atm: iphase: Fix Spectre v1 vulnerability
[linux/fpc-iii.git] / drivers / ata / pata_octeon_cf.c
blob475a006694273bed1262dd457e8a9f683ba0367e
1 /*
2 * Driver for the Octeon bootbus compact flash.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * Copyright (C) 2005 - 2012 Cavium Inc.
9 * Copyright (C) 2008 Wind River Systems
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/hrtimer.h>
16 #include <linux/slab.h>
17 #include <linux/irq.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <scsi/scsi_host.h>
23 #include <asm/byteorder.h>
24 #include <asm/octeon/octeon.h>
27 * The Octeon bootbus compact flash interface is connected in at least
28 * 3 different configurations on various evaluation boards:
30 * -- 8 bits no irq, no DMA
31 * -- 16 bits no irq, no DMA
32 * -- 16 bits True IDE mode with DMA, but no irq.
34 * In the last case the DMA engine can generate an interrupt when the
35 * transfer is complete. For the first two cases only PIO is supported.
39 #define DRV_NAME "pata_octeon_cf"
40 #define DRV_VERSION "2.2"
42 /* Poll interval in nS. */
43 #define OCTEON_CF_BUSY_POLL_INTERVAL 500000
45 #define DMA_CFG 0
46 #define DMA_TIM 0x20
47 #define DMA_INT 0x38
48 #define DMA_INT_EN 0x50
50 struct octeon_cf_port {
51 struct hrtimer delayed_finish;
52 struct ata_port *ap;
53 int dma_finished;
54 void *c0;
55 unsigned int cs0;
56 unsigned int cs1;
57 bool is_true_ide;
58 u64 dma_base;
61 static struct scsi_host_template octeon_cf_sht = {
62 ATA_PIO_SHT(DRV_NAME),
65 static int enable_dma;
66 module_param(enable_dma, int, 0444);
67 MODULE_PARM_DESC(enable_dma,
68 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
70 /**
71 * Convert nanosecond based time to setting used in the
72 * boot bus timing register, based on timing multiple
74 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
76 unsigned int val;
79 * Compute # of eclock periods to get desired duration in
80 * nanoseconds.
82 val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
83 1000 * tim_mult);
85 return val;
88 static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
90 union cvmx_mio_boot_reg_cfgx reg_cfg;
91 unsigned int tim_mult;
93 switch (multiplier) {
94 case 8:
95 tim_mult = 3;
96 break;
97 case 4:
98 tim_mult = 0;
99 break;
100 case 2:
101 tim_mult = 2;
102 break;
103 default:
104 tim_mult = 1;
105 break;
108 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
109 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
110 reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */
111 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
112 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
113 reg_cfg.s.we_ext = 0; /* No write enable extension */
114 reg_cfg.s.oe_ext = 0; /* No read enable extension */
115 reg_cfg.s.en = 1; /* Enable this region */
116 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
117 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
118 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
122 * Called after libata determines the needed PIO mode. This
123 * function programs the Octeon bootbus regions to support the
124 * timing requirements of the PIO mode.
