sh_eth: ensure pm_runtime cannot suspend the device during init
[linux/fpc-iii.git] / fs / namespace.c
blob22e536705c45d128ab8651759cea74d83f481ab1
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static DECLARE_RWSEM(namespace_sem);
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
56 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
70 static int mnt_alloc_id(struct mount *mnt)
72 int res;
74 retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 if (!res)
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
81 if (res == -EAGAIN)
82 goto retry;
84 return res;
87 static void mnt_free_id(struct mount *mnt)
89 int id = mnt->mnt_id;
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
94 spin_unlock(&mnt_id_lock);
98 * Allocate a new peer group ID
100 * mnt_group_ida is protected by namespace_sem
102 static int mnt_alloc_group_id(struct mount *mnt)
104 int res;
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
111 &mnt->mnt_group_id);
112 if (!res)
113 mnt_group_start = mnt->mnt_group_id + 1;
115 return res;
119 * Release a peer group ID
121 void mnt_release_group_id(struct mount *mnt)
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
131 * vfsmount lock must be held for read
133 static inline void mnt_add_count(struct mount *mnt, int n)
135 #ifdef CONFIG_SMP
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 preempt_disable();
139 mnt->mnt_count += n;
140 preempt_enable();
141 #endif
145 * vfsmount lock must be held for write
147 unsigned int mnt_get_count(struct mount *mnt)
149 #ifdef CONFIG_SMP
150 unsigned int count = 0;
151 int cpu;
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 return count;
158 #else
159 return mnt->mnt_count;
160 #endif
163 static struct mount *alloc_vfsmnt(const char *name)
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
167 int err;
169 err = mnt_alloc_id(mnt);
170 if (err)
171 goto out_free_cache;
173 if (name) {
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
176 goto out_free_id;
179 #ifdef CONFIG_SMP
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
182 goto out_free_devname;
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
188 #endif
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
202 return mnt;
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 mnt_free_id(mnt);
210 out_free_cache:
211 kmem_cache_free(mnt_cache, mnt);
212 return NULL;
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
234 int __mnt_is_readonly(struct vfsmount *mnt)
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244 static inline void mnt_inc_writers(struct mount *mnt)
246 #ifdef CONFIG_SMP
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 mnt->mnt_writers++;
250 #endif
253 static inline void mnt_dec_writers(struct mount *mnt)
255 #ifdef CONFIG_SMP
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 mnt->mnt_writers--;
259 #endif
262 static unsigned int mnt_get_writers(struct mount *mnt)
264 #ifdef CONFIG_SMP
265 unsigned int count = 0;
266 int cpu;
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
272 return count;
273 #else
274 return mnt->mnt_writers;
275 #endif
278 static int mnt_is_readonly(struct vfsmount *mnt)
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
303 int __mnt_want_write(struct vfsmount *m)
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
308 preempt_disable();
309 mnt_inc_writers(mnt);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
315 smp_mb();
316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 cpu_relax();
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
328 preempt_enable();
330 return ret;
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 int mnt_want_write(struct vfsmount *m)
344 int ret;
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
350 return ret;
352 EXPORT_SYMBOL_GPL(mnt_want_write);
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
366 int mnt_clone_write(struct vfsmount *mnt)
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
372 mnt_inc_writers(real_mount(mnt));
373 preempt_enable();
374 return 0;
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
385 int __mnt_want_write_file(struct file *file)
387 struct inode *inode = file_inode(file);
389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 return __mnt_want_write(file->f_path.mnt);
391 else
392 return mnt_clone_write(file->f_path.mnt);
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
402 int mnt_want_write_file(struct file *file)
404 int ret;
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
422 void __mnt_drop_write(struct vfsmount *mnt)
424 preempt_disable();
425 mnt_dec_writers(real_mount(mnt));
426 preempt_enable();
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
437 void mnt_drop_write(struct vfsmount *mnt)
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
444 void __mnt_drop_write_file(struct file *file)
446 __mnt_drop_write(file->f_path.mnt);
449 void mnt_drop_write_file(struct file *file)
451 mnt_drop_write(file->f_path.mnt);
453 EXPORT_SYMBOL(mnt_drop_write_file);
455 static int mnt_make_readonly(struct mount *mnt)
457 int ret = 0;
459 lock_mount_hash();
460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
465 smp_mb();
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
483 if (mnt_get_writers(mnt) > 0)
484 ret = -EBUSY;
485 else
486 mnt->mnt.mnt_flags |= MNT_READONLY;
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
491 smp_wmb();
492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 unlock_mount_hash();
494 return ret;
497 static void __mnt_unmake_readonly(struct mount *mnt)
499 lock_mount_hash();
500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 unlock_mount_hash();
504 int sb_prepare_remount_readonly(struct super_block *sb)
506 struct mount *mnt;
507 int err = 0;
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
513 lock_mount_hash();
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 unlock_mount_hash();
537 return err;
540 static void free_vfsmnt(struct mount *mnt)
542 kfree(mnt->mnt_devname);
543 mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 free_percpu(mnt->mnt_pcp);
546 #endif
547 kmem_cache_free(mnt_cache, mnt);
550 /* call under rcu_read_lock */
551 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
553 struct mount *mnt;
554 if (read_seqretry(&mount_lock, seq))
555 return false;
556 if (bastard == NULL)
557 return true;
558 mnt = real_mount(bastard);
559 mnt_add_count(mnt, 1);
560 if (likely(!read_seqretry(&mount_lock, seq)))
561 return true;
562 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
563 mnt_add_count(mnt, -1);
564 return false;
566 rcu_read_unlock();
567 mntput(bastard);
568 rcu_read_lock();
569 return false;
573 * find the first mount at @dentry on vfsmount @mnt.
574 * call under rcu_read_lock()
576 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
578 struct list_head *head = mount_hashtable + hash(mnt, dentry);
579 struct mount *p;
581 list_for_each_entry_rcu(p, head, mnt_hash)
582 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
583 return p;
584 return NULL;
588 * find the last mount at @dentry on vfsmount @mnt.
589 * mount_lock must be held.
591 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
593 struct list_head *head = mount_hashtable + hash(mnt, dentry);
594 struct mount *p;
596 list_for_each_entry_reverse(p, head, mnt_hash)
597 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
598 return p;
599 return NULL;
603 * lookup_mnt - Return the first child mount mounted at path
605 * "First" means first mounted chronologically. If you create the
606 * following mounts:
608 * mount /dev/sda1 /mnt
609 * mount /dev/sda2 /mnt
610 * mount /dev/sda3 /mnt
612 * Then lookup_mnt() on the base /mnt dentry in the root mount will
613 * return successively the root dentry and vfsmount of /dev/sda1, then
614 * /dev/sda2, then /dev/sda3, then NULL.
616 * lookup_mnt takes a reference to the found vfsmount.
