Merge tag 'spi-v5.0' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[linux/fpc-iii.git] / Documentation / vm / hmm.rst
blobcdf3911582c863403f4f08dd68404a642c9d285a
1 .. hmm:
3 =====================================
4 Heterogeneous Memory Management (HMM)
5 =====================================
7 Provide infrastructure and helpers to integrate non-conventional memory (device
8 memory like GPU on board memory) into regular kernel path, with the cornerstone
9 of this being specialized struct page for such memory (see sections 5 to 7 of
10 this document).
12 HMM also provides optional helpers for SVM (Share Virtual Memory), i.e.,
13 allowing a device to transparently access program address coherently with
14 the CPU meaning that any valid pointer on the CPU is also a valid pointer
15 for the device. This is becoming mandatory to simplify the use of advanced
16 heterogeneous computing where GPU, DSP, or FPGA are used to perform various
17 computations on behalf of a process.
19 This document is divided as follows: in the first section I expose the problems
20 related to using device specific memory allocators. In the second section, I
21 expose the hardware limitations that are inherent to many platforms. The third
22 section gives an overview of the HMM design. The fourth section explains how
23 CPU page-table mirroring works and the purpose of HMM in this context. The
24 fifth section deals with how device memory is represented inside the kernel.
25 Finally, the last section presents a new migration helper that allows lever-
26 aging the device DMA engine.
28 .. contents:: :local:
30 Problems of using a device specific memory allocator
31 ====================================================
33 Devices with a large amount of on board memory (several gigabytes) like GPUs
34 have historically managed their memory through dedicated driver specific APIs.
35 This creates a disconnect between memory allocated and managed by a device
36 driver and regular application memory (private anonymous, shared memory, or
37 regular file backed memory). From here on I will refer to this aspect as split
38 address space. I use shared address space to refer to the opposite situation:
39 i.e., one in which any application memory region can be used by a device
40 transparently.
42 Split address space happens because device can only access memory allocated
43 through device specific API. This implies that all memory objects in a program
44 are not equal from the device point of view which complicates large programs
45 that rely on a wide set of libraries.
47 Concretely this means that code that wants to leverage devices like GPUs needs
48 to copy object between generically allocated memory (malloc, mmap private, mmap
49 share) and memory allocated through the device driver API (this still ends up
50 with an mmap but of the device file).
52 For flat data sets (array, grid, image, ...) this isn't too hard to achieve but
53 complex data sets (list, tree, ...) are hard to get right. Duplicating a
54 complex data set needs to re-map all the pointer relations between each of its
55 elements. This is error prone and program gets harder to debug because of the
56 duplicate data set and addresses.
58 Split address space also means that libraries cannot transparently use data
59 they are getting from the core program or another library and thus each library
60 might have to duplicate its input data set using the device specific memory
61 allocator. Large projects suffer from this and waste resources because of the
62 various memory copies.
64 Duplicating each library API to accept as input or output memory allocated by
65 each device specific allocator is not a viable option. It would lead to a
66 combinatorial explosion in the library entry points.
68 Finally, with the advance of high level language constructs (in C++ but in
69 other languages too) it is now possible for the compiler to leverage GPUs and
70 other devices without programmer knowledge. Some compiler identified patterns
71 are only do-able with a shared address space. It is also more reasonable to use
72 a shared address space for all other patterns.
75 I/O bus, device memory characteristics
76 ======================================
78 I/O buses cripple shared address spaces due to a few limitations. Most I/O
79 buses only allow basic memory access from device to main memory; even cache
80 coherency is often optional. Access to device memory from CPU is even more
81 limited. More often than not, it is not cache coherent.
83 If we only consider the PCIE bus, then a device can access main memory (often
84 through an IOMMU) and be cache coherent with the CPUs. However, it only allows
85 a limited set of atomic operations from device on main memory. This is worse
86 in the other direction: the CPU can only access a limited range of the device
87 memory and cannot perform atomic operations on it. Thus device memory cannot
88 be considered the same as regular memory from the kernel point of view.
