atm: iphase: Fix Spectre v1 vulnerability
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blobe738b4621cbbad6951ef6d9eeb6f47e72d8a3bd0
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
72 int init_se_kmem_caches(void)
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
145 return 0;
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
185 * Allocate a new row index for the entry type specified
187 u32 scsi_get_new_index(scsi_index_t type)
189 u32 new_index;
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
197 return new_index;
200 void transport_subsystem_check_init(void)
202 int ret;
203 static int sub_api_initialized;
205 if (sub_api_initialized)
206 return;
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized = 1;
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 struct se_session *se_sess;
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
244 return se_sess;
246 EXPORT_SYMBOL(transport_init_session);
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
251 int rc;
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
272 return 0;
274 EXPORT_SYMBOL(transport_alloc_session_tags);
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
280 struct se_session *se_sess;
281 int rc;
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
304 return se_sess;
306 EXPORT_SYMBOL(transport_init_session_tags);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
319 unsigned long flags;
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
329 if (se_nacl) {
332 * Determine if fabric allows for T10-PI feature bits exposed to
333 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 * If so, then always save prot_type on a per se_node_acl node
336 * basis and re-instate the previous sess_prot_type to avoid
337 * disabling PI from below any previously initiator side
338 * registered LUNs.
340 if (se_nacl->saved_prot_type)
341 se_sess->sess_prot_type = se_nacl->saved_prot_type;
342 else if (tfo->tpg_check_prot_fabric_only)
343 se_sess->sess_prot_type = se_nacl->saved_prot_type =
344 tfo->tpg_check_prot_fabric_only(se_tpg);
346 * If the fabric module supports an ISID based TransportID,
347 * save this value in binary from the fabric I_T Nexus now.
349 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350 memset(&buf[0], 0, PR_REG_ISID_LEN);
351 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 &buf[0], PR_REG_ISID_LEN);
353 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
356 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
358 * The se_nacl->nacl_sess pointer will be set to the
359 * last active I_T Nexus for each struct se_node_acl.
361 se_nacl->nacl_sess = se_sess;
363 list_add_tail(&se_sess->sess_acl_list,
364 &se_nacl->acl_sess_list);
365 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
367 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
369 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
372 EXPORT_SYMBOL(__transport_register_session);
374 void transport_register_session(
375 struct se_portal_group *se_tpg,
376 struct se_node_acl *se_nacl,
377 struct se_session *se_sess,
378 void *fabric_sess_ptr)
380 unsigned long flags;
382 spin_lock_irqsave(&se_tpg->session_lock, flags);
383 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
386 EXPORT_SYMBOL(transport_register_session);
388 struct se_session *
389 target_alloc_session(struct se_portal_group *tpg,
390 unsigned int tag_num, unsigned int tag_size,
391 enum target_prot_op prot_op,
392 const char *initiatorname, void *private,
393 int (*callback)(struct se_portal_group *,
394 struct se_session *, void *))
396 struct se_session *sess;
399 * If the fabric driver is using percpu-ida based pre allocation
400 * of I/O descriptor tags, go ahead and perform that setup now..
402 if (tag_num != 0)
403 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
404 else
405 sess = transport_init_session(prot_op);
407 if (IS_ERR(sess))
408 return sess;
410 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
411 (unsigned char *)initiatorname);
412 if (!sess->se_node_acl) {
413 transport_free_session(sess);
414 return ERR_PTR(-EACCES);
417 * Go ahead and perform any remaining fabric setup that is
418 * required before transport_register_session().
420 if (callback != NULL) {
421 int rc = callback(tpg, sess, private);
422 if (rc) {
423 transport_free_session(sess);
424 return ERR_PTR(rc);
428 transport_register_session(tpg, sess->se_node_acl, sess, private);
429 return sess;
431 EXPORT_SYMBOL(target_alloc_session);
433 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
435 struct se_session *se_sess;
436 ssize_t len = 0;
438 spin_lock_bh(&se_tpg->session_lock);
439 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
440 if (!se_sess->se_node_acl)
441 continue;
442 if (!se_sess->se_node_acl->dynamic_node_acl)
443 continue;
444 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
445 break;
447 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
448 se_sess->se_node_acl->initiatorname);
449 len += 1; /* Include NULL terminator */
451 spin_unlock_bh(&se_tpg->session_lock);
453 return len;
455 EXPORT_SYMBOL(target_show_dynamic_sessions);
457 static void target_complete_nacl(struct kref *kref)
459 struct se_node_acl *nacl = container_of(kref,
460 struct se_node_acl, acl_kref);
461 struct se_portal_group *se_tpg = nacl->se_tpg;
463 if (!nacl->dynamic_stop) {
464 complete(&nacl->acl_free_comp);
465 return;
468 mutex_lock(&se_tpg->acl_node_mutex);
469 list_del_init(&nacl->acl_list);
470 mutex_unlock(&se_tpg->acl_node_mutex);
472 core_tpg_wait_for_nacl_pr_ref(nacl);
473 core_free_device_list_for_node(nacl, se_tpg);
474 kfree(nacl);
477 void target_put_nacl(struct se_node_acl *nacl)
479 kref_put(&nacl->acl_kref, target_complete_nacl);
481 EXPORT_SYMBOL(target_put_nacl);
483 void transport_deregister_session_configfs(struct se_session *se_sess)
485 struct se_node_acl *se_nacl;
486 unsigned long flags;
488 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
490 se_nacl = se_sess->se_node_acl;
491 if (se_nacl) {
492 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
493 if (!list_empty(&se_sess->sess_acl_list))
494 list_del_init(&se_sess->sess_acl_list);
496 * If the session list is empty, then clear the pointer.
497 * Otherwise, set the struct se_session pointer from the tail
498 * element of the per struct se_node_acl active session list.
500 if (list_empty(&se_nacl->acl_sess_list))
501 se_nacl->nacl_sess = NULL;
502 else {
503 se_nacl->nacl_sess = container_of(
504 se_nacl->acl_sess_list.prev,
505 struct se_session, sess_acl_list);
507 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
510 EXPORT_SYMBOL(transport_deregister_session_configfs);
512 void transport_free_session(struct se_session *se_sess)
514 struct se_node_acl *se_nacl = se_sess->se_node_acl;
517 * Drop the se_node_acl->nacl_kref obtained from within
518 * core_tpg_get_initiator_node_acl().
520 if (se_nacl) {
521 struct se_portal_group *se_tpg = se_nacl->se_tpg;
522 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
523 unsigned long flags;
525 se_sess->se_node_acl = NULL;
528 * Also determine if we need to drop the extra ->cmd_kref if
529 * it had been previously dynamically generated, and
530 * the endpoint is not caching dynamic ACLs.
532 mutex_lock(&se_tpg->acl_node_mutex);
533 if (se_nacl->dynamic_node_acl &&
534 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
535 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
536 if (list_empty(&se_nacl->acl_sess_list))
537 se_nacl->dynamic_stop = true;
538 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
540 if (se_nacl->dynamic_stop)
541 list_del_init(&se_nacl->acl_list);
543 mutex_unlock(&se_tpg->acl_node_mutex);
545 if (se_nacl->dynamic_stop)
546 target_put_nacl(se_nacl);
548 target_put_nacl(se_nacl);
550 if (se_sess->sess_cmd_map) {
551 percpu_ida_destroy(&se_sess->sess_tag_pool);
552 kvfree(se_sess->sess_cmd_map);
554 kmem_cache_free(se_sess_cache, se_sess);
556 EXPORT_SYMBOL(transport_free_session);
558 void transport_deregister_session(struct se_session *se_sess)
560 struct se_portal_group *se_tpg = se_sess->se_tpg;
561 unsigned long flags;
563 if (!se_tpg) {
564 transport_free_session(se_sess);
565 return;
568 spin_lock_irqsave(&se_tpg->session_lock, flags);
569 list_del(&se_sess->sess_list);
570 se_sess->se_tpg = NULL;
571 se_sess->fabric_sess_ptr = NULL;
572 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
574 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575 se_tpg->se_tpg_tfo->get_fabric_name());
577 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579 * removal context from within transport_free_session() code.
581 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
582 * to release all remaining generate_node_acl=1 created ACL resources.
585 transport_free_session(se_sess);
587 EXPORT_SYMBOL(transport_deregister_session);
589 static void target_remove_from_state_list(struct se_cmd *cmd)
591 struct se_device *dev = cmd->se_dev;
592 unsigned long flags;
594 if (!dev)
595 return;
597 if (cmd->transport_state & CMD_T_BUSY)
598 return;
600 spin_lock_irqsave(&dev->execute_task_lock, flags);
601 if (cmd->state_active) {
602 list_del(&cmd->state_list);
603 cmd->state_active = false;
605 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
608 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
609 bool write_pending)
611 unsigned long flags;
613 if (remove_from_lists) {
614 target_remove_from_state_list(cmd);
617 * Clear struct se_cmd->se_lun before the handoff to FE.
619 cmd->se_lun = NULL;
622 spin_lock_irqsave(&cmd->t_state_lock, flags);
623 if (write_pending)
624 cmd->t_state = TRANSPORT_WRITE_PENDING;
627 * Determine if frontend context caller is requesting the stopping of
628 * this command for frontend exceptions.
630 if (cmd->transport_state & CMD_T_STOP) {
631 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
632 __func__, __LINE__, cmd->tag);
634 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
636 complete_all(&cmd->t_transport_stop_comp);
637 return 1;
640 cmd->transport_state &= ~CMD_T_ACTIVE;
641 if (remove_from_lists) {
643 * Some fabric modules like tcm_loop can release
644 * their internally allocated I/O reference now and
645 * struct se_cmd now.
647 * Fabric modules are expected to return '1' here if the
648 * se_cmd being passed is released at this point,
649 * or zero if not being released.
