4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
33 static DEFINE_IDA(mnt_id_ida
);
34 static DEFINE_IDA(mnt_group_ida
);
35 static DEFINE_SPINLOCK(mnt_id_lock
);
36 static int mnt_id_start
= 0;
37 static int mnt_group_start
= 1;
39 static struct list_head
*mount_hashtable __read_mostly
;
40 static struct list_head
*mountpoint_hashtable __read_mostly
;
41 static struct kmem_cache
*mnt_cache __read_mostly
;
42 static DECLARE_RWSEM(namespace_sem
);
45 struct kobject
*fs_kobj
;
46 EXPORT_SYMBOL_GPL(fs_kobj
);
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
56 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
58 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
60 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
61 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
62 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
63 return tmp
& (HASH_SIZE
- 1);
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
70 static int mnt_alloc_id(struct mount
*mnt
)
75 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
76 spin_lock(&mnt_id_lock
);
77 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
79 mnt_id_start
= mnt
->mnt_id
+ 1;
80 spin_unlock(&mnt_id_lock
);
87 static void mnt_free_id(struct mount
*mnt
)
90 spin_lock(&mnt_id_lock
);
91 ida_remove(&mnt_id_ida
, id
);
92 if (mnt_id_start
> id
)
94 spin_unlock(&mnt_id_lock
);
98 * Allocate a new peer group ID
100 * mnt_group_ida is protected by namespace_sem
102 static int mnt_alloc_group_id(struct mount
*mnt
)
106 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
109 res
= ida_get_new_above(&mnt_group_ida
,
113 mnt_group_start
= mnt
->mnt_group_id
+ 1;
119 * Release a peer group ID
121 void mnt_release_group_id(struct mount
*mnt
)
123 int id
= mnt
->mnt_group_id
;
124 ida_remove(&mnt_group_ida
, id
);
125 if (mnt_group_start
> id
)
126 mnt_group_start
= id
;
127 mnt
->mnt_group_id
= 0;
131 * vfsmount lock must be held for read
133 static inline void mnt_add_count(struct mount
*mnt
, int n
)
136 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
145 * vfsmount lock must be held for write
147 unsigned int mnt_get_count(struct mount
*mnt
)
150 unsigned int count
= 0;
153 for_each_possible_cpu(cpu
) {
154 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
159 return mnt
->mnt_count
;
163 static struct mount
*alloc_vfsmnt(const char *name
)
165 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
169 err
= mnt_alloc_id(mnt
);
174 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
175 if (!mnt
->mnt_devname
)
180 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
182 goto out_free_devname
;
184 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
187 mnt
->mnt_writers
= 0;
190 INIT_LIST_HEAD(&mnt
->mnt_hash
);
191 INIT_LIST_HEAD(&mnt
->mnt_child
);
192 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
193 INIT_LIST_HEAD(&mnt
->mnt_list
);
194 INIT_LIST_HEAD(&mnt
->mnt_expire
);
195 INIT_LIST_HEAD(&mnt
->mnt_share
);
196 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
197 INIT_LIST_HEAD(&mnt
->mnt_slave
);
198 #ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
206 kfree(mnt
->mnt_devname
);
211 kmem_cache_free(mnt_cache
, mnt
);
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
234 int __mnt_is_readonly(struct vfsmount
*mnt
)
236 if (mnt
->mnt_flags
& MNT_READONLY
)
238 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
244 static inline void mnt_inc_writers(struct mount
*mnt
)
247 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
253 static inline void mnt_dec_writers(struct mount
*mnt
)
256 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
262 static unsigned int mnt_get_writers(struct mount
*mnt
)
265 unsigned int count
= 0;
268 for_each_possible_cpu(cpu
) {
269 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
274 return mnt
->mnt_writers
;
278 static int mnt_is_readonly(struct vfsmount
*mnt
)
280 if (mnt
->mnt_sb
->s_readonly_remount
)
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 return __mnt_is_readonly(mnt
);
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
303 int __mnt_want_write(struct vfsmount
*m
)
305 struct mount
*mnt
= real_mount(m
);
309 mnt_inc_writers(mnt
);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
316 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
324 if (mnt_is_readonly(m
)) {
325 mnt_dec_writers(mnt
);
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 int mnt_want_write(struct vfsmount
*m
)
346 sb_start_write(m
->mnt_sb
);
347 ret
= __mnt_want_write(m
);
349 sb_end_write(m
->mnt_sb
);
352 EXPORT_SYMBOL_GPL(mnt_want_write
);
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
366 int mnt_clone_write(struct vfsmount
*mnt
)
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt
))
372 mnt_inc_writers(real_mount(mnt
));
376 EXPORT_SYMBOL_GPL(mnt_clone_write
);
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
385 int __mnt_want_write_file(struct file
*file
)
387 struct inode
*inode
= file_inode(file
);
389 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
390 return __mnt_want_write(file
->f_path
.mnt
);
392 return mnt_clone_write(file
->f_path
.mnt
);
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
402 int mnt_want_write_file(struct file
*file
)
406 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
407 ret
= __mnt_want_write_file(file
);
409 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
412 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
422 void __mnt_drop_write(struct vfsmount
*mnt
)
425 mnt_dec_writers(real_mount(mnt
));
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
437 void mnt_drop_write(struct vfsmount
*mnt
)
439 __mnt_drop_write(mnt
);
440 sb_end_write(mnt
->mnt_sb
);
442 EXPORT_SYMBOL_GPL(mnt_drop_write
);
444 void __mnt_drop_write_file(struct file
*file
)
446 __mnt_drop_write(file
->f_path
.mnt
);
449 void mnt_drop_write_file(struct file
*file
)
451 mnt_drop_write(file
->f_path
.mnt
);
453 EXPORT_SYMBOL(mnt_drop_write_file
);
455 static int mnt_make_readonly(struct mount
*mnt
)
460 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
483 if (mnt_get_writers(mnt
) > 0)
486 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
492 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
497 static void __mnt_unmake_readonly(struct mount
*mnt
)
500 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
504 int sb_prepare_remount_readonly(struct super_block
*sb
)
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb
->s_remove_count
))
514 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
515 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
516 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
518 if (mnt_get_writers(mnt
) > 0) {
524 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
528 sb
->s_readonly_remount
= 1;
531 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
532 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
533 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
540 static void free_vfsmnt(struct mount
*mnt
)
542 kfree(mnt
->mnt_devname
);
545 free_percpu(mnt
->mnt_pcp
);
547 kmem_cache_free(mnt_cache
, mnt
);
550 /* call under rcu_read_lock */
551 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
554 if (read_seqretry(&mount_lock
, seq
))
558 mnt
= real_mount(bastard
);
559 mnt_add_count(mnt
, 1);
560 if (likely(!read_seqretry(&mount_lock
, seq
)))
562 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
563 mnt_add_count(mnt
, -1);
573 * find the first mount at @dentry on vfsmount @mnt.