618 struct vfsmount *lookup_mnt(struct path *path)
620 struct mount *child_mnt;
621 struct vfsmount *m;
622 unsigned seq;
624 rcu_read_lock();
625 do {
626 seq = read_seqbegin(&mount_lock);
627 child_mnt = __lookup_mnt(path->mnt, path->dentry);
628 m = child_mnt ? &child_mnt->mnt : NULL;
629 } while (!legitimize_mnt(m, seq));
630 rcu_read_unlock();
631 return m;
634 static struct mountpoint *new_mountpoint(struct dentry *dentry)
636 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
637 struct mountpoint *mp;
638 int ret;
640 list_for_each_entry(mp, chain, m_hash) {
641 if (mp->m_dentry == dentry) {
642 /* might be worth a WARN_ON() */
643 if (d_unlinked(dentry))
644 return ERR_PTR(-ENOENT);
645 mp->m_count++;
646 return mp;
650 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
651 if (!mp)
652 return ERR_PTR(-ENOMEM);
654 ret = d_set_mounted(dentry);
655 if (ret) {
656 kfree(mp);
657 return ERR_PTR(ret);
660 mp->m_dentry = dentry;
661 mp->m_count = 1;
662 list_add(&mp->m_hash, chain);
663 return mp;
666 static void put_mountpoint(struct mountpoint *mp)
668 if (!--mp->m_count) {
669 struct dentry *dentry = mp->m_dentry;
670 spin_lock(&dentry->d_lock);
671 dentry->d_flags &= ~DCACHE_MOUNTED;
672 spin_unlock(&dentry->d_lock);
673 list_del(&mp->m_hash);
674 kfree(mp);
678 static inline int check_mnt(struct mount *mnt)
680 return mnt->mnt_ns == current->nsproxy->mnt_ns;
684 * vfsmount lock must be held for write
686 static void touch_mnt_namespace(struct mnt_namespace *ns)
688 if (ns) {
689 ns->event = ++event;
690 wake_up_interruptible(&ns->poll);
695 * vfsmount lock must be held for write
697 static void __touch_mnt_namespace(struct mnt_namespace *ns)
699 if (ns && ns->event != event) {
700 ns->event = event;
701 wake_up_interruptible(&ns->poll);
706 * vfsmount lock must be held for write
708 static void detach_mnt(struct mount *mnt, struct path *old_path)
710 old_path->dentry = mnt->mnt_mountpoint;
711 old_path->mnt = &mnt->mnt_parent->mnt;
712 mnt->mnt_parent = mnt;
713 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
714 list_del_init(&mnt->mnt_child);
715 list_del_init(&mnt->mnt_hash);
716 put_mountpoint(mnt->mnt_mp);
717 mnt->mnt_mp = NULL;
721 * vfsmount lock must be held for write
723 void mnt_set_mountpoint(struct mount *mnt,
724 struct mountpoint *mp,
725 struct mount *child_mnt)
727 mp->m_count++;
728 mnt_add_count(mnt, 1); /* essentially, that's mntget */
729 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
730 child_mnt->mnt_parent = mnt;
731 child_mnt->mnt_mp = mp;
735 * vfsmount lock must be held for write
737 static void attach_mnt(struct mount *mnt,
738 struct mount *parent,
739 struct mountpoint *mp)
741 mnt_set_mountpoint(parent, mp, mnt);
742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
743 hash(&parent->mnt, mp->m_dentry));
744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
748 * vfsmount lock must be held for write
750 static void commit_tree(struct mount *mnt)
752 struct mount *parent = mnt->mnt_parent;
753 struct mount *m;
754 LIST_HEAD(head);
755 struct mnt_namespace *n = parent->mnt_ns;
757 BUG_ON(parent == mnt);
759 list_add_tail(&head, &mnt->mnt_list);
760 list_for_each_entry(m, &head, mnt_list)
761 m->mnt_ns = n;
763 list_splice(&head, n->list.prev);
765 list_add_tail(&mnt->mnt_hash, mount_hashtable +
766 hash(&parent->mnt, mnt->mnt_mountpoint));
767 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
768 touch_mnt_namespace(n);
771 static struct mount *next_mnt(struct mount *p, struct mount *root)
773 struct list_head *next = p->mnt_mounts.next;
774 if (next == &p->mnt_mounts) {
775 while (1) {
776 if (p == root)
777 return NULL;
778 next = p->mnt_child.next;
779 if (next != &p->mnt_parent->mnt_mounts)
780 break;
781 p = p->mnt_parent;
784 return list_entry(next, struct mount, mnt_child);
787 static struct mount *skip_mnt_tree(struct mount *p)
789 struct list_head *prev = p->mnt_mounts.prev;
790 while (prev != &p->mnt_mounts) {
791 p = list_entry(prev, struct mount, mnt_child);
792 prev = p->mnt_mounts.prev;
794 return p;
797 struct vfsmount *
798 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
800 struct mount *mnt;
801 struct dentry *root;
803 if (!type)
804 return ERR_PTR(-ENODEV);
806 mnt = alloc_vfsmnt(name);
807 if (!mnt)
808 return ERR_PTR(-ENOMEM);
810 if (flags & MS_KERNMOUNT)
811 mnt->mnt.mnt_flags = MNT_INTERNAL;
813 root = mount_fs(type, flags, name, data);
814 if (IS_ERR(root)) {
815 free_vfsmnt(mnt);
816 return ERR_CAST(root);
819 mnt->mnt.mnt_root = root;
820 mnt->mnt.mnt_sb = root->d_sb;
821 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
822 mnt->mnt_parent = mnt;
823 lock_mount_hash();
824 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
825 unlock_mount_hash();
826 return &mnt->mnt;
828 EXPORT_SYMBOL_GPL(vfs_kern_mount);
830 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
831 int flag)
833 struct super_block *sb = old->mnt.mnt_sb;
834 struct mount *mnt;
835 int err;
837 mnt = alloc_vfsmnt(old->mnt_devname);
838 if (!mnt)
839 return ERR_PTR(-ENOMEM);
841 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
842 mnt->mnt_group_id = 0; /* not a peer of original */
843 else
844 mnt->mnt_group_id = old->mnt_group_id;
846 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
847 err = mnt_alloc_group_id(mnt);
848 if (err)
849 goto out_free;
852 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
853 /* Don't allow unprivileged users to change mount flags */
854 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
855 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
857 /* Don't allow unprivileged users to reveal what is under a mount */
858 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
859 mnt->mnt.mnt_flags |= MNT_LOCKED;
861 atomic_inc(&sb->s_active);
862 mnt->mnt.mnt_sb = sb;
863 mnt->mnt.mnt_root = dget(root);
864 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
865 mnt->mnt_parent = mnt;
866 lock_mount_hash();
867 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
868 unlock_mount_hash();
870 if ((flag & CL_SLAVE) ||
871 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
872 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
873 mnt->mnt_master = old;
874 CLEAR_MNT_SHARED(mnt);
875 } else if (!(flag & CL_PRIVATE)) {
876 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
877 list_add(&mnt->mnt_share, &old->mnt_share);
878 if (IS_MNT_SLAVE(old))
879 list_add(&mnt->mnt_slave, &old->mnt_slave);
880 mnt->mnt_master = old->mnt_master;
882 if (flag & CL_MAKE_SHARED)
883 set_mnt_shared(mnt);
885 /* stick the duplicate mount on the same expiry list
886 * as the original if that was on one */
887 if (flag & CL_EXPIRE) {
888 if (!list_empty(&old->mnt_expire))
889 list_add(&mnt->mnt_expire, &old->mnt_expire);
892 return mnt;
894 out_free:
895 free_vfsmnt(mnt);
896 return ERR_PTR(err);
899 static void delayed_free(struct rcu_head *head)
901 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
902 kfree(mnt->mnt_devname);
903 #ifdef CONFIG_SMP
904 free_percpu(mnt->mnt_pcp);
905 #endif
906 kmem_cache_free(mnt_cache, mnt);
909 static void mntput_no_expire(struct mount *mnt)
911 put_again:
912 rcu_read_lock();
913 mnt_add_count(mnt, -1);
914 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
915 rcu_read_unlock();
916 return;
918 lock_mount_hash();
919 if (mnt_get_count(mnt)) {
920 rcu_read_unlock();
921 unlock_mount_hash();
922 return;
924 if (unlikely(mnt->mnt_pinned)) {
925 mnt_add_count(mnt, mnt->mnt_pinned + 1);
926 mnt->mnt_pinned = 0;
927 rcu_read_unlock();
928 unlock_mount_hash();
929 acct_auto_close_mnt(&mnt->mnt);
930 goto put_again;
932 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
933 rcu_read_unlock();
934 unlock_mount_hash();
935 return;
937 mnt->mnt.mnt_flags |= MNT_DOOMED;
938 rcu_read_unlock();
940 list_del(&mnt->mnt_instance);
941 unlock_mount_hash();
944 * This probably indicates that somebody messed
945 * up a mnt_want/drop_write() pair. If this
946 * happens, the filesystem was probably unable
947 * to make r/w->r/o transitions.
950 * The locking used to deal with mnt_count decrement provides barriers,
951 * so mnt_get_writers() below is safe.
953 WARN_ON(mnt_get_writers(mnt));
954 fsnotify_vfsmount_delete(&mnt->mnt);
955 dput(mnt->mnt.mnt_root);
956 deactivate_super(mnt->mnt.mnt_sb);
957 mnt_free_id(mnt);
958 call_rcu(&mnt->mnt_rcu, delayed_free);
961 void mntput(struct vfsmount *mnt)
963 if (mnt) {
964 struct mount *m = real_mount(mnt);
965 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
966 if (unlikely(m->mnt_expiry_mark))
967 m->mnt_expiry_mark = 0;
968 mntput_no_expire(m);
971 EXPORT_SYMBOL(mntput);
973 struct vfsmount *mntget(struct vfsmount *mnt)
975 if (mnt)
976 mnt_add_count(real_mount(mnt), 1);
977 return mnt;
979 EXPORT_SYMBOL(mntget);
981 void mnt_pin(struct vfsmount *mnt)
983 lock_mount_hash();
984 real_mount(mnt)->mnt_pinned++;
985 unlock_mount_hash();
987 EXPORT_SYMBOL(mnt_pin);
989 void mnt_unpin(struct vfsmount *m)
991 struct mount *mnt = real_mount(m);
992 lock_mount_hash();
993 if (mnt->mnt_pinned) {
994 mnt_add_count(mnt, 1);
995 mnt->mnt_pinned--;
997 unlock_mount_hash();
999 EXPORT_SYMBOL(mnt_unpin);
1001 static inline void mangle(struct seq_file *m, const char *s)
1003 seq_escape(m, s, " \t\n\\");
1007 * Simple .show_options callback for filesystems which don't want to
1008 * implement more complex mount option showing.
1010 * See also save_mount_options().
