2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
49 __asm__(".arch_extension virt");
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
53 static kvm_cpu_context_t __percpu
*kvm_host_cpu_state
;
54 static unsigned long hyp_default_vectors
;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid
;
62 static DEFINE_SPINLOCK(kvm_vmid_lock
);
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
74 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu
);
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
85 return &kvm_arm_running_vcpu
;
88 int kvm_arch_hardware_enable(void)
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
95 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
98 int kvm_arch_hardware_setup(void)
103 void kvm_arch_check_processor_compat(void *rtn
)
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
113 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
120 ret
= kvm_alloc_stage2_pgd(kvm
);
124 ret
= create_hyp_mappings(kvm
, kvm
+ 1);
126 goto out_free_stage2_pgd
;
128 kvm_vgic_early_init(kvm
);
131 /* Mark the initial VMID generation invalid */
132 kvm
->arch
.vmid_gen
= 0;
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm
->arch
.max_vcpus
= kvm_vgic_get_max_vcpus();
139 kvm_free_stage2_pgd(kvm
);
144 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
146 return VM_FAULT_SIGBUS
;
151 * kvm_arch_destroy_vm - destroy the VM data structure
152 * @kvm: pointer to the KVM struct
154 void kvm_arch_destroy_vm(struct kvm
*kvm
)
158 kvm_free_stage2_pgd(kvm
);
160 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
162 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
163 kvm
->vcpus
[i
] = NULL
;
167 kvm_vgic_destroy(kvm
);
170 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
174 case KVM_CAP_IRQCHIP
:
175 case KVM_CAP_IOEVENTFD
:
176 case KVM_CAP_DEVICE_CTRL
:
177 case KVM_CAP_USER_MEMORY
:
178 case KVM_CAP_SYNC_MMU
:
179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
180 case KVM_CAP_ONE_REG
:
181 case KVM_CAP_ARM_PSCI
:
182 case KVM_CAP_ARM_PSCI_0_2
:
183 case KVM_CAP_READONLY_MEM
:
184 case KVM_CAP_MP_STATE
:
187 case KVM_CAP_COALESCED_MMIO
:
188 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
190 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
193 case KVM_CAP_NR_VCPUS
:
194 r
= num_online_cpus();
196 case KVM_CAP_MAX_VCPUS
:
200 r
= kvm_arch_dev_ioctl_check_extension(ext
);
206 long kvm_arch_dev_ioctl(struct file
*filp
,
207 unsigned int ioctl
, unsigned long arg
)
213 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
216 struct kvm_vcpu
*vcpu
;
218 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
223 if (id
>= kvm
->arch
.max_vcpus
) {
228 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
234 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
238 err
= create_hyp_mappings(vcpu
, vcpu
+ 1);
244 kvm_vcpu_uninit(vcpu
);
246 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
253 kvm_vgic_vcpu_early_init(vcpu
);
256 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
258 kvm_mmu_free_memory_caches(vcpu
);
259 kvm_timer_vcpu_terminate(vcpu
);
260 kvm_vgic_vcpu_destroy(vcpu
);
261 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
266 kvm_arch_vcpu_free(vcpu
);
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
271 return kvm_timer_should_fire(vcpu
);
274 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
276 kvm_timer_schedule(vcpu
);
279 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
281 kvm_timer_unschedule(vcpu
);
284 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
286 /* Force users to call KVM_ARM_VCPU_INIT */
287 vcpu
->arch
.target
= -1;
288 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
290 /* Set up the timer */
291 kvm_timer_vcpu_init(vcpu
);
293 kvm_arm_reset_debug_ptr(vcpu
);
298 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
301 vcpu
->arch
.host_cpu_context
= this_cpu_ptr(kvm_host_cpu_state
);
303 kvm_arm_set_running_vcpu(vcpu
);
306 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
309 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
310 * if the vcpu is no longer assigned to a cpu. This is used for the
311 * optimized make_all_cpus_request path.
315 kvm_arm_set_running_vcpu(NULL
);
318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
319 struct kvm_mp_state
*mp_state
)
321 if (vcpu
->arch
.power_off
)
322 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
324 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
330 struct kvm_mp_state
*mp_state
)
332 switch (mp_state
->mp_state
) {
333 case KVM_MP_STATE_RUNNABLE
:
334 vcpu
->arch
.power_off
= false;
336 case KVM_MP_STATE_STOPPED
:
337 vcpu
->arch
.power_off
= true;
347 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
348 * @v: The VCPU pointer
350 * If the guest CPU is not waiting for interrupts or an interrupt line is
351 * asserted, the CPU is by definition runnable.