126 * @ap: ATA port information
127 * @dev: ATA device
129 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
131 struct octeon_cf_port *cf_port = ap->private_data;
132 union cvmx_mio_boot_reg_timx reg_tim;
133 int T;
134 struct ata_timing timing;
136 unsigned int div;
137 int use_iordy;
138 int trh;
139 int pause;
140 /* These names are timing parameters from the ATA spec */
141 int t1;
142 int t2;
143 int t2i;
146 * A divisor value of four will overflow the timing fields at
147 * clock rates greater than 800MHz
149 if (octeon_get_io_clock_rate() <= 800000000)
150 div = 4;
151 else
152 div = 8;
153 T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
155 BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
157 t1 = timing.setup;
158 if (t1)
159 t1--;
160 t2 = timing.active;
161 if (t2)
162 t2--;
163 t2i = timing.act8b;
164 if (t2i)
165 t2i--;
167 trh = ns_to_tim_reg(div, 20);
168 if (trh)
169 trh--;
171 pause = (int)timing.cycle - (int)timing.active -
172 (int)timing.setup - trh;
173 if (pause < 0)
174 pause = 0;
175 if (pause)
176 pause--;
178 octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
179 if (cf_port->is_true_ide)
180 /* True IDE mode, program both chip selects. */
181 octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
184 use_iordy = ata_pio_need_iordy(dev);
186 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
187 /* Disable page mode */
188 reg_tim.s.pagem = 0;
189 /* Enable dynamic timing */
190 reg_tim.s.waitm = use_iordy;
191 /* Pages are disabled */
192 reg_tim.s.pages = 0;
193 /* We don't use multiplexed address mode */
194 reg_tim.s.ale = 0;
195 /* Not used */
196 reg_tim.s.page = 0;
197 /* Time after IORDY to coninue to assert the data */
198 reg_tim.s.wait = 0;
199 /* Time to wait to complete the cycle. */
200 reg_tim.s.pause = pause;
201 /* How long to hold after a write to de-assert CE. */
202 reg_tim.s.wr_hld = trh;
203 /* How long to wait after a read to de-assert CE. */
204 reg_tim.s.rd_hld = trh;
205 /* How long write enable is asserted */
206 reg_tim.s.we = t2;
207 /* How long read enable is asserted */
208 reg_tim.s.oe = t2;
209 /* Time after CE that read/write starts */
210 reg_tim.s.ce = ns_to_tim_reg(div, 5);
211 /* Time before CE that address is valid */
212 reg_tim.s.adr = 0;
214 /* Program the bootbus region timing for the data port chip select. */
215 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
216 if (cf_port->is_true_ide)
217 /* True IDE mode, program both chip selects. */
218 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
219 reg_tim.u64);
222 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
224 struct octeon_cf_port *cf_port = ap->private_data;
225 union cvmx_mio_boot_pin_defs pin_defs;
226 union cvmx_mio_boot_dma_timx dma_tim;
227 unsigned int oe_a;
228 unsigned int oe_n;
229 unsigned int dma_ackh;
230 unsigned int dma_arq;
231 unsigned int pause;
232 unsigned int T0, Tkr, Td;
233 unsigned int tim_mult;
234 int c;
236 const struct ata_timing *timing;
238 timing = ata_timing_find_mode(dev->dma_mode);
239 T0 = timing->cycle;
240 Td = timing->active;
241 Tkr = timing->recover;
242 dma_ackh = timing->dmack_hold;
244 dma_tim.u64 = 0;
245 /* dma_tim.s.tim_mult = 0 --> 4x */
246 tim_mult = 4;
248 /* not spec'ed, value in eclocks, not affected by tim_mult */
249 dma_arq = 8;
250 pause = 25 - dma_arq * 1000 /
251 (octeon_get_io_clock_rate() / 1000000); /* Tz */
253 oe_a = Td;
254 /* Tkr from cf spec, lengthened to meet T0 */
255 oe_n = max(T0 - oe_a, Tkr);
257 pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
259 /* DMA channel number. */
260 c = (cf_port->dma_base & 8) >> 3;
262 /* Invert the polarity if the default is 0*/
263 dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
265 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
266 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
269 * This is tI, C.F. spec. says 0, but Sony CF card requires
270 * more, we use 20 nS.
272 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
273 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
275 dma_tim.s.dmarq = dma_arq;
276 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
278 dma_tim.s.rd_dly = 0; /* Sample right on edge */
280 /* writes only */
281 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
282 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
284 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
285 ns_to_tim_reg(tim_mult, 60));
286 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
287 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
288 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
290 cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
294 * Handle an 8 bit I/O request.
296 * @dev: Device to access
297 * @buffer: Data buffer
298 * @buflen: Length of the buffer.
299 * @rw: True to write.
301 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
302 unsigned char *buffer,
303 unsigned int buflen,
304 int rw)
306 struct ata_port *ap = dev->link->ap;
307 void __iomem *data_addr = ap->ioaddr.data_addr;
308 unsigned long words;
309 int count;
311 words = buflen;
312 if (rw) {
313 count = 16;
314 while (words--) {
315 iowrite8(*buffer, data_addr);
316 buffer++;
318 * Every 16 writes do a read so the bootbus
319 * FIFO doesn't fill up.