574 * call under rcu_read_lock()
576 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
578 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
581 list_for_each_entry_rcu(p
, head
, mnt_hash
)
582 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
588 * find the last mount at @dentry on vfsmount @mnt.
589 * mount_lock must be held.
591 struct mount
*__lookup_mnt_last(struct vfsmount
*mnt
, struct dentry
*dentry
)
593 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
596 list_for_each_entry_reverse(p
, head
, mnt_hash
)
597 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
603 * lookup_mnt - Return the first child mount mounted at path
605 * "First" means first mounted chronologically. If you create the
608 * mount /dev/sda1 /mnt
609 * mount /dev/sda2 /mnt
610 * mount /dev/sda3 /mnt
612 * Then lookup_mnt() on the base /mnt dentry in the root mount will
613 * return successively the root dentry and vfsmount of /dev/sda1, then
614 * /dev/sda2, then /dev/sda3, then NULL.
616 * lookup_mnt takes a reference to the found vfsmount.
618 struct vfsmount
*lookup_mnt(struct path
*path
)
620 struct mount
*child_mnt
;
626 seq
= read_seqbegin(&mount_lock
);
627 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
628 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
629 } while (!legitimize_mnt(m
, seq
));
634 static struct mountpoint
*new_mountpoint(struct dentry
*dentry
)
636 struct list_head
*chain
= mountpoint_hashtable
+ hash(NULL
, dentry
);
637 struct mountpoint
*mp
;
640 list_for_each_entry(mp
, chain
, m_hash
) {
641 if (mp
->m_dentry
== dentry
) {
642 /* might be worth a WARN_ON() */
643 if (d_unlinked(dentry
))
644 return ERR_PTR(-ENOENT
);
650 mp
= kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
652 return ERR_PTR(-ENOMEM
);
654 ret
= d_set_mounted(dentry
);
660 mp
->m_dentry
= dentry
;
662 list_add(&mp
->m_hash
, chain
);
666 static void put_mountpoint(struct mountpoint
*mp
)
668 if (!--mp
->m_count
) {
669 struct dentry
*dentry
= mp
->m_dentry
;
670 spin_lock(&dentry
->d_lock
);
671 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
672 spin_unlock(&dentry
->d_lock
);
673 list_del(&mp
->m_hash
);
678 static inline int check_mnt(struct mount
*mnt
)
680 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
684 * vfsmount lock must be held for write
686 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
690 wake_up_interruptible(&ns
->poll
);
695 * vfsmount lock must be held for write
697 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
699 if (ns
&& ns
->event
!= event
) {
701 wake_up_interruptible(&ns
->poll
);
706 * vfsmount lock must be held for write
708 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
710 old_path
->dentry
= mnt
->mnt_mountpoint
;
711 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
712 mnt
->mnt_parent
= mnt
;
713 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
714 list_del_init(&mnt
->mnt_child
);
715 list_del_init(&mnt
->mnt_hash
);
716 put_mountpoint(mnt
->mnt_mp
);
721 * vfsmount lock must be held for write
723 void mnt_set_mountpoint(struct mount
*mnt
,
724 struct mountpoint
*mp
,
725 struct mount
*child_mnt
)
728 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
729 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
730 child_mnt
->mnt_parent
= mnt
;
731 child_mnt
->mnt_mp
= mp
;
735 * vfsmount lock must be held for write
737 static void attach_mnt(struct mount
*mnt
,
738 struct mount
*parent
,
739 struct mountpoint
*mp
)
741 mnt_set_mountpoint(parent
, mp
, mnt
);
742 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
743 hash(&parent
->mnt
, mp
->m_dentry
));
744 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
748 * vfsmount lock must be held for write
750 static void commit_tree(struct mount
*mnt
)
752 struct mount
*parent
= mnt
->mnt_parent
;
755 struct mnt_namespace
*n
= parent
->mnt_ns
;
757 BUG_ON(parent
== mnt
);
759 list_add_tail(&head
, &mnt
->mnt_list
);
760 list_for_each_entry(m
, &head
, mnt_list
)
763 list_splice(&head
, n
->list
.prev
);
765 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
766 hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
767 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
768 touch_mnt_namespace(n
);
771 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
773 struct list_head
*next
= p
->mnt_mounts
.next
;
774 if (next
== &p
->mnt_mounts
) {
778 next
= p
->mnt_child
.next
;
779 if (next
!= &p
->mnt_parent
->mnt_mounts
)
784 return list_entry(next
, struct mount
, mnt_child
);
787 static struct mount
*skip_mnt_tree(struct mount
*p
)
789 struct list_head
*prev
= p
->mnt_mounts
.prev
;
790 while (prev
!= &p
->mnt_mounts
) {
791 p
= list_entry(prev
, struct mount
, mnt_child
);
792 prev
= p
->mnt_mounts
.prev
;
798 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
804 return ERR_PTR(-ENODEV
);
806 mnt
= alloc_vfsmnt(name
);
808 return ERR_PTR(-ENOMEM
);
810 if (flags
& MS_KERNMOUNT
)
811 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
813 root
= mount_fs(type
, flags
, name
, data
);
816 return ERR_CAST(root
);
819 mnt
->mnt
.mnt_root
= root
;
820 mnt
->mnt
.mnt_sb
= root
->d_sb
;
821 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
822 mnt
->mnt_parent
= mnt
;
824 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
828 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
830 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
833 struct super_block
*sb
= old
->mnt
.mnt_sb
;
837 mnt
= alloc_vfsmnt(old
->mnt_devname
);
839 return ERR_PTR(-ENOMEM
);
841 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
842 mnt
->mnt_group_id
= 0; /* not a peer of original */
844 mnt
->mnt_group_id
= old
->mnt_group_id
;
846 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
847 err
= mnt_alloc_group_id(mnt
);
852 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~MNT_WRITE_HOLD
;
853 /* Don't allow unprivileged users to change mount flags */
854 if ((flag
& CL_UNPRIVILEGED
) && (mnt
->mnt
.mnt_flags
& MNT_READONLY
))
855 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
857 /* Don't allow unprivileged users to reveal what is under a mount */
858 if ((flag
& CL_UNPRIVILEGED
) && list_empty(&old
->mnt_expire
))
859 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
861 atomic_inc(&sb
->s_active
);
862 mnt
->mnt
.mnt_sb
= sb
;
863 mnt
->mnt
.mnt_root
= dget(root
);
864 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
865 mnt
->mnt_parent
= mnt
;
867 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
870 if ((flag
& CL_SLAVE
) ||
871 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
872 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
873 mnt
->mnt_master
= old
;
874 CLEAR_MNT_SHARED(mnt
);
875 } else if (!(flag
& CL_PRIVATE
)) {
876 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
877 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
878 if (IS_MNT_SLAVE(old
))
879 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
880 mnt
->mnt_master
= old
->mnt_master
;
882 if (flag
& CL_MAKE_SHARED
)
885 /* stick the duplicate mount on the same expiry list
886 * as the original if that was on one */
887 if (flag
& CL_EXPIRE
) {
888 if (!list_empty(&old
->mnt_expire
))
889 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
899 static void delayed_free(struct rcu_head
*head
)
901 struct mount
*mnt
= container_of(head
, struct mount
, mnt_rcu
);
902 kfree(mnt
->mnt_devname
);
904 free_percpu(mnt
->mnt_pcp
);
906 kmem_cache_free(mnt_cache
, mnt
);
909 static void mntput_no_expire(struct mount
*mnt
)
913 mnt_add_count(mnt
, -1);
914 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
919 if (mnt_get_count(mnt
)) {
924 if (unlikely(mnt
->mnt_pinned
)) {
925 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
929 acct_auto_close_mnt(&mnt
->mnt
);
932 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
937 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
940 list_del(&mnt
->mnt_instance
);
944 * This probably indicates that somebody messed
945 * up a mnt_want/drop_write() pair. If this
946 * happens, the filesystem was probably unable
947 * to make r/w->r/o transitions.