353 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
355 return ((!!v
->arch
.irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
356 && !v
->arch
.power_off
&& !v
->arch
.pause
);
359 /* Just ensure a guest exit from a particular CPU */
360 static void exit_vm_noop(void *info
)
364 void force_vm_exit(const cpumask_t
*mask
)
366 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
370 * need_new_vmid_gen - check that the VMID is still valid
371 * @kvm: The VM's VMID to checkt
373 * return true if there is a new generation of VMIDs being used
375 * The hardware supports only 256 values with the value zero reserved for the
376 * host, so we check if an assigned value belongs to a previous generation,
377 * which which requires us to assign a new value. If we're the first to use a
378 * VMID for the new generation, we must flush necessary caches and TLBs on all
381 static bool need_new_vmid_gen(struct kvm
*kvm
)
383 return unlikely(kvm
->arch
.vmid_gen
!= atomic64_read(&kvm_vmid_gen
));
387 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
388 * @kvm The guest that we are about to run
390 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
391 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
394 static void update_vttbr(struct kvm
*kvm
)
396 phys_addr_t pgd_phys
;
399 if (!need_new_vmid_gen(kvm
))
402 spin_lock(&kvm_vmid_lock
);
405 * We need to re-check the vmid_gen here to ensure that if another vcpu
406 * already allocated a valid vmid for this vm, then this vcpu should
409 if (!need_new_vmid_gen(kvm
)) {
410 spin_unlock(&kvm_vmid_lock
);
414 /* First user of a new VMID generation? */
415 if (unlikely(kvm_next_vmid
== 0)) {
416 atomic64_inc(&kvm_vmid_gen
);
420 * On SMP we know no other CPUs can use this CPU's or each
421 * other's VMID after force_vm_exit returns since the
422 * kvm_vmid_lock blocks them from reentry to the guest.
424 force_vm_exit(cpu_all_mask
);
426 * Now broadcast TLB + ICACHE invalidation over the inner
427 * shareable domain to make sure all data structures are
430 kvm_call_hyp(__kvm_flush_vm_context
);
433 kvm
->arch
.vmid_gen
= atomic64_read(&kvm_vmid_gen
);
434 kvm
->arch
.vmid
= kvm_next_vmid
;
437 /* update vttbr to be used with the new vmid */
438 pgd_phys
= virt_to_phys(kvm_get_hwpgd(kvm
));
439 BUG_ON(pgd_phys
& ~VTTBR_BADDR_MASK
);
440 vmid
= ((u64
)(kvm
->arch
.vmid
) << VTTBR_VMID_SHIFT
) & VTTBR_VMID_MASK
;
441 kvm
->arch
.vttbr
= pgd_phys
| vmid
;
443 spin_unlock(&kvm_vmid_lock
);
446 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
448 struct kvm
*kvm
= vcpu
->kvm
;
451 if (likely(vcpu
->arch
.has_run_once
))
454 vcpu
->arch
.has_run_once
= true;
457 * Map the VGIC hardware resources before running a vcpu the first
460 if (unlikely(irqchip_in_kernel(kvm
) && !vgic_ready(kvm
))) {
461 ret
= kvm_vgic_map_resources(kvm
);
467 * Enable the arch timers only if we have an in-kernel VGIC
468 * and it has been properly initialized, since we cannot handle
469 * interrupts from the virtual timer with a userspace gic.
471 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
))
472 kvm_timer_enable(kvm
);
477 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
479 return vgic_initialized(kvm
);
482 static void kvm_arm_halt_guest(struct kvm
*kvm
) __maybe_unused
;
483 static void kvm_arm_resume_guest(struct kvm
*kvm
) __maybe_unused
;
485 static void kvm_arm_halt_guest(struct kvm
*kvm
)
488 struct kvm_vcpu
*vcpu
;
490 kvm_for_each_vcpu(i
, vcpu
, kvm
)
491 vcpu
->arch
.pause
= true;
492 force_vm_exit(cpu_all_mask
);
495 static void kvm_arm_resume_guest(struct kvm
*kvm
)
498 struct kvm_vcpu
*vcpu
;
500 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
501 wait_queue_head_t
*wq
= kvm_arch_vcpu_wq(vcpu
);
503 vcpu
->arch
.pause
= false;
504 wake_up_interruptible(wq
);
508 static void vcpu_sleep(struct kvm_vcpu
*vcpu
)
510 wait_queue_head_t
*wq
= kvm_arch_vcpu_wq(vcpu
);
512 wait_event_interruptible(*wq
, ((!vcpu
->arch
.power_off
) &&
513 (!vcpu
->arch
.pause
)));
516 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
518 return vcpu
->arch
.target
>= 0;
522 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
523 * @vcpu: The VCPU pointer
524 * @run: The kvm_run structure pointer used for userspace state exchange
526 * This function is called through the VCPU_RUN ioctl called from user space. It
527 * will execute VM code in a loop until the time slice for the process is used
528 * or some emulation is needed from user space in which case the function will
529 * return with return value 0 and with the kvm_run structure filled in with the
530 * required data for the requested emulation.