321 if (--count == 0) {
322 ioread8(ap->ioaddr.altstatus_addr);
323 count = 16;
326 } else {
327 ioread8_rep(data_addr, buffer, words);
329 return buflen;
333 * Handle a 16 bit I/O request.
335 * @dev: Device to access
336 * @buffer: Data buffer
337 * @buflen: Length of the buffer.
338 * @rw: True to write.
340 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
341 unsigned char *buffer,
342 unsigned int buflen,
343 int rw)
345 struct ata_port *ap = dev->link->ap;
346 void __iomem *data_addr = ap->ioaddr.data_addr;
347 unsigned long words;
348 int count;
350 words = buflen / 2;
351 if (rw) {
352 count = 16;
353 while (words--) {
354 iowrite16(*(uint16_t *)buffer, data_addr);
355 buffer += sizeof(uint16_t);
357 * Every 16 writes do a read so the bootbus
358 * FIFO doesn't fill up.
360 if (--count == 0) {
361 ioread8(ap->ioaddr.altstatus_addr);
362 count = 16;
365 } else {
366 while (words--) {
367 *(uint16_t *)buffer = ioread16(data_addr);
368 buffer += sizeof(uint16_t);
371 /* Transfer trailing 1 byte, if any. */
372 if (unlikely(buflen & 0x01)) {
373 __le16 align_buf[1] = { 0 };
375 if (rw == READ) {
376 align_buf[0] = cpu_to_le16(ioread16(data_addr));
377 memcpy(buffer, align_buf, 1);
378 } else {
379 memcpy(align_buf, buffer, 1);
380 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
382 words++;
384 return buflen;
388 * Read the taskfile for 16bit non-True IDE only.
390 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
392 u16 blob;
393 /* The base of the registers is at ioaddr.data_addr. */
394 void __iomem *base = ap->ioaddr.data_addr;
396 blob = __raw_readw(base + 0xc);
397 tf->feature = blob >> 8;
399 blob = __raw_readw(base + 2);
400 tf->nsect = blob & 0xff;
401 tf->lbal = blob >> 8;
403 blob = __raw_readw(base + 4);
404 tf->lbam = blob & 0xff;
405 tf->lbah = blob >> 8;
407 blob = __raw_readw(base + 6);
408 tf->device = blob & 0xff;
409 tf->command = blob >> 8;
411 if (tf->flags & ATA_TFLAG_LBA48) {
412 if (likely(ap->ioaddr.ctl_addr)) {
413 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
415 blob = __raw_readw(base + 0xc);
416 tf->hob_feature = blob >> 8;
418 blob = __raw_readw(base + 2);
419 tf->hob_nsect = blob & 0xff;
420 tf->hob_lbal = blob >> 8;
422 blob = __raw_readw(base + 4);
423 tf->hob_lbam = blob & 0xff;
424 tf->hob_lbah = blob >> 8;
426 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
427 ap->last_ctl = tf->ctl;
428 } else {
429 WARN_ON(1);
434 static u8 octeon_cf_check_status16(struct ata_port *ap)
436 u16 blob;
437 void __iomem *base = ap->ioaddr.data_addr;
439 blob = __raw_readw(base + 6);
440 return blob >> 8;
443 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
444 unsigned long deadline)
446 struct ata_port *ap = link->ap;
447 void __iomem *base = ap->ioaddr.data_addr;
448 int rc;
449 u8 err;
451 DPRINTK("about to softreset\n");
452 __raw_writew(ap->ctl, base + 0xe);
453 udelay(20);
454 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
455 udelay(20);
456 __raw_writew(ap->ctl, base + 0xe);
458 rc = ata_sff_wait_after_reset(link, 1, deadline);
459 if (rc) {
460 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
461 return rc;
464 /* determine by signature whether we have ATA or ATAPI devices */
465 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
466 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
467 return 0;
471 * Load the taskfile for 16bit non-True IDE only. The device_addr is
472 * not loaded, we do this as part of octeon_cf_exec_command16.
