p4-clockmod: Replace cpu_sibling_mask() with topology_sibling_cpumask()
[linux/fpc-iii.git] / drivers / iommu / arm-smmu.c
blob66a803b9dd3af928024d853995ed31383e0a8dd2
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
29 #define pr_fmt(fmt) "arm-smmu: " fmt
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
45 #include <linux/amba/bus.h>
47 #include "io-pgtable.h"
49 /* Maximum number of stream IDs assigned to a single device */
50 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
52 /* Maximum number of context banks per SMMU */
53 #define ARM_SMMU_MAX_CBS 128
55 /* Maximum number of mapping groups per SMMU */
56 #define ARM_SMMU_MAX_SMRS 128
58 /* SMMU global address space */
59 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
60 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63 * SMMU global address space with conditional offset to access secure
64 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
65 * nsGFSYNR0: 0x450)
67 #define ARM_SMMU_GR0_NS(smmu) \
68 ((smmu)->base + \
69 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
70 ? 0x400 : 0))
72 /* Configuration registers */
73 #define ARM_SMMU_GR0_sCR0 0x0
74 #define sCR0_CLIENTPD (1 << 0)
75 #define sCR0_GFRE (1 << 1)
76 #define sCR0_GFIE (1 << 2)
77 #define sCR0_GCFGFRE (1 << 4)
78 #define sCR0_GCFGFIE (1 << 5)
79 #define sCR0_USFCFG (1 << 10)
80 #define sCR0_VMIDPNE (1 << 11)
81 #define sCR0_PTM (1 << 12)
82 #define sCR0_FB (1 << 13)
83 #define sCR0_BSU_SHIFT 14
84 #define sCR0_BSU_MASK 0x3
86 /* Identification registers */
87 #define ARM_SMMU_GR0_ID0 0x20
88 #define ARM_SMMU_GR0_ID1 0x24
89 #define ARM_SMMU_GR0_ID2 0x28
90 #define ARM_SMMU_GR0_ID3 0x2c
91 #define ARM_SMMU_GR0_ID4 0x30
92 #define ARM_SMMU_GR0_ID5 0x34
93 #define ARM_SMMU_GR0_ID6 0x38
94 #define ARM_SMMU_GR0_ID7 0x3c
95 #define ARM_SMMU_GR0_sGFSR 0x48
96 #define ARM_SMMU_GR0_sGFSYNR0 0x50
97 #define ARM_SMMU_GR0_sGFSYNR1 0x54
98 #define ARM_SMMU_GR0_sGFSYNR2 0x58
100 #define ID0_S1TS (1 << 30)
101 #define ID0_S2TS (1 << 29)
102 #define ID0_NTS (1 << 28)
103 #define ID0_SMS (1 << 27)
104 #define ID0_ATOSNS (1 << 26)
105 #define ID0_CTTW (1 << 14)
106 #define ID0_NUMIRPT_SHIFT 16
107 #define ID0_NUMIRPT_MASK 0xff
108 #define ID0_NUMSIDB_SHIFT 9
109 #define ID0_NUMSIDB_MASK 0xf
110 #define ID0_NUMSMRG_SHIFT 0
111 #define ID0_NUMSMRG_MASK 0xff
113 #define ID1_PAGESIZE (1 << 31)
114 #define ID1_NUMPAGENDXB_SHIFT 28
115 #define ID1_NUMPAGENDXB_MASK 7
116 #define ID1_NUMS2CB_SHIFT 16
117 #define ID1_NUMS2CB_MASK 0xff
118 #define ID1_NUMCB_SHIFT 0
119 #define ID1_NUMCB_MASK 0xff
121 #define ID2_OAS_SHIFT 4
122 #define ID2_OAS_MASK 0xf
123 #define ID2_IAS_SHIFT 0
124 #define ID2_IAS_MASK 0xf
125 #define ID2_UBS_SHIFT 8
126 #define ID2_UBS_MASK 0xf
127 #define ID2_PTFS_4K (1 << 12)
128 #define ID2_PTFS_16K (1 << 13)
129 #define ID2_PTFS_64K (1 << 14)
131 /* Global TLB invalidation */
132 #define ARM_SMMU_GR0_TLBIVMID 0x64
133 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
134 #define ARM_SMMU_GR0_TLBIALLH 0x6c
135 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
136 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
137 #define sTLBGSTATUS_GSACTIVE (1 << 0)
138 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
140 /* Stream mapping registers */
141 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
142 #define SMR_VALID (1 << 31)
143 #define SMR_MASK_SHIFT 16
144 #define SMR_MASK_MASK 0x7fff
145 #define SMR_ID_SHIFT 0
146 #define SMR_ID_MASK 0x7fff
148 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
149 #define S2CR_CBNDX_SHIFT 0
150 #define S2CR_CBNDX_MASK 0xff
151 #define S2CR_TYPE_SHIFT 16
152 #define S2CR_TYPE_MASK 0x3
153 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
154 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
155 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
157 /* Context bank attribute registers */
158 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
159 #define CBAR_VMID_SHIFT 0
160 #define CBAR_VMID_MASK 0xff
161 #define CBAR_S1_BPSHCFG_SHIFT 8
162 #define CBAR_S1_BPSHCFG_MASK 3
163 #define CBAR_S1_BPSHCFG_NSH 3
164 #define CBAR_S1_MEMATTR_SHIFT 12
165 #define CBAR_S1_MEMATTR_MASK 0xf
166 #define CBAR_S1_MEMATTR_WB 0xf
167 #define CBAR_TYPE_SHIFT 16
168 #define CBAR_TYPE_MASK 0x3
169 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
170 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
171 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
172 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
173 #define CBAR_IRPTNDX_SHIFT 24
174 #define CBAR_IRPTNDX_MASK 0xff
176 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
177 #define CBA2R_RW64_32BIT (0 << 0)
178 #define CBA2R_RW64_64BIT (1 << 0)
180 /* Translation context bank */
181 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
182 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
184 #define ARM_SMMU_CB_SCTLR 0x0
185 #define ARM_SMMU_CB_RESUME 0x8