532 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
537 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
540 ret
= kvm_vcpu_first_run_init(vcpu
);
544 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
545 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
550 if (vcpu
->sigset_active
)
551 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
554 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
557 * Check conditions before entering the guest
561 update_vttbr(vcpu
->kvm
);
563 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
)
567 * Disarming the background timer must be done in a
568 * preemptible context, as this call may sleep.
570 kvm_timer_flush_hwstate(vcpu
);
573 * Preparing the interrupts to be injected also
574 * involves poking the GIC, which must be done in a
575 * non-preemptible context.
578 kvm_vgic_flush_hwstate(vcpu
);
583 * Re-check atomic conditions
585 if (signal_pending(current
)) {
587 run
->exit_reason
= KVM_EXIT_INTR
;
590 if (ret
<= 0 || need_new_vmid_gen(vcpu
->kvm
) ||
591 vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
593 kvm_timer_sync_hwstate(vcpu
);
594 kvm_vgic_sync_hwstate(vcpu
);
599 kvm_arm_setup_debug(vcpu
);
601 /**************************************************************
604 trace_kvm_entry(*vcpu_pc(vcpu
));
606 vcpu
->mode
= IN_GUEST_MODE
;
608 ret
= kvm_call_hyp(__kvm_vcpu_run
, vcpu
);
610 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
613 *************************************************************/
615 kvm_arm_clear_debug(vcpu
);
618 * We may have taken a host interrupt in HYP mode (ie
619 * while executing the guest). This interrupt is still
620 * pending, as we haven't serviced it yet!
622 * We're now back in SVC mode, with interrupts
623 * disabled. Enabling the interrupts now will have
624 * the effect of taking the interrupt again, in SVC
630 * We do local_irq_enable() before calling kvm_guest_exit() so
631 * that if a timer interrupt hits while running the guest we
632 * account that tick as being spent in the guest. We enable
633 * preemption after calling kvm_guest_exit() so that if we get
634 * preempted we make sure ticks after that is not counted as
638 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
641 * We must sync the timer state before the vgic state so that
642 * the vgic can properly sample the updated state of the
645 kvm_timer_sync_hwstate(vcpu
);
647 kvm_vgic_sync_hwstate(vcpu
);
651 ret
= handle_exit(vcpu
, run
, ret
);
654 if (vcpu
->sigset_active
)
655 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
659 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
665 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
666 bit_index
= __ffs(HCR_VI
);
667 else /* KVM_ARM_IRQ_CPU_FIQ */
668 bit_index
= __ffs(HCR_VF
);
670 ptr
= (unsigned long *)&vcpu
->arch
.irq_lines
;
672 set
= test_and_set_bit(bit_index
, ptr
);
674 set
= test_and_clear_bit(bit_index
, ptr
);
677 * If we didn't change anything, no need to wake up or kick other CPUs
683 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
684 * trigger a world-switch round on the running physical CPU to set the
685 * virtual IRQ/FIQ fields in the HCR appropriately.
692 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
695 u32 irq
= irq_level
->irq
;
696 unsigned int irq_type
, vcpu_idx
, irq_num
;
697 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
698 struct kvm_vcpu
*vcpu
= NULL
;
699 bool level
= irq_level
->level
;
701 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
702 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
703 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
705 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
708 case KVM_ARM_IRQ_TYPE_CPU
:
709 if (irqchip_in_kernel(kvm
))
712 if (vcpu_idx
>= nrcpus
)
715 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
719 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
722 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
723 case KVM_ARM_IRQ_TYPE_PPI
:
724 if (!irqchip_in_kernel(kvm
))
727 if (vcpu_idx
>= nrcpus
)
730 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
734 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
737 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
);
738 case KVM_ARM_IRQ_TYPE_SPI
:
739 if (!irqchip_in_kernel(kvm
))
742 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
745 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
);
751 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
752 const struct kvm_vcpu_init
*init
)
755 int phys_target
= kvm_target_cpu();
757 if (init
->target
!= phys_target
)
761 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
762 * use the same target.
764 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
767 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
768 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
769 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
771 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
775 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
776 * use the same feature set.
