1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 se_sess
->sup_prot_ops
= sup_prot_ops
;
246 EXPORT_SYMBOL(transport_init_session
);
248 int transport_alloc_session_tags(struct se_session
*se_sess
,
249 unsigned int tag_num
, unsigned int tag_size
)
253 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
254 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
255 if (!se_sess
->sess_cmd_map
) {
256 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
257 if (!se_sess
->sess_cmd_map
) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
263 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num
);
267 kvfree(se_sess
->sess_cmd_map
);
268 se_sess
->sess_cmd_map
= NULL
;
274 EXPORT_SYMBOL(transport_alloc_session_tags
);
276 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
277 unsigned int tag_size
,
278 enum target_prot_op sup_prot_ops
)
280 struct se_session
*se_sess
;
283 if (tag_num
!= 0 && !tag_size
) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num
);
286 return ERR_PTR(-EINVAL
);
288 if (!tag_num
&& tag_size
) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size
);
291 return ERR_PTR(-EINVAL
);
294 se_sess
= transport_init_session(sup_prot_ops
);
298 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
300 transport_free_session(se_sess
);
301 return ERR_PTR(-ENOMEM
);
306 EXPORT_SYMBOL(transport_init_session_tags
);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group
*se_tpg
,
313 struct se_node_acl
*se_nacl
,
314 struct se_session
*se_sess
,
315 void *fabric_sess_ptr
)
317 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
318 unsigned char buf
[PR_REG_ISID_LEN
];
321 se_sess
->se_tpg
= se_tpg
;
322 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
340 if (se_nacl
->saved_prot_type
)
341 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
342 else if (tfo
->tpg_check_prot_fabric_only
)
343 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
344 tfo
->tpg_check_prot_fabric_only(se_tpg
);
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
349 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
350 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
351 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
352 &buf
[0], PR_REG_ISID_LEN
);
353 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
356 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
361 se_nacl
->nacl_sess
= se_sess
;
363 list_add_tail(&se_sess
->sess_acl_list
,
364 &se_nacl
->acl_sess_list
);
365 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
367 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
372 EXPORT_SYMBOL(__transport_register_session
);
374 void transport_register_session(
375 struct se_portal_group
*se_tpg
,
376 struct se_node_acl
*se_nacl
,
377 struct se_session
*se_sess
,
378 void *fabric_sess_ptr
)
382 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
383 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
384 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
386 EXPORT_SYMBOL(transport_register_session
);
389 target_alloc_session(struct se_portal_group
*tpg
,
390 unsigned int tag_num
, unsigned int tag_size
,
391 enum target_prot_op prot_op
,
392 const char *initiatorname
, void *private,
393 int (*callback
)(struct se_portal_group
*,
394 struct se_session
*, void *))
396 struct se_session
*sess
;
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
403 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
405 sess
= transport_init_session(prot_op
);
410 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
411 (unsigned char *)initiatorname
);
412 if (!sess
->se_node_acl
) {
413 transport_free_session(sess
);
414 return ERR_PTR(-EACCES
);
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
420 if (callback
!= NULL
) {
421 int rc
= callback(tpg
, sess
, private);
423 transport_free_session(sess
);
428 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
431 EXPORT_SYMBOL(target_alloc_session
);
433 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
435 struct se_session
*se_sess
;
438 spin_lock_bh(&se_tpg
->session_lock
);
439 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
440 if (!se_sess
->se_node_acl
)
442 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
444 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
447 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
448 se_sess
->se_node_acl
->initiatorname
);
449 len
+= 1; /* Include NULL terminator */
451 spin_unlock_bh(&se_tpg
->session_lock
);
455 EXPORT_SYMBOL(target_show_dynamic_sessions
);
457 static void target_complete_nacl(struct kref
*kref
)
459 struct se_node_acl
*nacl
= container_of(kref
,
460 struct se_node_acl
, acl_kref
);
461 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
463 if (!nacl
->dynamic_stop
) {
464 complete(&nacl
->acl_free_comp
);
468 mutex_lock(&se_tpg
->acl_node_mutex
);
469 list_del_init(&nacl
->acl_list
);
470 mutex_unlock(&se_tpg
->acl_node_mutex
);
472 core_tpg_wait_for_nacl_pr_ref(nacl
);
473 core_free_device_list_for_node(nacl
, se_tpg
);
477 void target_put_nacl(struct se_node_acl
*nacl
)
479 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
481 EXPORT_SYMBOL(target_put_nacl
);
483 void transport_deregister_session_configfs(struct se_session
*se_sess
)
485 struct se_node_acl
*se_nacl
;
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
490 se_nacl
= se_sess
->se_node_acl
;
492 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
493 if (!list_empty(&se_sess
->sess_acl_list
))
494 list_del_init(&se_sess
->sess_acl_list
);
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
500 if (list_empty(&se_nacl
->acl_sess_list
))
501 se_nacl
->nacl_sess
= NULL
;
503 se_nacl
->nacl_sess
= container_of(
504 se_nacl
->acl_sess_list
.prev
,
505 struct se_session
, sess_acl_list
);
507 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
510 EXPORT_SYMBOL(transport_deregister_session_configfs
);
512 void transport_free_session(struct se_session
*se_sess
)
514 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
521 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
522 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
525 se_sess
->se_node_acl
= NULL
;
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
532 mutex_lock(&se_tpg
->acl_node_mutex
);
533 if (se_nacl
->dynamic_node_acl
&&
534 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
535 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
536 if (list_empty(&se_nacl
->acl_sess_list
))
537 se_nacl
->dynamic_stop
= true;
538 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
540 if (se_nacl
->dynamic_stop
)
541 list_del_init(&se_nacl
->acl_list
);
543 mutex_unlock(&se_tpg
->acl_node_mutex
);
545 if (se_nacl
->dynamic_stop
)
546 target_put_nacl(se_nacl
);
548 target_put_nacl(se_nacl
);
550 if (se_sess
->sess_cmd_map
) {
551 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
552 kvfree(se_sess
->sess_cmd_map
);
554 kmem_cache_free(se_sess_cache
, se_sess
);
556 EXPORT_SYMBOL(transport_free_session
);
558 void transport_deregister_session(struct se_session
*se_sess
)
560 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
564 transport_free_session(se_sess
);
568 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
569 list_del(&se_sess
->sess_list
);
570 se_sess
->se_tpg
= NULL
;
571 se_sess
->fabric_sess_ptr
= NULL
;
572 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg
->se_tpg_tfo
->get_fabric_name());
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
585 transport_free_session(se_sess
);
587 EXPORT_SYMBOL(transport_deregister_session
);
589 static void target_remove_from_state_list(struct se_cmd
*cmd
)
591 struct se_device
*dev
= cmd
->se_dev
;
597 if (cmd
->transport_state
& CMD_T_BUSY
)
600 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
601 if (cmd
->state_active
) {
602 list_del(&cmd
->state_list
);
603 cmd
->state_active
= false;
605 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
608 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
613 if (remove_from_lists
) {
614 target_remove_from_state_list(cmd
);
617 * Clear struct se_cmd->se_lun before the handoff to FE.
622 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
624 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
627 * Determine if frontend context caller is requesting the stopping of
628 * this command for frontend exceptions.
630 if (cmd
->transport_state
& CMD_T_STOP
) {
631 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
632 __func__
, __LINE__
, cmd
->tag
);
634 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
636 complete_all(&cmd
->t_transport_stop_comp
);
640 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
641 if (remove_from_lists
) {
643 * Some fabric modules like tcm_loop can release
644 * their internally allocated I/O reference now and
647 * Fabric modules are expected to return '1' here if the
648 * se_cmd being passed is released at this point,
649 * or zero if not being released.