651 if (cmd->se_tfo->check_stop_free != NULL) {
652 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
653 return cmd->se_tfo->check_stop_free(cmd);
657 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
658 return 0;
661 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
663 return transport_cmd_check_stop(cmd, true, false);
666 static void transport_lun_remove_cmd(struct se_cmd *cmd)
668 struct se_lun *lun = cmd->se_lun;
670 if (!lun)
671 return;
673 if (cmpxchg(&cmd->lun_ref_active, true, false))
674 percpu_ref_put(&lun->lun_ref);
677 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
679 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
680 int ret = 0;
682 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
683 transport_lun_remove_cmd(cmd);
685 * Allow the fabric driver to unmap any resources before
686 * releasing the descriptor via TFO->release_cmd()
688 if (remove)
689 cmd->se_tfo->aborted_task(cmd);
691 if (transport_cmd_check_stop_to_fabric(cmd))
692 return 1;
693 if (remove && ack_kref)
694 ret = transport_put_cmd(cmd);
696 return ret;
699 static void target_complete_failure_work(struct work_struct *work)
701 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
703 transport_generic_request_failure(cmd,
704 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
708 * Used when asking transport to copy Sense Data from the underlying
709 * Linux/SCSI struct scsi_cmnd
711 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
713 struct se_device *dev = cmd->se_dev;
715 WARN_ON(!cmd->se_lun);
717 if (!dev)
718 return NULL;
720 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
721 return NULL;
723 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
725 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
726 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
727 return cmd->sense_buffer;
730 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
732 struct se_device *dev = cmd->se_dev;
733 int success = scsi_status == GOOD;
734 unsigned long flags;
736 cmd->scsi_status = scsi_status;
739 spin_lock_irqsave(&cmd->t_state_lock, flags);
740 cmd->transport_state &= ~CMD_T_BUSY;
742 if (dev && dev->transport->transport_complete) {
743 dev->transport->transport_complete(cmd,
744 cmd->t_data_sg,
745 transport_get_sense_buffer(cmd));
746 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
747 success = 1;
751 * Check for case where an explicit ABORT_TASK has been received
752 * and transport_wait_for_tasks() will be waiting for completion..
754 if (cmd->transport_state & CMD_T_ABORTED ||
755 cmd->transport_state & CMD_T_STOP) {
756 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
759 * release se_device->caw_sem obtained by sbc_compare_and_write()
760 * since target_complete_ok_work() or target_complete_failure_work()
761 * won't be called to invoke the normal CAW completion callbacks.
763 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
764 up(&dev->caw_sem);
766 complete_all(&cmd->t_transport_stop_comp);
767 return;
768 } else if (!success) {
769 INIT_WORK(&cmd->work, target_complete_failure_work);
770 } else {
771 INIT_WORK(&cmd->work, target_complete_ok_work);
774 cmd->t_state = TRANSPORT_COMPLETE;
775 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
776 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
778 if (cmd->se_cmd_flags & SCF_USE_CPUID)
779 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
780 else
781 queue_work(target_completion_wq, &cmd->work);
783 EXPORT_SYMBOL(target_complete_cmd);
785 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
787 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
788 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
789 cmd->residual_count += cmd->data_length - length;
790 } else {
791 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
792 cmd->residual_count = cmd->data_length - length;
795 cmd->data_length = length;
798 target_complete_cmd(cmd, scsi_status);
800 EXPORT_SYMBOL(target_complete_cmd_with_length);
802 static void target_add_to_state_list(struct se_cmd *cmd)
804 struct se_device *dev = cmd->se_dev;
805 unsigned long flags;
807 spin_lock_irqsave(&dev->execute_task_lock, flags);
808 if (!cmd->state_active) {
809 list_add_tail(&cmd->state_list, &dev->state_list);
810 cmd->state_active = true;
812 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
816 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
818 static void transport_write_pending_qf(struct se_cmd *cmd);
819 static void transport_complete_qf(struct se_cmd *cmd);
821 void target_qf_do_work(struct work_struct *work)
823 struct se_device *dev = container_of(work, struct se_device,
824 qf_work_queue);
825 LIST_HEAD(qf_cmd_list);
826 struct se_cmd *cmd, *cmd_tmp;
828 spin_lock_irq(&dev->qf_cmd_lock);
829 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
830 spin_unlock_irq(&dev->qf_cmd_lock);
832 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
833 list_del(&cmd->se_qf_node);
834 atomic_dec_mb(&dev->dev_qf_count);
836 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
837 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
838 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
839 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
840 : "UNKNOWN");
842 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
843 transport_write_pending_qf(cmd);
844 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
845 transport_complete_qf(cmd);
849 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
851 switch (cmd->data_direction) {
852 case DMA_NONE:
853 return "NONE";
854 case DMA_FROM_DEVICE:
855 return "READ";
856 case DMA_TO_DEVICE:
857 return "WRITE";
858 case DMA_BIDIRECTIONAL:
859 return "BIDI";
860 default:
861 break;
864 return "UNKNOWN";
867 void transport_dump_dev_state(
868 struct se_device *dev,
869 char *b,
870 int *bl)
872 *bl += sprintf(b + *bl, "Status: ");
873 if (dev->export_count)
874 *bl += sprintf(b + *bl, "ACTIVATED");
875 else
876 *bl += sprintf(b + *bl, "DEACTIVATED");
878 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
879 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
880 dev->dev_attrib.block_size,
881 dev->dev_attrib.hw_max_sectors);
882 *bl += sprintf(b + *bl, " ");
885 void transport_dump_vpd_proto_id(
886 struct t10_vpd *vpd,
887 unsigned char *p_buf,
888 int p_buf_len)
890 unsigned char buf[VPD_TMP_BUF_SIZE];
891 int len;
893 memset(buf, 0, VPD_TMP_BUF_SIZE);
894 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
896 switch (vpd->protocol_identifier) {
897 case 0x00:
898 sprintf(buf+len, "Fibre Channel\n");
899 break;
900 case 0x10:
901 sprintf(buf+len, "Parallel SCSI\n");
902 break;
903 case 0x20:
904 sprintf(buf+len, "SSA\n");
905 break;
906 case 0x30:
907 sprintf(buf+len, "IEEE 1394\n");
908 break;
909 case 0x40:
910 sprintf(buf+len, "SCSI Remote Direct Memory Access"
911 " Protocol\n");
912 break;
913 case 0x50:
914 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
915 break;
916 case 0x60:
917 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
918 break;
919 case 0x70:
920 sprintf(buf+len, "Automation/Drive Interface Transport"
921 " Protocol\n");
922 break;
923 case 0x80:
924 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
925 break;
926 default:
927 sprintf(buf+len, "Unknown 0x%02x\n",
928 vpd->protocol_identifier);
929 break;
932 if (p_buf)
933 strncpy(p_buf, buf, p_buf_len);
934 else
935 pr_debug("%s", buf);
938 void
939 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
942 * Check if the Protocol Identifier Valid (PIV) bit is set..
944 * from spc3r23.pdf section 7.5.1
946 if (page_83[1] & 0x80) {
947 vpd->protocol_identifier = (page_83[0] & 0xf0);
948 vpd->protocol_identifier_set = 1;
949 transport_dump_vpd_proto_id(vpd, NULL, 0);
952 EXPORT_SYMBOL(transport_set_vpd_proto_id);
954 int transport_dump_vpd_assoc(
955 struct t10_vpd *vpd,
956 unsigned char *p_buf,
957 int p_buf_len)
959 unsigned char buf[VPD_TMP_BUF_SIZE];
960 int ret = 0;
961 int len;
963 memset(buf, 0, VPD_TMP_BUF_SIZE);
964 len = sprintf(buf, "T10 VPD Identifier Association: ");
966 switch (vpd->association) {
967 case 0x00:
968 sprintf(buf+len, "addressed logical unit\n");
969 break;
970 case 0x10:
971 sprintf(buf+len, "target port\n");
972 break;
973 case 0x20:
974 sprintf(buf+len, "SCSI target device\n");
975 break;
976 default:
977 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
978 ret = -EINVAL;
979 break;
982 if (p_buf)
983 strncpy(p_buf, buf, p_buf_len);
984 else
985 pr_debug("%s", buf);
987 return ret;
990 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
993 * The VPD identification association..
995 * from spc3r23.pdf Section 7.6.3.1 Table 297
997 vpd->association = (page_83[1] & 0x30);
998 return transport_dump_vpd_assoc(vpd, NULL, 0);
1000 EXPORT_SYMBOL(transport_set_vpd_assoc);
1002 int transport_dump_vpd_ident_type(
1003 struct t10_vpd *vpd,
1004 unsigned char *p_buf,
1005 int p_buf_len)
1007 unsigned char buf[VPD_TMP_BUF_SIZE];
1008 int ret = 0;
1009 int len;
1011 memset(buf, 0, VPD_TMP_BUF_SIZE);
1012 len = sprintf(buf, "T10 VPD Identifier Type: ");
1014 switch (vpd->device_identifier_type) {
1015 case 0x00:
1016 sprintf(buf+len, "Vendor specific\n");
1017 break;
1018 case 0x01:
1019 sprintf(buf+len, "T10 Vendor ID based\n");
1020 break;
1021 case 0x02:
1022 sprintf(buf+len, "EUI-64 based\n");
1023 break;
1024 case 0x03:
1025 sprintf(buf+len, "NAA\n");
1026 break;
1027 case 0x04:
1028 sprintf(buf+len, "Relative target port identifier\n");
1029 break;
1030 case 0x08:
1031 sprintf(buf+len, "SCSI name string\n");
1032 break;
1033 default:
1034 sprintf(buf+len, "Unsupported: 0x%02x\n",
1035 vpd->device_identifier_type);
1036 ret = -EINVAL;
1037 break;
1040 if (p_buf) {
1041 if (p_buf_len < strlen(buf)+1)
1042 return -EINVAL;
1043 strncpy(p_buf, buf, p_buf_len);
1044 } else {
1045 pr_debug("%s", buf);
1048 return ret;
1051 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1054 * The VPD identifier type..