474 static void octeon_cf_tf_load16(struct ata_port *ap,
475 const struct ata_taskfile *tf)
477 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
478 /* The base of the registers is at ioaddr.data_addr. */
479 void __iomem *base = ap->ioaddr.data_addr;
481 if (tf->ctl != ap->last_ctl) {
482 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
483 ap->last_ctl = tf->ctl;
484 ata_wait_idle(ap);
486 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
487 __raw_writew(tf->hob_feature << 8, base + 0xc);
488 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
489 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
490 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
491 tf->hob_feature,
492 tf->hob_nsect,
493 tf->hob_lbal,
494 tf->hob_lbam,
495 tf->hob_lbah);
497 if (is_addr) {
498 __raw_writew(tf->feature << 8, base + 0xc);
499 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
500 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
501 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
502 tf->feature,
503 tf->nsect,
504 tf->lbal,
505 tf->lbam,
506 tf->lbah);
508 ata_wait_idle(ap);
512 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
514 /* There is only one device, do nothing. */
515 return;
519 * Issue ATA command to host controller. The device_addr is also sent
520 * as it must be written in a combined write with the command.
522 static void octeon_cf_exec_command16(struct ata_port *ap,
523 const struct ata_taskfile *tf)
525 /* The base of the registers is at ioaddr.data_addr. */
526 void __iomem *base = ap->ioaddr.data_addr;
527 u16 blob;
529 if (tf->flags & ATA_TFLAG_DEVICE) {
530 VPRINTK("device 0x%X\n", tf->device);
531 blob = tf->device;
532 } else {
533 blob = 0;
536 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
537 blob |= (tf->command << 8);
538 __raw_writew(blob, base + 6);
541 ata_wait_idle(ap);
544 static void octeon_cf_ata_port_noaction(struct ata_port *ap)
548 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
550 struct ata_port *ap = qc->ap;
551 struct octeon_cf_port *cf_port;
553 cf_port = ap->private_data;
554 DPRINTK("ENTER\n");
555 /* issue r/w command */
556 qc->cursg = qc->sg;
557 cf_port->dma_finished = 0;
558 ap->ops->sff_exec_command(ap, &qc->tf);
559 DPRINTK("EXIT\n");
563 * Start a DMA transfer that was already setup
565 * @qc: Information about the DMA
567 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
569 struct octeon_cf_port *cf_port = qc->ap->private_data;
570 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
571 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
572 struct scatterlist *sg;
574 VPRINTK("%d scatterlists\n", qc->n_elem);
576 /* Get the scatter list entry we need to DMA into */
577 sg = qc->cursg;
578 BUG_ON(!sg);
581 * Clear the DMA complete status.
583 mio_boot_dma_int.u64 = 0;
584 mio_boot_dma_int.s.done = 1;
585 cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
587 /* Enable the interrupt. */
588 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
590 /* Set the direction of the DMA */
591 mio_boot_dma_cfg.u64 = 0;
592 #ifdef __LITTLE_ENDIAN
593 mio_boot_dma_cfg.s.endian = 1;
594 #endif
595 mio_boot_dma_cfg.s.en = 1;
596 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
599 * Don't stop the DMA if the device deasserts DMARQ. Many
600 * compact flashes deassert DMARQ for a short time between
601 * sectors. Instead of stopping and restarting the DMA, we'll
602 * let the hardware do it. If the DMA is really stopped early
603 * due to an error condition, a later timeout will force us to
604 * stop.