651 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
652 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
653 return cmd
->se_tfo
->check_stop_free(cmd
);
657 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
661 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
663 return transport_cmd_check_stop(cmd
, true, false);
666 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
668 struct se_lun
*lun
= cmd
->se_lun
;
673 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
674 percpu_ref_put(&lun
->lun_ref
);
677 int transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
679 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
682 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
683 transport_lun_remove_cmd(cmd
);
685 * Allow the fabric driver to unmap any resources before
686 * releasing the descriptor via TFO->release_cmd()
689 cmd
->se_tfo
->aborted_task(cmd
);
691 if (transport_cmd_check_stop_to_fabric(cmd
))
693 if (remove
&& ack_kref
)
694 ret
= transport_put_cmd(cmd
);
699 static void target_complete_failure_work(struct work_struct
*work
)
701 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
703 transport_generic_request_failure(cmd
,
704 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
708 * Used when asking transport to copy Sense Data from the underlying
709 * Linux/SCSI struct scsi_cmnd
711 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
713 struct se_device
*dev
= cmd
->se_dev
;
715 WARN_ON(!cmd
->se_lun
);
720 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
723 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
725 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
726 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
727 return cmd
->sense_buffer
;
730 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
732 struct se_device
*dev
= cmd
->se_dev
;
733 int success
= scsi_status
== GOOD
;
736 cmd
->scsi_status
= scsi_status
;
739 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
740 cmd
->transport_state
&= ~CMD_T_BUSY
;
742 if (dev
&& dev
->transport
->transport_complete
) {
743 dev
->transport
->transport_complete(cmd
,
745 transport_get_sense_buffer(cmd
));
746 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
751 * Check for case where an explicit ABORT_TASK has been received
752 * and transport_wait_for_tasks() will be waiting for completion..
754 if (cmd
->transport_state
& CMD_T_ABORTED
||
755 cmd
->transport_state
& CMD_T_STOP
) {
756 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
758 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
759 * release se_device->caw_sem obtained by sbc_compare_and_write()
760 * since target_complete_ok_work() or target_complete_failure_work()
761 * won't be called to invoke the normal CAW completion callbacks.
763 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
766 complete_all(&cmd
->t_transport_stop_comp
);
768 } else if (!success
) {
769 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
771 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
774 cmd
->t_state
= TRANSPORT_COMPLETE
;
775 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
776 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
778 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
779 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
781 queue_work(target_completion_wq
, &cmd
->work
);
783 EXPORT_SYMBOL(target_complete_cmd
);
785 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
787 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
788 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
789 cmd
->residual_count
+= cmd
->data_length
- length
;
791 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
792 cmd
->residual_count
= cmd
->data_length
- length
;
795 cmd
->data_length
= length
;
798 target_complete_cmd(cmd
, scsi_status
);
800 EXPORT_SYMBOL(target_complete_cmd_with_length
);
802 static void target_add_to_state_list(struct se_cmd
*cmd
)
804 struct se_device
*dev
= cmd
->se_dev
;
807 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
808 if (!cmd
->state_active
) {
809 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
810 cmd
->state_active
= true;
812 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
816 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
818 static void transport_write_pending_qf(struct se_cmd
*cmd
);
819 static void transport_complete_qf(struct se_cmd
*cmd
);
821 void target_qf_do_work(struct work_struct
*work
)
823 struct se_device
*dev
= container_of(work
, struct se_device
,
825 LIST_HEAD(qf_cmd_list
);
826 struct se_cmd
*cmd
, *cmd_tmp
;
828 spin_lock_irq(&dev
->qf_cmd_lock
);
829 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
830 spin_unlock_irq(&dev
->qf_cmd_lock
);
832 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
833 list_del(&cmd
->se_qf_node
);
834 atomic_dec_mb(&dev
->dev_qf_count
);
836 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
837 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
838 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
839 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
842 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
843 transport_write_pending_qf(cmd
);
844 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
845 transport_complete_qf(cmd
);
849 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
851 switch (cmd
->data_direction
) {
854 case DMA_FROM_DEVICE
:
858 case DMA_BIDIRECTIONAL
:
867 void transport_dump_dev_state(
868 struct se_device
*dev
,
872 *bl
+= sprintf(b
+ *bl
, "Status: ");
873 if (dev
->export_count
)
874 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
876 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
878 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
879 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
880 dev
->dev_attrib
.block_size
,
881 dev
->dev_attrib
.hw_max_sectors
);
882 *bl
+= sprintf(b
+ *bl
, " ");
885 void transport_dump_vpd_proto_id(
887 unsigned char *p_buf
,
890 unsigned char buf
[VPD_TMP_BUF_SIZE
];
893 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
894 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
896 switch (vpd
->protocol_identifier
) {
898 sprintf(buf
+len
, "Fibre Channel\n");
901 sprintf(buf
+len
, "Parallel SCSI\n");
904 sprintf(buf
+len
, "SSA\n");
907 sprintf(buf
+len
, "IEEE 1394\n");
910 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
914 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
917 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
920 sprintf(buf
+len
, "Automation/Drive Interface Transport"
924 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
927 sprintf(buf
+len
, "Unknown 0x%02x\n",
928 vpd
->protocol_identifier
);
933 strncpy(p_buf
, buf
, p_buf_len
);
939 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
942 * Check if the Protocol Identifier Valid (PIV) bit is set..
944 * from spc3r23.pdf section 7.5.1
946 if (page_83
[1] & 0x80) {
947 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
948 vpd
->protocol_identifier_set
= 1;
949 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
952 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
954 int transport_dump_vpd_assoc(
956 unsigned char *p_buf
,
959 unsigned char buf
[VPD_TMP_BUF_SIZE
];
963 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
964 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
966 switch (vpd
->association
) {
968 sprintf(buf
+len
, "addressed logical unit\n");
971 sprintf(buf
+len
, "target port\n");
974 sprintf(buf
+len
, "SCSI target device\n");
977 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
983 strncpy(p_buf
, buf
, p_buf_len
);
990 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
993 * The VPD identification association..
995 * from spc3r23.pdf Section 7.6.3.1 Table 297
997 vpd
->association
= (page_83
[1] & 0x30);
998 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1000 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1002 int transport_dump_vpd_ident_type(
1003 struct t10_vpd
*vpd
,
1004 unsigned char *p_buf
,
1007 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1011 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1012 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1014 switch (vpd
->device_identifier_type
) {
1016 sprintf(buf
+len
, "Vendor specific\n");
1019 sprintf(buf
+len
, "T10 Vendor ID based\n");
1022 sprintf(buf
+len
, "EUI-64 based\n");
1025 sprintf(buf
+len
, "NAA\n");
1028 sprintf(buf
+len
, "Relative target port identifier\n");
1031 sprintf(buf
+len
, "SCSI name string\n");
1034 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1035 vpd
->device_identifier_type
);
1041 if (p_buf_len
< strlen(buf
)+1)
1043 strncpy(p_buf
, buf
, p_buf_len
);
1045 pr_debug("%s", buf
);
1051 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1054 * The VPD identifier type..