950 * The locking used to deal with mnt_count decrement provides barriers,
951 * so mnt_get_writers() below is safe.
953 WARN_ON(mnt_get_writers(mnt
));
954 fsnotify_vfsmount_delete(&mnt
->mnt
);
955 dput(mnt
->mnt
.mnt_root
);
956 deactivate_super(mnt
->mnt
.mnt_sb
);
958 call_rcu(&mnt
->mnt_rcu
, delayed_free
);
961 void mntput(struct vfsmount
*mnt
)
964 struct mount
*m
= real_mount(mnt
);
965 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
966 if (unlikely(m
->mnt_expiry_mark
))
967 m
->mnt_expiry_mark
= 0;
971 EXPORT_SYMBOL(mntput
);
973 struct vfsmount
*mntget(struct vfsmount
*mnt
)
976 mnt_add_count(real_mount(mnt
), 1);
979 EXPORT_SYMBOL(mntget
);
981 void mnt_pin(struct vfsmount
*mnt
)
984 real_mount(mnt
)->mnt_pinned
++;
987 EXPORT_SYMBOL(mnt_pin
);
989 void mnt_unpin(struct vfsmount
*m
)
991 struct mount
*mnt
= real_mount(m
);
993 if (mnt
->mnt_pinned
) {
994 mnt_add_count(mnt
, 1);
999 EXPORT_SYMBOL(mnt_unpin
);
1001 static inline void mangle(struct seq_file
*m
, const char *s
)
1003 seq_escape(m
, s
, " \t\n\\");
1007 * Simple .show_options callback for filesystems which don't want to
1008 * implement more complex mount option showing.
1010 * See also save_mount_options().
1012 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1014 const char *options
;
1017 options
= rcu_dereference(root
->d_sb
->s_options
);
1019 if (options
!= NULL
&& options
[0]) {
1027 EXPORT_SYMBOL(generic_show_options
);
1030 * If filesystem uses generic_show_options(), this function should be
1031 * called from the fill_super() callback.
1033 * The .remount_fs callback usually needs to be handled in a special
1034 * way, to make sure, that previous options are not overwritten if the
1037 * Also note, that if the filesystem's .remount_fs function doesn't
1038 * reset all options to their default value, but changes only newly
1039 * given options, then the displayed options will not reflect reality
1042 void save_mount_options(struct super_block
*sb
, char *options
)
1044 BUG_ON(sb
->s_options
);
1045 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1047 EXPORT_SYMBOL(save_mount_options
);
1049 void replace_mount_options(struct super_block
*sb
, char *options
)
1051 char *old
= sb
->s_options
;
1052 rcu_assign_pointer(sb
->s_options
, options
);
1058 EXPORT_SYMBOL(replace_mount_options
);
1060 #ifdef CONFIG_PROC_FS
1061 /* iterator; we want it to have access to namespace_sem, thus here... */
1062 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1064 struct proc_mounts
*p
= proc_mounts(m
);
1066 down_read(&namespace_sem
);
1067 return seq_list_start(&p
->ns
->list
, *pos
);
1070 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1072 struct proc_mounts
*p
= proc_mounts(m
);
1074 return seq_list_next(v
, &p
->ns
->list
, pos
);
1077 static void m_stop(struct seq_file
*m
, void *v
)
1079 up_read(&namespace_sem
);
1082 static int m_show(struct seq_file
*m
, void *v
)
1084 struct proc_mounts
*p
= proc_mounts(m
);
1085 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1086 return p
->show(m
, &r
->mnt
);
1089 const struct seq_operations mounts_op
= {
1095 #endif /* CONFIG_PROC_FS */
1098 * may_umount_tree - check if a mount tree is busy
1099 * @mnt: root of mount tree
1101 * This is called to check if a tree of mounts has any
1102 * open files, pwds, chroots or sub mounts that are
1105 int may_umount_tree(struct vfsmount
*m
)
1107 struct mount
*mnt
= real_mount(m
);
1108 int actual_refs
= 0;
1109 int minimum_refs
= 0;
1113 /* write lock needed for mnt_get_count */
1115 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1116 actual_refs
+= mnt_get_count(p
);
1119 unlock_mount_hash();
1121 if (actual_refs
> minimum_refs
)
1127 EXPORT_SYMBOL(may_umount_tree
);
1130 * may_umount - check if a mount point is busy
1131 * @mnt: root of mount
1133 * This is called to check if a mount point has any
1134 * open files, pwds, chroots or sub mounts. If the
1135 * mount has sub mounts this will return busy
1136 * regardless of whether the sub mounts are busy.
1138 * Doesn't take quota and stuff into account. IOW, in some cases it will
1139 * give false negatives. The main reason why it's here is that we need
1140 * a non-destructive way to look for easily umountable filesystems.