1056 * from spc3r23.pdf Section 7.6.3.1 Table 298
1058 vpd->device_identifier_type = (page_83[1] & 0x0f);
1059 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1061 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1063 int transport_dump_vpd_ident(
1064 struct t10_vpd *vpd,
1065 unsigned char *p_buf,
1066 int p_buf_len)
1068 unsigned char buf[VPD_TMP_BUF_SIZE];
1069 int ret = 0;
1071 memset(buf, 0, VPD_TMP_BUF_SIZE);
1073 switch (vpd->device_identifier_code_set) {
1074 case 0x01: /* Binary */
1075 snprintf(buf, sizeof(buf),
1076 "T10 VPD Binary Device Identifier: %s\n",
1077 &vpd->device_identifier[0]);
1078 break;
1079 case 0x02: /* ASCII */
1080 snprintf(buf, sizeof(buf),
1081 "T10 VPD ASCII Device Identifier: %s\n",
1082 &vpd->device_identifier[0]);
1083 break;
1084 case 0x03: /* UTF-8 */
1085 snprintf(buf, sizeof(buf),
1086 "T10 VPD UTF-8 Device Identifier: %s\n",
1087 &vpd->device_identifier[0]);
1088 break;
1089 default:
1090 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1091 " 0x%02x", vpd->device_identifier_code_set);
1092 ret = -EINVAL;
1093 break;
1096 if (p_buf)
1097 strncpy(p_buf, buf, p_buf_len);
1098 else
1099 pr_debug("%s", buf);
1101 return ret;
1105 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1107 static const char hex_str[] = "0123456789abcdef";
1108 int j = 0, i = 4; /* offset to start of the identifier */
1111 * The VPD Code Set (encoding)
1113 * from spc3r23.pdf Section 7.6.3.1 Table 296
1115 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1116 switch (vpd->device_identifier_code_set) {
1117 case 0x01: /* Binary */
1118 vpd->device_identifier[j++] =
1119 hex_str[vpd->device_identifier_type];
1120 while (i < (4 + page_83[3])) {
1121 vpd->device_identifier[j++] =
1122 hex_str[(page_83[i] & 0xf0) >> 4];
1123 vpd->device_identifier[j++] =
1124 hex_str[page_83[i] & 0x0f];
1125 i++;
1127 break;
1128 case 0x02: /* ASCII */
1129 case 0x03: /* UTF-8 */
1130 while (i < (4 + page_83[3]))
1131 vpd->device_identifier[j++] = page_83[i++];
1132 break;
1133 default:
1134 break;
1137 return transport_dump_vpd_ident(vpd, NULL, 0);
1139 EXPORT_SYMBOL(transport_set_vpd_ident);
1141 static sense_reason_t
1142 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1143 unsigned int size)
1145 u32 mtl;
1147 if (!cmd->se_tfo->max_data_sg_nents)
1148 return TCM_NO_SENSE;
1150 * Check if fabric enforced maximum SGL entries per I/O descriptor
1151 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1152 * residual_count and reduce original cmd->data_length to maximum
1153 * length based on single PAGE_SIZE entry scatter-lists.
1155 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1156 if (cmd->data_length > mtl) {
1158 * If an existing CDB overflow is present, calculate new residual
1159 * based on CDB size minus fabric maximum transfer length.
1161 * If an existing CDB underflow is present, calculate new residual
1162 * based on original cmd->data_length minus fabric maximum transfer
1163 * length.
1165 * Otherwise, set the underflow residual based on cmd->data_length
1166 * minus fabric maximum transfer length.
1168 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1169 cmd->residual_count = (size - mtl);
1170 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1171 u32 orig_dl = size + cmd->residual_count;
1172 cmd->residual_count = (orig_dl - mtl);
1173 } else {
1174 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1175 cmd->residual_count = (cmd->data_length - mtl);
1177 cmd->data_length = mtl;
1179 * Reset sbc_check_prot() calculated protection payload
1180 * length based upon the new smaller MTL.
1182 if (cmd->prot_length) {
1183 u32 sectors = (mtl / dev->dev_attrib.block_size);
1184 cmd->prot_length = dev->prot_length * sectors;
1187 return TCM_NO_SENSE;
1190 sense_reason_t
1191 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1193 struct se_device *dev = cmd->se_dev;
1195 if (cmd->unknown_data_length) {
1196 cmd->data_length = size;
1197 } else if (size != cmd->data_length) {
1198 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1199 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1200 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1201 cmd->data_length, size, cmd->t_task_cdb[0]);
1203 if (cmd->data_direction == DMA_TO_DEVICE) {
1204 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1205 pr_err_ratelimited("Rejecting underflow/overflow"
1206 " for WRITE data CDB\n");
1207 return TCM_INVALID_CDB_FIELD;
1210 * Some fabric drivers like iscsi-target still expect to
1211 * always reject overflow writes. Reject this case until
1212 * full fabric driver level support for overflow writes
1213 * is introduced tree-wide.
1215 if (size > cmd->data_length) {
1216 pr_err_ratelimited("Rejecting overflow for"
1217 " WRITE control CDB\n");
1218 return TCM_INVALID_CDB_FIELD;
1222 * Reject READ_* or WRITE_* with overflow/underflow for
1223 * type SCF_SCSI_DATA_CDB.
1225 if (dev->dev_attrib.block_size != 512) {
1226 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1227 " CDB on non 512-byte sector setup subsystem"
1228 " plugin: %s\n", dev->transport->name);
1229 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1230 return TCM_INVALID_CDB_FIELD;
1233 * For the overflow case keep the existing fabric provided
1234 * ->data_length. Otherwise for the underflow case, reset
1235 * ->data_length to the smaller SCSI expected data transfer
1236 * length.
1238 if (size > cmd->data_length) {
1239 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1240 cmd->residual_count = (size - cmd->data_length);
1241 } else {
1242 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1243 cmd->residual_count = (cmd->data_length - size);
1244 cmd->data_length = size;
1248 return target_check_max_data_sg_nents(cmd, dev, size);
1253 * Used by fabric modules containing a local struct se_cmd within their
1254 * fabric dependent per I/O descriptor.
1256 * Preserves the value of @cmd->tag.
1258 void transport_init_se_cmd(
1259 struct se_cmd *cmd,
1260 const struct target_core_fabric_ops *tfo,
1261 struct se_session *se_sess,
1262 u32 data_length,
1263 int data_direction,
1264 int task_attr,
1265 unsigned char *sense_buffer)
1267 INIT_LIST_HEAD(&cmd->se_delayed_node);
1268 INIT_LIST_HEAD(&cmd->se_qf_node);
1269 INIT_LIST_HEAD(&cmd->se_cmd_list);
1270 INIT_LIST_HEAD(&cmd->state_list);
1271 init_completion(&cmd->t_transport_stop_comp);
1272 init_completion(&cmd->cmd_wait_comp);
1273 spin_lock_init(&cmd->t_state_lock);
1274 kref_init(&cmd->cmd_kref);
1275 cmd->transport_state = CMD_T_DEV_ACTIVE;
1277 cmd->se_tfo = tfo;
1278 cmd->se_sess = se_sess;
1279 cmd->data_length = data_length;
1280 cmd->data_direction = data_direction;
1281 cmd->sam_task_attr = task_attr;
1282 cmd->sense_buffer = sense_buffer;
1284 cmd->state_active = false;
1286 EXPORT_SYMBOL(transport_init_se_cmd);
1288 static sense_reason_t
1289 transport_check_alloc_task_attr(struct se_cmd *cmd)
1291 struct se_device *dev = cmd->se_dev;
1294 * Check if SAM Task Attribute emulation is enabled for this
1295 * struct se_device storage object
1297 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1298 return 0;
1300 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1301 pr_debug("SAM Task Attribute ACA"
1302 " emulation is not supported\n");
1303 return TCM_INVALID_CDB_FIELD;
1306 return 0;
1309 sense_reason_t
1310 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1312 struct se_device *dev = cmd->se_dev;
1313 sense_reason_t ret;
1316 * Ensure that the received CDB is less than the max (252 + 8) bytes
1317 * for VARIABLE_LENGTH_CMD
1319 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1320 pr_err("Received SCSI CDB with command_size: %d that"
1321 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1322 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1323 return TCM_INVALID_CDB_FIELD;
1326 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1327 * allocate the additional extended CDB buffer now.. Otherwise
1328 * setup the pointer from __t_task_cdb to t_task_cdb.
1330 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1331 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1332 GFP_KERNEL);
1333 if (!cmd->t_task_cdb) {
1334 pr_err("Unable to allocate cmd->t_task_cdb"
1335 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1336 scsi_command_size(cdb),
1337 (unsigned long)sizeof(cmd->__t_task_cdb));
1338 return TCM_OUT_OF_RESOURCES;
1340 } else
1341 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1343 * Copy the original CDB into cmd->
1345 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1347 trace_target_sequencer_start(cmd);
1349 ret = dev->transport->parse_cdb(cmd);
1350 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1351 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1352 cmd->se_tfo->get_fabric_name(),
1353 cmd->se_sess->se_node_acl->initiatorname,
1354 cmd->t_task_cdb[0]);
1355 if (ret)
1356 return ret;
1358 ret = transport_check_alloc_task_attr(cmd);
1359 if (ret)
1360 return ret;
1362 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1363 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1364 return 0;
1366 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1369 * Used by fabric module frontends to queue tasks directly.
1370 * May only be used from process context.