1056 * from spc3r23.pdf Section 7.6.3.1 Table 298
1058 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1059 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1061 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1063 int transport_dump_vpd_ident(
1064 struct t10_vpd
*vpd
,
1065 unsigned char *p_buf
,
1068 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1071 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1073 switch (vpd
->device_identifier_code_set
) {
1074 case 0x01: /* Binary */
1075 snprintf(buf
, sizeof(buf
),
1076 "T10 VPD Binary Device Identifier: %s\n",
1077 &vpd
->device_identifier
[0]);
1079 case 0x02: /* ASCII */
1080 snprintf(buf
, sizeof(buf
),
1081 "T10 VPD ASCII Device Identifier: %s\n",
1082 &vpd
->device_identifier
[0]);
1084 case 0x03: /* UTF-8 */
1085 snprintf(buf
, sizeof(buf
),
1086 "T10 VPD UTF-8 Device Identifier: %s\n",
1087 &vpd
->device_identifier
[0]);
1090 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1091 " 0x%02x", vpd
->device_identifier_code_set
);
1097 strncpy(p_buf
, buf
, p_buf_len
);
1099 pr_debug("%s", buf
);
1105 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1107 static const char hex_str
[] = "0123456789abcdef";
1108 int j
= 0, i
= 4; /* offset to start of the identifier */
1111 * The VPD Code Set (encoding)
1113 * from spc3r23.pdf Section 7.6.3.1 Table 296
1115 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1116 switch (vpd
->device_identifier_code_set
) {
1117 case 0x01: /* Binary */
1118 vpd
->device_identifier
[j
++] =
1119 hex_str
[vpd
->device_identifier_type
];
1120 while (i
< (4 + page_83
[3])) {
1121 vpd
->device_identifier
[j
++] =
1122 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1123 vpd
->device_identifier
[j
++] =
1124 hex_str
[page_83
[i
] & 0x0f];
1128 case 0x02: /* ASCII */
1129 case 0x03: /* UTF-8 */
1130 while (i
< (4 + page_83
[3]))
1131 vpd
->device_identifier
[j
++] = page_83
[i
++];
1137 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1139 EXPORT_SYMBOL(transport_set_vpd_ident
);
1141 static sense_reason_t
1142 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1147 if (!cmd
->se_tfo
->max_data_sg_nents
)
1148 return TCM_NO_SENSE
;
1150 * Check if fabric enforced maximum SGL entries per I/O descriptor
1151 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1152 * residual_count and reduce original cmd->data_length to maximum
1153 * length based on single PAGE_SIZE entry scatter-lists.
1155 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1156 if (cmd
->data_length
> mtl
) {
1158 * If an existing CDB overflow is present, calculate new residual
1159 * based on CDB size minus fabric maximum transfer length.
1161 * If an existing CDB underflow is present, calculate new residual
1162 * based on original cmd->data_length minus fabric maximum transfer
1165 * Otherwise, set the underflow residual based on cmd->data_length
1166 * minus fabric maximum transfer length.
1168 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1169 cmd
->residual_count
= (size
- mtl
);
1170 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1171 u32 orig_dl
= size
+ cmd
->residual_count
;
1172 cmd
->residual_count
= (orig_dl
- mtl
);
1174 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1175 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1177 cmd
->data_length
= mtl
;
1179 * Reset sbc_check_prot() calculated protection payload
1180 * length based upon the new smaller MTL.
1182 if (cmd
->prot_length
) {
1183 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1184 cmd
->prot_length
= dev
->prot_length
* sectors
;
1187 return TCM_NO_SENSE
;
1191 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1193 struct se_device
*dev
= cmd
->se_dev
;
1195 if (cmd
->unknown_data_length
) {
1196 cmd
->data_length
= size
;
1197 } else if (size
!= cmd
->data_length
) {
1198 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1199 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1200 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1201 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1203 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1204 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1205 pr_err_ratelimited("Rejecting underflow/overflow"
1206 " for WRITE data CDB\n");
1207 return TCM_INVALID_CDB_FIELD
;
1210 * Some fabric drivers like iscsi-target still expect to
1211 * always reject overflow writes. Reject this case until
1212 * full fabric driver level support for overflow writes
1213 * is introduced tree-wide.
1215 if (size
> cmd
->data_length
) {
1216 pr_err_ratelimited("Rejecting overflow for"
1217 " WRITE control CDB\n");
1218 return TCM_INVALID_CDB_FIELD
;
1222 * Reject READ_* or WRITE_* with overflow/underflow for
1223 * type SCF_SCSI_DATA_CDB.
1225 if (dev
->dev_attrib
.block_size
!= 512) {
1226 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1227 " CDB on non 512-byte sector setup subsystem"
1228 " plugin: %s\n", dev
->transport
->name
);
1229 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1230 return TCM_INVALID_CDB_FIELD
;
1233 * For the overflow case keep the existing fabric provided
1234 * ->data_length. Otherwise for the underflow case, reset
1235 * ->data_length to the smaller SCSI expected data transfer
1238 if (size
> cmd
->data_length
) {
1239 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1240 cmd
->residual_count
= (size
- cmd
->data_length
);
1242 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1243 cmd
->residual_count
= (cmd
->data_length
- size
);
1244 cmd
->data_length
= size
;
1248 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1253 * Used by fabric modules containing a local struct se_cmd within their
1254 * fabric dependent per I/O descriptor.
1256 * Preserves the value of @cmd->tag.
1258 void transport_init_se_cmd(
1260 const struct target_core_fabric_ops
*tfo
,
1261 struct se_session
*se_sess
,
1265 unsigned char *sense_buffer
)
1267 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1268 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1269 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1270 INIT_LIST_HEAD(&cmd
->state_list
);
1271 init_completion(&cmd
->t_transport_stop_comp
);
1272 init_completion(&cmd
->cmd_wait_comp
);
1273 spin_lock_init(&cmd
->t_state_lock
);
1274 kref_init(&cmd
->cmd_kref
);
1275 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1278 cmd
->se_sess
= se_sess
;
1279 cmd
->data_length
= data_length
;
1280 cmd
->data_direction
= data_direction
;
1281 cmd
->sam_task_attr
= task_attr
;
1282 cmd
->sense_buffer
= sense_buffer
;
1284 cmd
->state_active
= false;
1286 EXPORT_SYMBOL(transport_init_se_cmd
);
1288 static sense_reason_t
1289 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1291 struct se_device
*dev
= cmd
->se_dev
;
1294 * Check if SAM Task Attribute emulation is enabled for this
1295 * struct se_device storage object
1297 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1300 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1301 pr_debug("SAM Task Attribute ACA"
1302 " emulation is not supported\n");
1303 return TCM_INVALID_CDB_FIELD
;
1310 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1312 struct se_device
*dev
= cmd
->se_dev
;
1316 * Ensure that the received CDB is less than the max (252 + 8) bytes
1317 * for VARIABLE_LENGTH_CMD
1319 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1320 pr_err("Received SCSI CDB with command_size: %d that"
1321 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1322 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1323 return TCM_INVALID_CDB_FIELD
;
1326 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1327 * allocate the additional extended CDB buffer now.. Otherwise
1328 * setup the pointer from __t_task_cdb to t_task_cdb.
1330 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1331 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1333 if (!cmd
->t_task_cdb
) {
1334 pr_err("Unable to allocate cmd->t_task_cdb"
1335 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1336 scsi_command_size(cdb
),
1337 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1338 return TCM_OUT_OF_RESOURCES
;
1341 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1343 * Copy the original CDB into cmd->
1345 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1347 trace_target_sequencer_start(cmd
);
1349 ret
= dev
->transport
->parse_cdb(cmd
);
1350 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1351 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1352 cmd
->se_tfo
->get_fabric_name(),
1353 cmd
->se_sess
->se_node_acl
->initiatorname
,
1354 cmd
->t_task_cdb
[0]);
1358 ret
= transport_check_alloc_task_attr(cmd
);
1362 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1363 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1366 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1369 * Used by fabric module frontends to queue tasks directly.
1370 * May only be used from process context.