1142 int may_umount(struct vfsmount
*mnt
)
1145 down_read(&namespace_sem
);
1147 if (propagate_mount_busy(real_mount(mnt
), 2))
1149 unlock_mount_hash();
1150 up_read(&namespace_sem
);
1154 EXPORT_SYMBOL(may_umount
);
1156 static LIST_HEAD(unmounted
); /* protected by namespace_sem */
1158 static void namespace_unlock(void)
1163 if (likely(list_empty(&unmounted
))) {
1164 up_write(&namespace_sem
);
1168 list_splice_init(&unmounted
, &head
);
1169 up_write(&namespace_sem
);
1173 while (!list_empty(&head
)) {
1174 mnt
= list_first_entry(&head
, struct mount
, mnt_hash
);
1175 list_del_init(&mnt
->mnt_hash
);
1176 if (mnt
->mnt_ex_mountpoint
.mnt
)
1177 path_put(&mnt
->mnt_ex_mountpoint
);
1182 static inline void namespace_lock(void)
1184 down_write(&namespace_sem
);
1188 * mount_lock must be held
1189 * namespace_sem must be held for write
1190 * how = 0 => just this tree, don't propagate
1191 * how = 1 => propagate; we know that nobody else has reference to any victims
1192 * how = 2 => lazy umount
1194 void umount_tree(struct mount
*mnt
, int how
)
1196 LIST_HEAD(tmp_list
);
1199 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1200 list_move(&p
->mnt_hash
, &tmp_list
);
1203 propagate_umount(&tmp_list
);
1205 list_for_each_entry(p
, &tmp_list
, mnt_hash
) {
1206 list_del_init(&p
->mnt_expire
);
1207 list_del_init(&p
->mnt_list
);
1208 __touch_mnt_namespace(p
->mnt_ns
);
1211 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1212 list_del_init(&p
->mnt_child
);
1213 if (mnt_has_parent(p
)) {
1214 put_mountpoint(p
->mnt_mp
);
1215 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1216 p
->mnt_ex_mountpoint
.dentry
= p
->mnt_mountpoint
;
1217 p
->mnt_ex_mountpoint
.mnt
= &p
->mnt_parent
->mnt
;
1218 p
->mnt_mountpoint
= p
->mnt
.mnt_root
;
1222 change_mnt_propagation(p
, MS_PRIVATE
);
1224 list_splice(&tmp_list
, &unmounted
);
1227 static void shrink_submounts(struct mount
*mnt
);
1229 static int do_umount(struct mount
*mnt
, int flags
)
1231 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1234 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1239 * Allow userspace to request a mountpoint be expired rather than
1240 * unmounting unconditionally. Unmount only happens if:
1241 * (1) the mark is already set (the mark is cleared by mntput())
1242 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1244 if (flags
& MNT_EXPIRE
) {
1245 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1246 flags
& (MNT_FORCE
| MNT_DETACH
))
1250 * probably don't strictly need the lock here if we examined
1251 * all race cases, but it's a slowpath.
1254 if (mnt_get_count(mnt
) != 2) {
1255 unlock_mount_hash();
1258 unlock_mount_hash();
1260 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1265 * If we may have to abort operations to get out of this
1266 * mount, and they will themselves hold resources we must
1267 * allow the fs to do things. In the Unix tradition of
1268 * 'Gee thats tricky lets do it in userspace' the umount_begin
1269 * might fail to complete on the first run through as other tasks
1270 * must return, and the like. Thats for the mount program to worry
1271 * about for the moment.
1274 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1275 sb
->s_op
->umount_begin(sb
);
1279 * No sense to grab the lock for this test, but test itself looks
1280 * somewhat bogus. Suggestions for better replacement?
1281 * Ho-hum... In principle, we might treat that as umount + switch
1282 * to rootfs. GC would eventually take care of the old vfsmount.
1283 * Actually it makes sense, especially if rootfs would contain a
1284 * /reboot - static binary that would close all descriptors and
1285 * call reboot(9). Then init(8) could umount root and exec /reboot.
1287 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1289 * Special case for "unmounting" root ...
1290 * we just try to remount it readonly.
1292 down_write(&sb
->s_umount
);
1293 if (!(sb
->s_flags
& MS_RDONLY
))
1294 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1295 up_write(&sb
->s_umount
);
1303 if (flags
& MNT_DETACH
) {
1304 if (!list_empty(&mnt
->mnt_list
))
1305 umount_tree(mnt
, 2);
1308 shrink_submounts(mnt
);
1310 if (!propagate_mount_busy(mnt
, 2)) {
1311 if (!list_empty(&mnt
->mnt_list
))
1312 umount_tree(mnt
, 1);
1316 unlock_mount_hash();
1322 * Is the caller allowed to modify his namespace?
1324 static inline bool may_mount(void)
1326 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1330 * Now umount can handle mount points as well as block devices.
1331 * This is important for filesystems which use unnamed block devices.
1333 * We now support a flag for forced unmount like the other 'big iron'
1334 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1337 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1342 int lookup_flags
= 0;
1344 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1350 if (!(flags
& UMOUNT_NOFOLLOW
))
1351 lookup_flags
|= LOOKUP_FOLLOW
;
1353 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1356 mnt
= real_mount(path
.mnt
);
1358 if (path
.dentry
!= path
.mnt
->mnt_root
)
1360 if (!check_mnt(mnt
))
1362 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1365 retval
= do_umount(mnt
, flags
);
1367 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1369 mntput_no_expire(mnt
);
1374 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1377 * The 2.0 compatible umount. No flags.
1379 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1381 return sys_umount(name
, 0);
1386 static bool is_mnt_ns_file(struct dentry
*dentry
)
1388 /* Is this a proxy for a mount namespace? */
1389 struct inode
*inode
= dentry
->d_inode
;
1392 if (!proc_ns_inode(inode
))
1395 ei
= get_proc_ns(inode
);
1396 if (ei
->ns_ops
!= &mntns_operations
)
1402 static bool mnt_ns_loop(struct dentry
*dentry
)
1404 /* Could bind mounting the mount namespace inode cause a
1405 * mount namespace loop?
1407 struct mnt_namespace
*mnt_ns
;
1408 if (!is_mnt_ns_file(dentry
))
1411 mnt_ns
= get_proc_ns(dentry
->d_inode
)->ns
;
1412 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1415 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1418 struct mount
*res
, *p
, *q
, *r
, *parent
;
1420 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1421 return ERR_PTR(-EINVAL
);
1423 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1424 return ERR_PTR(-EINVAL
);
1426 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1430 q
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
1431 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1434 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1436 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1439 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1440 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1441 IS_MNT_UNBINDABLE(s
)) {
1442 s
= skip_mnt_tree(s
);
1445 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1446 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1447 s
= skip_mnt_tree(s
);
1450 while (p
!= s
->mnt_parent
) {
1456 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1460 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1461 attach_mnt(q
, parent
, p
->mnt_mp
);
1462 unlock_mount_hash();
1469 umount_tree(res
, 0);
1470 unlock_mount_hash();
1475 /* Caller should check returned pointer for errors */
1477 struct vfsmount
*collect_mounts(struct path
*path
)
1481 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1482 CL_COPY_ALL
| CL_PRIVATE
);
1485 return ERR_CAST(tree
);
1489 void drop_collected_mounts(struct vfsmount
*mnt
)
1493 umount_tree(real_mount(mnt
), 0);
1494 unlock_mount_hash();
1498 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1499 struct vfsmount
*root
)
1502 int res
= f(root
, arg
);
1505 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1506 res
= f(&mnt
->mnt
, arg
);
1513 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1517 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1518 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1519 mnt_release_group_id(p
);
1523 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1527 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1528 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1529 int err
= mnt_alloc_group_id(p
);
1531 cleanup_group_ids(mnt
, p
);
1541 * @source_mnt : mount tree to be attached
1542 * @nd : place the mount tree @source_mnt is attached
1543 * @parent_nd : if non-null, detach the source_mnt from its parent and
1544 * store the parent mount and mountpoint dentry.
1545 * (done when source_mnt is moved)
1547 * NOTE: in the table below explains the semantics when a source mount
1548 * of a given type is attached to a destination mount of a given type.