186 #define ARM_SMMU_CB_TTBCR2 0x10
187 #define ARM_SMMU_CB_TTBR0_LO 0x20
188 #define ARM_SMMU_CB_TTBR0_HI 0x24
189 #define ARM_SMMU_CB_TTBR1_LO 0x28
190 #define ARM_SMMU_CB_TTBR1_HI 0x2c
191 #define ARM_SMMU_CB_TTBCR 0x30
192 #define ARM_SMMU_CB_S1_MAIR0 0x38
193 #define ARM_SMMU_CB_S1_MAIR1 0x3c
194 #define ARM_SMMU_CB_PAR_LO 0x50
195 #define ARM_SMMU_CB_PAR_HI 0x54
196 #define ARM_SMMU_CB_FSR 0x58
197 #define ARM_SMMU_CB_FAR_LO 0x60
198 #define ARM_SMMU_CB_FAR_HI 0x64
199 #define ARM_SMMU_CB_FSYNR0 0x68
200 #define ARM_SMMU_CB_S1_TLBIVA 0x600
201 #define ARM_SMMU_CB_S1_TLBIASID 0x610
202 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
203 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
204 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
205 #define ARM_SMMU_CB_ATS1PR_LO 0x800
206 #define ARM_SMMU_CB_ATS1PR_HI 0x804
207 #define ARM_SMMU_CB_ATSR 0x8f0
209 #define SCTLR_S1_ASIDPNE (1 << 12)
210 #define SCTLR_CFCFG (1 << 7)
211 #define SCTLR_CFIE (1 << 6)
212 #define SCTLR_CFRE (1 << 5)
213 #define SCTLR_E (1 << 4)
214 #define SCTLR_AFE (1 << 2)
215 #define SCTLR_TRE (1 << 1)
216 #define SCTLR_M (1 << 0)
217 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
219 #define CB_PAR_F (1 << 0)
221 #define ATSR_ACTIVE (1 << 0)
223 #define RESUME_RETRY (0 << 0)
224 #define RESUME_TERMINATE (1 << 0)
226 #define TTBCR2_SEP_SHIFT 15
227 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
229 #define TTBRn_HI_ASID_SHIFT 16
231 #define FSR_MULTI (1 << 31)
232 #define FSR_SS (1 << 30)
233 #define FSR_UUT (1 << 8)
234 #define FSR_ASF (1 << 7)
235 #define FSR_TLBLKF (1 << 6)
236 #define FSR_TLBMCF (1 << 5)
237 #define FSR_EF (1 << 4)
238 #define FSR_PF (1 << 3)
239 #define FSR_AFF (1 << 2)
240 #define FSR_TF (1 << 1)
242 #define FSR_IGN (FSR_AFF | FSR_ASF | \
243 FSR_TLBMCF | FSR_TLBLKF)
244 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
245 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
247 #define FSYNR0_WNR (1 << 4)
249 static int force_stage;
250 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
251 MODULE_PARM_DESC(force_stage,
252 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
254 enum arm_smmu_arch_version {
255 ARM_SMMU_V1 = 1,
256 ARM_SMMU_V2,
259 struct arm_smmu_smr {
260 u8 idx;
261 u16 mask;
262 u16 id;
265 struct arm_smmu_master_cfg {
266 int num_streamids;
267 u16 streamids[MAX_MASTER_STREAMIDS];
268 struct arm_smmu_smr *smrs;
271 struct arm_smmu_master {
272 struct device_node *of_node;
273 struct rb_node node;
274 struct arm_smmu_master_cfg cfg;
277 struct arm_smmu_device {
278 struct device *dev;
280 void __iomem *base;
281 unsigned long size;
282 unsigned long pgshift;
284 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
285 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
286 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
287 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
288 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
289 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
290 u32 features;
292 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
293 u32 options;
294 enum arm_smmu_arch_version version;
296 u32 num_context_banks;
297 u32 num_s2_context_banks;
298 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
299 atomic_t irptndx;
301 u32 num_mapping_groups;
302 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
304 unsigned long va_size;
305 unsigned long ipa_size;
306 unsigned long pa_size;
308 u32 num_global_irqs;
309 u32 num_context_irqs;
310 unsigned int *irqs;
312 struct list_head list;
313 struct rb_root masters;
316 struct arm_smmu_cfg {
317 u8 cbndx;
318 u8 irptndx;
319 u32 cbar;
321 #define INVALID_IRPTNDX 0xff
323 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
324 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
326 enum arm_smmu_domain_stage {
327 ARM_SMMU_DOMAIN_S1 = 0,
328 ARM_SMMU_DOMAIN_S2,
329 ARM_SMMU_DOMAIN_NESTED,
332 struct arm_smmu_domain {
333 struct arm_smmu_device *smmu;
334 struct io_pgtable_ops *pgtbl_ops;
335 spinlock_t pgtbl_lock;
336 struct arm_smmu_cfg cfg;
337 enum arm_smmu_domain_stage stage;
338 struct mutex init_mutex; /* Protects smmu pointer */
339 struct iommu_domain domain;
342 static struct iommu_ops arm_smmu_ops;
344 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
345 static LIST_HEAD(arm_smmu_devices);
347 struct arm_smmu_option_prop {
348 u32 opt;
349 const char *prop;
352 static struct arm_smmu_option_prop arm_smmu_options[] = {
353 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
354 { 0, NULL},
357 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
359 return container_of(dom, struct arm_smmu_domain, domain);
362 static void parse_driver_options(struct arm_smmu_device *smmu)
364 int i = 0;
366 do {
367 if (of_property_read_bool(smmu->dev->of_node,
368 arm_smmu_options[i].prop)) {
369 smmu->options |= arm_smmu_options[i].opt;
370 dev_notice(smmu->dev, "option %s\n",
371 arm_smmu_options[i].prop);