778 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
779 test_bit(i
, vcpu
->arch
.features
) != set
)
783 set_bit(i
, vcpu
->arch
.features
);
786 vcpu
->arch
.target
= phys_target
;
788 /* Now we know what it is, we can reset it. */
789 return kvm_reset_vcpu(vcpu
);
793 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
794 struct kvm_vcpu_init
*init
)
798 ret
= kvm_vcpu_set_target(vcpu
, init
);
803 * Ensure a rebooted VM will fault in RAM pages and detect if the
804 * guest MMU is turned off and flush the caches as needed.
806 if (vcpu
->arch
.has_run_once
)
807 stage2_unmap_vm(vcpu
->kvm
);
809 vcpu_reset_hcr(vcpu
);
812 * Handle the "start in power-off" case.
814 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
815 vcpu
->arch
.power_off
= true;
817 vcpu
->arch
.power_off
= false;
822 long kvm_arch_vcpu_ioctl(struct file
*filp
,
823 unsigned int ioctl
, unsigned long arg
)
825 struct kvm_vcpu
*vcpu
= filp
->private_data
;
826 void __user
*argp
= (void __user
*)arg
;
829 case KVM_ARM_VCPU_INIT
: {
830 struct kvm_vcpu_init init
;
832 if (copy_from_user(&init
, argp
, sizeof(init
)))
835 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
837 case KVM_SET_ONE_REG
:
838 case KVM_GET_ONE_REG
: {
839 struct kvm_one_reg reg
;
841 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
844 if (copy_from_user(®
, argp
, sizeof(reg
)))
846 if (ioctl
== KVM_SET_ONE_REG
)
847 return kvm_arm_set_reg(vcpu
, ®
);
849 return kvm_arm_get_reg(vcpu
, ®
);
851 case KVM_GET_REG_LIST
: {
852 struct kvm_reg_list __user
*user_list
= argp
;
853 struct kvm_reg_list reg_list
;
856 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
859 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
862 reg_list
.n
= kvm_arm_num_regs(vcpu
);
863 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
867 return kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
875 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
877 * @log: slot id and address to which we copy the log
879 * Steps 1-4 below provide general overview of dirty page logging. See
880 * kvm_get_dirty_log_protect() function description for additional details.
882 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
883 * always flush the TLB (step 4) even if previous step failed and the dirty
884 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
885 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
886 * writes will be marked dirty for next log read.
888 * 1. Take a snapshot of the bit and clear it if needed.
889 * 2. Write protect the corresponding page.
890 * 3. Copy the snapshot to the userspace.
891 * 4. Flush TLB's if needed.
893 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
895 bool is_dirty
= false;
898 mutex_lock(&kvm
->slots_lock
);
900 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
903 kvm_flush_remote_tlbs(kvm
);
905 mutex_unlock(&kvm
->slots_lock
);
909 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
910 struct kvm_arm_device_addr
*dev_addr
)
912 unsigned long dev_id
, type
;
914 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
915 KVM_ARM_DEVICE_ID_SHIFT
;
916 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
917 KVM_ARM_DEVICE_TYPE_SHIFT
;
920 case KVM_ARM_DEVICE_VGIC_V2
:
921 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
927 long kvm_arch_vm_ioctl(struct file
*filp
,
928 unsigned int ioctl
, unsigned long arg
)
930 struct kvm
*kvm
= filp
->private_data
;
931 void __user
*argp
= (void __user
*)arg
;
934 case KVM_CREATE_IRQCHIP
: {
935 return kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
937 case KVM_ARM_SET_DEVICE_ADDR
: {
938 struct kvm_arm_device_addr dev_addr
;
940 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
942 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
944 case KVM_ARM_PREFERRED_TARGET
: {
946 struct kvm_vcpu_init init
;
948 err
= kvm_vcpu_preferred_target(&init
);
952 if (copy_to_user(argp
, &init
, sizeof(init
)))
962 static void cpu_init_hyp_mode(void *dummy
)
964 phys_addr_t boot_pgd_ptr
;
966 unsigned long hyp_stack_ptr
;
967 unsigned long stack_page
;
968 unsigned long vector_ptr
;
970 /* Switch from the HYP stub to our own HYP init vector */
971 __hyp_set_vectors(kvm_get_idmap_vector());
973 boot_pgd_ptr
= kvm_mmu_get_boot_httbr();
974 pgd_ptr
= kvm_mmu_get_httbr();
975 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
976 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
977 vector_ptr
= (unsigned long)__kvm_hyp_vector
;
979 __cpu_init_hyp_mode(boot_pgd_ptr
, pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
981 kvm_arm_init_debug();
984 static int hyp_init_cpu_notify(struct notifier_block
*self
,
985 unsigned long action
, void *cpu
)
989 case CPU_STARTING_FROZEN
:
990 if (__hyp_get_vectors() == hyp_default_vectors
)
991 cpu_init_hyp_mode(NULL
);
998 static struct notifier_block hyp_init_cpu_nb
= {
999 .notifier_call
= hyp_init_cpu_notify
,
1002 #ifdef CONFIG_CPU_PM
1003 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1007 if (cmd
== CPU_PM_EXIT
&&
1008 __hyp_get_vectors() == hyp_default_vectors
) {
1009 cpu_init_hyp_mode(NULL
);
1016 static struct notifier_block hyp_init_cpu_pm_nb
= {
1017 .notifier_call
= hyp_init_cpu_pm_notifier
,
1020 static void __init
hyp_cpu_pm_init(void)
1022 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1025 static inline void hyp_cpu_pm_init(void)
1031 * Inits Hyp-mode on all online CPUs
1033 static int init_hyp_mode(void)
1039 * Allocate Hyp PGD and setup Hyp identity mapping
1041 err
= kvm_mmu_init();
1046 * It is probably enough to obtain the default on one
1047 * CPU. It's unlikely to be different on the others.