1549 * ---------------------------------------------------------------------------
1550 * | BIND MOUNT OPERATION |
1551 * |**************************************************************************
1552 * | source-->| shared | private | slave | unbindable |
1556 * |**************************************************************************
1557 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1559 * |non-shared| shared (+) | private | slave (*) | invalid |
1560 * ***************************************************************************
1561 * A bind operation clones the source mount and mounts the clone on the
1562 * destination mount.
1564 * (++) the cloned mount is propagated to all the mounts in the propagation
1565 * tree of the destination mount and the cloned mount is added to
1566 * the peer group of the source mount.
1567 * (+) the cloned mount is created under the destination mount and is marked
1568 * as shared. The cloned mount is added to the peer group of the source
1570 * (+++) the mount is propagated to all the mounts in the propagation tree
1571 * of the destination mount and the cloned mount is made slave
1572 * of the same master as that of the source mount. The cloned mount
1573 * is marked as 'shared and slave'.
1574 * (*) the cloned mount is made a slave of the same master as that of the
1577 * ---------------------------------------------------------------------------
1578 * | MOVE MOUNT OPERATION |
1579 * |**************************************************************************
1580 * | source-->| shared | private | slave | unbindable |
1584 * |**************************************************************************
1585 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1587 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1588 * ***************************************************************************
1590 * (+) the mount is moved to the destination. And is then propagated to
1591 * all the mounts in the propagation tree of the destination mount.
1592 * (+*) the mount is moved to the destination.
1593 * (+++) the mount is moved to the destination and is then propagated to
1594 * all the mounts belonging to the destination mount's propagation tree.
1595 * the mount is marked as 'shared and slave'.
1596 * (*) the mount continues to be a slave at the new location.
1598 * if the source mount is a tree, the operations explained above is
1599 * applied to each mount in the tree.
1600 * Must be called without spinlocks held, since this function can sleep
1603 static int attach_recursive_mnt(struct mount
*source_mnt
,
1604 struct mount
*dest_mnt
,
1605 struct mountpoint
*dest_mp
,
1606 struct path
*parent_path
)
1608 LIST_HEAD(tree_list
);
1609 struct mount
*child
, *p
;
1612 if (IS_MNT_SHARED(dest_mnt
)) {
1613 err
= invent_group_ids(source_mnt
, true);
1617 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1619 goto out_cleanup_ids
;
1623 if (IS_MNT_SHARED(dest_mnt
)) {
1624 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1628 detach_mnt(source_mnt
, parent_path
);
1629 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1630 touch_mnt_namespace(source_mnt
->mnt_ns
);
1632 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1633 commit_tree(source_mnt
);
1636 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1637 list_del_init(&child
->mnt_hash
);
1640 unlock_mount_hash();
1645 if (IS_MNT_SHARED(dest_mnt
))
1646 cleanup_group_ids(source_mnt
, NULL
);
1651 static struct mountpoint
*lock_mount(struct path
*path
)
1653 struct vfsmount
*mnt
;
1654 struct dentry
*dentry
= path
->dentry
;
1656 mutex_lock(&dentry
->d_inode
->i_mutex
);
1657 if (unlikely(cant_mount(dentry
))) {
1658 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1659 return ERR_PTR(-ENOENT
);
1662 mnt
= lookup_mnt(path
);
1664 struct mountpoint
*mp
= new_mountpoint(dentry
);
1667 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1673 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1676 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
1680 static void unlock_mount(struct mountpoint
*where
)
1682 struct dentry
*dentry
= where
->m_dentry
;
1683 put_mountpoint(where
);
1685 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1688 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
1690 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
1693 if (S_ISDIR(mp
->m_dentry
->d_inode
->i_mode
) !=
1694 S_ISDIR(mnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1697 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
1701 * Sanity check the flags to change_mnt_propagation.
1704 static int flags_to_propagation_type(int flags
)
1706 int type
= flags
& ~(MS_REC
| MS_SILENT
);
1708 /* Fail if any non-propagation flags are set */
1709 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1711 /* Only one propagation flag should be set */
1712 if (!is_power_of_2(type
))
1718 * recursively change the type of the mountpoint.
1720 static int do_change_type(struct path
*path
, int flag
)
1723 struct mount
*mnt
= real_mount(path
->mnt
);
1724 int recurse
= flag
& MS_REC
;
1728 if (path
->dentry
!= path
->mnt
->mnt_root
)
1731 type
= flags_to_propagation_type(flag
);
1736 if (type
== MS_SHARED
) {
1737 err
= invent_group_ids(mnt
, recurse
);
1743 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1744 change_mnt_propagation(m
, type
);
1745 unlock_mount_hash();
1752 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
1754 struct mount
*child
;
1755 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
1756 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
1759 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
1766 * do loopback mount.
1768 static int do_loopback(struct path
*path
, const char *old_name
,
1771 struct path old_path
;
1772 struct mount
*mnt
= NULL
, *old
, *parent
;
1773 struct mountpoint
*mp
;
1775 if (!old_name
|| !*old_name
)
1777 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
1782 if (mnt_ns_loop(old_path
.dentry
))
1785 mp
= lock_mount(path
);
1790 old
= real_mount(old_path
.mnt
);
1791 parent
= real_mount(path
->mnt
);
1794 if (IS_MNT_UNBINDABLE(old
))
1797 if (!check_mnt(parent
) || !check_mnt(old
))
1800 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
1804 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
1806 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
1813 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
1815 err
= graft_tree(mnt
, parent
, mp
);
1818 umount_tree(mnt
, 0);
1819 unlock_mount_hash();
1824 path_put(&old_path
);
1828 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1831 int readonly_request
= 0;
1833 if (ms_flags
& MS_RDONLY
)
1834 readonly_request
= 1;
1835 if (readonly_request
== __mnt_is_readonly(mnt
))
1838 if (mnt
->mnt_flags
& MNT_LOCK_READONLY
)
1841 if (readonly_request
)
1842 error
= mnt_make_readonly(real_mount(mnt
));
1844 __mnt_unmake_readonly(real_mount(mnt
));
1849 * change filesystem flags. dir should be a physical root of filesystem.
1850 * If you've mounted a non-root directory somewhere and want to do remount
1851 * on it - tough luck.