373 } while (arm_smmu_options[++i].opt);
376 static struct device_node *dev_get_dev_node(struct device *dev)
378 if (dev_is_pci(dev)) {
379 struct pci_bus *bus = to_pci_dev(dev)->bus;
381 while (!pci_is_root_bus(bus))
382 bus = bus->parent;
383 return bus->bridge->parent->of_node;
386 return dev->of_node;
389 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
390 struct device_node *dev_node)
392 struct rb_node *node = smmu->masters.rb_node;
394 while (node) {
395 struct arm_smmu_master *master;
397 master = container_of(node, struct arm_smmu_master, node);
399 if (dev_node < master->of_node)
400 node = node->rb_left;
401 else if (dev_node > master->of_node)
402 node = node->rb_right;
403 else
404 return master;
407 return NULL;
410 static struct arm_smmu_master_cfg *
411 find_smmu_master_cfg(struct device *dev)
413 struct arm_smmu_master_cfg *cfg = NULL;
414 struct iommu_group *group = iommu_group_get(dev);
416 if (group) {
417 cfg = iommu_group_get_iommudata(group);
418 iommu_group_put(group);
421 return cfg;
424 static int insert_smmu_master(struct arm_smmu_device *smmu,
425 struct arm_smmu_master *master)
427 struct rb_node **new, *parent;
429 new = &smmu->masters.rb_node;
430 parent = NULL;
431 while (*new) {
432 struct arm_smmu_master *this
433 = container_of(*new, struct arm_smmu_master, node);
435 parent = *new;
436 if (master->of_node < this->of_node)
437 new = &((*new)->rb_left);
438 else if (master->of_node > this->of_node)
439 new = &((*new)->rb_right);
440 else
441 return -EEXIST;
444 rb_link_node(&master->node, parent, new);
445 rb_insert_color(&master->node, &smmu->masters);
446 return 0;
449 static int register_smmu_master(struct arm_smmu_device *smmu,
450 struct device *dev,
451 struct of_phandle_args *masterspec)
453 int i;
454 struct arm_smmu_master *master;
456 master = find_smmu_master(smmu, masterspec->np);
457 if (master) {
458 dev_err(dev,
459 "rejecting multiple registrations for master device %s\n",
460 masterspec->np->name);
461 return -EBUSY;
464 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
465 dev_err(dev,
466 "reached maximum number (%d) of stream IDs for master device %s\n",
467 MAX_MASTER_STREAMIDS, masterspec->np->name);
468 return -ENOSPC;
471 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
472 if (!master)
473 return -ENOMEM;
475 master->of_node = masterspec->np;
476 master->cfg.num_streamids = masterspec->args_count;
478 for (i = 0; i < master->cfg.num_streamids; ++i) {
479 u16 streamid = masterspec->args[i];
481 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
482 (streamid >= smmu->num_mapping_groups)) {
483 dev_err(dev,
484 "stream ID for master device %s greater than maximum allowed (%d)\n",
485 masterspec->np->name, smmu->num_mapping_groups);
486 return -ERANGE;
488 master->cfg.streamids[i] = streamid;
490 return insert_smmu_master(smmu, master);
493 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
495 struct arm_smmu_device *smmu;
496 struct arm_smmu_master *master = NULL;
497 struct device_node *dev_node = dev_get_dev_node(dev);
499 spin_lock(&arm_smmu_devices_lock);
500 list_for_each_entry(smmu, &arm_smmu_devices, list) {
501 master = find_smmu_master(smmu, dev_node);
502 if (master)
503 break;
505 spin_unlock(&arm_smmu_devices_lock);
507 return master ? smmu : NULL;
510 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
512 int idx;
514 do {
515 idx = find_next_zero_bit(map, end, start);
516 if (idx == end)
517 return -ENOSPC;
518 } while (test_and_set_bit(idx, map));
520 return idx;
523 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
525 clear_bit(idx, map);
528 /* Wait for any pending TLB invalidations to complete */
529 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
531 int count = 0;
532 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
534 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
535 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
536 & sTLBGSTATUS_GSACTIVE) {
537 cpu_relax();
538 if (++count == TLB_LOOP_TIMEOUT) {
539 dev_err_ratelimited(smmu->dev,
540 "TLB sync timed out -- SMMU may be deadlocked\n");
541 return;
543 udelay(1);
547 static void arm_smmu_tlb_sync(void *cookie)
549 struct arm_smmu_domain *smmu_domain = cookie;
550 __arm_smmu_tlb_sync(smmu_domain->smmu);
553 static void arm_smmu_tlb_inv_context(void *cookie)
555 struct arm_smmu_domain *smmu_domain = cookie;
556 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
557 struct arm_smmu_device *smmu = smmu_domain->smmu;
558 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
559 void __iomem *base;
561 if (stage1) {
562 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
563 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
564 base + ARM_SMMU_CB_S1_TLBIASID);
565 } else {
566 base = ARM_SMMU_GR0(smmu);
567 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
568 base + ARM_SMMU_GR0_TLBIVMID);
571 __arm_smmu_tlb_sync(smmu);