1012 int generic_show_options(struct seq_file *m, struct dentry *root)
1014 const char *options;
1016 rcu_read_lock();
1017 options = rcu_dereference(root->d_sb->s_options);
1019 if (options != NULL && options[0]) {
1020 seq_putc(m, ',');
1021 mangle(m, options);
1023 rcu_read_unlock();
1025 return 0;
1027 EXPORT_SYMBOL(generic_show_options);
1030 * If filesystem uses generic_show_options(), this function should be
1031 * called from the fill_super() callback.
1033 * The .remount_fs callback usually needs to be handled in a special
1034 * way, to make sure, that previous options are not overwritten if the
1035 * remount fails.
1037 * Also note, that if the filesystem's .remount_fs function doesn't
1038 * reset all options to their default value, but changes only newly
1039 * given options, then the displayed options will not reflect reality
1040 * any more.
1042 void save_mount_options(struct super_block *sb, char *options)
1044 BUG_ON(sb->s_options);
1045 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1047 EXPORT_SYMBOL(save_mount_options);
1049 void replace_mount_options(struct super_block *sb, char *options)
1051 char *old = sb->s_options;
1052 rcu_assign_pointer(sb->s_options, options);
1053 if (old) {
1054 synchronize_rcu();
1055 kfree(old);
1058 EXPORT_SYMBOL(replace_mount_options);
1060 #ifdef CONFIG_PROC_FS
1061 /* iterator; we want it to have access to namespace_sem, thus here... */
1062 static void *m_start(struct seq_file *m, loff_t *pos)
1064 struct proc_mounts *p = proc_mounts(m);
1066 down_read(&namespace_sem);
1067 return seq_list_start(&p->ns->list, *pos);
1070 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1072 struct proc_mounts *p = proc_mounts(m);
1074 return seq_list_next(v, &p->ns->list, pos);
1077 static void m_stop(struct seq_file *m, void *v)
1079 up_read(&namespace_sem);
1082 static int m_show(struct seq_file *m, void *v)
1084 struct proc_mounts *p = proc_mounts(m);
1085 struct mount *r = list_entry(v, struct mount, mnt_list);
1086 return p->show(m, &r->mnt);
1089 const struct seq_operations mounts_op = {
1090 .start = m_start,
1091 .next = m_next,
1092 .stop = m_stop,
1093 .show = m_show,
1095 #endif /* CONFIG_PROC_FS */
1098 * may_umount_tree - check if a mount tree is busy
1099 * @mnt: root of mount tree
1101 * This is called to check if a tree of mounts has any
1102 * open files, pwds, chroots or sub mounts that are
1103 * busy.
1105 int may_umount_tree(struct vfsmount *m)
1107 struct mount *mnt = real_mount(m);
1108 int actual_refs = 0;
1109 int minimum_refs = 0;
1110 struct mount *p;
1111 BUG_ON(!m);
1113 /* write lock needed for mnt_get_count */
1114 lock_mount_hash();
1115 for (p = mnt; p; p = next_mnt(p, mnt)) {
1116 actual_refs += mnt_get_count(p);
1117 minimum_refs += 2;
1119 unlock_mount_hash();
1121 if (actual_refs > minimum_refs)
1122 return 0;
1124 return 1;
1127 EXPORT_SYMBOL(may_umount_tree);
1130 * may_umount - check if a mount point is busy
1131 * @mnt: root of mount
1133 * This is called to check if a mount point has any
1134 * open files, pwds, chroots or sub mounts. If the
1135 * mount has sub mounts this will return busy
1136 * regardless of whether the sub mounts are busy.
1138 * Doesn't take quota and stuff into account. IOW, in some cases it will
1139 * give false negatives. The main reason why it's here is that we need
1140 * a non-destructive way to look for easily umountable filesystems.
1142 int may_umount(struct vfsmount *mnt)
1144 int ret = 1;
1145 down_read(&namespace_sem);
1146 lock_mount_hash();
1147 if (propagate_mount_busy(real_mount(mnt), 2))
1148 ret = 0;
1149 unlock_mount_hash();
1150 up_read(&namespace_sem);
1151 return ret;
1154 EXPORT_SYMBOL(may_umount);
1156 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1158 static void namespace_unlock(void)
1160 struct mount *mnt;
1161 LIST_HEAD(head);
1163 if (likely(list_empty(&unmounted))) {
1164 up_write(&namespace_sem);
1165 return;
1168 list_splice_init(&unmounted, &head);
1169 up_write(&namespace_sem);
1171 synchronize_rcu();
1173 while (!list_empty(&head)) {
1174 mnt = list_first_entry(&head, struct mount, mnt_hash);
1175 list_del_init(&mnt->mnt_hash);
1176 if (mnt->mnt_ex_mountpoint.mnt)
1177 path_put(&mnt->mnt_ex_mountpoint);
1178 mntput(&mnt->mnt);
1182 static inline void namespace_lock(void)
1184 down_write(&namespace_sem);
1188 * mount_lock must be held
1189 * namespace_sem must be held for write
1190 * how = 0 => just this tree, don't propagate
1191 * how = 1 => propagate; we know that nobody else has reference to any victims
1192 * how = 2 => lazy umount
1194 void umount_tree(struct mount *mnt, int how)
1196 LIST_HEAD(tmp_list);
1197 struct mount *p;
1199 for (p = mnt; p; p = next_mnt(p, mnt))
1200 list_move(&p->mnt_hash, &tmp_list);
1202 if (how)
1203 propagate_umount(&tmp_list);
1205 list_for_each_entry(p, &tmp_list, mnt_hash) {
1206 list_del_init(&p->mnt_expire);
1207 list_del_init(&p->mnt_list);
1208 __touch_mnt_namespace(p->mnt_ns);
1209 p->mnt_ns = NULL;
1210 if (how < 2)
1211 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1212 list_del_init(&p->mnt_child);
1213 if (mnt_has_parent(p)) {
1214 put_mountpoint(p->mnt_mp);
1215 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1216 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1217 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1218 p->mnt_mountpoint = p->mnt.mnt_root;
1219 p->mnt_parent = p;
1220 p->mnt_mp = NULL;
1222 change_mnt_propagation(p, MS_PRIVATE);
1224 list_splice(&tmp_list, &unmounted);
1227 static void shrink_submounts(struct mount *mnt);
1229 static int do_umount(struct mount *mnt, int flags)
1231 struct super_block *sb = mnt->mnt.mnt_sb;
1232 int retval;
1234 retval = security_sb_umount(&mnt->mnt, flags);
1235 if (retval)
1236 return retval;
1239 * Allow userspace to request a mountpoint be expired rather than
1240 * unmounting unconditionally. Unmount only happens if:
1241 * (1) the mark is already set (the mark is cleared by mntput())
1242 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1244 if (flags & MNT_EXPIRE) {
1245 if (&mnt->mnt == current->fs->root.mnt ||
1246 flags & (MNT_FORCE | MNT_DETACH))
1247 return -EINVAL;
1250 * probably don't strictly need the lock here if we examined
1251 * all race cases, but it's a slowpath.
1253 lock_mount_hash();
1254 if (mnt_get_count(mnt) != 2) {
1255 unlock_mount_hash();
1256 return -EBUSY;
1258 unlock_mount_hash();
1260 if (!xchg(&mnt->mnt_expiry_mark, 1))
1261 return -EAGAIN;
1265 * If we may have to abort operations to get out of this
1266 * mount, and they will themselves hold resources we must
1267 * allow the fs to do things. In the Unix tradition of
1268 * 'Gee thats tricky lets do it in userspace' the umount_begin
1269 * might fail to complete on the first run through as other tasks
1270 * must return, and the like. Thats for the mount program to worry
1271 * about for the moment.
1274 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1275 sb->s_op->umount_begin(sb);
1279 * No sense to grab the lock for this test, but test itself looks
1280 * somewhat bogus. Suggestions for better replacement?
1281 * Ho-hum... In principle, we might treat that as umount + switch
1282 * to rootfs. GC would eventually take care of the old vfsmount.
1283 * Actually it makes sense, especially if rootfs would contain a
1284 * /reboot - static binary that would close all descriptors and
1285 * call reboot(9). Then init(8) could umount root and exec /reboot.
1287 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1289 * Special case for "unmounting" root ...
1290 * we just try to remount it readonly.
1292 down_write(&sb->s_umount);
1293 if (!(sb->s_flags & MS_RDONLY))
1294 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1295 up_write(&sb->s_umount);
1296 return retval;
1299 namespace_lock();
1300 lock_mount_hash();
1301 event++;
1303 if (flags & MNT_DETACH) {
1304 if (!list_empty(&mnt->mnt_list))
1305 umount_tree(mnt, 2);
1306 retval = 0;
1307 } else {
1308 shrink_submounts(mnt);
1309 retval = -EBUSY;
1310 if (!propagate_mount_busy(mnt, 2)) {
1311 if (!list_empty(&mnt->mnt_list))
1312 umount_tree(mnt, 1);
1313 retval = 0;
1316 unlock_mount_hash();
1317 namespace_unlock();
1318 return retval;
1322 * Is the caller allowed to modify his namespace?