90 Another crippling factor is the limited bandwidth (~32GBytes/s with PCIE 4.0
91 and 16 lanes). This is 33 times less than the fastest GPU memory (1 TBytes/s).
92 The final limitation is latency. Access to main memory from the device has an
93 order of magnitude higher latency than when the device accesses its own memory.
95 Some platforms are developing new I/O buses or additions/modifications to PCIE
96 to address some of these limitations (OpenCAPI, CCIX). They mainly allow two-
97 way cache coherency between CPU and device and allow all atomic operations the
98 architecture supports. Sadly, not all platforms are following this trend and
99 some major architectures are left without hardware solutions to these problems.
101 So for shared address space to make sense, not only must we allow devices to
102 access any memory but we must also permit any memory to be migrated to device
103 memory while device is using it (blocking CPU access while it happens).
106 Shared address space and migration
107 ==================================
109 HMM intends to provide two main features. First one is to share the address
110 space by duplicating the CPU page table in the device page table so the same
111 address points to the same physical memory for any valid main memory address in
112 the process address space.
114 To achieve this, HMM offers a set of helpers to populate the device page table
115 while keeping track of CPU page table updates. Device page table updates are
116 not as easy as CPU page table updates. To update the device page table, you must
117 allocate a buffer (or use a pool of pre-allocated buffers) and write GPU
118 specific commands in it to perform the update (unmap, cache invalidations, and
119 flush, ...). This cannot be done through common code for all devices. Hence
120 why HMM provides helpers to factor out everything that can be while leaving the
121 hardware specific details to the device driver.
123 The second mechanism HMM provides is a new kind of ZONE_DEVICE memory that
124 allows allocating a struct page for each page of the device memory. Those pages
125 are special because the CPU cannot map them. However, they allow migrating
126 main memory to device memory using existing migration mechanisms and everything
127 looks like a page is swapped out to disk from the CPU point of view. Using a
128 struct page gives the easiest and cleanest integration with existing mm mech-
129 anisms. Here again, HMM only provides helpers, first to hotplug new ZONE_DEVICE
130 memory for the device memory and second to perform migration. Policy decisions
131 of what and when to migrate things is left to the device driver.
133 Note that any CPU access to a device page triggers a page fault and a migration
134 back to main memory. For example, when a page backing a given CPU address A is
135 migrated from a main memory page to a device page, then any CPU access to
136 address A triggers a page fault and initiates a migration back to main memory.
138 With these two features, HMM not only allows a device to mirror process address
139 space and keeping both CPU and device page table synchronized, but also lever-
140 ages device memory by migrating the part of the data set that is actively being
141 used by the device.
144 Address space mirroring implementation and API
145 ==============================================
147 Address space mirroring's main objective is to allow duplication of a range of
148 CPU page table into a device page table; HMM helps keep both synchronized. A
149 device driver that wants to mirror a process address space must start with the
150 registration of an hmm_mirror struct::
152  int hmm_mirror_register(struct hmm_mirror *mirror,
153                          struct mm_struct *mm);
154  int hmm_mirror_register_locked(struct hmm_mirror *mirror,
155                                 struct mm_struct *mm);
158 The locked variant is to be used when the driver is already holding mmap_sem
159 of the mm in write mode. The mirror struct has a set of callbacks that are used
160 to propagate CPU page tables::
162  struct hmm_mirror_ops {
163      /* sync_cpu_device_pagetables() - synchronize page tables
164       *
165       * @mirror: pointer to struct hmm_mirror
166       * @update_type: type of update that occurred to the CPU page table
167       * @start: virtual start address of the range to update
168       * @end: virtual end address of the range to update
169       *
170       * This callback ultimately originates from mmu_notifiers when the CPU
171       * page table is updated. The device driver must update its page table
172       * in response to this callback. The update argument tells what action
173       * to perform.