574 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
575 bool leaf, void *cookie)
577 struct arm_smmu_domain *smmu_domain = cookie;
578 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
579 struct arm_smmu_device *smmu = smmu_domain->smmu;
580 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
581 void __iomem *reg;
583 if (stage1) {
584 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
585 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
587 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
588 iova &= ~12UL;
589 iova |= ARM_SMMU_CB_ASID(cfg);
590 writel_relaxed(iova, reg);
591 #ifdef CONFIG_64BIT
592 } else {
593 iova >>= 12;
594 iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
595 writeq_relaxed(iova, reg);
596 #endif
598 #ifdef CONFIG_64BIT
599 } else if (smmu->version == ARM_SMMU_V2) {
600 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
601 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
602 ARM_SMMU_CB_S2_TLBIIPAS2;
603 writeq_relaxed(iova >> 12, reg);
604 #endif
605 } else {
606 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
607 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
611 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
613 struct arm_smmu_domain *smmu_domain = cookie;
614 struct arm_smmu_device *smmu = smmu_domain->smmu;
615 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
618 /* Ensure new page tables are visible to the hardware walker */
619 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
620 dsb(ishst);
621 } else {
623 * If the SMMU can't walk tables in the CPU caches, treat them
624 * like non-coherent DMA since we need to flush the new entries
625 * all the way out to memory. There's no possibility of
626 * recursion here as the SMMU table walker will not be wired
627 * through another SMMU.
629 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
630 DMA_TO_DEVICE);
634 static struct iommu_gather_ops arm_smmu_gather_ops = {
635 .tlb_flush_all = arm_smmu_tlb_inv_context,
636 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
637 .tlb_sync = arm_smmu_tlb_sync,
638 .flush_pgtable = arm_smmu_flush_pgtable,
641 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
643 int flags, ret;
644 u32 fsr, far, fsynr, resume;
645 unsigned long iova;
646 struct iommu_domain *domain = dev;
647 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
648 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
649 struct arm_smmu_device *smmu = smmu_domain->smmu;
650 void __iomem *cb_base;
652 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
653 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
655 if (!(fsr & FSR_FAULT))
656 return IRQ_NONE;
658 if (fsr & FSR_IGN)
659 dev_err_ratelimited(smmu->dev,
660 "Unexpected context fault (fsr 0x%x)\n",
661 fsr);
663 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
664 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
666 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
667 iova = far;
668 #ifdef CONFIG_64BIT
669 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
670 iova |= ((unsigned long)far << 32);
671 #endif
673 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
674 ret = IRQ_HANDLED;
675 resume = RESUME_RETRY;
676 } else {
677 dev_err_ratelimited(smmu->dev,
678 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
679 iova, fsynr, cfg->cbndx);
680 ret = IRQ_NONE;
681 resume = RESUME_TERMINATE;
684 /* Clear the faulting FSR */
685 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
687 /* Retry or terminate any stalled transactions */
688 if (fsr & FSR_SS)
689 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
691 return ret;
694 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
696 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
697 struct arm_smmu_device *smmu = dev;
698 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
700 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
701 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
702 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
703 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
705 if (!gfsr)
706 return IRQ_NONE;
708 dev_err_ratelimited(smmu->dev,
709 "Unexpected global fault, this could be serious\n");
710 dev_err_ratelimited(smmu->dev,
711 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
712 gfsr, gfsynr0, gfsynr1, gfsynr2);
714 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
715 return IRQ_HANDLED;
718 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
719 struct io_pgtable_cfg *pgtbl_cfg)
721 u32 reg;
722 bool stage1;
723 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
724 struct arm_smmu_device *smmu = smmu_domain->smmu;
725 void __iomem *cb_base, *gr0_base, *gr1_base;
727 gr0_base = ARM_SMMU_GR0(smmu);
728 gr1_base = ARM_SMMU_GR1(smmu);
729 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
730 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
732 if (smmu->version > ARM_SMMU_V1) {
734 * CBA2R.