1324 static inline bool may_mount(void)
1326 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1330 * Now umount can handle mount points as well as block devices.
1331 * This is important for filesystems which use unnamed block devices.
1333 * We now support a flag for forced unmount like the other 'big iron'
1334 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1337 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1339 struct path path;
1340 struct mount *mnt;
1341 int retval;
1342 int lookup_flags = 0;
1344 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1345 return -EINVAL;
1347 if (!may_mount())
1348 return -EPERM;
1350 if (!(flags & UMOUNT_NOFOLLOW))
1351 lookup_flags |= LOOKUP_FOLLOW;
1353 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1354 if (retval)
1355 goto out;
1356 mnt = real_mount(path.mnt);
1357 retval = -EINVAL;
1358 if (path.dentry != path.mnt->mnt_root)
1359 goto dput_and_out;
1360 if (!check_mnt(mnt))
1361 goto dput_and_out;
1362 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1363 goto dput_and_out;
1365 retval = do_umount(mnt, flags);
1366 dput_and_out:
1367 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1368 dput(path.dentry);
1369 mntput_no_expire(mnt);
1370 out:
1371 return retval;
1374 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1377 * The 2.0 compatible umount. No flags.
1379 SYSCALL_DEFINE1(oldumount, char __user *, name)
1381 return sys_umount(name, 0);
1384 #endif
1386 static bool is_mnt_ns_file(struct dentry *dentry)
1388 /* Is this a proxy for a mount namespace? */
1389 struct inode *inode = dentry->d_inode;
1390 struct proc_ns *ei;
1392 if (!proc_ns_inode(inode))
1393 return false;
1395 ei = get_proc_ns(inode);
1396 if (ei->ns_ops != &mntns_operations)
1397 return false;
1399 return true;
1402 static bool mnt_ns_loop(struct dentry *dentry)
1404 /* Could bind mounting the mount namespace inode cause a
1405 * mount namespace loop?
1407 struct mnt_namespace *mnt_ns;
1408 if (!is_mnt_ns_file(dentry))
1409 return false;
1411 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1412 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1415 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1416 int flag)
1418 struct mount *res, *p, *q, *r, *parent;
1420 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1421 return ERR_PTR(-EINVAL);
1423 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1424 return ERR_PTR(-EINVAL);
1426 res = q = clone_mnt(mnt, dentry, flag);
1427 if (IS_ERR(q))
1428 return q;
1430 q->mnt.mnt_flags &= ~MNT_LOCKED;
1431 q->mnt_mountpoint = mnt->mnt_mountpoint;
1433 p = mnt;
1434 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1435 struct mount *s;
1436 if (!is_subdir(r->mnt_mountpoint, dentry))
1437 continue;
1439 for (s = r; s; s = next_mnt(s, r)) {
1440 if (!(flag & CL_COPY_UNBINDABLE) &&
1441 IS_MNT_UNBINDABLE(s)) {
1442 s = skip_mnt_tree(s);
1443 continue;
1445 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1446 is_mnt_ns_file(s->mnt.mnt_root)) {
1447 s = skip_mnt_tree(s);
1448 continue;
1450 while (p != s->mnt_parent) {
1451 p = p->mnt_parent;
1452 q = q->mnt_parent;
1454 p = s;
1455 parent = q;
1456 q = clone_mnt(p, p->mnt.mnt_root, flag);
1457 if (IS_ERR(q))
1458 goto out;
1459 lock_mount_hash();
1460 list_add_tail(&q->mnt_list, &res->mnt_list);
1461 attach_mnt(q, parent, p->mnt_mp);
1462 unlock_mount_hash();
1465 return res;
1466 out:
1467 if (res) {
1468 lock_mount_hash();
1469 umount_tree(res, 0);
1470 unlock_mount_hash();
1472 return q;
1475 /* Caller should check returned pointer for errors */
1477 struct vfsmount *collect_mounts(struct path *path)
1479 struct mount *tree;
1480 namespace_lock();
1481 tree = copy_tree(real_mount(path->mnt), path->dentry,
1482 CL_COPY_ALL | CL_PRIVATE);
1483 namespace_unlock();
1484 if (IS_ERR(tree))
1485 return ERR_CAST(tree);
1486 return &tree->mnt;
1489 void drop_collected_mounts(struct vfsmount *mnt)
1491 namespace_lock();
1492 lock_mount_hash();
1493 umount_tree(real_mount(mnt), 0);
1494 unlock_mount_hash();
1495 namespace_unlock();
1498 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1499 struct vfsmount *root)
1501 struct mount *mnt;
1502 int res = f(root, arg);
1503 if (res)
1504 return res;
1505 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1506 res = f(&mnt->mnt, arg);
1507 if (res)
1508 return res;
1510 return 0;
1513 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1515 struct mount *p;
1517 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1518 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1519 mnt_release_group_id(p);
1523 static int invent_group_ids(struct mount *mnt, bool recurse)
1525 struct mount *p;
1527 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1528 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1529 int err = mnt_alloc_group_id(p);
1530 if (err) {
1531 cleanup_group_ids(mnt, p);
1532 return err;
1537 return 0;
1541 * @source_mnt : mount tree to be attached
1542 * @nd : place the mount tree @source_mnt is attached
1543 * @parent_nd : if non-null, detach the source_mnt from its parent and
1544 * store the parent mount and mountpoint dentry.
1545 * (done when source_mnt is moved)
1547 * NOTE: in the table below explains the semantics when a source mount
1548 * of a given type is attached to a destination mount of a given type.
1549 * ---------------------------------------------------------------------------
1550 * | BIND MOUNT OPERATION |
1551 * |**************************************************************************
1552 * | source-->| shared | private | slave | unbindable |
1553 * | dest | | | | |
1554 * | | | | | | |
1555 * | v | | | | |
1556 * |**************************************************************************
1557 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1558 * | | | | | |
1559 * |non-shared| shared (+) | private | slave (*) | invalid |
1560 * ***************************************************************************
1561 * A bind operation clones the source mount and mounts the clone on the
1562 * destination mount.
1564 * (++) the cloned mount is propagated to all the mounts in the propagation
1565 * tree of the destination mount and the cloned mount is added to
1566 * the peer group of the source mount.
1567 * (+) the cloned mount is created under the destination mount and is marked
1568 * as shared. The cloned mount is added to the peer group of the source
1569 * mount.
1570 * (+++) the mount is propagated to all the mounts in the propagation tree
1571 * of the destination mount and the cloned mount is made slave
1572 * of the same master as that of the source mount. The cloned mount
1573 * is marked as 'shared and slave'.
1574 * (*) the cloned mount is made a slave of the same master as that of the
1575 * source mount.
1577 * ---------------------------------------------------------------------------
1578 * | MOVE MOUNT OPERATION |
1579 * |**************************************************************************
1580 * | source-->| shared | private | slave | unbindable |
1581 * | dest | | | | |
1582 * | | | | | | |
1583 * | v | | | | |
1584 * |**************************************************************************
1585 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1586 * | | | | | |
1587 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1588 * ***************************************************************************
1590 * (+) the mount is moved to the destination. And is then propagated to
1591 * all the mounts in the propagation tree of the destination mount.
1592 * (+*) the mount is moved to the destination.
1593 * (+++) the mount is moved to the destination and is then propagated to
1594 * all the mounts belonging to the destination mount's propagation tree.
1595 * the mount is marked as 'shared and slave'.
1596 * (*) the mount continues to be a slave at the new location.
1598 * if the source mount is a tree, the operations explained above is
1599 * applied to each mount in the tree.
1600 * Must be called without spinlocks held, since this function can sleep
1601 * in allocations.