1372 int transport_handle_cdb_direct(
1379 pr_err("cmd->se_lun is NULL\n");
1382 if (in_interrupt()) {
1384 pr_err("transport_generic_handle_cdb cannot be called"
1385 " from interrupt context\n");
1389 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1390 * outstanding descriptors are handled correctly during shutdown via
1391 * transport_wait_for_tasks()
1393 * Also, we don't take cmd->t_state_lock here as we only expect
1394 * this to be called for initial descriptor submission.
1396 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1397 cmd
->transport_state
|= CMD_T_ACTIVE
;
1400 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1401 * so follow TRANSPORT_NEW_CMD processing thread context usage
1402 * and call transport_generic_request_failure() if necessary..
1404 ret
= transport_generic_new_cmd(cmd
);
1406 transport_generic_request_failure(cmd
, ret
);
1409 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1412 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1413 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1415 if (!sgl
|| !sgl_count
)
1419 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1420 * scatterlists already have been set to follow what the fabric
1421 * passes for the original expected data transfer length.
1423 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1424 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1425 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1426 return TCM_INVALID_CDB_FIELD
;
1429 cmd
->t_data_sg
= sgl
;
1430 cmd
->t_data_nents
= sgl_count
;
1431 cmd
->t_bidi_data_sg
= sgl_bidi
;
1432 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1434 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1439 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1440 * se_cmd + use pre-allocated SGL memory.
1442 * @se_cmd: command descriptor to submit
1443 * @se_sess: associated se_sess for endpoint
1444 * @cdb: pointer to SCSI CDB
1445 * @sense: pointer to SCSI sense buffer
1446 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1447 * @data_length: fabric expected data transfer length
1448 * @task_addr: SAM task attribute
1449 * @data_dir: DMA data direction
1450 * @flags: flags for command submission from target_sc_flags_tables
1451 * @sgl: struct scatterlist memory for unidirectional mapping
1452 * @sgl_count: scatterlist count for unidirectional mapping
1453 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1454 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1455 * @sgl_prot: struct scatterlist memory protection information
1456 * @sgl_prot_count: scatterlist count for protection information
1458 * Task tags are supported if the caller has set @se_cmd->tag.
1460 * Returns non zero to signal active I/O shutdown failure. All other
1461 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1462 * but still return zero here.
1464 * This may only be called from process context, and also currently
1465 * assumes internal allocation of fabric payload buffer by target-core.
1467 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1468 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1469 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1470 struct scatterlist
*sgl
, u32 sgl_count
,
1471 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1472 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1474 struct se_portal_group
*se_tpg
;
1478 se_tpg
= se_sess
->se_tpg
;
1480 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1481 BUG_ON(in_interrupt());
1483 * Initialize se_cmd for target operation. From this point
1484 * exceptions are handled by sending exception status via
1485 * target_core_fabric_ops->queue_status() callback
1487 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1488 data_length
, data_dir
, task_attr
, sense
);
1490 if (flags
& TARGET_SCF_USE_CPUID
)
1491 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1493 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1495 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1496 se_cmd
->unknown_data_length
= 1;
1498 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1499 * se_sess->sess_cmd_list. A second kref_get here is necessary
1500 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1501 * kref_put() to happen during fabric packet acknowledgement.
1503 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1507 * Signal bidirectional data payloads to target-core
1509 if (flags
& TARGET_SCF_BIDI_OP
)
1510 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1512 * Locate se_lun pointer and attach it to struct se_cmd
1514 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1516 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1517 target_put_sess_cmd(se_cmd
);
1521 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1523 transport_generic_request_failure(se_cmd
, rc
);
1528 * Save pointers for SGLs containing protection information,
1531 if (sgl_prot_count
) {
1532 se_cmd
->t_prot_sg
= sgl_prot
;
1533 se_cmd
->t_prot_nents
= sgl_prot_count
;
1534 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1538 * When a non zero sgl_count has been passed perform SGL passthrough
1539 * mapping for pre-allocated fabric memory instead of having target
1540 * core perform an internal SGL allocation..
1542 if (sgl_count
!= 0) {
1546 * A work-around for tcm_loop as some userspace code via
1547 * scsi-generic do not memset their associated read buffers,
1548 * so go ahead and do that here for type non-data CDBs. Also
1549 * note that this is currently guaranteed to be a single SGL
1550 * for this case by target core in target_setup_cmd_from_cdb()
1551 * -> transport_generic_cmd_sequencer().
1553 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1554 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1555 unsigned char *buf
= NULL
;
1558 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1561 memset(buf
, 0, sgl
->length
);
1562 kunmap(sg_page(sgl
));
1566 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1567 sgl_bidi
, sgl_bidi_count
);
1569 transport_generic_request_failure(se_cmd
, rc
);
1575 * Check if we need to delay processing because of ALUA
1576 * Active/NonOptimized primary access state..
1578 core_alua_check_nonop_delay(se_cmd
);
1580 transport_handle_cdb_direct(se_cmd
);
1583 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1586 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1588 * @se_cmd: command descriptor to submit
1589 * @se_sess: associated se_sess for endpoint
1590 * @cdb: pointer to SCSI CDB
1591 * @sense: pointer to SCSI sense buffer
1592 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1593 * @data_length: fabric expected data transfer length
1594 * @task_addr: SAM task attribute
1595 * @data_dir: DMA data direction
1596 * @flags: flags for command submission from target_sc_flags_tables
1598 * Task tags are supported if the caller has set @se_cmd->tag.
1600 * Returns non zero to signal active I/O shutdown failure. All other
1601 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1602 * but still return zero here.
1604 * This may only be called from process context, and also currently
1605 * assumes internal allocation of fabric payload buffer by target-core.
1607 * It also assumes interal target core SGL memory allocation.
1609 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1610 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1611 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1613 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1614 unpacked_lun
, data_length
, task_attr
, data_dir
,
1615 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1617 EXPORT_SYMBOL(target_submit_cmd
);
1619 static void target_complete_tmr_failure(struct work_struct
*work
)
1621 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1623 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1624 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1626 transport_cmd_check_stop_to_fabric(se_cmd
);
1630 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1633 * @se_cmd: command descriptor to submit
1634 * @se_sess: associated se_sess for endpoint
1635 * @sense: pointer to SCSI sense buffer
1636 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1637 * @fabric_context: fabric context for TMR req
1638 * @tm_type: Type of TM request
1639 * @gfp: gfp type for caller
1640 * @tag: referenced task tag for TMR_ABORT_TASK
1641 * @flags: submit cmd flags
1643 * Callable from all contexts.
1646 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1647 unsigned char *sense
, u64 unpacked_lun
,
1648 void *fabric_tmr_ptr
, unsigned char tm_type
,
1649 gfp_t gfp
, u64 tag
, int flags
)
1651 struct se_portal_group
*se_tpg
;
1654 se_tpg
= se_sess
->se_tpg
;
1657 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1658 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1660 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1661 * allocation failure.
1663 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1667 if (tm_type
== TMR_ABORT_TASK
)
1668 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1670 /* See target_submit_cmd for commentary */
1671 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1673 core_tmr_release_req(se_cmd
->se_tmr_req
);
1677 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1680 * For callback during failure handling, push this work off
1681 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1683 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1684 schedule_work(&se_cmd
->work
);
1687 transport_generic_handle_tmr(se_cmd
);
1690 EXPORT_SYMBOL(target_submit_tmr
);
1693 * Handle SAM-esque emulation for generic transport request failures.
1695 void transport_generic_request_failure(struct se_cmd
*cmd
,
1696 sense_reason_t sense_reason
)
1698 int ret
= 0, post_ret
= 0;
1700 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1701 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1702 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1703 cmd
->se_tfo
->get_cmd_state(cmd
),
1704 cmd
->t_state
, sense_reason
);
1705 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1706 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1707 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1708 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1711 * For SAM Task Attribute emulation for failed struct se_cmd
1713 transport_complete_task_attr(cmd
);
1715 * Handle special case for COMPARE_AND_WRITE failure, where the
1716 * callback is expected to drop the per device ->caw_sem.