606 mio_boot_dma_cfg.s.clr = 0;
608 /* Size is specified in 16bit words and minus one notation */
609 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
611 /* We need to swap the high and low bytes of every 16 bits */
612 mio_boot_dma_cfg.s.swap8 = 1;
614 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
616 VPRINTK("%s %d bytes address=%p\n",
617 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
618 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
620 cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
625 * LOCKING:
626 * spin_lock_irqsave(host lock)
629 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
630 struct ata_queued_cmd *qc)
632 struct ata_eh_info *ehi = &ap->link.eh_info;
633 struct octeon_cf_port *cf_port = ap->private_data;
634 union cvmx_mio_boot_dma_cfgx dma_cfg;
635 union cvmx_mio_boot_dma_intx dma_int;
636 u8 status;
638 VPRINTK("ata%u: protocol %d task_state %d\n",
639 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
642 if (ap->hsm_task_state != HSM_ST_LAST)
643 return 0;
645 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
646 if (dma_cfg.s.size != 0xfffff) {
647 /* Error, the transfer was not complete. */
648 qc->err_mask |= AC_ERR_HOST_BUS;
649 ap->hsm_task_state = HSM_ST_ERR;
652 /* Stop and clear the dma engine. */
653 dma_cfg.u64 = 0;
654 dma_cfg.s.size = -1;
655 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
657 /* Disable the interrupt. */
658 dma_int.u64 = 0;
659 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
661 /* Clear the DMA complete status */
662 dma_int.s.done = 1;
663 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
665 status = ap->ops->sff_check_status(ap);
667 ata_sff_hsm_move(ap, qc, status, 0);
669 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
670 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
672 return 1;
676 * Check if any queued commands have more DMAs, if so start the next
677 * transfer, else do end of transfer handling.
679 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
681 struct ata_host *host = dev_instance;
682 struct octeon_cf_port *cf_port;
683 int i;
684 unsigned int handled = 0;
685 unsigned long flags;
687 spin_lock_irqsave(&host->lock, flags);
689 DPRINTK("ENTER\n");
690 for (i = 0; i < host->n_ports; i++) {
691 u8 status;
692 struct ata_port *ap;
693 struct ata_queued_cmd *qc;
694 union cvmx_mio_boot_dma_intx dma_int;
695 union cvmx_mio_boot_dma_cfgx dma_cfg;
697 ap = host->ports[i];
698 cf_port = ap->private_data;
700 dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
701 dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
703 qc = ata_qc_from_tag(ap, ap->link.active_tag);
705 if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
706 continue;
708 if (dma_int.s.done && !dma_cfg.s.en) {
709 if (!sg_is_last(qc->cursg)) {
710 qc->cursg = sg_next(qc->cursg);
711 handled = 1;
712 octeon_cf_dma_start(qc);
713 continue;
714 } else {
715 cf_port->dma_finished = 1;
718 if (!cf_port->dma_finished)
719 continue;
720 status = ioread8(ap->ioaddr.altstatus_addr);
721 if (status & (ATA_BUSY | ATA_DRQ)) {
723 * We are busy, try to handle it later. This
724 * is the DMA finished interrupt, and it could
725 * take a little while for the card to be
726 * ready for more commands.
728 /* Clear DMA irq. */
729 dma_int.u64 = 0;
730 dma_int.s.done = 1;
731 cvmx_write_csr(cf_port->dma_base + DMA_INT,
732 dma_int.u64);
733 hrtimer_start_range_ns(&cf_port->delayed_finish,
734 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
735 OCTEON_CF_BUSY_POLL_INTERVAL / 5,
736 HRTIMER_MODE_REL);
737 handled = 1;
738 } else {
739 handled |= octeon_cf_dma_finished(ap, qc);
742 spin_unlock_irqrestore(&host->lock, flags);
743 DPRINTK("EXIT\n");
744 return IRQ_RETVAL(handled);
747 static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
749 struct octeon_cf_port *cf_port = container_of(hrt,
750 struct octeon_cf_port,
751 delayed_finish);
752 struct ata_port *ap = cf_port->ap;
753 struct ata_host *host = ap->host;
754 struct ata_queued_cmd *qc;
755 unsigned long flags;
756 u8 status;
757 enum hrtimer_restart rv = HRTIMER_NORESTART;
759 spin_lock_irqsave(&host->lock, flags);
762 * If the port is not waiting for completion, it must have
763 * handled it previously. The hsm_task_state is
764 * protected by host->lock.
766 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
767 goto out;
769 status = ioread8(ap->ioaddr.altstatus_addr);
770 if (status & (ATA_BUSY | ATA_DRQ)) {
771 /* Still busy, try again. */
772 hrtimer_forward_now(hrt,
773 ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
774 rv = HRTIMER_RESTART;
775 goto out;
777 qc = ata_qc_from_tag(ap, ap->link.active_tag);
778 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
779 octeon_cf_dma_finished(ap, qc);
780 out:
781 spin_unlock_irqrestore(&host->lock, flags);
782 return rv;
785 static void octeon_cf_dev_config(struct ata_device *dev)
788 * A maximum of 2^20 - 1 16 bit transfers are possible with
789 * the bootbus DMA. So we need to throttle max_sectors to
790 * (2^12 - 1 == 4095) to assure that this can never happen.