1603 static int attach_recursive_mnt(struct mount *source_mnt,
1604 struct mount *dest_mnt,
1605 struct mountpoint *dest_mp,
1606 struct path *parent_path)
1608 LIST_HEAD(tree_list);
1609 struct mount *child, *p;
1610 int err;
1612 if (IS_MNT_SHARED(dest_mnt)) {
1613 err = invent_group_ids(source_mnt, true);
1614 if (err)
1615 goto out;
1617 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1618 if (err)
1619 goto out_cleanup_ids;
1621 lock_mount_hash();
1623 if (IS_MNT_SHARED(dest_mnt)) {
1624 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1625 set_mnt_shared(p);
1627 if (parent_path) {
1628 detach_mnt(source_mnt, parent_path);
1629 attach_mnt(source_mnt, dest_mnt, dest_mp);
1630 touch_mnt_namespace(source_mnt->mnt_ns);
1631 } else {
1632 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1633 commit_tree(source_mnt);
1636 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1637 list_del_init(&child->mnt_hash);
1638 commit_tree(child);
1640 unlock_mount_hash();
1642 return 0;
1644 out_cleanup_ids:
1645 if (IS_MNT_SHARED(dest_mnt))
1646 cleanup_group_ids(source_mnt, NULL);
1647 out:
1648 return err;
1651 static struct mountpoint *lock_mount(struct path *path)
1653 struct vfsmount *mnt;
1654 struct dentry *dentry = path->dentry;
1655 retry:
1656 mutex_lock(&dentry->d_inode->i_mutex);
1657 if (unlikely(cant_mount(dentry))) {
1658 mutex_unlock(&dentry->d_inode->i_mutex);
1659 return ERR_PTR(-ENOENT);
1661 namespace_lock();
1662 mnt = lookup_mnt(path);
1663 if (likely(!mnt)) {
1664 struct mountpoint *mp = new_mountpoint(dentry);
1665 if (IS_ERR(mp)) {
1666 namespace_unlock();
1667 mutex_unlock(&dentry->d_inode->i_mutex);
1668 return mp;
1670 return mp;
1672 namespace_unlock();
1673 mutex_unlock(&path->dentry->d_inode->i_mutex);
1674 path_put(path);
1675 path->mnt = mnt;
1676 dentry = path->dentry = dget(mnt->mnt_root);
1677 goto retry;
1680 static void unlock_mount(struct mountpoint *where)
1682 struct dentry *dentry = where->m_dentry;
1683 put_mountpoint(where);
1684 namespace_unlock();
1685 mutex_unlock(&dentry->d_inode->i_mutex);
1688 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1690 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1691 return -EINVAL;
1693 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1694 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1695 return -ENOTDIR;
1697 return attach_recursive_mnt(mnt, p, mp, NULL);
1701 * Sanity check the flags to change_mnt_propagation.
1704 static int flags_to_propagation_type(int flags)
1706 int type = flags & ~(MS_REC | MS_SILENT);
1708 /* Fail if any non-propagation flags are set */
1709 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1710 return 0;
1711 /* Only one propagation flag should be set */
1712 if (!is_power_of_2(type))
1713 return 0;
1714 return type;
1718 * recursively change the type of the mountpoint.
1720 static int do_change_type(struct path *path, int flag)
1722 struct mount *m;
1723 struct mount *mnt = real_mount(path->mnt);
1724 int recurse = flag & MS_REC;
1725 int type;
1726 int err = 0;
1728 if (path->dentry != path->mnt->mnt_root)
1729 return -EINVAL;
1731 type = flags_to_propagation_type(flag);
1732 if (!type)
1733 return -EINVAL;
1735 namespace_lock();
1736 if (type == MS_SHARED) {
1737 err = invent_group_ids(mnt, recurse);
1738 if (err)
1739 goto out_unlock;
1742 lock_mount_hash();
1743 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1744 change_mnt_propagation(m, type);
1745 unlock_mount_hash();
1747 out_unlock:
1748 namespace_unlock();
1749 return err;
1752 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1754 struct mount *child;
1755 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1756 if (!is_subdir(child->mnt_mountpoint, dentry))
1757 continue;
1759 if (child->mnt.mnt_flags & MNT_LOCKED)
1760 return true;
1762 return false;
1766 * do loopback mount.
1768 static int do_loopback(struct path *path, const char *old_name,
1769 int recurse)
1771 struct path old_path;
1772 struct mount *mnt = NULL, *old, *parent;
1773 struct mountpoint *mp;
1774 int err;
1775 if (!old_name || !*old_name)
1776 return -EINVAL;
1777 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1778 if (err)
1779 return err;
1781 err = -EINVAL;
1782 if (mnt_ns_loop(old_path.dentry))
1783 goto out;
1785 mp = lock_mount(path);
1786 err = PTR_ERR(mp);
1787 if (IS_ERR(mp))
1788 goto out;
1790 old = real_mount(old_path.mnt);
1791 parent = real_mount(path->mnt);
1793 err = -EINVAL;
1794 if (IS_MNT_UNBINDABLE(old))
1795 goto out2;
1797 if (!check_mnt(parent) || !check_mnt(old))
1798 goto out2;
1800 if (!recurse && has_locked_children(old, old_path.dentry))
1801 goto out2;
1803 if (recurse)
1804 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1805 else
1806 mnt = clone_mnt(old, old_path.dentry, 0);
1808 if (IS_ERR(mnt)) {
1809 err = PTR_ERR(mnt);
1810 goto out2;
1813 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1815 err = graft_tree(mnt, parent, mp);
1816 if (err) {
1817 lock_mount_hash();
1818 umount_tree(mnt, 0);
1819 unlock_mount_hash();
1821 out2:
1822 unlock_mount(mp);
1823 out:
1824 path_put(&old_path);
1825 return err;
1828 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1830 int error = 0;
1831 int readonly_request = 0;
1833 if (ms_flags & MS_RDONLY)
1834 readonly_request = 1;
1835 if (readonly_request == __mnt_is_readonly(mnt))
1836 return 0;
1838 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1839 return -EPERM;
1841 if (readonly_request)
1842 error = mnt_make_readonly(real_mount(mnt));
1843 else
1844 __mnt_unmake_readonly(real_mount(mnt));
1845 return error;
1849 * change filesystem flags. dir should be a physical root of filesystem.
1850 * If you've mounted a non-root directory somewhere and want to do remount
1851 * on it - tough luck.
1853 static int do_remount(struct path *path, int flags, int mnt_flags,
1854 void *data)
1856 int err;
1857 struct super_block *sb = path->mnt->mnt_sb;
1858 struct mount *mnt = real_mount(path->mnt);
1860 if (!check_mnt(mnt))
1861 return -EINVAL;
1863 if (path->dentry != path->mnt->mnt_root)
1864 return -EINVAL;
1866 err = security_sb_remount(sb, data);
1867 if (err)
1868 return err;
1870 down_write(&sb->s_umount);
1871 if (flags & MS_BIND)
1872 err = change_mount_flags(path->mnt, flags);
1873 else if (!capable(CAP_SYS_ADMIN))
1874 err = -EPERM;
1875 else
1876 err = do_remount_sb(sb, flags, data, 0);
1877 if (!err) {
1878 lock_mount_hash();
1879 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1880 mnt->mnt.mnt_flags = mnt_flags;
1881 touch_mnt_namespace(mnt->mnt_ns);
1882 unlock_mount_hash();
1884 up_write(&sb->s_umount);
1885 return err;
1888 static inline int tree_contains_unbindable(struct mount *mnt)
1890 struct mount *p;
1891 for (p = mnt; p; p = next_mnt(p, mnt)) {
1892 if (IS_MNT_UNBINDABLE(p))
1893 return 1;
1895 return 0;
1898 static int do_move_mount(struct path *path, const char *old_name)
1900 struct path old_path, parent_path;
1901 struct mount *p;
1902 struct mount *old;
1903 struct mountpoint *mp;
1904 int err;
1905 if (!old_name || !*old_name)
1906 return -EINVAL;
1907 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1908 if (err)
1909 return err;
1911 mp = lock_mount(path);
1912 err = PTR_ERR(mp);
1913 if (IS_ERR(mp))
1914 goto out;
1916 old = real_mount(old_path.mnt);
1917 p = real_mount(path->mnt);
1919 err = -EINVAL;
1920 if (!check_mnt(p) || !check_mnt(old))
1921 goto out1;
1923 if (old->mnt.mnt_flags & MNT_LOCKED)
1924 goto out1;
1926 err = -EINVAL;
1927 if (old_path.dentry != old_path.mnt->mnt_root)
1928 goto out1;
1930 if (!mnt_has_parent(old))
1931 goto out1;
1933 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1934 S_ISDIR(old_path.dentry->d_inode->i_mode))
1935 goto out1;
1937 * Don't move a mount residing in a shared parent.
1939 if (IS_MNT_SHARED(old->mnt_parent))
1940 goto out1;
1942 * Don't move a mount tree containing unbindable mounts to a destination
1943 * mount which is shared.