1718 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1719 cmd
->transport_complete_callback
)
1720 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1722 switch (sense_reason
) {
1723 case TCM_NON_EXISTENT_LUN
:
1724 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1725 case TCM_INVALID_CDB_FIELD
:
1726 case TCM_INVALID_PARAMETER_LIST
:
1727 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1728 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1729 case TCM_UNKNOWN_MODE_PAGE
:
1730 case TCM_WRITE_PROTECTED
:
1731 case TCM_ADDRESS_OUT_OF_RANGE
:
1732 case TCM_CHECK_CONDITION_ABORT_CMD
:
1733 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1734 case TCM_CHECK_CONDITION_NOT_READY
:
1735 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1736 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1737 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1738 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1740 case TCM_OUT_OF_RESOURCES
:
1741 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1743 case TCM_RESERVATION_CONFLICT
:
1745 * No SENSE Data payload for this case, set SCSI Status
1746 * and queue the response to $FABRIC_MOD.
1748 * Uses linux/include/scsi/scsi.h SAM status codes defs
1750 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1752 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1753 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1756 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1759 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1760 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1761 cmd
->orig_fe_lun
, 0x2C,
1762 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1764 trace_target_cmd_complete(cmd
);
1765 ret
= cmd
->se_tfo
->queue_status(cmd
);
1766 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1770 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1771 cmd
->t_task_cdb
[0], sense_reason
);
1772 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1776 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1777 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1781 transport_lun_remove_cmd(cmd
);
1782 transport_cmd_check_stop_to_fabric(cmd
);
1786 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1787 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1789 EXPORT_SYMBOL(transport_generic_request_failure
);
1791 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1795 if (!cmd
->execute_cmd
) {
1796 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1801 * Check for an existing UNIT ATTENTION condition after
1802 * target_handle_task_attr() has done SAM task attr
1803 * checking, and possibly have already defered execution
1804 * out to target_restart_delayed_cmds() context.
1806 ret
= target_scsi3_ua_check(cmd
);
1810 ret
= target_alua_state_check(cmd
);
1814 ret
= target_check_reservation(cmd
);
1816 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1821 ret
= cmd
->execute_cmd(cmd
);
1825 spin_lock_irq(&cmd
->t_state_lock
);
1826 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1827 spin_unlock_irq(&cmd
->t_state_lock
);
1829 transport_generic_request_failure(cmd
, ret
);
1832 static int target_write_prot_action(struct se_cmd
*cmd
)
1836 * Perform WRITE_INSERT of PI using software emulation when backend
1837 * device has PI enabled, if the transport has not already generated
1838 * PI using hardware WRITE_INSERT offload.
1840 switch (cmd
->prot_op
) {
1841 case TARGET_PROT_DOUT_INSERT
:
1842 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1843 sbc_dif_generate(cmd
);
1845 case TARGET_PROT_DOUT_STRIP
:
1846 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1849 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1850 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1851 sectors
, 0, cmd
->t_prot_sg
, 0);
1852 if (unlikely(cmd
->pi_err
)) {
1853 spin_lock_irq(&cmd
->t_state_lock
);
1854 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1855 spin_unlock_irq(&cmd
->t_state_lock
);
1856 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1867 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1869 struct se_device
*dev
= cmd
->se_dev
;
1871 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1874 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1877 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1878 * to allow the passed struct se_cmd list of tasks to the front of the list.
1880 switch (cmd
->sam_task_attr
) {
1882 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1883 cmd
->t_task_cdb
[0]);
1885 case TCM_ORDERED_TAG
:
1886 atomic_inc_mb(&dev
->dev_ordered_sync
);
1888 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1889 cmd
->t_task_cdb
[0]);
1892 * Execute an ORDERED command if no other older commands
1893 * exist that need to be completed first.
1895 if (!atomic_read(&dev
->simple_cmds
))
1900 * For SIMPLE and UNTAGGED Task Attribute commands
1902 atomic_inc_mb(&dev
->simple_cmds
);
1906 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1909 spin_lock(&dev
->delayed_cmd_lock
);
1910 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1911 spin_unlock(&dev
->delayed_cmd_lock
);
1913 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1914 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1918 static int __transport_check_aborted_status(struct se_cmd
*, int);
1920 void target_execute_cmd(struct se_cmd
*cmd
)
1923 * Determine if frontend context caller is requesting the stopping of
1924 * this command for frontend exceptions.
1926 * If the received CDB has aleady been aborted stop processing it here.
1928 spin_lock_irq(&cmd
->t_state_lock
);
1929 if (__transport_check_aborted_status(cmd
, 1)) {
1930 spin_unlock_irq(&cmd
->t_state_lock
);
1933 if (cmd
->transport_state
& CMD_T_STOP
) {
1934 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1935 __func__
, __LINE__
, cmd
->tag
);
1937 spin_unlock_irq(&cmd
->t_state_lock
);
1938 complete_all(&cmd
->t_transport_stop_comp
);
1942 cmd
->t_state
= TRANSPORT_PROCESSING
;
1943 cmd
->transport_state
&= ~CMD_T_PRE_EXECUTE
;
1944 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1945 spin_unlock_irq(&cmd
->t_state_lock
);
1947 if (target_write_prot_action(cmd
))
1950 if (target_handle_task_attr(cmd
)) {
1951 spin_lock_irq(&cmd
->t_state_lock
);
1952 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1953 spin_unlock_irq(&cmd
->t_state_lock
);
1957 __target_execute_cmd(cmd
, true);
1959 EXPORT_SYMBOL(target_execute_cmd
);
1962 * Process all commands up to the last received ORDERED task attribute which
1963 * requires another blocking boundary
1965 static void target_restart_delayed_cmds(struct se_device
*dev
)
1970 spin_lock(&dev
->delayed_cmd_lock
);
1971 if (list_empty(&dev
->delayed_cmd_list
)) {
1972 spin_unlock(&dev
->delayed_cmd_lock
);
1976 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1977 struct se_cmd
, se_delayed_node
);
1978 list_del(&cmd
->se_delayed_node
);
1979 spin_unlock(&dev
->delayed_cmd_lock
);
1981 cmd
->transport_state
|= CMD_T_SENT
;
1983 __target_execute_cmd(cmd
, true);
1985 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1991 * Called from I/O completion to determine which dormant/delayed
1992 * and ordered cmds need to have their tasks added to the execution queue.