174       *
175       * The device driver must not return from this callback until the device
176       * page tables are completely updated (TLBs flushed, etc); this is a
177       * synchronous call.
178       */
179       void (*update)(struct hmm_mirror *mirror,
180                      enum hmm_update action,
181                      unsigned long start,
182                      unsigned long end);
183  };
185 The device driver must perform the update action to the range (mark range
186 read only, or fully unmap, ...). The device must be done with the update before
187 the driver callback returns.
189 When the device driver wants to populate a range of virtual addresses, it can
190 use either::
192   int hmm_vma_get_pfns(struct vm_area_struct *vma,
193                       struct hmm_range *range,
194                       unsigned long start,
195                       unsigned long end,
196                       hmm_pfn_t *pfns);
197  int hmm_vma_fault(struct vm_area_struct *vma,
198                    struct hmm_range *range,
199                    unsigned long start,
200                    unsigned long end,
201                    hmm_pfn_t *pfns,
202                    bool write,
203                    bool block);
205 The first one (hmm_vma_get_pfns()) will only fetch present CPU page table
206 entries and will not trigger a page fault on missing or non-present entries.
207 The second one does trigger a page fault on missing or read-only entry if the
208 write parameter is true. Page faults use the generic mm page fault code path
209 just like a CPU page fault.
211 Both functions copy CPU page table entries into their pfns array argument. Each
212 entry in that array corresponds to an address in the virtual range. HMM
213 provides a set of flags to help the driver identify special CPU page table
214 entries.
216 Locking with the update() callback is the most important aspect the driver must
217 respect in order to keep things properly synchronized. The usage pattern is::
219  int driver_populate_range(...)
221       struct hmm_range range;
222       ...
223  again:
224       ret = hmm_vma_get_pfns(vma, &range, start, end, pfns);
225       if (ret)
226           return ret;
227       take_lock(driver->update);
228       if (!hmm_vma_range_done(vma, &range)) {
229           release_lock(driver->update);
230           goto again;
231       }
233       // Use pfns array content to update device page table
235       release_lock(driver->update);
236       return 0;
239 The driver->update lock is the same lock that the driver takes inside its
240 update() callback. That lock must be held before hmm_vma_range_done() to avoid
241 any race with a concurrent CPU page table update.
243 HMM implements all this on top of the mmu_notifier API because we wanted a
244 simpler API and also to be able to perform optimizations latter on like doing
245 concurrent device updates in multi-devices scenario.
247 HMM also serves as an impedance mismatch between how CPU page table updates
248 are done (by CPU write to the page table and TLB flushes) and how devices
249 update their own page table. Device updates are a multi-step process. First,
250 appropriate commands are written to a buffer, then this buffer is scheduled for
251 execution on the device. It is only once the device has executed commands in
252 the buffer that the update is done. Creating and scheduling the update command
253 buffer can happen concurrently for multiple devices. Waiting for each device to
254 report commands as executed is serialized (there is no point in doing this
255 concurrently).
258 Represent and manage device memory from core kernel point of view
259 =================================================================
261 Several different designs were tried to support device memory. First one used
262 a device specific data structure to keep information about migrated memory and
263 HMM hooked itself in various places of mm code to handle any access to
264 addresses that were backed by device memory. It turns out that this ended up
265 replicating most of the fields of struct page and also needed many kernel code
266 paths to be updated to understand this new kind of memory.
268 Most kernel code paths never try to access the memory behind a page
269 but only care about struct page contents. Because of this, HMM switched to
270 directly using struct page for device memory which left most kernel code paths
271 unaware of the difference. We only need to make sure that no one ever tries to
272 map those pages from the CPU side.