1945 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1946 goto out1;
1947 err = -ELOOP;
1948 for (; mnt_has_parent(p); p = p->mnt_parent)
1949 if (p == old)
1950 goto out1;
1952 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1953 if (err)
1954 goto out1;
1956 /* if the mount is moved, it should no longer be expire
1957 * automatically */
1958 list_del_init(&old->mnt_expire);
1959 out1:
1960 unlock_mount(mp);
1961 out:
1962 if (!err)
1963 path_put(&parent_path);
1964 path_put(&old_path);
1965 return err;
1968 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1970 int err;
1971 const char *subtype = strchr(fstype, '.');
1972 if (subtype) {
1973 subtype++;
1974 err = -EINVAL;
1975 if (!subtype[0])
1976 goto err;
1977 } else
1978 subtype = "";
1980 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1981 err = -ENOMEM;
1982 if (!mnt->mnt_sb->s_subtype)
1983 goto err;
1984 return mnt;
1986 err:
1987 mntput(mnt);
1988 return ERR_PTR(err);
1992 * add a mount into a namespace's mount tree
1994 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1996 struct mountpoint *mp;
1997 struct mount *parent;
1998 int err;
2000 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
2002 mp = lock_mount(path);
2003 if (IS_ERR(mp))
2004 return PTR_ERR(mp);
2006 parent = real_mount(path->mnt);
2007 err = -EINVAL;
2008 if (unlikely(!check_mnt(parent))) {
2009 /* that's acceptable only for automounts done in private ns */
2010 if (!(mnt_flags & MNT_SHRINKABLE))
2011 goto unlock;
2012 /* ... and for those we'd better have mountpoint still alive */
2013 if (!parent->mnt_ns)
2014 goto unlock;
2017 /* Refuse the same filesystem on the same mount point */
2018 err = -EBUSY;
2019 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2020 path->mnt->mnt_root == path->dentry)
2021 goto unlock;
2023 err = -EINVAL;
2024 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2025 goto unlock;
2027 newmnt->mnt.mnt_flags = mnt_flags;
2028 err = graft_tree(newmnt, parent, mp);
2030 unlock:
2031 unlock_mount(mp);
2032 return err;
2036 * create a new mount for userspace and request it to be added into the
2037 * namespace's tree
2039 static int do_new_mount(struct path *path, const char *fstype, int flags,
2040 int mnt_flags, const char *name, void *data)
2042 struct file_system_type *type;
2043 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2044 struct vfsmount *mnt;
2045 int err;
2047 if (!fstype)
2048 return -EINVAL;
2050 type = get_fs_type(fstype);
2051 if (!type)
2052 return -ENODEV;
2054 if (user_ns != &init_user_ns) {
2055 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2056 put_filesystem(type);
2057 return -EPERM;
2059 /* Only in special cases allow devices from mounts
2060 * created outside the initial user namespace.
2062 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2063 flags |= MS_NODEV;
2064 mnt_flags |= MNT_NODEV;
2068 mnt = vfs_kern_mount(type, flags, name, data);
2069 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2070 !mnt->mnt_sb->s_subtype)
2071 mnt = fs_set_subtype(mnt, fstype);
2073 put_filesystem(type);
2074 if (IS_ERR(mnt))
2075 return PTR_ERR(mnt);
2077 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2078 if (err)
2079 mntput(mnt);
2080 return err;
2083 int finish_automount(struct vfsmount *m, struct path *path)
2085 struct mount *mnt = real_mount(m);
2086 int err;
2087 /* The new mount record should have at least 2 refs to prevent it being
2088 * expired before we get a chance to add it
2090 BUG_ON(mnt_get_count(mnt) < 2);
2092 if (m->mnt_sb == path->mnt->mnt_sb &&
2093 m->mnt_root == path->dentry) {
2094 err = -ELOOP;
2095 goto fail;
2098 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2099 if (!err)
2100 return 0;
2101 fail:
2102 /* remove m from any expiration list it may be on */
2103 if (!list_empty(&mnt->mnt_expire)) {
2104 namespace_lock();
2105 list_del_init(&mnt->mnt_expire);
2106 namespace_unlock();
2108 mntput(m);
2109 mntput(m);
2110 return err;
2114 * mnt_set_expiry - Put a mount on an expiration list
2115 * @mnt: The mount to list.
2116 * @expiry_list: The list to add the mount to.
2118 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2120 namespace_lock();
2122 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2124 namespace_unlock();
2126 EXPORT_SYMBOL(mnt_set_expiry);
2129 * process a list of expirable mountpoints with the intent of discarding any
2130 * mountpoints that aren't in use and haven't been touched since last we came
2131 * here
2133 void mark_mounts_for_expiry(struct list_head *mounts)
2135 struct mount *mnt, *next;
2136 LIST_HEAD(graveyard);
2138 if (list_empty(mounts))
2139 return;
2141 namespace_lock();
2142 lock_mount_hash();
2144 /* extract from the expiration list every vfsmount that matches the
2145 * following criteria:
2146 * - only referenced by its parent vfsmount
2147 * - still marked for expiry (marked on the last call here; marks are
2148 * cleared by mntput())
2150 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2151 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2152 propagate_mount_busy(mnt, 1))
2153 continue;
2154 list_move(&mnt->mnt_expire, &graveyard);
2156 while (!list_empty(&graveyard)) {
2157 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2158 touch_mnt_namespace(mnt->mnt_ns);
2159 umount_tree(mnt, 1);
2161 unlock_mount_hash();
2162 namespace_unlock();
2165 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2168 * Ripoff of 'select_parent()'
2170 * search the list of submounts for a given mountpoint, and move any
2171 * shrinkable submounts to the 'graveyard' list.
2173 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2175 struct mount *this_parent = parent;
2176 struct list_head *next;
2177 int found = 0;
2179 repeat:
2180 next = this_parent->mnt_mounts.next;
2181 resume:
2182 while (next != &this_parent->mnt_mounts) {
2183 struct list_head *tmp = next;
2184 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2186 next = tmp->next;
2187 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2188 continue;
2190 * Descend a level if the d_mounts list is non-empty.
2192 if (!list_empty(&mnt->mnt_mounts)) {
2193 this_parent = mnt;
2194 goto repeat;
2197 if (!propagate_mount_busy(mnt, 1)) {
2198 list_move_tail(&mnt->mnt_expire, graveyard);
2199 found++;
2203 * All done at this level ... ascend and resume the search
2205 if (this_parent != parent) {
2206 next = this_parent->mnt_child.next;
2207 this_parent = this_parent->mnt_parent;
2208 goto resume;
2210 return found;
2214 * process a list of expirable mountpoints with the intent of discarding any
2215 * submounts of a specific parent mountpoint
2217 * mount_lock must be held for write
2219 static void shrink_submounts(struct mount *mnt)
2221 LIST_HEAD(graveyard);
2222 struct mount *m;
2224 /* extract submounts of 'mountpoint' from the expiration list */
2225 while (select_submounts(mnt, &graveyard)) {
2226 while (!list_empty(&graveyard)) {
2227 m = list_first_entry(&graveyard, struct mount,
2228 mnt_expire);
2229 touch_mnt_namespace(m->mnt_ns);
2230 umount_tree(m, 1);
2236 * Some copy_from_user() implementations do not return the exact number of
2237 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2238 * Note that this function differs from copy_from_user() in that it will oops
2239 * on bad values of `to', rather than returning a short copy.
2241 static long exact_copy_from_user(void *to, const void __user * from,
2242 unsigned long n)
2244 char *t = to;
2245 const char __user *f = from;
2246 char c;
2248 if (!access_ok(VERIFY_READ, from, n))
2249 return n;
2251 while (n) {
2252 if (__get_user(c, f)) {
2253 memset(t, 0, n);
2254 break;
2256 *t++ = c;
2257 f++;
2258 n--;
2260 return n;
2263 int copy_mount_options(const void __user * data, unsigned long *where)
2265 int i;
2266 unsigned long page;
2267 unsigned long size;
2269 *where = 0;
2270 if (!data)
2271 return 0;
2273 if (!(page = __get_free_page(GFP_KERNEL)))
2274 return -ENOMEM;
2276 /* We only care that *some* data at the address the user
2277 * gave us is valid. Just in case, we'll zero
2278 * the remainder of the page.
2280 /* copy_from_user cannot cross TASK_SIZE ! */
2281 size = TASK_SIZE - (unsigned long)data;
2282 if (size > PAGE_SIZE)
2283 size = PAGE_SIZE;
2285 i = size - exact_copy_from_user((void *)page, data, size);
2286 if (!i) {
2287 free_page(page);
2288 return -EFAULT;
2290 if (i != PAGE_SIZE)
2291 memset((char *)page + i, 0, PAGE_SIZE - i);
2292 *where = page;
2293 return 0;
2296 int copy_mount_string(const void __user *data, char **where)
2298 char *tmp;
2300 if (!data) {
2301 *where = NULL;
2302 return 0;
2305 tmp = strndup_user(data, PAGE_SIZE);
2306 if (IS_ERR(tmp))
2307 return PTR_ERR(tmp);
2309 *where = tmp;
2310 return 0;
2314 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2315 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2317 * data is a (void *) that can point to any structure up to
2318 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2319 * information (or be NULL).
2321 * Pre-0.97 versions of mount() didn't have a flags word.
2322 * When the flags word was introduced its top half was required
2323 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2324 * Therefore, if this magic number is present, it carries no information
2325 * and must be discarded.