1994 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1996 struct se_device
*dev
= cmd
->se_dev
;
1998 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2001 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2004 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2005 atomic_dec_mb(&dev
->simple_cmds
);
2006 dev
->dev_cur_ordered_id
++;
2007 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
2008 dev
->dev_cur_ordered_id
);
2009 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2010 dev
->dev_cur_ordered_id
++;
2011 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2012 dev
->dev_cur_ordered_id
);
2013 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2014 atomic_dec_mb(&dev
->dev_ordered_sync
);
2016 dev
->dev_cur_ordered_id
++;
2017 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2018 dev
->dev_cur_ordered_id
);
2020 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2023 target_restart_delayed_cmds(dev
);
2026 static void transport_complete_qf(struct se_cmd
*cmd
)
2030 transport_complete_task_attr(cmd
);
2032 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2033 trace_target_cmd_complete(cmd
);
2034 ret
= cmd
->se_tfo
->queue_status(cmd
);
2038 switch (cmd
->data_direction
) {
2039 case DMA_FROM_DEVICE
:
2040 if (cmd
->scsi_status
)
2043 trace_target_cmd_complete(cmd
);
2044 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2047 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2048 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2051 /* Fall through for DMA_TO_DEVICE */
2054 trace_target_cmd_complete(cmd
);
2055 ret
= cmd
->se_tfo
->queue_status(cmd
);
2063 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2066 transport_lun_remove_cmd(cmd
);
2067 transport_cmd_check_stop_to_fabric(cmd
);
2070 static void transport_handle_queue_full(
2072 struct se_device
*dev
)
2074 spin_lock_irq(&dev
->qf_cmd_lock
);
2075 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2076 atomic_inc_mb(&dev
->dev_qf_count
);
2077 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2079 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2082 static bool target_read_prot_action(struct se_cmd
*cmd
)
2084 switch (cmd
->prot_op
) {
2085 case TARGET_PROT_DIN_STRIP
:
2086 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2087 u32 sectors
= cmd
->data_length
>>
2088 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2090 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2091 sectors
, 0, cmd
->t_prot_sg
,
2097 case TARGET_PROT_DIN_INSERT
:
2098 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2101 sbc_dif_generate(cmd
);
2110 static void target_complete_ok_work(struct work_struct
*work
)
2112 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2116 * Check if we need to move delayed/dormant tasks from cmds on the
2117 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2120 transport_complete_task_attr(cmd
);
2123 * Check to schedule QUEUE_FULL work, or execute an existing
2124 * cmd->transport_qf_callback()
2126 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2127 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2130 * Check if we need to send a sense buffer from
2131 * the struct se_cmd in question.
2133 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2134 WARN_ON(!cmd
->scsi_status
);
2135 ret
= transport_send_check_condition_and_sense(
2137 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2140 transport_lun_remove_cmd(cmd
);
2141 transport_cmd_check_stop_to_fabric(cmd
);
2145 * Check for a callback, used by amongst other things
2146 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2148 if (cmd
->transport_complete_callback
) {
2150 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2151 bool zero_dl
= !(cmd
->data_length
);
2154 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2155 if (!rc
&& !post_ret
) {
2161 ret
= transport_send_check_condition_and_sense(cmd
,
2163 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2166 transport_lun_remove_cmd(cmd
);
2167 transport_cmd_check_stop_to_fabric(cmd
);
2173 switch (cmd
->data_direction
) {
2174 case DMA_FROM_DEVICE
:
2175 if (cmd
->scsi_status
)
2178 atomic_long_add(cmd
->data_length
,
2179 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2181 * Perform READ_STRIP of PI using software emulation when
2182 * backend had PI enabled, if the transport will not be
2183 * performing hardware READ_STRIP offload.
2185 if (target_read_prot_action(cmd
)) {
2186 ret
= transport_send_check_condition_and_sense(cmd
,
2188 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2191 transport_lun_remove_cmd(cmd
);
2192 transport_cmd_check_stop_to_fabric(cmd
);
2196 trace_target_cmd_complete(cmd
);
2197 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2198 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2202 atomic_long_add(cmd
->data_length
,
2203 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2205 * Check if we need to send READ payload for BIDI-COMMAND
2207 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2208 atomic_long_add(cmd
->data_length
,
2209 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2210 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2211 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2215 /* Fall through for DMA_TO_DEVICE */
2218 trace_target_cmd_complete(cmd
);
2219 ret
= cmd
->se_tfo
->queue_status(cmd
);
2220 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2227 transport_lun_remove_cmd(cmd
);
2228 transport_cmd_check_stop_to_fabric(cmd
);
2232 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2233 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2234 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2235 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2238 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2240 struct scatterlist
*sg
;
2243 for_each_sg(sgl
, sg
, nents
, count
)
2244 __free_page(sg_page(sg
));
2248 EXPORT_SYMBOL(target_free_sgl
);
2250 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2253 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2254 * emulation, and free + reset pointers if necessary..
2256 if (!cmd
->t_data_sg_orig
)
2259 kfree(cmd
->t_data_sg
);
2260 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2261 cmd
->t_data_sg_orig
= NULL
;
2262 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2263 cmd
->t_data_nents_orig
= 0;
2266 static inline void transport_free_pages(struct se_cmd
*cmd
)
2268 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2269 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2270 cmd
->t_prot_sg
= NULL
;
2271 cmd
->t_prot_nents
= 0;
2274 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2276 * Release special case READ buffer payload required for
2277 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2279 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2280 target_free_sgl(cmd
->t_bidi_data_sg
,
2281 cmd
->t_bidi_data_nents
);
2282 cmd
->t_bidi_data_sg
= NULL
;
2283 cmd
->t_bidi_data_nents
= 0;
2285 transport_reset_sgl_orig(cmd
);
2288 transport_reset_sgl_orig(cmd
);
2290 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2291 cmd
->t_data_sg
= NULL
;
2292 cmd
->t_data_nents
= 0;
2294 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2295 cmd
->t_bidi_data_sg
= NULL
;
2296 cmd
->t_bidi_data_nents
= 0;
2300 * transport_put_cmd - release a reference to a command
2301 * @cmd: command to release
2303 * This routine releases our reference to the command and frees it if possible.
2305 static int transport_put_cmd(struct se_cmd
*cmd
)
2307 BUG_ON(!cmd
->se_tfo
);
2309 * If this cmd has been setup with target_get_sess_cmd(), drop
2310 * the kref and call ->release_cmd() in kref callback.
2312 return target_put_sess_cmd(cmd
);
2315 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2317 struct scatterlist
*sg
= cmd
->t_data_sg
;
2318 struct page
**pages
;
2322 * We need to take into account a possible offset here for fabrics like
2323 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2324 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2326 if (!cmd
->t_data_nents
)
2330 if (cmd
->t_data_nents
== 1)
2331 return kmap(sg_page(sg
)) + sg
->offset
;
2333 /* >1 page. use vmap */
2334 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2338 /* convert sg[] to pages[] */
2339 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2340 pages
[i
] = sg_page(sg
);
2343 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2345 if (!cmd
->t_data_vmap
)
2348 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2350 EXPORT_SYMBOL(transport_kmap_data_sg
);
2352 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2354 if (!cmd
->t_data_nents
) {
2356 } else if (cmd
->t_data_nents
== 1) {
2357 kunmap(sg_page(cmd
->t_data_sg
));
2361 vunmap(cmd
->t_data_vmap
);
2362 cmd
->t_data_vmap
= NULL
;
2364 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2367 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2368 bool zero_page
, bool chainable
)
2370 struct scatterlist
*sg
;
2372 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2373 unsigned int nalloc
, nent
;
2376 nalloc
= nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2379 sg
= kmalloc_array(nalloc
, sizeof(struct scatterlist
), GFP_KERNEL
);
2383 sg_init_table(sg
, nalloc
);
2386 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2387 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2391 sg_set_page(&sg
[i
], page
, page_len
, 0);
2402 __free_page(sg_page(&sg
[i
]));
2407 EXPORT_SYMBOL(target_alloc_sgl
);
2410 * Allocate any required resources to execute the command. For writes we
2411 * might not have the payload yet, so notify the fabric via a call to
2412 * ->write_pending instead. Otherwise place it on the execution queue.