792 dev->max_sectors = min(dev->max_sectors, 4095U);
796 * We don't do ATAPI DMA so return 0.
798 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
800 return 0;
803 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
805 struct ata_port *ap = qc->ap;
807 switch (qc->tf.protocol) {
808 case ATA_PROT_DMA:
809 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
811 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
812 octeon_cf_dma_setup(qc); /* set up dma */
813 octeon_cf_dma_start(qc); /* initiate dma */
814 ap->hsm_task_state = HSM_ST_LAST;
815 break;
817 case ATAPI_PROT_DMA:
818 dev_err(ap->dev, "Error, ATAPI not supported\n");
819 BUG();
821 default:
822 return ata_sff_qc_issue(qc);
825 return 0;
828 static struct ata_port_operations octeon_cf_ops = {
829 .inherits = &ata_sff_port_ops,
830 .check_atapi_dma = octeon_cf_check_atapi_dma,
831 .qc_prep = ata_noop_qc_prep,
832 .qc_issue = octeon_cf_qc_issue,
833 .sff_dev_select = octeon_cf_dev_select,
834 .sff_irq_on = octeon_cf_ata_port_noaction,
835 .sff_irq_clear = octeon_cf_ata_port_noaction,
836 .cable_detect = ata_cable_40wire,
837 .set_piomode = octeon_cf_set_piomode,
838 .set_dmamode = octeon_cf_set_dmamode,
839 .dev_config = octeon_cf_dev_config,
842 static int octeon_cf_probe(struct platform_device *pdev)
844 struct resource *res_cs0, *res_cs1;
846 bool is_16bit;
847 const __be32 *cs_num;
848 struct property *reg_prop;
849 int n_addr, n_size, reg_len;
850 struct device_node *node;
851 const void *prop;
852 void __iomem *cs0;
853 void __iomem *cs1 = NULL;
854 struct ata_host *host;
855 struct ata_port *ap;
856 int irq = 0;
857 irq_handler_t irq_handler = NULL;
858 void __iomem *base;
859 struct octeon_cf_port *cf_port;
860 int rv = -ENOMEM;
863 node = pdev->dev.of_node;
864 if (node == NULL)
865 return -EINVAL;
867 cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
868 if (!cf_port)
869 return -ENOMEM;
871 cf_port->is_true_ide = (of_find_property(node, "cavium,true-ide", NULL) != NULL);
873 prop = of_get_property(node, "cavium,bus-width", NULL);
874 if (prop)
875 is_16bit = (be32_to_cpup(prop) == 16);
876 else
877 is_16bit = false;
879 n_addr = of_n_addr_cells(node);
880 n_size = of_n_size_cells(node);
882 reg_prop = of_find_property(node, "reg", &reg_len);
883 if (!reg_prop || reg_len < sizeof(__be32))
884 return -EINVAL;
886 cs_num = reg_prop->value;
887 cf_port->cs0 = be32_to_cpup(cs_num);
889 if (cf_port->is_true_ide) {
890 struct device_node *dma_node;
891 dma_node = of_parse_phandle(node,
892 "cavium,dma-engine-handle", 0);
893 if (dma_node) {
894 struct platform_device *dma_dev;
895 dma_dev = of_find_device_by_node(dma_node);
896 if (dma_dev) {
897 struct resource *res_dma;
898 int i;
899 res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
900 if (!res_dma) {
901 of_node_put(dma_node);
902 return -EINVAL;
904 cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
905 resource_size(res_dma));
906 if (!cf_port->dma_base) {
907 of_node_put(dma_node);
908 return -EINVAL;
911 irq_handler = octeon_cf_interrupt;
912 i = platform_get_irq(dma_dev, 0);
913 if (i > 0)
914 irq = i;
916 of_node_put(dma_node);
918 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
919 if (!res_cs1)
920 return -EINVAL;
922 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
923 resource_size(res_cs1));
924 if (!cs1)
925 return rv;
927 if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
928 return -EINVAL;
930 cs_num += n_addr + n_size;
931 cf_port->cs1 = be32_to_cpup(cs_num);
934 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
935 if (!res_cs0)
936 return -EINVAL;
938 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
939 resource_size(res_cs0));
940 if (!cs0)
941 return rv;
943 /* allocate host */
944 host = ata_host_alloc(&pdev->dev, 1);
945 if (!host)
946 return rv;
948 ap = host->ports[0];
949 ap->private_data = cf_port;
950 pdev->dev.platform_data = cf_port;
951 cf_port->ap = ap;
952 ap->ops = &octeon_cf_ops;
953 ap->pio_mask = ATA_PIO6;