274 HMM provides a set of helpers to register and hotplug device memory as a new
275 region needing a struct page. This is offered through a very simple API::
277  struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
278                                    struct device *device,
279                                    unsigned long size);
280  void hmm_devmem_remove(struct hmm_devmem *devmem);
282 The hmm_devmem_ops is where most of the important things are::
284  struct hmm_devmem_ops {
285      void (*free)(struct hmm_devmem *devmem, struct page *page);
286      int (*fault)(struct hmm_devmem *devmem,
287                   struct vm_area_struct *vma,
288                   unsigned long addr,
289                   struct page *page,
290                   unsigned flags,
291                   pmd_t *pmdp);
292  };
294 The first callback (free()) happens when the last reference on a device page is
295 dropped. This means the device page is now free and no longer used by anyone.
296 The second callback happens whenever the CPU tries to access a device page
297 which it cannot do. This second callback must trigger a migration back to
298 system memory.
301 Migration to and from device memory
302 ===================================
304 Because the CPU cannot access device memory, migration must use the device DMA
305 engine to perform copy from and to device memory. For this we need a new
306 migration helper::
308  int migrate_vma(const struct migrate_vma_ops *ops,
309                  struct vm_area_struct *vma,
310                  unsigned long mentries,
311                  unsigned long start,
312                  unsigned long end,
313                  unsigned long *src,
314                  unsigned long *dst,
315                  void *private);
317 Unlike other migration functions it works on a range of virtual address, there
318 are two reasons for that. First, device DMA copy has a high setup overhead cost
319 and thus batching multiple pages is needed as otherwise the migration overhead
320 makes the whole exercise pointless. The second reason is because the
321 migration might be for a range of addresses the device is actively accessing.
323 The migrate_vma_ops struct defines two callbacks. First one (alloc_and_copy())
324 controls destination memory allocation and copy operation. Second one is there
325 to allow the device driver to perform cleanup operations after migration::
327  struct migrate_vma_ops {
328      void (*alloc_and_copy)(struct vm_area_struct *vma,
329                             const unsigned long *src,
330                             unsigned long *dst,
331                             unsigned long start,
332                             unsigned long end,
333                             void *private);
334      void (*finalize_and_map)(struct vm_area_struct *vma,
335                               const unsigned long *src,
336                               const unsigned long *dst,
337                               unsigned long start,
338                               unsigned long end,
339                               void *private);
340  };
342 It is important to stress that these migration helpers allow for holes in the
343 virtual address range. Some pages in the range might not be migrated for all
344 the usual reasons (page is pinned, page is locked, ...). This helper does not
345 fail but just skips over those pages.
347 The alloc_and_copy() might decide to not migrate all pages in the
348 range (for reasons under the callback control). For those, the callback just
349 has to leave the corresponding dst entry empty.
351 Finally, the migration of the struct page might fail (for file backed page) for
352 various reasons (failure to freeze reference, or update page cache, ...). If
353 that happens, then the finalize_and_map() can catch any pages that were not
354 migrated. Note those pages were still copied to a new page and thus we wasted
355 bandwidth but this is considered as a rare event and a price that we are
356 willing to pay to keep all the code simpler.
359 Memory cgroup (memcg) and rss accounting
360 ========================================
362 For now device memory is accounted as any regular page in rss counters (either
363 anonymous if device page is used for anonymous, file if device page is used for
364 file backed page or shmem if device page is used for shared memory). This is a
365 deliberate choice to keep existing applications, that might start using device
366 memory without knowing about it, running unimpacted.
368 A drawback is that the OOM killer might kill an application using a lot of
369 device memory and not a lot of regular system memory and thus not freeing much
370 system memory. We want to gather more real world experience on how applications
371 and system react under memory pressure in the presence of device memory before
372 deciding to account device memory differently.
375 Same decision was made for memory cgroup. Device memory pages are accounted
376 against same memory cgroup a regular page would be accounted to. This does
377 simplify migration to and from device memory. This also means that migration
378 back from device memory to regular memory cannot fail because it would
379 go above memory cgroup limit. We might revisit this choice latter on once we
380 get more experience in how device memory is used and its impact on memory
381 resource control.
384 Note that device memory can never be pinned by device driver nor through GUP
385 and thus such memory is always free upon process exit. Or when last reference
386 is dropped in case of shared memory or file backed memory.