2415 transport_generic_new_cmd(struct se_cmd
*cmd
)
2418 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2420 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2421 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2422 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2423 cmd
->prot_length
, true, false);
2425 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2429 * Determine is the TCM fabric module has already allocated physical
2430 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2433 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2436 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2437 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2440 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2441 bidi_length
= cmd
->t_task_nolb
*
2442 cmd
->se_dev
->dev_attrib
.block_size
;
2444 bidi_length
= cmd
->data_length
;
2446 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2447 &cmd
->t_bidi_data_nents
,
2448 bidi_length
, zero_flag
, false);
2450 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2453 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2454 cmd
->data_length
, zero_flag
, false);
2456 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2457 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2460 * Special case for COMPARE_AND_WRITE with fabrics
2461 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2463 u32 caw_length
= cmd
->t_task_nolb
*
2464 cmd
->se_dev
->dev_attrib
.block_size
;
2466 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2467 &cmd
->t_bidi_data_nents
,
2468 caw_length
, zero_flag
, false);
2470 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2473 * If this command is not a write we can execute it right here,
2474 * for write buffers we need to notify the fabric driver first
2475 * and let it call back once the write buffers are ready.
2477 target_add_to_state_list(cmd
);
2478 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2479 target_execute_cmd(cmd
);
2482 transport_cmd_check_stop(cmd
, false, true);
2484 ret
= cmd
->se_tfo
->write_pending(cmd
);
2485 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2488 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2491 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2494 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2495 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2496 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2499 EXPORT_SYMBOL(transport_generic_new_cmd
);
2501 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2505 ret
= cmd
->se_tfo
->write_pending(cmd
);
2506 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2507 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2509 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2514 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2515 unsigned long *flags
);
2517 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2519 unsigned long flags
;
2521 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2522 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2523 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2526 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2529 bool aborted
= false, tas
= false;
2531 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2532 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2533 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2535 if (!aborted
|| tas
)
2536 ret
= transport_put_cmd(cmd
);
2539 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2541 * Handle WRITE failure case where transport_generic_new_cmd()
2542 * has already added se_cmd to state_list, but fabric has
2543 * failed command before I/O submission.
2545 if (cmd
->state_active
)
2546 target_remove_from_state_list(cmd
);
2549 transport_lun_remove_cmd(cmd
);
2551 if (!aborted
|| tas
)
2552 ret
= transport_put_cmd(cmd
);
2555 * If the task has been internally aborted due to TMR ABORT_TASK
2556 * or LUN_RESET, target_core_tmr.c is responsible for performing
2557 * the remaining calls to target_put_sess_cmd(), and not the
2558 * callers of this function.
2561 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2562 wait_for_completion(&cmd
->cmd_wait_comp
);
2563 cmd
->se_tfo
->release_cmd(cmd
);
2568 EXPORT_SYMBOL(transport_generic_free_cmd
);
2570 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2571 * @se_cmd: command descriptor to add
2572 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2574 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2576 struct se_session
*se_sess
= se_cmd
->se_sess
;
2577 unsigned long flags
;
2581 * Add a second kref if the fabric caller is expecting to handle
2582 * fabric acknowledgement that requires two target_put_sess_cmd()
2583 * invocations before se_cmd descriptor release.
2586 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2589 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2592 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2593 if (se_sess
->sess_tearing_down
) {
2597 se_cmd
->transport_state
|= CMD_T_PRE_EXECUTE
;
2598 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2600 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2602 if (ret
&& ack_kref
)
2603 target_put_sess_cmd(se_cmd
);
2607 EXPORT_SYMBOL(target_get_sess_cmd
);
2609 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2611 transport_free_pages(cmd
);
2613 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2614 core_tmr_release_req(cmd
->se_tmr_req
);
2615 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2616 kfree(cmd
->t_task_cdb
);
2619 static void target_release_cmd_kref(struct kref
*kref
)
2621 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2622 struct se_session
*se_sess
= se_cmd
->se_sess
;
2623 unsigned long flags
;
2626 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2628 spin_lock(&se_cmd
->t_state_lock
);
2629 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2630 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2631 spin_unlock(&se_cmd
->t_state_lock
);
2633 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2634 list_del_init(&se_cmd
->se_cmd_list
);
2635 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2636 target_free_cmd_mem(se_cmd
);
2637 complete(&se_cmd
->cmd_wait_comp
);
2640 list_del_init(&se_cmd
->se_cmd_list
);
2641 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2643 target_free_cmd_mem(se_cmd
);
2644 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2647 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2648 * @se_cmd: command descriptor to drop
2650 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2652 struct se_session
*se_sess
= se_cmd
->se_sess
;
2655 target_free_cmd_mem(se_cmd
);
2656 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2659 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2661 EXPORT_SYMBOL(target_put_sess_cmd
);
2663 /* target_sess_cmd_list_set_waiting - Flag all commands in
2664 * sess_cmd_list to complete cmd_wait_comp. Set
2665 * sess_tearing_down so no more commands are queued.
2666 * @se_sess: session to flag
2668 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2670 struct se_cmd
*se_cmd
, *tmp_cmd
;
2671 unsigned long flags
;
2674 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2675 if (se_sess
->sess_tearing_down
) {
2676 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2679 se_sess
->sess_tearing_down
= 1;
2680 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2682 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2683 &se_sess
->sess_wait_list
, se_cmd_list
) {
2684 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2686 se_cmd
->cmd_wait_set
= 1;
2687 spin_lock(&se_cmd
->t_state_lock
);
2688 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2689 spin_unlock(&se_cmd
->t_state_lock
);
2691 list_del_init(&se_cmd
->se_cmd_list
);
2694 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2696 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2698 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2699 * @se_sess: session to wait for active I/O
2701 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2703 struct se_cmd
*se_cmd
, *tmp_cmd
;
2704 unsigned long flags
;
2707 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2708 &se_sess
->sess_wait_list
, se_cmd_list
) {
2709 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2710 " %d\n", se_cmd
, se_cmd
->t_state
,
2711 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2713 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2714 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2715 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2717 if (!target_put_sess_cmd(se_cmd
)) {
2719 target_put_sess_cmd(se_cmd
);
2722 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2723 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2724 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2725 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2727 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2730 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2731 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2732 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2735 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2737 static void target_lun_confirm(struct percpu_ref
*ref
)
2739 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2741 complete(&lun
->lun_ref_comp
);
2744 void transport_clear_lun_ref(struct se_lun
*lun
)
2747 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2748 * the initial reference and schedule confirm kill to be
2749 * executed after one full RCU grace period has completed.
2751 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2753 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2754 * to call target_lun_confirm after lun->lun_ref has been marked
2755 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2756 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2757 * fails for all new incoming I/O.
2759 wait_for_completion(&lun
->lun_ref_comp
);
2761 * The second completion waits for percpu_ref_put_many() to
2762 * invoke ->release() after lun->lun_ref has switched to
2763 * atomic_t mode, and lun->lun_ref.count has reached zero.
2765 * At this point all target-core lun->lun_ref references have
2766 * been dropped via transport_lun_remove_cmd(), and it's safe
2767 * to proceed with the remaining LUN shutdown.
2769 wait_for_completion(&lun
->lun_shutdown_comp
);
2773 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2774 bool *aborted
, bool *tas
, unsigned long *flags
)
2775 __releases(&cmd
->t_state_lock
)
2776 __acquires(&cmd
->t_state_lock
)
2779 assert_spin_locked(&cmd
->t_state_lock
);
2780 WARN_ON_ONCE(!irqs_disabled());
2783 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2785 if (cmd
->transport_state
& CMD_T_ABORTED
)
2788 if (cmd
->transport_state
& CMD_T_TAS
)
2791 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2792 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2795 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2796 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2799 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2802 if (fabric_stop
&& *aborted
)
2805 cmd
->transport_state
|= CMD_T_STOP
;
2807 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2808 " t_state: %d, CMD_T_STOP\n", cmd
, cmd
->tag
,
2809 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2811 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2813 wait_for_completion(&cmd
->t_transport_stop_comp
);
2815 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2816 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2818 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2819 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2825 * transport_wait_for_tasks - wait for completion to occur
2826 * @cmd: command to wait
2828 * Called from frontend fabric context to wait for storage engine
2829 * to pause and/or release frontend generated struct se_cmd.