1049 hyp_default_vectors
= __hyp_get_vectors();
1052 * Allocate stack pages for Hypervisor-mode
1054 for_each_possible_cpu(cpu
) {
1055 unsigned long stack_page
;
1057 stack_page
= __get_free_page(GFP_KERNEL
);
1060 goto out_free_stack_pages
;
1063 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1067 * Map the Hyp-code called directly from the host
1069 err
= create_hyp_mappings(__kvm_hyp_code_start
, __kvm_hyp_code_end
);
1071 kvm_err("Cannot map world-switch code\n");
1072 goto out_free_mappings
;
1076 * Map the Hyp stack pages
1078 for_each_possible_cpu(cpu
) {
1079 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1080 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
);
1083 kvm_err("Cannot map hyp stack\n");
1084 goto out_free_mappings
;
1089 * Map the host CPU structures
1091 kvm_host_cpu_state
= alloc_percpu(kvm_cpu_context_t
);
1092 if (!kvm_host_cpu_state
) {
1094 kvm_err("Cannot allocate host CPU state\n");
1095 goto out_free_mappings
;
1098 for_each_possible_cpu(cpu
) {
1099 kvm_cpu_context_t
*cpu_ctxt
;
1101 cpu_ctxt
= per_cpu_ptr(kvm_host_cpu_state
, cpu
);
1102 err
= create_hyp_mappings(cpu_ctxt
, cpu_ctxt
+ 1);
1105 kvm_err("Cannot map host CPU state: %d\n", err
);
1106 goto out_free_context
;
1111 * Execute the init code on each CPU.
1113 on_each_cpu(cpu_init_hyp_mode
, NULL
, 1);
1116 * Init HYP view of VGIC
1118 err
= kvm_vgic_hyp_init();
1120 goto out_free_context
;
1123 * Init HYP architected timer support
1125 err
= kvm_timer_hyp_init();
1127 goto out_free_context
;
1129 #ifndef CONFIG_HOTPLUG_CPU
1130 free_boot_hyp_pgd();
1135 kvm_info("Hyp mode initialized successfully\n");
1139 free_percpu(kvm_host_cpu_state
);
1142 out_free_stack_pages
:
1143 for_each_possible_cpu(cpu
)
1144 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1146 kvm_err("error initializing Hyp mode: %d\n", err
);
1150 static void check_kvm_target_cpu(void *ret
)
1152 *(int *)ret
= kvm_target_cpu();
1155 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1157 struct kvm_vcpu
*vcpu
;
1160 mpidr
&= MPIDR_HWID_BITMASK
;
1161 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1162 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1169 * Initialize Hyp-mode and memory mappings on all CPUs.
1171 int kvm_arch_init(void *opaque
)
1176 if (!is_hyp_mode_available()) {
1177 kvm_err("HYP mode not available\n");
1181 for_each_online_cpu(cpu
) {
1182 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1184 kvm_err("Error, CPU %d not supported!\n", cpu
);
1189 cpu_notifier_register_begin();
1191 err
= init_hyp_mode();
1195 err
= __register_cpu_notifier(&hyp_init_cpu_nb
);
1197 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err
);
1201 cpu_notifier_register_done();
1205 kvm_coproc_table_init();
1208 cpu_notifier_register_done();
1212 /* NOP: Compiling as a module not supported */
1213 void kvm_arch_exit(void)
1215 kvm_perf_teardown();
1218 static int arm_init(void)
1220 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1224 module_init(arm_init
);