954 ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
956 if (!is_16bit) {
957 base = cs0 + 0x800;
958 ap->ioaddr.cmd_addr = base;
959 ata_sff_std_ports(&ap->ioaddr);
961 ap->ioaddr.altstatus_addr = base + 0xe;
962 ap->ioaddr.ctl_addr = base + 0xe;
963 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
964 } else if (cf_port->is_true_ide) {
965 base = cs0;
966 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
967 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
968 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
969 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
970 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
971 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
972 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
973 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
974 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
975 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
976 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
977 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
978 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
979 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
981 ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0;
983 /* True IDE mode needs a timer to poll for not-busy. */
984 hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
985 HRTIMER_MODE_REL);
986 cf_port->delayed_finish.function = octeon_cf_delayed_finish;
987 } else {
988 /* 16 bit but not True IDE */
989 base = cs0 + 0x800;
990 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
991 octeon_cf_ops.softreset = octeon_cf_softreset16;
992 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
993 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
994 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
995 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
997 ap->ioaddr.data_addr = base + ATA_REG_DATA;
998 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
999 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
1000 ap->ioaddr.ctl_addr = base + 0xe;
1001 ap->ioaddr.altstatus_addr = base + 0xe;
1003 cf_port->c0 = ap->ioaddr.ctl_addr;
1005 rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1006 if (rv)
1007 return rv;
1009 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1011 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1012 is_16bit ? 16 : 8,
1013 cf_port->is_true_ide ? ", True IDE" : "");
1015 return ata_host_activate(host, irq, irq_handler,
1016 IRQF_SHARED, &octeon_cf_sht);
1019 static void octeon_cf_shutdown(struct device *dev)
1021 union cvmx_mio_boot_dma_cfgx dma_cfg;
1022 union cvmx_mio_boot_dma_intx dma_int;
1024 struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1026 if (cf_port->dma_base) {
1027 /* Stop and clear the dma engine. */
1028 dma_cfg.u64 = 0;
1029 dma_cfg.s.size = -1;
1030 cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1032 /* Disable the interrupt. */
1033 dma_int.u64 = 0;
1034 cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1036 /* Clear the DMA complete status */
1037 dma_int.s.done = 1;
1038 cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1040 __raw_writeb(0, cf_port->c0);
1041 udelay(20);
1042 __raw_writeb(ATA_SRST, cf_port->c0);
1043 udelay(20);
1044 __raw_writeb(0, cf_port->c0);
1045 mdelay(100);
1049 static struct of_device_id octeon_cf_match[] = {
1051 .compatible = "cavium,ebt3000-compact-flash",
1055 MODULE_DEVICE_TABLE(of, octeon_cf_match);
1057 static struct platform_driver octeon_cf_driver = {
1058 .probe = octeon_cf_probe,
1059 .driver = {
1060 .name = DRV_NAME,
1061 .of_match_table = octeon_cf_match,
1062 .shutdown = octeon_cf_shutdown
1066 static int __init octeon_cf_init(void)
1068 return platform_driver_register(&octeon_cf_driver);
1072 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1073 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1074 MODULE_LICENSE("GPL");
1075 MODULE_VERSION(DRV_VERSION);
1076 MODULE_ALIAS("platform:" DRV_NAME);
1078 module_init(octeon_cf_init);