735 * *Must* be initialised before CBAR thanks to VMID16
736 * architectural oversight affected some implementations.
738 #ifdef CONFIG_64BIT
739 reg = CBA2R_RW64_64BIT;
740 #else
741 reg = CBA2R_RW64_32BIT;
742 #endif
743 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
746 /* CBAR */
747 reg = cfg->cbar;
748 if (smmu->version == ARM_SMMU_V1)
749 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
752 * Use the weakest shareability/memory types, so they are
753 * overridden by the ttbcr/pte.
755 if (stage1) {
756 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
757 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
758 } else {
759 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
761 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
763 /* TTBRs */
764 if (stage1) {
765 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
766 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
767 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
768 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
769 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
771 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
772 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
773 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
774 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
775 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
776 } else {
777 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
778 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
779 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
780 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
783 /* TTBCR */
784 if (stage1) {
785 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
786 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
787 if (smmu->version > ARM_SMMU_V1) {
788 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
789 reg |= TTBCR2_SEP_UPSTREAM;
790 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
792 } else {
793 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
794 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
797 /* MAIRs (stage-1 only) */
798 if (stage1) {
799 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
800 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
801 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
802 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
805 /* SCTLR */
806 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
807 if (stage1)
808 reg |= SCTLR_S1_ASIDPNE;
809 #ifdef __BIG_ENDIAN
810 reg |= SCTLR_E;
811 #endif
812 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
815 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
816 struct arm_smmu_device *smmu)
818 int irq, start, ret = 0;
819 unsigned long ias, oas;
820 struct io_pgtable_ops *pgtbl_ops;
821 struct io_pgtable_cfg pgtbl_cfg;
822 enum io_pgtable_fmt fmt;
823 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
824 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
826 mutex_lock(&smmu_domain->init_mutex);
827 if (smmu_domain->smmu)
828 goto out_unlock;
831 * Mapping the requested stage onto what we support is surprisingly
832 * complicated, mainly because the spec allows S1+S2 SMMUs without
833 * support for nested translation. That means we end up with the
834 * following table:
836 * Requested Supported Actual
837 * S1 N S1
838 * S1 S1+S2 S1
839 * S1 S2 S2
840 * S1 S1 S1
841 * N N N
842 * N S1+S2 S2
843 * N S2 S2
844 * N S1 S1
846 * Note that you can't actually request stage-2 mappings.
848 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
849 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
850 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
851 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
853 switch (smmu_domain->stage) {
854 case ARM_SMMU_DOMAIN_S1:
855 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
856 start = smmu->num_s2_context_banks;
857 ias = smmu->va_size;
858 oas = smmu->ipa_size;
859 if (IS_ENABLED(CONFIG_64BIT))
860 fmt = ARM_64_LPAE_S1;
861 else
862 fmt = ARM_32_LPAE_S1;
863 break;
864 case ARM_SMMU_DOMAIN_NESTED:
866 * We will likely want to change this if/when KVM gets
867 * involved.
869 case ARM_SMMU_DOMAIN_S2:
870 cfg->cbar = CBAR_TYPE_S2_TRANS;
871 start = 0;
872 ias = smmu->ipa_size;
873 oas = smmu->pa_size;
874 if (IS_ENABLED(CONFIG_64BIT))
875 fmt = ARM_64_LPAE_S2;
876 else
877 fmt = ARM_32_LPAE_S2;
878 break;
879 default:
880 ret = -EINVAL;
881 goto out_unlock;
884 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
885 smmu->num_context_banks);
886 if (IS_ERR_VALUE(ret))
887 goto out_unlock;
889 cfg->cbndx = ret;
890 if (smmu->version == ARM_SMMU_V1) {
891 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
892 cfg->irptndx %= smmu->num_context_irqs;
893 } else {
894 cfg->irptndx = cfg->cbndx;
897 pgtbl_cfg = (struct io_pgtable_cfg) {
898 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
899 .ias = ias,
900 .oas = oas,
901 .tlb = &arm_smmu_gather_ops,
904 smmu_domain->smmu = smmu;
905 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
906 if (!pgtbl_ops) {
907 ret = -ENOMEM;
908 goto out_clear_smmu;
911 /* Update our support page sizes to reflect the page table format */
912 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
914 /* Initialise the context bank with our page table cfg */
915 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
918 * Request context fault interrupt. Do this last to avoid the
919 * handler seeing a half-initialised domain state.