1372 int transport_handle_cdb_direct(
1373 struct se_cmd *cmd)
1375 sense_reason_t ret;
1377 if (!cmd->se_lun) {
1378 dump_stack();
1379 pr_err("cmd->se_lun is NULL\n");
1380 return -EINVAL;
1382 if (in_interrupt()) {
1383 dump_stack();
1384 pr_err("transport_generic_handle_cdb cannot be called"
1385 " from interrupt context\n");
1386 return -EINVAL;
1389 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1390 * outstanding descriptors are handled correctly during shutdown via
1391 * transport_wait_for_tasks()
1393 * Also, we don't take cmd->t_state_lock here as we only expect
1394 * this to be called for initial descriptor submission.
1396 cmd->t_state = TRANSPORT_NEW_CMD;
1397 cmd->transport_state |= CMD_T_ACTIVE;
1400 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1401 * so follow TRANSPORT_NEW_CMD processing thread context usage
1402 * and call transport_generic_request_failure() if necessary..
1404 ret = transport_generic_new_cmd(cmd);
1405 if (ret)
1406 transport_generic_request_failure(cmd, ret);
1407 return 0;
1409 EXPORT_SYMBOL(transport_handle_cdb_direct);
1411 sense_reason_t
1412 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1413 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1415 if (!sgl || !sgl_count)
1416 return 0;
1419 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1420 * scatterlists already have been set to follow what the fabric
1421 * passes for the original expected data transfer length.
1423 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1424 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1425 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1426 return TCM_INVALID_CDB_FIELD;
1429 cmd->t_data_sg = sgl;
1430 cmd->t_data_nents = sgl_count;
1431 cmd->t_bidi_data_sg = sgl_bidi;
1432 cmd->t_bidi_data_nents = sgl_bidi_count;
1434 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1435 return 0;
1439 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1440 * se_cmd + use pre-allocated SGL memory.
1442 * @se_cmd: command descriptor to submit
1443 * @se_sess: associated se_sess for endpoint
1444 * @cdb: pointer to SCSI CDB
1445 * @sense: pointer to SCSI sense buffer
1446 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1447 * @data_length: fabric expected data transfer length
1448 * @task_addr: SAM task attribute
1449 * @data_dir: DMA data direction
1450 * @flags: flags for command submission from target_sc_flags_tables
1451 * @sgl: struct scatterlist memory for unidirectional mapping
1452 * @sgl_count: scatterlist count for unidirectional mapping
1453 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1454 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1455 * @sgl_prot: struct scatterlist memory protection information
1456 * @sgl_prot_count: scatterlist count for protection information
1458 * Task tags are supported if the caller has set @se_cmd->tag.
1460 * Returns non zero to signal active I/O shutdown failure. All other
1461 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1462 * but still return zero here.
1464 * This may only be called from process context, and also currently
1465 * assumes internal allocation of fabric payload buffer by target-core.
1467 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1468 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1469 u32 data_length, int task_attr, int data_dir, int flags,
1470 struct scatterlist *sgl, u32 sgl_count,
1471 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1472 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1474 struct se_portal_group *se_tpg;
1475 sense_reason_t rc;
1476 int ret;
1478 se_tpg = se_sess->se_tpg;
1479 BUG_ON(!se_tpg);
1480 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1481 BUG_ON(in_interrupt());
1483 * Initialize se_cmd for target operation. From this point
1484 * exceptions are handled by sending exception status via
1485 * target_core_fabric_ops->queue_status() callback
1487 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1488 data_length, data_dir, task_attr, sense);
1490 if (flags & TARGET_SCF_USE_CPUID)
1491 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1492 else
1493 se_cmd->cpuid = WORK_CPU_UNBOUND;
1495 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1496 se_cmd->unknown_data_length = 1;
1498 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1499 * se_sess->sess_cmd_list. A second kref_get here is necessary
1500 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1501 * kref_put() to happen during fabric packet acknowledgement.
1503 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1504 if (ret)
1505 return ret;
1507 * Signal bidirectional data payloads to target-core
1509 if (flags & TARGET_SCF_BIDI_OP)
1510 se_cmd->se_cmd_flags |= SCF_BIDI;
1512 * Locate se_lun pointer and attach it to struct se_cmd
1514 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1515 if (rc) {
1516 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1517 target_put_sess_cmd(se_cmd);
1518 return 0;
1521 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1522 if (rc != 0) {
1523 transport_generic_request_failure(se_cmd, rc);
1524 return 0;
1528 * Save pointers for SGLs containing protection information,
1529 * if present.
1531 if (sgl_prot_count) {
1532 se_cmd->t_prot_sg = sgl_prot;
1533 se_cmd->t_prot_nents = sgl_prot_count;
1534 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1538 * When a non zero sgl_count has been passed perform SGL passthrough
1539 * mapping for pre-allocated fabric memory instead of having target
1540 * core perform an internal SGL allocation..
1542 if (sgl_count != 0) {
1543 BUG_ON(!sgl);
1546 * A work-around for tcm_loop as some userspace code via
1547 * scsi-generic do not memset their associated read buffers,
1548 * so go ahead and do that here for type non-data CDBs. Also
1549 * note that this is currently guaranteed to be a single SGL
1550 * for this case by target core in target_setup_cmd_from_cdb()
1551 * -> transport_generic_cmd_sequencer().
1553 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1554 se_cmd->data_direction == DMA_FROM_DEVICE) {
1555 unsigned char *buf = NULL;
1557 if (sgl)
1558 buf = kmap(sg_page(sgl)) + sgl->offset;
1560 if (buf) {
1561 memset(buf, 0, sgl->length);
1562 kunmap(sg_page(sgl));
1566 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1567 sgl_bidi, sgl_bidi_count);
1568 if (rc != 0) {
1569 transport_generic_request_failure(se_cmd, rc);
1570 return 0;
1575 * Check if we need to delay processing because of ALUA
1576 * Active/NonOptimized primary access state..
1578 core_alua_check_nonop_delay(se_cmd);
1580 transport_handle_cdb_direct(se_cmd);
1581 return 0;
1583 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1586 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1588 * @se_cmd: command descriptor to submit
1589 * @se_sess: associated se_sess for endpoint
1590 * @cdb: pointer to SCSI CDB
1591 * @sense: pointer to SCSI sense buffer
1592 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1593 * @data_length: fabric expected data transfer length
1594 * @task_addr: SAM task attribute
1595 * @data_dir: DMA data direction
1596 * @flags: flags for command submission from target_sc_flags_tables
1598 * Task tags are supported if the caller has set @se_cmd->tag.
1600 * Returns non zero to signal active I/O shutdown failure. All other
1601 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1602 * but still return zero here.
1604 * This may only be called from process context, and also currently
1605 * assumes internal allocation of fabric payload buffer by target-core.
1607 * It also assumes interal target core SGL memory allocation.
1609 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1610 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1611 u32 data_length, int task_attr, int data_dir, int flags)
1613 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1614 unpacked_lun, data_length, task_attr, data_dir,
1615 flags, NULL, 0, NULL, 0, NULL, 0);
1617 EXPORT_SYMBOL(target_submit_cmd);
1619 static void target_complete_tmr_failure(struct work_struct *work)
1621 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1623 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1624 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1626 transport_cmd_check_stop_to_fabric(se_cmd);
1630 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1631 * for TMR CDBs
1633 * @se_cmd: command descriptor to submit
1634 * @se_sess: associated se_sess for endpoint
1635 * @sense: pointer to SCSI sense buffer
1636 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1637 * @fabric_context: fabric context for TMR req
1638 * @tm_type: Type of TM request
1639 * @gfp: gfp type for caller
1640 * @tag: referenced task tag for TMR_ABORT_TASK
1641 * @flags: submit cmd flags
1643 * Callable from all contexts.
1646 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1647 unsigned char *sense, u64 unpacked_lun,
1648 void *fabric_tmr_ptr, unsigned char tm_type,
1649 gfp_t gfp, u64 tag, int flags)
1651 struct se_portal_group *se_tpg;
1652 int ret;
1654 se_tpg = se_sess->se_tpg;
1655 BUG_ON(!se_tpg);
1657 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1658 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1660 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1661 * allocation failure.
1663 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1664 if (ret < 0)
1665 return -ENOMEM;
1667 if (tm_type == TMR_ABORT_TASK)
1668 se_cmd->se_tmr_req->ref_task_tag = tag;
1670 /* See target_submit_cmd for commentary */
1671 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1672 if (ret) {
1673 core_tmr_release_req(se_cmd->se_tmr_req);
1674 return ret;
1677 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1678 if (ret) {
1680 * For callback during failure handling, push this work off
1681 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1683 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1684 schedule_work(&se_cmd->work);
1685 return 0;
1687 transport_generic_handle_tmr(se_cmd);
1688 return 0;
1690 EXPORT_SYMBOL(target_submit_tmr);
1693 * Handle SAM-esque emulation for generic transport request failures.
1695 void transport_generic_request_failure(struct se_cmd *cmd,
1696 sense_reason_t sense_reason)
1698 int ret = 0, post_ret = 0;
1700 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1701 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1702 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1703 cmd->se_tfo->get_cmd_state(cmd),
1704 cmd->t_state, sense_reason);
1705 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1706 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1707 (cmd->transport_state & CMD_T_STOP) != 0,
1708 (cmd->transport_state & CMD_T_SENT) != 0);
1711 * For SAM Task Attribute emulation for failed struct se_cmd
1713 transport_complete_task_attr(cmd);
1715 * Handle special case for COMPARE_AND_WRITE failure, where the
1716 * callback is expected to drop the per device ->caw_sem.