2327 long do_mount(const char *dev_name, const char *dir_name,
2328 const char *type_page, unsigned long flags, void *data_page)
2330 struct path path;
2331 int retval = 0;
2332 int mnt_flags = 0;
2334 /* Discard magic */
2335 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2336 flags &= ~MS_MGC_MSK;
2338 /* Basic sanity checks */
2340 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2341 return -EINVAL;
2343 if (data_page)
2344 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2346 /* ... and get the mountpoint */
2347 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2348 if (retval)
2349 return retval;
2351 retval = security_sb_mount(dev_name, &path,
2352 type_page, flags, data_page);
2353 if (!retval && !may_mount())
2354 retval = -EPERM;
2355 if (retval)
2356 goto dput_out;
2358 /* Default to relatime unless overriden */
2359 if (!(flags & MS_NOATIME))
2360 mnt_flags |= MNT_RELATIME;
2362 /* Separate the per-mountpoint flags */
2363 if (flags & MS_NOSUID)
2364 mnt_flags |= MNT_NOSUID;
2365 if (flags & MS_NODEV)
2366 mnt_flags |= MNT_NODEV;
2367 if (flags & MS_NOEXEC)
2368 mnt_flags |= MNT_NOEXEC;
2369 if (flags & MS_NOATIME)
2370 mnt_flags |= MNT_NOATIME;
2371 if (flags & MS_NODIRATIME)
2372 mnt_flags |= MNT_NODIRATIME;
2373 if (flags & MS_STRICTATIME)
2374 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2375 if (flags & MS_RDONLY)
2376 mnt_flags |= MNT_READONLY;
2378 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2379 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2380 MS_STRICTATIME);
2382 if (flags & MS_REMOUNT)
2383 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2384 data_page);
2385 else if (flags & MS_BIND)
2386 retval = do_loopback(&path, dev_name, flags & MS_REC);
2387 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2388 retval = do_change_type(&path, flags);
2389 else if (flags & MS_MOVE)
2390 retval = do_move_mount(&path, dev_name);
2391 else
2392 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2393 dev_name, data_page);
2394 dput_out:
2395 path_put(&path);
2396 return retval;
2399 static void free_mnt_ns(struct mnt_namespace *ns)
2401 proc_free_inum(ns->proc_inum);
2402 put_user_ns(ns->user_ns);
2403 kfree(ns);
2407 * Assign a sequence number so we can detect when we attempt to bind
2408 * mount a reference to an older mount namespace into the current
2409 * mount namespace, preventing reference counting loops. A 64bit
2410 * number incrementing at 10Ghz will take 12,427 years to wrap which
2411 * is effectively never, so we can ignore the possibility.
2413 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2415 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2417 struct mnt_namespace *new_ns;
2418 int ret;
2420 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2421 if (!new_ns)
2422 return ERR_PTR(-ENOMEM);
2423 ret = proc_alloc_inum(&new_ns->proc_inum);
2424 if (ret) {
2425 kfree(new_ns);
2426 return ERR_PTR(ret);
2428 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2429 atomic_set(&new_ns->count, 1);
2430 new_ns->root = NULL;
2431 INIT_LIST_HEAD(&new_ns->list);
2432 init_waitqueue_head(&new_ns->poll);
2433 new_ns->event = 0;
2434 new_ns->user_ns = get_user_ns(user_ns);
2435 return new_ns;
2438 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2439 struct user_namespace *user_ns, struct fs_struct *new_fs)
2441 struct mnt_namespace *new_ns;
2442 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2443 struct mount *p, *q;
2444 struct mount *old;
2445 struct mount *new;
2446 int copy_flags;
2448 BUG_ON(!ns);
2450 if (likely(!(flags & CLONE_NEWNS))) {
2451 get_mnt_ns(ns);
2452 return ns;
2455 old = ns->root;
2457 new_ns = alloc_mnt_ns(user_ns);
2458 if (IS_ERR(new_ns))
2459 return new_ns;
2461 namespace_lock();
2462 /* First pass: copy the tree topology */
2463 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2464 if (user_ns != ns->user_ns)
2465 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2466 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2467 if (IS_ERR(new)) {
2468 namespace_unlock();
2469 free_mnt_ns(new_ns);
2470 return ERR_CAST(new);
2472 new_ns->root = new;
2473 list_add_tail(&new_ns->list, &new->mnt_list);
2476 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2477 * as belonging to new namespace. We have already acquired a private
2478 * fs_struct, so tsk->fs->lock is not needed.
2480 p = old;
2481 q = new;
2482 while (p) {
2483 q->mnt_ns = new_ns;
2484 if (new_fs) {
2485 if (&p->mnt == new_fs->root.mnt) {
2486 new_fs->root.mnt = mntget(&q->mnt);
2487 rootmnt = &p->mnt;
2489 if (&p->mnt == new_fs->pwd.mnt) {
2490 new_fs->pwd.mnt = mntget(&q->mnt);
2491 pwdmnt = &p->mnt;
2494 p = next_mnt(p, old);
2495 q = next_mnt(q, new);
2496 if (!q)
2497 break;
2498 while (p->mnt.mnt_root != q->mnt.mnt_root)
2499 p = next_mnt(p, old);
2501 namespace_unlock();
2503 if (rootmnt)
2504 mntput(rootmnt);
2505 if (pwdmnt)
2506 mntput(pwdmnt);
2508 return new_ns;
2512 * create_mnt_ns - creates a private namespace and adds a root filesystem
2513 * @mnt: pointer to the new root filesystem mountpoint
2515 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2517 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2518 if (!IS_ERR(new_ns)) {
2519 struct mount *mnt = real_mount(m);
2520 mnt->mnt_ns = new_ns;
2521 new_ns->root = mnt;
2522 list_add(&mnt->mnt_list, &new_ns->list);
2523 } else {
2524 mntput(m);
2526 return new_ns;
2529 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2531 struct mnt_namespace *ns;
2532 struct super_block *s;
2533 struct path path;
2534 int err;
2536 ns = create_mnt_ns(mnt);
2537 if (IS_ERR(ns))
2538 return ERR_CAST(ns);
2540 err = vfs_path_lookup(mnt->mnt_root, mnt,
2541 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2543 put_mnt_ns(ns);
2545 if (err)
2546 return ERR_PTR(err);
2548 /* trade a vfsmount reference for active sb one */
2549 s = path.mnt->mnt_sb;
2550 atomic_inc(&s->s_active);
2551 mntput(path.mnt);
2552 /* lock the sucker */
2553 down_write(&s->s_umount);
2554 /* ... and return the root of (sub)tree on it */
2555 return path.dentry;
2557 EXPORT_SYMBOL(mount_subtree);
2559 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2560 char __user *, type, unsigned long, flags, void __user *, data)
2562 int ret;
2563 char *kernel_type;
2564 struct filename *kernel_dir;
2565 char *kernel_dev;
2566 unsigned long data_page;
2568 ret = copy_mount_string(type, &kernel_type);
2569 if (ret < 0)
2570 goto out_type;
2572 kernel_dir = getname(dir_name);
2573 if (IS_ERR(kernel_dir)) {
2574 ret = PTR_ERR(kernel_dir);
2575 goto out_dir;
2578 ret = copy_mount_string(dev_name, &kernel_dev);
2579 if (ret < 0)
2580 goto out_dev;
2582 ret = copy_mount_options(data, &data_page);
2583 if (ret < 0)
2584 goto out_data;
2586 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2587 (void *) data_page);
2589 free_page(data_page);
2590 out_data:
2591 kfree(kernel_dev);
2592 out_dev:
2593 putname(kernel_dir);
2594 out_dir:
2595 kfree(kernel_type);
2596 out_type:
2597 return ret;
2601 * Return true if path is reachable from root
2603 * namespace_sem or mount_lock is held
2605 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2606 const struct path *root)
2608 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2609 dentry = mnt->mnt_mountpoint;
2610 mnt = mnt->mnt_parent;
2612 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2615 int path_is_under(struct path *path1, struct path *path2)
2617 int res;
2618 read_seqlock_excl(&mount_lock);
2619 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2620 read_sequnlock_excl(&mount_lock);
2621 return res;
2623 EXPORT_SYMBOL(path_is_under);
2626 * pivot_root Semantics:
2627 * Moves the root file system of the current process to the directory put_old,
2628 * makes new_root as the new root file system of the current process, and sets
2629 * root/cwd of all processes which had them on the current root to new_root.
2631 * Restrictions:
2632 * The new_root and put_old must be directories, and must not be on the
2633 * same file system as the current process root. The put_old must be
2634 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2635 * pointed to by put_old must yield the same directory as new_root. No other
2636 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2638 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2639 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2640 * in this situation.
2642 * Notes:
2643 * - we don't move root/cwd if they are not at the root (reason: if something
2644 * cared enough to change them, it's probably wrong to force them elsewhere)
2645 * - it's okay to pick a root that isn't the root of a file system, e.g.