921 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
922 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
923 "arm-smmu-context-fault", domain);
924 if (IS_ERR_VALUE(ret)) {
925 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
926 cfg->irptndx, irq);
927 cfg->irptndx = INVALID_IRPTNDX;
930 mutex_unlock(&smmu_domain->init_mutex);
932 /* Publish page table ops for map/unmap */
933 smmu_domain->pgtbl_ops = pgtbl_ops;
934 return 0;
936 out_clear_smmu:
937 smmu_domain->smmu = NULL;
938 out_unlock:
939 mutex_unlock(&smmu_domain->init_mutex);
940 return ret;
943 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
945 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
946 struct arm_smmu_device *smmu = smmu_domain->smmu;
947 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
948 void __iomem *cb_base;
949 int irq;
951 if (!smmu)
952 return;
955 * Disable the context bank and free the page tables before freeing
956 * it.
958 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
959 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
961 if (cfg->irptndx != INVALID_IRPTNDX) {
962 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
963 free_irq(irq, domain);
966 if (smmu_domain->pgtbl_ops)
967 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
969 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
972 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
974 struct arm_smmu_domain *smmu_domain;
976 if (type != IOMMU_DOMAIN_UNMANAGED)
977 return NULL;
979 * Allocate the domain and initialise some of its data structures.
980 * We can't really do anything meaningful until we've added a
981 * master.
983 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
984 if (!smmu_domain)
985 return NULL;
987 mutex_init(&smmu_domain->init_mutex);
988 spin_lock_init(&smmu_domain->pgtbl_lock);
990 return &smmu_domain->domain;
993 static void arm_smmu_domain_free(struct iommu_domain *domain)
995 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
998 * Free the domain resources. We assume that all devices have
999 * already been detached.
1001 arm_smmu_destroy_domain_context(domain);
1002 kfree(smmu_domain);
1005 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1006 struct arm_smmu_master_cfg *cfg)
1008 int i;
1009 struct arm_smmu_smr *smrs;
1010 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1012 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1013 return 0;
1015 if (cfg->smrs)
1016 return -EEXIST;
1018 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1019 if (!smrs) {
1020 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1021 cfg->num_streamids);
1022 return -ENOMEM;
1025 /* Allocate the SMRs on the SMMU */
1026 for (i = 0; i < cfg->num_streamids; ++i) {
1027 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1028 smmu->num_mapping_groups);
1029 if (IS_ERR_VALUE(idx)) {
1030 dev_err(smmu->dev, "failed to allocate free SMR\n");
1031 goto err_free_smrs;
1034 smrs[i] = (struct arm_smmu_smr) {
1035 .idx = idx,
1036 .mask = 0, /* We don't currently share SMRs */
1037 .id = cfg->streamids[i],
1041 /* It worked! Now, poke the actual hardware */
1042 for (i = 0; i < cfg->num_streamids; ++i) {
1043 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1044 smrs[i].mask << SMR_MASK_SHIFT;
1045 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1048 cfg->smrs = smrs;
1049 return 0;
1051 err_free_smrs:
1052 while (--i >= 0)
1053 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1054 kfree(smrs);
1055 return -ENOSPC;
1058 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1059 struct arm_smmu_master_cfg *cfg)
1061 int i;
1062 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1063 struct arm_smmu_smr *smrs = cfg->smrs;
1065 if (!smrs)
1066 return;
1068 /* Invalidate the SMRs before freeing back to the allocator */
1069 for (i = 0; i < cfg->num_streamids; ++i) {
1070 u8 idx = smrs[i].idx;
1072 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1073 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1076 cfg->smrs = NULL;
1077 kfree(smrs);
1080 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1081 struct arm_smmu_master_cfg *cfg)
1083 int i, ret;
1084 struct arm_smmu_device *smmu = smmu_domain->smmu;
1085 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1087 /* Devices in an IOMMU group may already be configured */
1088 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1089 if (ret)
1090 return ret == -EEXIST ? 0 : ret;
1092 for (i = 0; i < cfg->num_streamids; ++i) {
1093 u32 idx, s2cr;
1095 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1096 s2cr = S2CR_TYPE_TRANS |
1097 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1098 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1101 return 0;
1104 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1105 struct arm_smmu_master_cfg *cfg)
1107 int i;
1108 struct arm_smmu_device *smmu = smmu_domain->smmu;
1109 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1111 /* An IOMMU group is torn down by the first device to be removed */
1112 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1113 return;
1116 * We *must* clear the S2CR first, because freeing the SMR means
1117 * that it can be re-allocated immediately.