1718 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1719 cmd->transport_complete_callback)
1720 cmd->transport_complete_callback(cmd, false, &post_ret);
1722 switch (sense_reason) {
1723 case TCM_NON_EXISTENT_LUN:
1724 case TCM_UNSUPPORTED_SCSI_OPCODE:
1725 case TCM_INVALID_CDB_FIELD:
1726 case TCM_INVALID_PARAMETER_LIST:
1727 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1728 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1729 case TCM_UNKNOWN_MODE_PAGE:
1730 case TCM_WRITE_PROTECTED:
1731 case TCM_ADDRESS_OUT_OF_RANGE:
1732 case TCM_CHECK_CONDITION_ABORT_CMD:
1733 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1734 case TCM_CHECK_CONDITION_NOT_READY:
1735 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1736 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1737 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1738 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1739 break;
1740 case TCM_OUT_OF_RESOURCES:
1741 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1742 break;
1743 case TCM_RESERVATION_CONFLICT:
1745 * No SENSE Data payload for this case, set SCSI Status
1746 * and queue the response to $FABRIC_MOD.
1748 * Uses linux/include/scsi/scsi.h SAM status codes defs
1750 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1752 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1753 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1754 * CONFLICT STATUS.
1756 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1758 if (cmd->se_sess &&
1759 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1760 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1761 cmd->orig_fe_lun, 0x2C,
1762 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1764 trace_target_cmd_complete(cmd);
1765 ret = cmd->se_tfo->queue_status(cmd);
1766 if (ret == -EAGAIN || ret == -ENOMEM)
1767 goto queue_full;
1768 goto check_stop;
1769 default:
1770 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1771 cmd->t_task_cdb[0], sense_reason);
1772 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1773 break;
1776 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1777 if (ret == -EAGAIN || ret == -ENOMEM)
1778 goto queue_full;
1780 check_stop:
1781 transport_lun_remove_cmd(cmd);
1782 transport_cmd_check_stop_to_fabric(cmd);
1783 return;
1785 queue_full:
1786 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1787 transport_handle_queue_full(cmd, cmd->se_dev);
1789 EXPORT_SYMBOL(transport_generic_request_failure);
1791 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1793 sense_reason_t ret;
1795 if (!cmd->execute_cmd) {
1796 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1797 goto err;
1799 if (do_checks) {
1801 * Check for an existing UNIT ATTENTION condition after
1802 * target_handle_task_attr() has done SAM task attr
1803 * checking, and possibly have already defered execution
1804 * out to target_restart_delayed_cmds() context.
1806 ret = target_scsi3_ua_check(cmd);
1807 if (ret)
1808 goto err;
1810 ret = target_alua_state_check(cmd);
1811 if (ret)
1812 goto err;
1814 ret = target_check_reservation(cmd);
1815 if (ret) {
1816 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1817 goto err;
1821 ret = cmd->execute_cmd(cmd);
1822 if (!ret)
1823 return;
1824 err:
1825 spin_lock_irq(&cmd->t_state_lock);
1826 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1827 spin_unlock_irq(&cmd->t_state_lock);
1829 transport_generic_request_failure(cmd, ret);
1832 static int target_write_prot_action(struct se_cmd *cmd)
1834 u32 sectors;
1836 * Perform WRITE_INSERT of PI using software emulation when backend
1837 * device has PI enabled, if the transport has not already generated
1838 * PI using hardware WRITE_INSERT offload.
1840 switch (cmd->prot_op) {
1841 case TARGET_PROT_DOUT_INSERT:
1842 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1843 sbc_dif_generate(cmd);
1844 break;
1845 case TARGET_PROT_DOUT_STRIP:
1846 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1847 break;
1849 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1850 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1851 sectors, 0, cmd->t_prot_sg, 0);
1852 if (unlikely(cmd->pi_err)) {
1853 spin_lock_irq(&cmd->t_state_lock);
1854 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1855 spin_unlock_irq(&cmd->t_state_lock);
1856 transport_generic_request_failure(cmd, cmd->pi_err);
1857 return -1;
1859 break;
1860 default:
1861 break;
1864 return 0;
1867 static bool target_handle_task_attr(struct se_cmd *cmd)
1869 struct se_device *dev = cmd->se_dev;
1871 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1872 return false;
1874 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1877 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1878 * to allow the passed struct se_cmd list of tasks to the front of the list.
1880 switch (cmd->sam_task_attr) {
1881 case TCM_HEAD_TAG:
1882 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1883 cmd->t_task_cdb[0]);
1884 return false;
1885 case TCM_ORDERED_TAG:
1886 atomic_inc_mb(&dev->dev_ordered_sync);
1888 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1889 cmd->t_task_cdb[0]);
1892 * Execute an ORDERED command if no other older commands
1893 * exist that need to be completed first.
1895 if (!atomic_read(&dev->simple_cmds))
1896 return false;
1897 break;
1898 default:
1900 * For SIMPLE and UNTAGGED Task Attribute commands
1902 atomic_inc_mb(&dev->simple_cmds);
1903 break;
1906 if (atomic_read(&dev->dev_ordered_sync) == 0)
1907 return false;
1909 spin_lock(&dev->delayed_cmd_lock);
1910 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1911 spin_unlock(&dev->delayed_cmd_lock);
1913 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1914 cmd->t_task_cdb[0], cmd->sam_task_attr);
1915 return true;
1918 static int __transport_check_aborted_status(struct se_cmd *, int);
1920 void target_execute_cmd(struct se_cmd *cmd)
1923 * Determine if frontend context caller is requesting the stopping of
1924 * this command for frontend exceptions.
1926 * If the received CDB has aleady been aborted stop processing it here.
1928 spin_lock_irq(&cmd->t_state_lock);
1929 if (__transport_check_aborted_status(cmd, 1)) {
1930 spin_unlock_irq(&cmd->t_state_lock);
1931 return;
1933 if (cmd->transport_state & CMD_T_STOP) {
1934 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1935 __func__, __LINE__, cmd->tag);
1937 spin_unlock_irq(&cmd->t_state_lock);
1938 complete_all(&cmd->t_transport_stop_comp);
1939 return;
1942 cmd->t_state = TRANSPORT_PROCESSING;
1943 cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1944 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1945 spin_unlock_irq(&cmd->t_state_lock);
1947 if (target_write_prot_action(cmd))
1948 return;
1950 if (target_handle_task_attr(cmd)) {
1951 spin_lock_irq(&cmd->t_state_lock);
1952 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1953 spin_unlock_irq(&cmd->t_state_lock);
1954 return;
1957 __target_execute_cmd(cmd, true);
1959 EXPORT_SYMBOL(target_execute_cmd);
1962 * Process all commands up to the last received ORDERED task attribute which
1963 * requires another blocking boundary
1965 static void target_restart_delayed_cmds(struct se_device *dev)
1967 for (;;) {
1968 struct se_cmd *cmd;
1970 spin_lock(&dev->delayed_cmd_lock);
1971 if (list_empty(&dev->delayed_cmd_list)) {
1972 spin_unlock(&dev->delayed_cmd_lock);
1973 break;
1976 cmd = list_entry(dev->delayed_cmd_list.next,
1977 struct se_cmd, se_delayed_node);
1978 list_del(&cmd->se_delayed_node);
1979 spin_unlock(&dev->delayed_cmd_lock);
1981 cmd->transport_state |= CMD_T_SENT;
1983 __target_execute_cmd(cmd, true);
1985 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1986 break;
1991 * Called from I/O completion to determine which dormant/delayed
1992 * and ordered cmds need to have their tasks added to the execution queue.
1994 static void transport_complete_task_attr(struct se_cmd *cmd)
1996 struct se_device *dev = cmd->se_dev;
1998 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1999 return;
2001 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2002 goto restart;
2004 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2005 atomic_dec_mb(&dev->simple_cmds);
2006 dev->dev_cur_ordered_id++;
2007 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
2008 dev->dev_cur_ordered_id);
2009 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2010 dev->dev_cur_ordered_id++;
2011 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2012 dev->dev_cur_ordered_id);
2013 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2014 atomic_dec_mb(&dev->dev_ordered_sync);
2016 dev->dev_cur_ordered_id++;
2017 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2018 dev->dev_cur_ordered_id);
2020 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2022 restart:
2023 target_restart_delayed_cmds(dev);
2026 static void transport_complete_qf(struct se_cmd *cmd)
2028 int ret = 0;
2030 transport_complete_task_attr(cmd);
2032 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2033 trace_target_cmd_complete(cmd);
2034 ret = cmd->se_tfo->queue_status(cmd);
2035 goto out;
2038 switch (cmd->data_direction) {
2039 case DMA_FROM_DEVICE:
2040 if (cmd->scsi_status)
2041 goto queue_status;
2043 trace_target_cmd_complete(cmd);
2044 ret = cmd->se_tfo->queue_data_in(cmd);
2045 break;
2046 case DMA_TO_DEVICE:
2047 if (cmd->se_cmd_flags & SCF_BIDI) {
2048 ret = cmd->se_tfo->queue_data_in(cmd);
2049 break;
2051 /* Fall through for DMA_TO_DEVICE */
2052 case DMA_NONE:
2053 queue_status:
2054 trace_target_cmd_complete(cmd);
2055 ret = cmd->se_tfo->queue_status(cmd);
2056 break;
2057 default:
2058 break;
2061 out:
2062 if (ret < 0) {
2063 transport_handle_queue_full(cmd, cmd->se_dev);
2064 return;
2066 transport_lun_remove_cmd(cmd);
2067 transport_cmd_check_stop_to_fabric(cmd);
2070 static void transport_handle_queue_full(
2071 struct se_cmd *cmd,
2072 struct se_device *dev)
2074 spin_lock_irq(&dev->qf_cmd_lock);
2075 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2076 atomic_inc_mb(&dev->dev_qf_count);
2077 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2079 schedule_work(&cmd->se_dev->qf_work_queue);
2082 static bool target_read_prot_action(struct se_cmd *cmd)
2084 switch (cmd->prot_op) {
2085 case TARGET_PROT_DIN_STRIP:
2086 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2087 u32 sectors = cmd->data_length >>
2088 ilog2(cmd->se_dev->dev_attrib.block_size);
2090 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2091 sectors, 0, cmd->t_prot_sg,
2093 if (cmd->pi_err)
2094 return true;
2096 break;
2097 case TARGET_PROT_DIN_INSERT:
2098 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2099 break;
2101 sbc_dif_generate(cmd);
2102 break;
2103 default:
2104 break;
2107 return false;
2110 static void target_complete_ok_work(struct work_struct *work)
2112 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2113 int ret;
2116 * Check if we need to move delayed/dormant tasks from cmds on the
2117 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2118 * Attribute.