1853 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1857 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1858 struct mount
*mnt
= real_mount(path
->mnt
);
1860 if (!check_mnt(mnt
))
1863 if (path
->dentry
!= path
->mnt
->mnt_root
)
1866 err
= security_sb_remount(sb
, data
);
1870 down_write(&sb
->s_umount
);
1871 if (flags
& MS_BIND
)
1872 err
= change_mount_flags(path
->mnt
, flags
);
1873 else if (!capable(CAP_SYS_ADMIN
))
1876 err
= do_remount_sb(sb
, flags
, data
, 0);
1879 mnt_flags
|= mnt
->mnt
.mnt_flags
& MNT_PROPAGATION_MASK
;
1880 mnt
->mnt
.mnt_flags
= mnt_flags
;
1881 touch_mnt_namespace(mnt
->mnt_ns
);
1882 unlock_mount_hash();
1884 up_write(&sb
->s_umount
);
1888 static inline int tree_contains_unbindable(struct mount
*mnt
)
1891 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1892 if (IS_MNT_UNBINDABLE(p
))
1898 static int do_move_mount(struct path
*path
, const char *old_name
)
1900 struct path old_path
, parent_path
;
1903 struct mountpoint
*mp
;
1905 if (!old_name
|| !*old_name
)
1907 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1911 mp
= lock_mount(path
);
1916 old
= real_mount(old_path
.mnt
);
1917 p
= real_mount(path
->mnt
);
1920 if (!check_mnt(p
) || !check_mnt(old
))
1923 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
1927 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1930 if (!mnt_has_parent(old
))
1933 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1934 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1937 * Don't move a mount residing in a shared parent.
1939 if (IS_MNT_SHARED(old
->mnt_parent
))
1942 * Don't move a mount tree containing unbindable mounts to a destination
1943 * mount which is shared.
1945 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
1948 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
1952 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
1956 /* if the mount is moved, it should no longer be expire
1958 list_del_init(&old
->mnt_expire
);
1963 path_put(&parent_path
);
1964 path_put(&old_path
);
1968 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
1971 const char *subtype
= strchr(fstype
, '.');
1980 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
1982 if (!mnt
->mnt_sb
->s_subtype
)
1988 return ERR_PTR(err
);
1992 * add a mount into a namespace's mount tree
1994 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
1996 struct mountpoint
*mp
;
1997 struct mount
*parent
;
2000 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
| MNT_DOOMED
| MNT_SYNC_UMOUNT
);
2002 mp
= lock_mount(path
);
2006 parent
= real_mount(path
->mnt
);
2008 if (unlikely(!check_mnt(parent
))) {
2009 /* that's acceptable only for automounts done in private ns */
2010 if (!(mnt_flags
& MNT_SHRINKABLE
))
2012 /* ... and for those we'd better have mountpoint still alive */
2013 if (!parent
->mnt_ns
)
2017 /* Refuse the same filesystem on the same mount point */
2019 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2020 path
->mnt
->mnt_root
== path
->dentry
)
2024 if (S_ISLNK(newmnt
->mnt
.mnt_root
->d_inode
->i_mode
))
2027 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2028 err
= graft_tree(newmnt
, parent
, mp
);
2036 * create a new mount for userspace and request it to be added into the
2039 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2040 int mnt_flags
, const char *name
, void *data
)
2042 struct file_system_type
*type
;
2043 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2044 struct vfsmount
*mnt
;
2050 type
= get_fs_type(fstype
);
2054 if (user_ns
!= &init_user_ns
) {
2055 if (!(type
->fs_flags
& FS_USERNS_MOUNT
)) {
2056 put_filesystem(type
);
2059 /* Only in special cases allow devices from mounts
2060 * created outside the initial user namespace.
2062 if (!(type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2064 mnt_flags
|= MNT_NODEV
;
2068 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2069 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2070 !mnt
->mnt_sb
->s_subtype
)
2071 mnt
= fs_set_subtype(mnt
, fstype
);
2073 put_filesystem(type
);
2075 return PTR_ERR(mnt
);
2077 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2083 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2085 struct mount
*mnt
= real_mount(m
);
2087 /* The new mount record should have at least 2 refs to prevent it being
2088 * expired before we get a chance to add it
2090 BUG_ON(mnt_get_count(mnt
) < 2);
2092 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2093 m
->mnt_root
== path
->dentry
) {
2098 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2102 /* remove m from any expiration list it may be on */
2103 if (!list_empty(&mnt
->mnt_expire
)) {
2105 list_del_init(&mnt
->mnt_expire
);
2114 * mnt_set_expiry - Put a mount on an expiration list
2115 * @mnt: The mount to list.
2116 * @expiry_list: The list to add the mount to.
2118 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2122 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2126 EXPORT_SYMBOL(mnt_set_expiry
);
2129 * process a list of expirable mountpoints with the intent of discarding any
2130 * mountpoints that aren't in use and haven't been touched since last we came
2133 void mark_mounts_for_expiry(struct list_head
*mounts
)
2135 struct mount
*mnt
, *next
;
2136 LIST_HEAD(graveyard
);
2138 if (list_empty(mounts
))
2144 /* extract from the expiration list every vfsmount that matches the
2145 * following criteria:
2146 * - only referenced by its parent vfsmount
2147 * - still marked for expiry (marked on the last call here; marks are
2148 * cleared by mntput())
2150 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2151 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2152 propagate_mount_busy(mnt
, 1))
2154 list_move(&mnt
->mnt_expire
, &graveyard
);
2156 while (!list_empty(&graveyard
)) {
2157 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2158 touch_mnt_namespace(mnt
->mnt_ns
);
2159 umount_tree(mnt
, 1);
2161 unlock_mount_hash();
2165 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2168 * Ripoff of 'select_parent()'
2170 * search the list of submounts for a given mountpoint, and move any
2171 * shrinkable submounts to the 'graveyard' list.
2173 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2175 struct mount
*this_parent
= parent
;
2176 struct list_head
*next
;
2180 next
= this_parent
->mnt_mounts
.next
;
2182 while (next
!= &this_parent
->mnt_mounts
) {
2183 struct list_head
*tmp
= next
;
2184 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2187 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2190 * Descend a level if the d_mounts list is non-empty.
2192 if (!list_empty(&mnt
->mnt_mounts
)) {
2197 if (!propagate_mount_busy(mnt
, 1)) {
2198 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2203 * All done at this level ... ascend and resume the search
2205 if (this_parent
!= parent
) {
2206 next
= this_parent
->mnt_child
.next
;
2207 this_parent
= this_parent
->mnt_parent
;
2214 * process a list of expirable mountpoints with the intent of discarding any
2215 * submounts of a specific parent mountpoint
2217 * mount_lock must be held for write
2219 static void shrink_submounts(struct mount
*mnt
)
2221 LIST_HEAD(graveyard
);
2224 /* extract submounts of 'mountpoint' from the expiration list */
2225 while (select_submounts(mnt
, &graveyard
)) {
2226 while (!list_empty(&graveyard
)) {
2227 m
= list_first_entry(&graveyard
, struct mount
,
2229 touch_mnt_namespace(m
->mnt_ns
);
2236 * Some copy_from_user() implementations do not return the exact number of
2237 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2238 * Note that this function differs from copy_from_user() in that it will oops
2239 * on bad values of `to', rather than returning a short copy.
2241 static long exact_copy_from_user(void *to
, const void __user
* from
,
2245 const char __user
*f
= from
;
2248 if (!access_ok(VERIFY_READ
, from
, n
))
2252 if (__get_user(c
, f
)) {
2263 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2273 if (!(page
= __get_free_page(GFP_KERNEL
)))
2276 /* We only care that *some* data at the address the user
2277 * gave us is valid. Just in case, we'll zero
2278 * the remainder of the page.