1119 for (i = 0; i < cfg->num_streamids; ++i) {
1120 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1122 writel_relaxed(S2CR_TYPE_BYPASS,
1123 gr0_base + ARM_SMMU_GR0_S2CR(idx));
1126 arm_smmu_master_free_smrs(smmu, cfg);
1129 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1131 int ret;
1132 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1133 struct arm_smmu_device *smmu;
1134 struct arm_smmu_master_cfg *cfg;
1136 smmu = find_smmu_for_device(dev);
1137 if (!smmu) {
1138 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1139 return -ENXIO;
1142 if (dev->archdata.iommu) {
1143 dev_err(dev, "already attached to IOMMU domain\n");
1144 return -EEXIST;
1147 /* Ensure that the domain is finalised */
1148 ret = arm_smmu_init_domain_context(domain, smmu);
1149 if (IS_ERR_VALUE(ret))
1150 return ret;
1153 * Sanity check the domain. We don't support domains across
1154 * different SMMUs.
1156 if (smmu_domain->smmu != smmu) {
1157 dev_err(dev,
1158 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1159 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1160 return -EINVAL;
1163 /* Looks ok, so add the device to the domain */
1164 cfg = find_smmu_master_cfg(dev);
1165 if (!cfg)
1166 return -ENODEV;
1168 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1169 if (!ret)
1170 dev->archdata.iommu = domain;
1171 return ret;
1174 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1176 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1177 struct arm_smmu_master_cfg *cfg;
1179 cfg = find_smmu_master_cfg(dev);
1180 if (!cfg)
1181 return;
1183 dev->archdata.iommu = NULL;
1184 arm_smmu_domain_remove_master(smmu_domain, cfg);
1187 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1188 phys_addr_t paddr, size_t size, int prot)
1190 int ret;
1191 unsigned long flags;
1192 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1193 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1195 if (!ops)
1196 return -ENODEV;
1198 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1199 ret = ops->map(ops, iova, paddr, size, prot);
1200 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1201 return ret;
1204 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1205 size_t size)
1207 size_t ret;
1208 unsigned long flags;
1209 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1210 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1212 if (!ops)
1213 return 0;
1215 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1216 ret = ops->unmap(ops, iova, size);
1217 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1218 return ret;
1221 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1222 dma_addr_t iova)
1224 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225 struct arm_smmu_device *smmu = smmu_domain->smmu;
1226 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1227 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1228 struct device *dev = smmu->dev;
1229 void __iomem *cb_base;
1230 u32 tmp;
1231 u64 phys;
1233 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1235 if (smmu->version == 1) {
1236 u32 reg = iova & ~0xfff;
1237 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1238 } else {
1239 u32 reg = iova & ~0xfff;
1240 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1241 reg = ((u64)iova & ~0xfff) >> 32;
1242 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
1245 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1246 !(tmp & ATSR_ACTIVE), 5, 50)) {
1247 dev_err(dev,
1248 "iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
1249 &iova);
1250 return ops->iova_to_phys(ops, iova);
1253 phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1254 phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1256 if (phys & CB_PAR_F) {
1257 dev_err(dev, "translation fault!\n");
1258 dev_err(dev, "PAR = 0x%llx\n", phys);
1259 return 0;
1262 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1265 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1266 dma_addr_t iova)
1268 phys_addr_t ret;
1269 unsigned long flags;
1270 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1271 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1273 if (!ops)
1274 return 0;
1276 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1277 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1278 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1279 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1280 } else {
1281 ret = ops->iova_to_phys(ops, iova);
1284 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1286 return ret;
1289 static bool arm_smmu_capable(enum iommu_cap cap)
1291 switch (cap) {
1292 case IOMMU_CAP_CACHE_COHERENCY:
1294 * Return true here as the SMMU can always send out coherent
1295 * requests.
1297 return true;
1298 case IOMMU_CAP_INTR_REMAP:
1299 return true; /* MSIs are just memory writes */
1300 case IOMMU_CAP_NOEXEC:
1301 return true;
1302 default:
1303 return false;
1307 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1309 *((u16 *)data) = alias;
1310 return 0; /* Continue walking */
1313 static void __arm_smmu_release_pci_iommudata(void *data)
1315 kfree(data);
1318 static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1320 int i, ret;
1321 u16 sid;
1322 struct iommu_group *group;
1323 struct arm_smmu_master_cfg *cfg;
1325 group = iommu_group_get_for_dev(&pdev->dev);
1326 if (IS_ERR(group))
1327 return PTR_ERR(group);
1329 cfg = iommu_group_get_iommudata(group);
1330 if (!cfg) {
1331 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1332 if (!cfg) {
1333 ret = -ENOMEM;
1334 goto out_put_group;
1337 iommu_group_set_iommudata(group, cfg,
1338 __arm_smmu_release_pci_iommudata);
1341 if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
1342 ret = -ENOSPC;
1343 goto out_put_group;
1347 * Assume Stream ID == Requester ID for now.
1348 * We need a way to describe the ID mappings in FDT.