2646 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2647 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2648 * first.
2650 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2651 const char __user *, put_old)
2653 struct path new, old, parent_path, root_parent, root;
2654 struct mount *new_mnt, *root_mnt, *old_mnt;
2655 struct mountpoint *old_mp, *root_mp;
2656 int error;
2658 if (!may_mount())
2659 return -EPERM;
2661 error = user_path_dir(new_root, &new);
2662 if (error)
2663 goto out0;
2665 error = user_path_dir(put_old, &old);
2666 if (error)
2667 goto out1;
2669 error = security_sb_pivotroot(&old, &new);
2670 if (error)
2671 goto out2;
2673 get_fs_root(current->fs, &root);
2674 old_mp = lock_mount(&old);
2675 error = PTR_ERR(old_mp);
2676 if (IS_ERR(old_mp))
2677 goto out3;
2679 error = -EINVAL;
2680 new_mnt = real_mount(new.mnt);
2681 root_mnt = real_mount(root.mnt);
2682 old_mnt = real_mount(old.mnt);
2683 if (IS_MNT_SHARED(old_mnt) ||
2684 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2685 IS_MNT_SHARED(root_mnt->mnt_parent))
2686 goto out4;
2687 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2688 goto out4;
2689 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2690 goto out4;
2691 error = -ENOENT;
2692 if (d_unlinked(new.dentry))
2693 goto out4;
2694 error = -EBUSY;
2695 if (new_mnt == root_mnt || old_mnt == root_mnt)
2696 goto out4; /* loop, on the same file system */
2697 error = -EINVAL;
2698 if (root.mnt->mnt_root != root.dentry)
2699 goto out4; /* not a mountpoint */
2700 if (!mnt_has_parent(root_mnt))
2701 goto out4; /* not attached */
2702 root_mp = root_mnt->mnt_mp;
2703 if (new.mnt->mnt_root != new.dentry)
2704 goto out4; /* not a mountpoint */
2705 if (!mnt_has_parent(new_mnt))
2706 goto out4; /* not attached */
2707 /* make sure we can reach put_old from new_root */
2708 if (!is_path_reachable(old_mnt, old.dentry, &new))
2709 goto out4;
2710 root_mp->m_count++; /* pin it so it won't go away */
2711 lock_mount_hash();
2712 detach_mnt(new_mnt, &parent_path);
2713 detach_mnt(root_mnt, &root_parent);
2714 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2715 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2716 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2718 /* mount old root on put_old */
2719 attach_mnt(root_mnt, old_mnt, old_mp);
2720 /* mount new_root on / */
2721 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2722 touch_mnt_namespace(current->nsproxy->mnt_ns);
2723 unlock_mount_hash();
2724 chroot_fs_refs(&root, &new);
2725 put_mountpoint(root_mp);
2726 error = 0;
2727 out4:
2728 unlock_mount(old_mp);
2729 if (!error) {
2730 path_put(&root_parent);
2731 path_put(&parent_path);
2733 out3:
2734 path_put(&root);
2735 out2:
2736 path_put(&old);
2737 out1:
2738 path_put(&new);
2739 out0:
2740 return error;
2743 static void __init init_mount_tree(void)
2745 struct vfsmount *mnt;
2746 struct mnt_namespace *ns;
2747 struct path root;
2748 struct file_system_type *type;
2750 type = get_fs_type("rootfs");
2751 if (!type)
2752 panic("Can't find rootfs type");
2753 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2754 put_filesystem(type);
2755 if (IS_ERR(mnt))
2756 panic("Can't create rootfs");
2758 ns = create_mnt_ns(mnt);
2759 if (IS_ERR(ns))
2760 panic("Can't allocate initial namespace");
2762 init_task.nsproxy->mnt_ns = ns;
2763 get_mnt_ns(ns);
2765 root.mnt = mnt;
2766 root.dentry = mnt->mnt_root;
2768 set_fs_pwd(current->fs, &root);
2769 set_fs_root(current->fs, &root);
2772 void __init mnt_init(void)
2774 unsigned u;
2775 int err;
2777 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2778 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2780 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2781 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2783 if (!mount_hashtable || !mountpoint_hashtable)
2784 panic("Failed to allocate mount hash table\n");
2786 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2788 for (u = 0; u < HASH_SIZE; u++)
2789 INIT_LIST_HEAD(&mount_hashtable[u]);
2790 for (u = 0; u < HASH_SIZE; u++)
2791 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2793 kernfs_init();
2795 err = sysfs_init();
2796 if (err)
2797 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2798 __func__, err);
2799 fs_kobj = kobject_create_and_add("fs", NULL);
2800 if (!fs_kobj)
2801 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2802 init_rootfs();
2803 init_mount_tree();
2806 void put_mnt_ns(struct mnt_namespace *ns)
2808 if (!atomic_dec_and_test(&ns->count))
2809 return;
2810 drop_collected_mounts(&ns->root->mnt);
2811 free_mnt_ns(ns);
2814 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2816 struct vfsmount *mnt;
2817 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2818 if (!IS_ERR(mnt)) {
2820 * it is a longterm mount, don't release mnt until
2821 * we unmount before file sys is unregistered
2823 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2825 return mnt;
2827 EXPORT_SYMBOL_GPL(kern_mount_data);
2829 void kern_unmount(struct vfsmount *mnt)
2831 /* release long term mount so mount point can be released */
2832 if (!IS_ERR_OR_NULL(mnt)) {
2833 real_mount(mnt)->mnt_ns = NULL;
2834 synchronize_rcu(); /* yecchhh... */
2835 mntput(mnt);
2838 EXPORT_SYMBOL(kern_unmount);
2840 bool our_mnt(struct vfsmount *mnt)
2842 return check_mnt(real_mount(mnt));
2845 bool current_chrooted(void)
2847 /* Does the current process have a non-standard root */
2848 struct path ns_root;
2849 struct path fs_root;
2850 bool chrooted;
2852 /* Find the namespace root */
2853 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2854 ns_root.dentry = ns_root.mnt->mnt_root;
2855 path_get(&ns_root);
2856 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2859 get_fs_root(current->fs, &fs_root);
2861 chrooted = !path_equal(&fs_root, &ns_root);
2863 path_put(&fs_root);
2864 path_put(&ns_root);
2866 return chrooted;
2869 bool fs_fully_visible(struct file_system_type *type)
2871 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2872 struct mount *mnt;
2873 bool visible = false;
2875 if (unlikely(!ns))
2876 return false;
2878 down_read(&namespace_sem);
2879 list_for_each_entry(mnt, &ns->list, mnt_list) {
2880 struct mount *child;
2881 if (mnt->mnt.mnt_sb->s_type != type)
2882 continue;
2884 /* This mount is not fully visible if there are any child mounts
2885 * that cover anything except for empty directories.
2887 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2888 struct inode *inode = child->mnt_mountpoint->d_inode;
2889 if (!S_ISDIR(inode->i_mode))
2890 goto next;
2891 if (inode->i_nlink > 2)
2892 goto next;
2894 visible = true;
2895 goto found;
2896 next: ;
2898 found:
2899 up_read(&namespace_sem);
2900 return visible;
2903 static void *mntns_get(struct task_struct *task)
2905 struct mnt_namespace *ns = NULL;
2906 struct nsproxy *nsproxy;
2908 rcu_read_lock();
2909 nsproxy = task_nsproxy(task);
2910 if (nsproxy) {
2911 ns = nsproxy->mnt_ns;
2912 get_mnt_ns(ns);
2914 rcu_read_unlock();
2916 return ns;
2919 static void mntns_put(void *ns)
2921 put_mnt_ns(ns);
2924 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2926 struct fs_struct *fs = current->fs;
2927 struct mnt_namespace *mnt_ns = ns;
2928 struct path root;
2930 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2931 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2932 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2933 return -EPERM;
2935 if (fs->users != 1)
2936 return -EINVAL;
2938 get_mnt_ns(mnt_ns);
2939 put_mnt_ns(nsproxy->mnt_ns);
2940 nsproxy->mnt_ns = mnt_ns;
2942 /* Find the root */
2943 root.mnt = &mnt_ns->root->mnt;
2944 root.dentry = mnt_ns->root->mnt.mnt_root;
2945 path_get(&root);
2946 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2949 /* Update the pwd and root */
2950 set_fs_pwd(fs, &root);
2951 set_fs_root(fs, &root);
2953 path_put(&root);
2954 return 0;
2957 static unsigned int mntns_inum(void *ns)
2959 struct mnt_namespace *mnt_ns = ns;
2960 return mnt_ns->proc_inum;
2963 const struct proc_ns_operations mntns_operations = {
2964 .name = "mnt",
2965 .type = CLONE_NEWNS,
2966 .get = mntns_get,
2967 .put = mntns_put,
2968 .install = mntns_install,
2969 .inum = mntns_inum,