2280 /* copy_from_user cannot cross TASK_SIZE ! */
2281 size
= TASK_SIZE
- (unsigned long)data
;
2282 if (size
> PAGE_SIZE
)
2285 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2291 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2296 int copy_mount_string(const void __user
*data
, char **where
)
2305 tmp
= strndup_user(data
, PAGE_SIZE
);
2307 return PTR_ERR(tmp
);
2314 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2315 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2317 * data is a (void *) that can point to any structure up to
2318 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2319 * information (or be NULL).
2321 * Pre-0.97 versions of mount() didn't have a flags word.
2322 * When the flags word was introduced its top half was required
2323 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2324 * Therefore, if this magic number is present, it carries no information
2325 * and must be discarded.
2327 long do_mount(const char *dev_name
, const char *dir_name
,
2328 const char *type_page
, unsigned long flags
, void *data_page
)
2335 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2336 flags
&= ~MS_MGC_MSK
;
2338 /* Basic sanity checks */
2340 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2344 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2346 /* ... and get the mountpoint */
2347 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2351 retval
= security_sb_mount(dev_name
, &path
,
2352 type_page
, flags
, data_page
);
2353 if (!retval
&& !may_mount())
2358 /* Default to relatime unless overriden */
2359 if (!(flags
& MS_NOATIME
))
2360 mnt_flags
|= MNT_RELATIME
;
2362 /* Separate the per-mountpoint flags */
2363 if (flags
& MS_NOSUID
)
2364 mnt_flags
|= MNT_NOSUID
;
2365 if (flags
& MS_NODEV
)
2366 mnt_flags
|= MNT_NODEV
;
2367 if (flags
& MS_NOEXEC
)
2368 mnt_flags
|= MNT_NOEXEC
;
2369 if (flags
& MS_NOATIME
)
2370 mnt_flags
|= MNT_NOATIME
;
2371 if (flags
& MS_NODIRATIME
)
2372 mnt_flags
|= MNT_NODIRATIME
;
2373 if (flags
& MS_STRICTATIME
)
2374 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2375 if (flags
& MS_RDONLY
)
2376 mnt_flags
|= MNT_READONLY
;
2378 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2379 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2382 if (flags
& MS_REMOUNT
)
2383 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2385 else if (flags
& MS_BIND
)
2386 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2387 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2388 retval
= do_change_type(&path
, flags
);
2389 else if (flags
& MS_MOVE
)
2390 retval
= do_move_mount(&path
, dev_name
);
2392 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2393 dev_name
, data_page
);
2399 static void free_mnt_ns(struct mnt_namespace
*ns
)
2401 proc_free_inum(ns
->proc_inum
);
2402 put_user_ns(ns
->user_ns
);
2407 * Assign a sequence number so we can detect when we attempt to bind
2408 * mount a reference to an older mount namespace into the current
2409 * mount namespace, preventing reference counting loops. A 64bit
2410 * number incrementing at 10Ghz will take 12,427 years to wrap which
2411 * is effectively never, so we can ignore the possibility.
2413 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2415 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2417 struct mnt_namespace
*new_ns
;
2420 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2422 return ERR_PTR(-ENOMEM
);
2423 ret
= proc_alloc_inum(&new_ns
->proc_inum
);
2426 return ERR_PTR(ret
);
2428 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2429 atomic_set(&new_ns
->count
, 1);
2430 new_ns
->root
= NULL
;
2431 INIT_LIST_HEAD(&new_ns
->list
);
2432 init_waitqueue_head(&new_ns
->poll
);
2434 new_ns
->user_ns
= get_user_ns(user_ns
);
2438 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2439 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2441 struct mnt_namespace
*new_ns
;
2442 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2443 struct mount
*p
, *q
;
2450 if (likely(!(flags
& CLONE_NEWNS
))) {
2457 new_ns
= alloc_mnt_ns(user_ns
);
2462 /* First pass: copy the tree topology */
2463 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2464 if (user_ns
!= ns
->user_ns
)
2465 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2466 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2469 free_mnt_ns(new_ns
);
2470 return ERR_CAST(new);
2473 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2476 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2477 * as belonging to new namespace. We have already acquired a private
2478 * fs_struct, so tsk->fs->lock is not needed.
2485 if (&p
->mnt
== new_fs
->root
.mnt
) {
2486 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2489 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2490 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2494 p
= next_mnt(p
, old
);
2495 q
= next_mnt(q
, new);
2498 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2499 p
= next_mnt(p
, old
);
2512 * create_mnt_ns - creates a private namespace and adds a root filesystem
2513 * @mnt: pointer to the new root filesystem mountpoint
2515 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2517 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2518 if (!IS_ERR(new_ns
)) {
2519 struct mount
*mnt
= real_mount(m
);
2520 mnt
->mnt_ns
= new_ns
;
2522 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2529 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2531 struct mnt_namespace
*ns
;
2532 struct super_block
*s
;
2536 ns
= create_mnt_ns(mnt
);
2538 return ERR_CAST(ns
);
2540 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2541 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2546 return ERR_PTR(err
);
2548 /* trade a vfsmount reference for active sb one */
2549 s
= path
.mnt
->mnt_sb
;
2550 atomic_inc(&s
->s_active
);
2552 /* lock the sucker */
2553 down_write(&s
->s_umount
);
2554 /* ... and return the root of (sub)tree on it */
2557 EXPORT_SYMBOL(mount_subtree
);
2559 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2560 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2564 struct filename
*kernel_dir
;
2566 unsigned long data_page
;
2568 ret
= copy_mount_string(type
, &kernel_type
);
2572 kernel_dir
= getname(dir_name
);
2573 if (IS_ERR(kernel_dir
)) {
2574 ret
= PTR_ERR(kernel_dir
);
2578 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2582 ret
= copy_mount_options(data
, &data_page
);
2586 ret
= do_mount(kernel_dev
, kernel_dir
->name
, kernel_type
, flags
,
2587 (void *) data_page
);
2589 free_page(data_page
);
2593 putname(kernel_dir
);
2601 * Return true if path is reachable from root
2603 * namespace_sem or mount_lock is held
2605 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2606 const struct path
*root
)
2608 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2609 dentry
= mnt
->mnt_mountpoint
;
2610 mnt
= mnt
->mnt_parent
;
2612 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2615 int path_is_under(struct path
*path1
, struct path
*path2
)
2618 read_seqlock_excl(&mount_lock
);
2619 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2620 read_sequnlock_excl(&mount_lock
);
2623 EXPORT_SYMBOL(path_is_under
);
2626 * pivot_root Semantics:
2627 * Moves the root file system of the current process to the directory put_old,
2628 * makes new_root as the new root file system of the current process, and sets
2629 * root/cwd of all processes which had them on the current root to new_root.
2632 * The new_root and put_old must be directories, and must not be on the
2633 * same file system as the current process root. The put_old must be
2634 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2635 * pointed to by put_old must yield the same directory as new_root. No other
2636 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2638 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2639 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2640 * in this situation.