2831 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2833 unsigned long flags
;
2834 bool ret
, aborted
= false, tas
= false;
2836 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2837 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2838 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2842 EXPORT_SYMBOL(transport_wait_for_tasks
);
2848 bool add_sector_info
;
2851 static const struct sense_info sense_info_table
[] = {
2855 [TCM_NON_EXISTENT_LUN
] = {
2856 .key
= ILLEGAL_REQUEST
,
2857 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2859 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2860 .key
= ILLEGAL_REQUEST
,
2861 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2863 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2864 .key
= ILLEGAL_REQUEST
,
2865 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2867 [TCM_UNKNOWN_MODE_PAGE
] = {
2868 .key
= ILLEGAL_REQUEST
,
2869 .asc
= 0x24, /* INVALID FIELD IN CDB */
2871 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2872 .key
= ABORTED_COMMAND
,
2873 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2876 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2877 .key
= ABORTED_COMMAND
,
2878 .asc
= 0x0c, /* WRITE ERROR */
2879 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2881 [TCM_INVALID_CDB_FIELD
] = {
2882 .key
= ILLEGAL_REQUEST
,
2883 .asc
= 0x24, /* INVALID FIELD IN CDB */
2885 [TCM_INVALID_PARAMETER_LIST
] = {
2886 .key
= ILLEGAL_REQUEST
,
2887 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2889 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2890 .key
= ILLEGAL_REQUEST
,
2891 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2893 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2894 .key
= ILLEGAL_REQUEST
,
2895 .asc
= 0x0c, /* WRITE ERROR */
2896 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2898 [TCM_SERVICE_CRC_ERROR
] = {
2899 .key
= ABORTED_COMMAND
,
2900 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2901 .ascq
= 0x05, /* N/A */
2903 [TCM_SNACK_REJECTED
] = {
2904 .key
= ABORTED_COMMAND
,
2905 .asc
= 0x11, /* READ ERROR */
2906 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2908 [TCM_WRITE_PROTECTED
] = {
2909 .key
= DATA_PROTECT
,
2910 .asc
= 0x27, /* WRITE PROTECTED */
2912 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2913 .key
= ILLEGAL_REQUEST
,
2914 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2916 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2917 .key
= UNIT_ATTENTION
,
2919 [TCM_CHECK_CONDITION_NOT_READY
] = {
2922 [TCM_MISCOMPARE_VERIFY
] = {
2924 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2927 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2928 .key
= ABORTED_COMMAND
,
2930 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2931 .add_sector_info
= true,
2933 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2934 .key
= ABORTED_COMMAND
,
2936 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2937 .add_sector_info
= true,
2939 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2940 .key
= ABORTED_COMMAND
,
2942 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2943 .add_sector_info
= true,
2945 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
2946 .key
= COPY_ABORTED
,
2948 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2951 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2953 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2954 * Solaris initiators. Returning NOT READY instead means the
2955 * operations will be retried a finite number of times and we
2956 * can survive intermittent errors.
2959 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2963 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2965 const struct sense_info
*si
;
2966 u8
*buffer
= cmd
->sense_buffer
;
2967 int r
= (__force
int)reason
;
2969 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2971 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2972 si
= &sense_info_table
[r
];
2974 si
= &sense_info_table
[(__force
int)
2975 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2977 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2978 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2979 WARN_ON_ONCE(asc
== 0);
2980 } else if (si
->asc
== 0) {
2981 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2982 asc
= cmd
->scsi_asc
;
2983 ascq
= cmd
->scsi_ascq
;
2989 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2990 if (si
->add_sector_info
)
2991 return scsi_set_sense_information(buffer
,
2992 cmd
->scsi_sense_length
,
2999 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3000 sense_reason_t reason
, int from_transport
)
3002 unsigned long flags
;
3004 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3005 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3006 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3009 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3010 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3012 if (!from_transport
) {
3015 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3016 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3017 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3018 rc
= translate_sense_reason(cmd
, reason
);
3023 trace_target_cmd_complete(cmd
);
3024 return cmd
->se_tfo
->queue_status(cmd
);
3026 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3028 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3029 __releases(&cmd
->t_state_lock
)
3030 __acquires(&cmd
->t_state_lock
)
3032 assert_spin_locked(&cmd
->t_state_lock
);
3033 WARN_ON_ONCE(!irqs_disabled());
3035 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3038 * If cmd has been aborted but either no status is to be sent or it has
3039 * already been sent, just return
3041 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3043 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3047 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3048 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3050 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3051 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3052 trace_target_cmd_complete(cmd
);
3054 spin_unlock_irq(&cmd
->t_state_lock
);
3055 cmd
->se_tfo
->queue_status(cmd
);
3056 spin_lock_irq(&cmd
->t_state_lock
);
3061 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3065 spin_lock_irq(&cmd
->t_state_lock
);
3066 ret
= __transport_check_aborted_status(cmd
, send_status
);
3067 spin_unlock_irq(&cmd
->t_state_lock
);
3071 EXPORT_SYMBOL(transport_check_aborted_status
);
3073 void transport_send_task_abort(struct se_cmd
*cmd
)
3075 unsigned long flags
;
3077 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3078 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3079 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3082 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3085 * If there are still expected incoming fabric WRITEs, we wait
3086 * until until they have completed before sending a TASK_ABORTED
3087 * response. This response with TASK_ABORTED status will be
3088 * queued back to fabric module by transport_check_aborted_status().
3090 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3091 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3092 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3093 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3094 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3097 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3098 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3103 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3105 transport_lun_remove_cmd(cmd
);
3107 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3108 cmd
->t_task_cdb
[0], cmd
->tag
);
3110 trace_target_cmd_complete(cmd
);
3111 cmd
->se_tfo
->queue_status(cmd
);
3114 static void target_tmr_work(struct work_struct
*work
)
3116 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3117 struct se_device
*dev
= cmd
->se_dev
;
3118 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3119 unsigned long flags
;
3122 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3123 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3124 tmr
->response
= TMR_FUNCTION_REJECTED
;
3125 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3128 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3130 switch (tmr
->function
) {
3131 case TMR_ABORT_TASK
:
3132 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3134 case TMR_ABORT_TASK_SET
:
3136 case TMR_CLEAR_TASK_SET
:
3137 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3140 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3141 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3142 TMR_FUNCTION_REJECTED
;
3143 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3144 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3145 cmd
->orig_fe_lun
, 0x29,
3146 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3149 case TMR_TARGET_WARM_RESET
:
3150 tmr
->response
= TMR_FUNCTION_REJECTED
;
3152 case TMR_TARGET_COLD_RESET
:
3153 tmr
->response
= TMR_FUNCTION_REJECTED
;
3156 pr_err("Uknown TMR function: 0x%02x.\n",
3158 tmr
->response
= TMR_FUNCTION_REJECTED
;
3162 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3163 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3164 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3167 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3169 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3172 transport_cmd_check_stop_to_fabric(cmd
);
3175 int transport_generic_handle_tmr(
3178 unsigned long flags
;
3179 bool aborted
= false;
3181 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3182 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3185 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3186 cmd
->transport_state
|= CMD_T_ACTIVE
;
3188 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3191 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3192 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3193 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3194 transport_cmd_check_stop_to_fabric(cmd
);
3198 INIT_WORK(&cmd
->work
, target_tmr_work
);
3199 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3202 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3205 target_check_wce(struct se_device
*dev
)
3209 if (dev
->transport
->get_write_cache
)
3210 wce
= dev
->transport
->get_write_cache(dev
);
3211 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3218 target_check_fua(struct se_device
*dev
)
3220 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;