that we can
2007 * proceed with a truncate or equivalent operation.
2009 * Must be called under a lock that serializes taking new references
2010 * to i_dio_count, usually by inode->i_mutex.
2012 void inode_dio_wait(struct inode
*inode
)
2014 if (atomic_read(&inode
->i_dio_count
))
2015 __inode_dio_wait(inode
);
2017 EXPORT_SYMBOL(inode_dio_wait
);
2020 * inode_set_flags - atomically set some inode flags
2022 * Note: the caller should be holding i_mutex, or else be sure that
2023 * they have exclusive access to the inode structure (i.e., while the
2024 * inode is being instantiated). The reason for the cmpxchg() loop
2025 * --- which wouldn't be necessary if all code paths which modify
2026 * i_flags actually followed this rule, is that there is at least one
2027 * code path which doesn't today so we use cmpxchg() out of an abundance
2030 * In the long run, i_mutex is overkill, and we should probably look
2031 * at using the i_lock spinlock to protect i_flags, and then make sure
2032 * it is so documented in include/linux/fs.h and that all code follows
2033 * the locking convention!!
2035 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2038 unsigned int old_flags
, new_flags
;
2040 WARN_ON_ONCE(flags
& ~mask
);
2042 old_flags
= ACCESS_ONCE(inode
->i_flags
);
2043 new_flags
= (old_flags
& ~mask
) | flags
;
2044 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2045 new_flags
) != old_flags
));
2047 EXPORT_SYMBOL(inode_set_flags
);
2049 void inode_nohighmem(struct inode
*inode
)
2051 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2053 EXPORT_SYMBOL(inode_nohighmem
);