2643 * - we don't move root/cwd if they are not at the root (reason: if something
2644 * cared enough to change them, it's probably wrong to force them elsewhere)
2645 * - it's okay to pick a root that isn't the root of a file system, e.g.
2646 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2647 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2650 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2651 const char __user
*, put_old
)
2653 struct path
new, old
, parent_path
, root_parent
, root
;
2654 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
2655 struct mountpoint
*old_mp
, *root_mp
;
2661 error
= user_path_dir(new_root
, &new);
2665 error
= user_path_dir(put_old
, &old
);
2669 error
= security_sb_pivotroot(&old
, &new);
2673 get_fs_root(current
->fs
, &root
);
2674 old_mp
= lock_mount(&old
);
2675 error
= PTR_ERR(old_mp
);
2680 new_mnt
= real_mount(new.mnt
);
2681 root_mnt
= real_mount(root
.mnt
);
2682 old_mnt
= real_mount(old
.mnt
);
2683 if (IS_MNT_SHARED(old_mnt
) ||
2684 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
2685 IS_MNT_SHARED(root_mnt
->mnt_parent
))
2687 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
2689 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
2692 if (d_unlinked(new.dentry
))
2695 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
2696 goto out4
; /* loop, on the same file system */
2698 if (root
.mnt
->mnt_root
!= root
.dentry
)
2699 goto out4
; /* not a mountpoint */
2700 if (!mnt_has_parent(root_mnt
))
2701 goto out4
; /* not attached */
2702 root_mp
= root_mnt
->mnt_mp
;
2703 if (new.mnt
->mnt_root
!= new.dentry
)
2704 goto out4
; /* not a mountpoint */
2705 if (!mnt_has_parent(new_mnt
))
2706 goto out4
; /* not attached */
2707 /* make sure we can reach put_old from new_root */
2708 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
2710 root_mp
->m_count
++; /* pin it so it won't go away */
2712 detach_mnt(new_mnt
, &parent_path
);
2713 detach_mnt(root_mnt
, &root_parent
);
2714 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
2715 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
2716 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2718 /* mount old root on put_old */
2719 attach_mnt(root_mnt
, old_mnt
, old_mp
);
2720 /* mount new_root on / */
2721 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
2722 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2723 unlock_mount_hash();
2724 chroot_fs_refs(&root
, &new);
2725 put_mountpoint(root_mp
);
2728 unlock_mount(old_mp
);
2730 path_put(&root_parent
);
2731 path_put(&parent_path
);
2743 static void __init
init_mount_tree(void)
2745 struct vfsmount
*mnt
;
2746 struct mnt_namespace
*ns
;
2748 struct file_system_type
*type
;
2750 type
= get_fs_type("rootfs");
2752 panic("Can't find rootfs type");
2753 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
2754 put_filesystem(type
);
2756 panic("Can't create rootfs");
2758 ns
= create_mnt_ns(mnt
);
2760 panic("Can't allocate initial namespace");
2762 init_task
.nsproxy
->mnt_ns
= ns
;
2766 root
.dentry
= mnt
->mnt_root
;
2768 set_fs_pwd(current
->fs
, &root
);
2769 set_fs_root(current
->fs
, &root
);
2772 void __init
mnt_init(void)
2777 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
2778 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2780 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2781 mountpoint_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2783 if (!mount_hashtable
|| !mountpoint_hashtable
)
2784 panic("Failed to allocate mount hash table\n");
2786 printk(KERN_INFO
"Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2788 for (u
= 0; u
< HASH_SIZE
; u
++)
2789 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2790 for (u
= 0; u
< HASH_SIZE
; u
++)
2791 INIT_LIST_HEAD(&mountpoint_hashtable
[u
]);
2797 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2799 fs_kobj
= kobject_create_and_add("fs", NULL
);
2801 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2806 void put_mnt_ns(struct mnt_namespace
*ns
)
2808 if (!atomic_dec_and_test(&ns
->count
))
2810 drop_collected_mounts(&ns
->root
->mnt
);
2814 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
2816 struct vfsmount
*mnt
;
2817 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
2820 * it is a longterm mount, don't release mnt until
2821 * we unmount before file sys is unregistered
2823 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
2827 EXPORT_SYMBOL_GPL(kern_mount_data
);
2829 void kern_unmount(struct vfsmount
*mnt
)
2831 /* release long term mount so mount point can be released */
2832 if (!IS_ERR_OR_NULL(mnt
)) {
2833 real_mount(mnt
)->mnt_ns
= NULL
;
2834 synchronize_rcu(); /* yecchhh... */
2838 EXPORT_SYMBOL(kern_unmount
);
2840 bool our_mnt(struct vfsmount
*mnt
)
2842 return check_mnt(real_mount(mnt
));
2845 bool current_chrooted(void)
2847 /* Does the current process have a non-standard root */
2848 struct path ns_root
;
2849 struct path fs_root
;
2852 /* Find the namespace root */
2853 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
2854 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
2856 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
2859 get_fs_root(current
->fs
, &fs_root
);
2861 chrooted
= !path_equal(&fs_root
, &ns_root
);
2869 bool fs_fully_visible(struct file_system_type
*type
)
2871 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
2873 bool visible
= false;
2878 down_read(&namespace_sem
);
2879 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
2880 struct mount
*child
;
2881 if (mnt
->mnt
.mnt_sb
->s_type
!= type
)
2884 /* This mount is not fully visible if there are any child mounts
2885 * that cover anything except for empty directories.
2887 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2888 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
2889 if (!S_ISDIR(inode
->i_mode
))
2891 if (inode
->i_nlink
> 2)
2899 up_read(&namespace_sem
);
2903 static void *mntns_get(struct task_struct
*task
)
2905 struct mnt_namespace
*ns
= NULL
;
2906 struct nsproxy
*nsproxy
;
2909 nsproxy
= task_nsproxy(task
);
2911 ns
= nsproxy
->mnt_ns
;
2919 static void mntns_put(void *ns
)
2924 static int mntns_install(struct nsproxy
*nsproxy
, void *ns
)
2926 struct fs_struct
*fs
= current
->fs
;
2927 struct mnt_namespace
*mnt_ns
= ns
;
2930 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
2931 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
2932 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
2939 put_mnt_ns(nsproxy
->mnt_ns
);
2940 nsproxy
->mnt_ns
= mnt_ns
;
2943 root
.mnt
= &mnt_ns
->root
->mnt
;
2944 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
2946 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
2949 /* Update the pwd and root */
2950 set_fs_pwd(fs
, &root
);
2951 set_fs_root(fs
, &root
);
2957 static unsigned int mntns_inum(void *ns
)
2959 struct mnt_namespace
*mnt_ns
= ns
;
2960 return mnt_ns
->proc_inum
;
2963 const struct proc_ns_operations mntns_operations
= {
2965 .type
= CLONE_NEWNS
,
2968 .install
= mntns_install
,