2120 transport_complete_task_attr(cmd);
2123 * Check to schedule QUEUE_FULL work, or execute an existing
2124 * cmd->transport_qf_callback()
2126 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2127 schedule_work(&cmd->se_dev->qf_work_queue);
2130 * Check if we need to send a sense buffer from
2131 * the struct se_cmd in question.
2133 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2134 WARN_ON(!cmd->scsi_status);
2135 ret = transport_send_check_condition_and_sense(
2136 cmd, 0, 1);
2137 if (ret == -EAGAIN || ret == -ENOMEM)
2138 goto queue_full;
2140 transport_lun_remove_cmd(cmd);
2141 transport_cmd_check_stop_to_fabric(cmd);
2142 return;
2145 * Check for a callback, used by amongst other things
2146 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2148 if (cmd->transport_complete_callback) {
2149 sense_reason_t rc;
2150 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2151 bool zero_dl = !(cmd->data_length);
2152 int post_ret = 0;
2154 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2155 if (!rc && !post_ret) {
2156 if (caw && zero_dl)
2157 goto queue_rsp;
2159 return;
2160 } else if (rc) {
2161 ret = transport_send_check_condition_and_sense(cmd,
2162 rc, 0);
2163 if (ret == -EAGAIN || ret == -ENOMEM)
2164 goto queue_full;
2166 transport_lun_remove_cmd(cmd);
2167 transport_cmd_check_stop_to_fabric(cmd);
2168 return;
2172 queue_rsp:
2173 switch (cmd->data_direction) {
2174 case DMA_FROM_DEVICE:
2175 if (cmd->scsi_status)
2176 goto queue_status;
2178 atomic_long_add(cmd->data_length,
2179 &cmd->se_lun->lun_stats.tx_data_octets);
2181 * Perform READ_STRIP of PI using software emulation when
2182 * backend had PI enabled, if the transport will not be
2183 * performing hardware READ_STRIP offload.
2185 if (target_read_prot_action(cmd)) {
2186 ret = transport_send_check_condition_and_sense(cmd,
2187 cmd->pi_err, 0);
2188 if (ret == -EAGAIN || ret == -ENOMEM)
2189 goto queue_full;
2191 transport_lun_remove_cmd(cmd);
2192 transport_cmd_check_stop_to_fabric(cmd);
2193 return;
2196 trace_target_cmd_complete(cmd);
2197 ret = cmd->se_tfo->queue_data_in(cmd);
2198 if (ret == -EAGAIN || ret == -ENOMEM)
2199 goto queue_full;
2200 break;
2201 case DMA_TO_DEVICE:
2202 atomic_long_add(cmd->data_length,
2203 &cmd->se_lun->lun_stats.rx_data_octets);
2205 * Check if we need to send READ payload for BIDI-COMMAND
2207 if (cmd->se_cmd_flags & SCF_BIDI) {
2208 atomic_long_add(cmd->data_length,
2209 &cmd->se_lun->lun_stats.tx_data_octets);
2210 ret = cmd->se_tfo->queue_data_in(cmd);
2211 if (ret == -EAGAIN || ret == -ENOMEM)
2212 goto queue_full;
2213 break;
2215 /* Fall through for DMA_TO_DEVICE */
2216 case DMA_NONE:
2217 queue_status:
2218 trace_target_cmd_complete(cmd);
2219 ret = cmd->se_tfo->queue_status(cmd);
2220 if (ret == -EAGAIN || ret == -ENOMEM)
2221 goto queue_full;
2222 break;
2223 default:
2224 break;
2227 transport_lun_remove_cmd(cmd);
2228 transport_cmd_check_stop_to_fabric(cmd);
2229 return;
2231 queue_full:
2232 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2233 " data_direction: %d\n", cmd, cmd->data_direction);
2234 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2235 transport_handle_queue_full(cmd, cmd->se_dev);
2238 void target_free_sgl(struct scatterlist *sgl, int nents)
2240 struct scatterlist *sg;
2241 int count;
2243 for_each_sg(sgl, sg, nents, count)
2244 __free_page(sg_page(sg));
2246 kfree(sgl);
2248 EXPORT_SYMBOL(target_free_sgl);
2250 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2253 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2254 * emulation, and free + reset pointers if necessary..
2256 if (!cmd->t_data_sg_orig)
2257 return;
2259 kfree(cmd->t_data_sg);
2260 cmd->t_data_sg = cmd->t_data_sg_orig;
2261 cmd->t_data_sg_orig = NULL;
2262 cmd->t_data_nents = cmd->t_data_nents_orig;
2263 cmd->t_data_nents_orig = 0;
2266 static inline void transport_free_pages(struct se_cmd *cmd)
2268 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2269 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2270 cmd->t_prot_sg = NULL;
2271 cmd->t_prot_nents = 0;
2274 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2276 * Release special case READ buffer payload required for
2277 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2279 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2280 target_free_sgl(cmd->t_bidi_data_sg,
2281 cmd->t_bidi_data_nents);
2282 cmd->t_bidi_data_sg = NULL;
2283 cmd->t_bidi_data_nents = 0;
2285 transport_reset_sgl_orig(cmd);
2286 return;
2288 transport_reset_sgl_orig(cmd);
2290 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2291 cmd->t_data_sg = NULL;
2292 cmd->t_data_nents = 0;
2294 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2295 cmd->t_bidi_data_sg = NULL;
2296 cmd->t_bidi_data_nents = 0;
2300 * transport_put_cmd - release a reference to a command
2301 * @cmd: command to release
2303 * This routine releases our reference to the command and frees it if possible.
2305 static int transport_put_cmd(struct se_cmd *cmd)
2307 BUG_ON(!cmd->se_tfo);
2309 * If this cmd has been setup with target_get_sess_cmd(), drop
2310 * the kref and call ->release_cmd() in kref callback.
2312 return target_put_sess_cmd(cmd);
2315 void *transport_kmap_data_sg(struct se_cmd *cmd)
2317 struct scatterlist *sg = cmd->t_data_sg;
2318 struct page **pages;
2319 int i;
2322 * We need to take into account a possible offset here for fabrics like
2323 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2324 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2326 if (!cmd->t_data_nents)
2327 return NULL;
2329 BUG_ON(!sg);
2330 if (cmd->t_data_nents == 1)
2331 return kmap(sg_page(sg)) + sg->offset;
2333 /* >1 page. use vmap */
2334 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2335 if (!pages)
2336 return NULL;
2338 /* convert sg[] to pages[] */
2339 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2340 pages[i] = sg_page(sg);
2343 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2344 kfree(pages);
2345 if (!cmd->t_data_vmap)
2346 return NULL;
2348 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2350 EXPORT_SYMBOL(transport_kmap_data_sg);
2352 void transport_kunmap_data_sg(struct se_cmd *cmd)
2354 if (!cmd->t_data_nents) {
2355 return;
2356 } else if (cmd->t_data_nents == 1) {
2357 kunmap(sg_page(cmd->t_data_sg));
2358 return;
2361 vunmap(cmd->t_data_vmap);
2362 cmd->t_data_vmap = NULL;
2364 EXPORT_SYMBOL(transport_kunmap_data_sg);
2367 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2368 bool zero_page, bool chainable)
2370 struct scatterlist *sg;
2371 struct page *page;
2372 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2373 unsigned int nalloc, nent;
2374 int i = 0;
2376 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2377 if (chainable)
2378 nalloc++;
2379 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2380 if (!sg)
2381 return -ENOMEM;
2383 sg_init_table(sg, nalloc);
2385 while (length) {
2386 u32 page_len = min_t(u32, length, PAGE_SIZE);
2387 page = alloc_page(GFP_KERNEL | zero_flag);
2388 if (!page)
2389 goto out;
2391 sg_set_page(&sg[i], page, page_len, 0);
2392 length -= page_len;
2393 i++;
2395 *sgl = sg;
2396 *nents = nent;
2397 return 0;
2399 out:
2400 while (i > 0) {
2401 i--;
2402 __free_page(sg_page(&sg[i]));
2404 kfree(sg);
2405 return -ENOMEM;
2407 EXPORT_SYMBOL(target_alloc_sgl);
2410 * Allocate any required resources to execute the command. For writes we
2411 * might not have the payload yet, so notify the fabric via a call to
2412 * ->write_pending instead. Otherwise place it on the execution queue.
2414 sense_reason_t
2415 transport_generic_new_cmd(struct se_cmd *cmd)
2417 int ret = 0;
2418 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2420 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2421 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2422 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2423 cmd->prot_length, true, false);
2424 if (ret < 0)
2425 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2429 * Determine is the TCM fabric module has already allocated physical
2430 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2431 * beforehand.
2433 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2434 cmd->data_length) {
2436 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2437 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2438 u32 bidi_length;
2440 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2441 bidi_length = cmd->t_task_nolb *
2442 cmd->se_dev->dev_attrib.block_size;
2443 else
2444 bidi_length = cmd->data_length;
2446 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2447 &cmd->t_bidi_data_nents,
2448 bidi_length, zero_flag, false);
2449 if (ret < 0)
2450 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2453 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2454 cmd->data_length, zero_flag, false);
2455 if (ret < 0)
2456 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2457 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2458 cmd->data_length) {
2460 * Special case for COMPARE_AND_WRITE with fabrics
2461 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2463 u32 caw_length = cmd->t_task_nolb *
2464 cmd->se_dev->dev_attrib.block_size;
2466 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2467 &cmd->t_bidi_data_nents,
2468 caw_length, zero_flag, false);
2469 if (ret < 0)
2470 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2473 * If this command is not a write we can execute it right here,
2474 * for write buffers we need to notify the fabric driver first
2475 * and let it call back once the write buffers are ready.
2477 target_add_to_state_list(cmd);
2478 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2479 target_execute_cmd(cmd);
2480 return 0;
2482 transport_cmd_check_stop(cmd, false, true);
2484 ret = cmd->se_tfo->write_pending(cmd);
2485 if (ret == -EAGAIN || ret == -ENOMEM)
2486 goto queue_full;
2488 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2489 WARN_ON(ret);
2491 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2493 queue_full:
2494 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2495 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2496 transport_handle_queue_full(cmd, cmd->se_dev);
2497 return 0;
2499 EXPORT_SYMBOL(transport_generic_new_cmd);
2501 static void transport_write_pending_qf(struct se_cmd *cmd)
2503 int ret;
2505 ret = cmd->se_tfo->write_pending(cmd);
2506 if (ret == -EAGAIN || ret == -ENOMEM) {
2507 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2508 cmd);
2509 transport_handle_queue_full(cmd, cmd->se_dev);
2513 static bool
2514 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2515 unsigned long *flags);
2517 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2519 unsigned long flags;
2521 spin_lock_irqsave(&cmd->t_state_lock, flags);
2522 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2523 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2526 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2528 int ret = 0;
2529 bool aborted = false, tas = false;
2531 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2532 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2533 target_wait_free_cmd(cmd, &aborted, &tas);
2535 if (!aborted || tas)
2536 ret = transport_put_cmd(cmd);
2537 } else {
2538 if (wait_for_tasks)
2539 target_wait_free_cmd(cmd, &aborted, &tas);
2541 * Handle WRITE failure case where transport_generic_new_cmd()
2542 * has already added se_cmd to state_list, but fabric has
2543 * failed command before I/O submission.
2545 if (cmd->state_active)
2546 target_remove_from_state_list(cmd);
2548 if (cmd->se_lun)
2549 transport_lun_remove_cmd(cmd);
2551 if (!aborted || tas)
2552 ret = transport_put_cmd(cmd);
2555 * If the task has been internally aborted due to TMR ABORT_TASK
2556 * or LUN_RESET, target_core_tmr.c is responsible for performing
2557 * the remaining calls to target_put_sess_cmd(), and not the
2558 * callers of this function.
2560 if (aborted) {
2561 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2562 wait_for_completion(&cmd->cmd_wait_comp);
2563 cmd->se_tfo->release_cmd(cmd);
2564 ret = 1;
2566 return ret;
2568 EXPORT_SYMBOL(transport_generic_free_cmd);
2570 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2571 * @se_cmd: command descriptor to add
2572 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2574 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2576 struct se_session *se_sess = se_cmd->se_sess;
2577 unsigned long flags;
2578 int ret = 0;
2581 * Add a second kref if the fabric caller is expecting to handle
2582 * fabric acknowledgement that requires two target_put_sess_cmd()
2583 * invocations before se_cmd descriptor release.
2585 if (ack_kref) {
2586 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2587 return -EINVAL;
2589 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2592 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2593 if (se_sess->sess_tearing_down) {
2594 ret = -ESHUTDOWN;
2595 goto out;
2597 se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2598 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2599 out:
2600 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2602 if (ret && ack_kref)
2603 target_put_sess_cmd(se_cmd);
2605 return ret;
2607 EXPORT_SYMBOL(target_get_sess_cmd);
2609 static void target_free_cmd_mem(struct se_cmd *cmd)
2611 transport_free_pages(cmd);
2613 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2614 core_tmr_release_req(cmd->se_tmr_req);
2615 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2616 kfree(cmd->t_task_cdb);
2619 static void target_release_cmd_kref(struct kref *kref)
2621 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2622 struct se_session *se_sess = se_cmd->se_sess;
2623 unsigned long flags;
2624 bool fabric_stop;
2626 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2628 spin_lock(&se_cmd->t_state_lock);
2629 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2630 (se_cmd->transport_state & CMD_T_ABORTED);
2631 spin_unlock(&se_cmd->t_state_lock);
2633 if (se_cmd->cmd_wait_set || fabric_stop) {
2634 list_del_init(&se_cmd->se_cmd_list);
2635 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2636 target_free_cmd_mem(se_cmd);
2637 complete(&se_cmd->cmd_wait_comp);
2638 return;
2640 list_del_init(&se_cmd->se_cmd_list);
2641 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2643 target_free_cmd_mem(se_cmd);
2644 se_cmd->se_tfo->release_cmd(se_cmd);
2647 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2648 * @se_cmd: command descriptor to drop
2650 int target_put_sess_cmd(struct se_cmd *se_cmd)
2652 struct se_session *se_sess = se_cmd->se_sess;
2654 if (!se_sess) {
2655 target_free_cmd_mem(se_cmd);
2656 se_cmd->se_tfo->release_cmd(se_cmd);
2657 return 1;
2659 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2661 EXPORT_SYMBOL(target_put_sess_cmd);
2663 /* target_sess_cmd_list_set_waiting - Flag all commands in
2664 * sess_cmd_list to complete cmd_wait_comp. Set
2665 * sess_tearing_down so no more commands are queued.
2666 * @se_sess: session to flag
2668 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2670 struct se_cmd *se_cmd, *tmp_cmd;
2671 unsigned long flags;
2672 int rc;
2674 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2675 if (se_sess->sess_tearing_down) {
2676 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2677 return;
2679 se_sess->sess_tearing_down = 1;
2680 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2682 list_for_each_entry_safe(se_cmd, tmp_cmd,
2683 &se_sess->sess_wait_list, se_cmd_list) {
2684 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2685 if (rc) {
2686 se_cmd->cmd_wait_set = 1;
2687 spin_lock(&se_cmd->t_state_lock);
2688 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2689 spin_unlock(&se_cmd->t_state_lock);
2690 } else
2691 list_del_init(&se_cmd->se_cmd_list);
2694 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2696 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2698 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2699 * @se_sess: session to wait for active I/O
2701 void target_wait_for_sess_cmds(struct se_session *se_sess)
2703 struct se_cmd *se_cmd, *tmp_cmd;
2704 unsigned long flags;
2705 bool tas;
2707 list_for_each_entry_safe(se_cmd, tmp_cmd,
2708 &se_sess->sess_wait_list, se_cmd_list) {
2709 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2710 " %d\n", se_cmd, se_cmd->t_state,
2711 se_cmd->se_tfo->get_cmd_state(se_cmd));
2713 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2714 tas = (se_cmd->transport_state & CMD_T_TAS);
2715 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2717 if (!target_put_sess_cmd(se_cmd)) {
2718 if (tas)
2719 target_put_sess_cmd(se_cmd);
2722 wait_for_completion(&se_cmd->cmd_wait_comp);
2723 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2724 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2725 se_cmd->se_tfo->get_cmd_state(se_cmd));
2727 se_cmd->se_tfo->release_cmd(se_cmd);
2730 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2731 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2732 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2735 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2737 static void target_lun_confirm(struct percpu_ref *ref)
2739 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2741 complete(&lun->lun_ref_comp);
2744 void transport_clear_lun_ref(struct se_lun *lun)
2747 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2748 * the initial reference and schedule confirm kill to be
2749 * executed after one full RCU grace period has completed.
2751 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2753 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2754 * to call target_lun_confirm after lun->lun_ref has been marked
2755 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2756 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2757 * fails for all new incoming I/O.
2759 wait_for_completion(&lun->lun_ref_comp);
2761 * The second completion waits for percpu_ref_put_many() to
2762 * invoke ->release() after lun->lun_ref has switched to
2763 * atomic_t mode, and lun->lun_ref.count has reached zero.
2765 * At this point all target-core lun->lun_ref references have
2766 * been dropped via transport_lun_remove_cmd(), and it's safe
2767 * to proceed with the remaining LUN shutdown.
2769 wait_for_completion(&lun->lun_shutdown_comp);
2772 static bool
2773 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2774 bool *aborted, bool *tas, unsigned long *flags)
2775 __releases(&cmd->t_state_lock)
2776 __acquires(&cmd->t_state_lock)
2779 assert_spin_locked(&cmd->t_state_lock);
2780 WARN_ON_ONCE(!irqs_disabled());
2782 if (fabric_stop)
2783 cmd->transport_state |= CMD_T_FABRIC_STOP;
2785 if (cmd->transport_state & CMD_T_ABORTED)
2786 *aborted = true;
2788 if (cmd->transport_state & CMD_T_TAS)
2789 *tas = true;
2791 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2792 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2793 return false;
2795 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2796 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2797 return false;
2799 if (!(cmd->transport_state & CMD_T_ACTIVE))
2800 return false;
2802 if (fabric_stop && *aborted)
2803 return false;
2805 cmd->transport_state |= CMD_T_STOP;
2807 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2808 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2809 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2811 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2813 wait_for_completion(&cmd->t_transport_stop_comp);
2815 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2816 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2818 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2819 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2821 return true;
2825 * transport_wait_for_tasks - wait for completion to occur
2826 * @cmd: command to wait
2828 * Called from frontend fabric context to wait for storage engine
2829 * to pause and/or release frontend generated struct se_cmd.
2831 bool transport_wait_for_tasks(struct se_cmd *cmd)
2833 unsigned long flags;
2834 bool ret, aborted = false, tas = false;
2836 spin_lock_irqsave(&cmd->t_state_lock, flags);
2837 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2838 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2840 return ret;
2842 EXPORT_SYMBOL(transport_wait_for_tasks);
2844 struct sense_info {
2845 u8 key;
2846 u8 asc;
2847 u8 ascq;
2848 bool add_sector_info;
2851 static const struct sense_info sense_info_table[] = {
2852 [TCM_NO_SENSE] = {
2853 .key = NOT_READY
2855 [TCM_NON_EXISTENT_LUN] = {
2856 .key = ILLEGAL_REQUEST,
2857 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2859 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2860 .key = ILLEGAL_REQUEST,
2861 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2863 [TCM_SECTOR_COUNT_TOO_MANY] = {
2864 .key = ILLEGAL_REQUEST,
2865 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2867 [TCM_UNKNOWN_MODE_PAGE] = {
2868 .key = ILLEGAL_REQUEST,
2869 .asc = 0x24, /* INVALID FIELD IN CDB */
2871 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2872 .key = ABORTED_COMMAND,
2873 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2874 .ascq = 0x03,
2876 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2877 .key = ABORTED_COMMAND,
2878 .asc = 0x0c, /* WRITE ERROR */
2879 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2881 [TCM_INVALID_CDB_FIELD] = {
2882 .key = ILLEGAL_REQUEST,
2883 .asc = 0x24, /* INVALID FIELD IN CDB */
2885 [TCM_INVALID_PARAMETER_LIST] = {
2886 .key = ILLEGAL_REQUEST,
2887 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2889 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2890 .key = ILLEGAL_REQUEST,
2891 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2893 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2894 .key = ILLEGAL_REQUEST,
2895 .asc = 0x0c, /* WRITE ERROR */
2896 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2898 [TCM_SERVICE_CRC_ERROR] = {
2899 .key = ABORTED_COMMAND,
2900 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2901 .ascq = 0x05, /* N/A */
2903 [TCM_SNACK_REJECTED] = {
2904 .key = ABORTED_COMMAND,
2905 .asc = 0x11, /* READ ERROR */
2906 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2908 [TCM_WRITE_PROTECTED] = {
2909 .key = DATA_PROTECT,
2910 .asc = 0x27, /* WRITE PROTECTED */
2912 [TCM_ADDRESS_OUT_OF_RANGE] = {
2913 .key = ILLEGAL_REQUEST,
2914 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2916 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2917 .key = UNIT_ATTENTION,
2919 [TCM_CHECK_CONDITION_NOT_READY] = {
2920 .key = NOT_READY,
2922 [TCM_MISCOMPARE_VERIFY] = {
2923 .key = MISCOMPARE,
2924 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2925 .ascq = 0x00,
2927 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2928 .key = ABORTED_COMMAND,
2929 .asc = 0x10,
2930 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2931 .add_sector_info = true,
2933 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2934 .key = ABORTED_COMMAND,
2935 .asc = 0x10,
2936 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2937 .add_sector_info = true,
2939 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2940 .key = ABORTED_COMMAND,
2941 .asc = 0x10,
2942 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2943 .add_sector_info = true,
2945 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2946 .key = COPY_ABORTED,
2947 .asc = 0x0d,
2948 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2951 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2953 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2954 * Solaris initiators. Returning NOT READY instead means the
2955 * operations will be retried a finite number of times and we
2956 * can survive intermittent errors.
2958 .key = NOT_READY,
2959 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2963 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2965 const struct sense_info *si;
2966 u8 *buffer = cmd->sense_buffer;
2967 int r = (__force int)reason;
2968 u8 asc, ascq;
2969 bool desc_format = target_sense_desc_format(cmd->se_dev);
2971 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2972 si = &sense_info_table[r];
2973 else
2974 si = &sense_info_table[(__force int)
2975 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2977 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2978 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2979 WARN_ON_ONCE(asc == 0);
2980 } else if (si->asc == 0) {
2981 WARN_ON_ONCE(cmd->scsi_asc == 0);
2982 asc = cmd->scsi_asc;
2983 ascq = cmd->scsi_ascq;
2984 } else {
2985 asc = si->asc;
2986 ascq = si->ascq;
2989 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2990 if (si->add_sector_info)
2991 return scsi_set_sense_information(buffer,
2992 cmd->scsi_sense_length,
2993 cmd->bad_sector);
2995 return 0;
2999 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3000 sense_reason_t reason, int from_transport)
3002 unsigned long flags;
3004 spin_lock_irqsave(&cmd->t_state_lock, flags);
3005 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3006 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3007 return 0;
3009 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3010 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3012 if (!from_transport) {
3013 int rc;
3015 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3016 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3017 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3018 rc = translate_sense_reason(cmd, reason);
3019 if (rc)
3020 return rc;
3023 trace_target_cmd_complete(cmd);
3024 return cmd->se_tfo->queue_status(cmd);
3026 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3028 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3029 __releases(&cmd->t_state_lock)
3030 __acquires(&cmd->t_state_lock)
3032 assert_spin_locked(&cmd->t_state_lock);
3033 WARN_ON_ONCE(!irqs_disabled());
3035 if (!(cmd->transport_state & CMD_T_ABORTED))
3036 return 0;
3038 * If cmd has been aborted but either no status is to be sent or it has
3039 * already been sent, just return
3041 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3042 if (send_status)
3043 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3044 return 1;
3047 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3048 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3050 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3051 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3052 trace_target_cmd_complete(cmd);
3054 spin_unlock_irq(&cmd->t_state_lock);
3055 cmd->se_tfo->queue_status(cmd);
3056 spin_lock_irq(&cmd->t_state_lock);
3058 return 1;
3061 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3063 int ret;
3065 spin_lock_irq(&cmd->t_state_lock);
3066 ret = __transport_check_aborted_status(cmd, send_status);
3067 spin_unlock_irq(&cmd->t_state_lock);
3069 return ret;
3071 EXPORT_SYMBOL(transport_check_aborted_status);
3073 void transport_send_task_abort(struct se_cmd *cmd)
3075 unsigned long flags;
3077 spin_lock_irqsave(&cmd->t_state_lock, flags);
3078 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3079 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3080 return;
3082 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3085 * If there are still expected incoming fabric WRITEs, we wait
3086 * until until they have completed before sending a TASK_ABORTED
3087 * response. This response with TASK_ABORTED status will be
3088 * queued back to fabric module by transport_check_aborted_status().
3090 if (cmd->data_direction == DMA_TO_DEVICE) {
3091 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3092 spin_lock_irqsave(&cmd->t_state_lock, flags);
3093 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3094 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3095 goto send_abort;
3097 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3098 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3099 return;
3102 send_abort:
3103 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3105 transport_lun_remove_cmd(cmd);
3107 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3108 cmd->t_task_cdb[0], cmd->tag);
3110 trace_target_cmd_complete(cmd);
3111 cmd->se_tfo->queue_status(cmd);
3114 static void target_tmr_work(struct work_struct *work)
3116 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3117 struct se_device *dev = cmd->se_dev;
3118 struct se_tmr_req *tmr = cmd->se_tmr_req;
3119 unsigned long flags;
3120 int ret;
3122 spin_lock_irqsave(&cmd->t_state_lock, flags);
3123 if (cmd->transport_state & CMD_T_ABORTED) {
3124 tmr->response = TMR_FUNCTION_REJECTED;
3125 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3126 goto check_stop;
3128 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3130 switch (tmr->function) {
3131 case TMR_ABORT_TASK:
3132 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3133 break;
3134 case TMR_ABORT_TASK_SET:
3135 case TMR_CLEAR_ACA:
3136 case TMR_CLEAR_TASK_SET:
3137 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3138 break;
3139 case TMR_LUN_RESET:
3140 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3141 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3142 TMR_FUNCTION_REJECTED;
3143 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3144 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3145 cmd->orig_fe_lun, 0x29,
3146 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3148 break;
3149 case TMR_TARGET_WARM_RESET:
3150 tmr->response = TMR_FUNCTION_REJECTED;
3151 break;
3152 case TMR_TARGET_COLD_RESET:
3153 tmr->response = TMR_FUNCTION_REJECTED;
3154 break;
3155 default:
3156 pr_err("Uknown TMR function: 0x%02x.\n",
3157 tmr->function);
3158 tmr->response = TMR_FUNCTION_REJECTED;
3159 break;
3162 spin_lock_irqsave(&cmd->t_state_lock, flags);
3163 if (cmd->transport_state & CMD_T_ABORTED) {
3164 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3165 goto check_stop;
3167 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3169 cmd->se_tfo->queue_tm_rsp(cmd);
3171 check_stop:
3172 transport_cmd_check_stop_to_fabric(cmd);
3175 int transport_generic_handle_tmr(
3176 struct se_cmd *cmd)
3178 unsigned long flags;
3179 bool aborted = false;
3181 spin_lock_irqsave(&cmd->t_state_lock, flags);
3182 if (cmd->transport_state & CMD_T_ABORTED) {
3183 aborted = true;
3184 } else {
3185 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3186 cmd->transport_state |= CMD_T_ACTIVE;
3188 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3190 if (aborted) {
3191 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3192 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3193 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3194 transport_cmd_check_stop_to_fabric(cmd);
3195 return 0;
3198 INIT_WORK(&cmd->work, target_tmr_work);
3199 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3200 return 0;
3202 EXPORT_SYMBOL(transport_generic_handle_tmr);
3204 bool
3205 target_check_wce(struct se_device *dev)
3207 bool wce = false;
3209 if (dev->transport->get_write_cache)
3210 wce = dev->transport->get_write_cache(dev);
3211 else if (dev->dev_attrib.emulate_write_cache > 0)
3212 wce = true;
3214 return wce;
3217 bool
3218 target_check_fua(struct se_device *dev)
3220 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;