1350 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1351 for (i = 0; i < cfg->num_streamids; ++i)
1352 if (cfg->streamids[i] == sid)
1353 break;
1355 /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1356 if (i == cfg->num_streamids)
1357 cfg->streamids[cfg->num_streamids++] = sid;
1359 return 0;
1360 out_put_group:
1361 iommu_group_put(group);
1362 return ret;
1365 static int arm_smmu_add_platform_device(struct device *dev)
1367 struct iommu_group *group;
1368 struct arm_smmu_master *master;
1369 struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1371 if (!smmu)
1372 return -ENODEV;
1374 master = find_smmu_master(smmu, dev->of_node);
1375 if (!master)
1376 return -ENODEV;
1378 /* No automatic group creation for platform devices */
1379 group = iommu_group_alloc();
1380 if (IS_ERR(group))
1381 return PTR_ERR(group);
1383 iommu_group_set_iommudata(group, &master->cfg, NULL);
1384 return iommu_group_add_device(group, dev);
1387 static int arm_smmu_add_device(struct device *dev)
1389 if (dev_is_pci(dev))
1390 return arm_smmu_add_pci_device(to_pci_dev(dev));
1392 return arm_smmu_add_platform_device(dev);
1395 static void arm_smmu_remove_device(struct device *dev)
1397 iommu_group_remove_device(dev);
1400 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1401 enum iommu_attr attr, void *data)
1403 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1405 switch (attr) {
1406 case DOMAIN_ATTR_NESTING:
1407 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1408 return 0;
1409 default:
1410 return -ENODEV;
1414 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1415 enum iommu_attr attr, void *data)
1417 int ret = 0;
1418 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1420 mutex_lock(&smmu_domain->init_mutex);
1422 switch (attr) {
1423 case DOMAIN_ATTR_NESTING:
1424 if (smmu_domain->smmu) {
1425 ret = -EPERM;
1426 goto out_unlock;
1429 if (*(int *)data)
1430 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1431 else
1432 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1434 break;
1435 default:
1436 ret = -ENODEV;
1439 out_unlock:
1440 mutex_unlock(&smmu_domain->init_mutex);
1441 return ret;
1444 static struct iommu_ops arm_smmu_ops = {
1445 .capable = arm_smmu_capable,
1446 .domain_alloc = arm_smmu_domain_alloc,
1447 .domain_free = arm_smmu_domain_free,
1448 .attach_dev = arm_smmu_attach_dev,
1449 .detach_dev = arm_smmu_detach_dev,
1450 .map = arm_smmu_map,
1451 .unmap = arm_smmu_unmap,
1452 .map_sg = default_iommu_map_sg,
1453 .iova_to_phys = arm_smmu_iova_to_phys,
1454 .add_device = arm_smmu_add_device,
1455 .remove_device = arm_smmu_remove_device,
1456 .domain_get_attr = arm_smmu_domain_get_attr,
1457 .domain_set_attr = arm_smmu_domain_set_attr,
1458 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1461 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1463 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1464 void __iomem *cb_base;
1465 int i = 0;
1466 u32 reg;
1468 /* clear global FSR */
1469 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1470 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1472 /* Mark all SMRn as invalid and all S2CRn as bypass */
1473 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1474 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1475 writel_relaxed(S2CR_TYPE_BYPASS,
1476 gr0_base + ARM_SMMU_GR0_S2CR(i));
1479 /* Make sure all context banks are disabled and clear CB_FSR */
1480 for (i = 0; i < smmu->num_context_banks; ++i) {
1481 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1482 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1483 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1486 /* Invalidate the TLB, just in case */
1487 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1488 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1490 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1492 /* Enable fault reporting */
1493 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1495 /* Disable TLB broadcasting. */
1496 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1498 /* Enable client access, but bypass when no mapping is found */
1499 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1501 /* Disable forced broadcasting */
1502 reg &= ~sCR0_FB;
1504 /* Don't upgrade barriers */
1505 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1507 /* Push the button */
1508 __arm_smmu_tlb_sync(smmu);
1509 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1512 static int arm_smmu_id_size_to_bits(int size)
1514 switch (size) {
1515 case 0:
1516 return 32;
1517 case 1:
1518 return 36;
1519 case 2:
1520 return 40;
1521 case 3:
1522 return 42;
1523 case 4:
1524 return 44;
1525 case 5:
1526 default:
1527 return 48;
1531 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1533 unsigned long size;
1534 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1535 u32 id;
1537 dev_notice(smmu->dev, "probing hardware configuration...\n");
1538 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1540 /* ID0 */
1541 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1543 /* Restrict available stages based on module parameter */
1544 if (force_stage == 1)
1545 id &= ~(ID0_S2TS | ID0_NTS);
1546 else if (force_stage == 2)
1547 id &= ~(ID0_S1TS | ID0_NTS);
1549 if (id & ID0_S1TS) {
1550 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1551 dev_notice(smmu->dev, "\tstage 1 translation\n");
1554 if (id & ID0_S2TS) {
1555 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1556 dev_notice(smmu->dev, "\tstage 2 translation\n");
1559 if (id & ID0_NTS) {
1560 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1561 dev_notice(smmu->dev, "\tnested translation\n");
1564 if (!(smmu->features &
1565 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1566 dev_err(smmu->dev, "\tno translation support!\n");
1567 return -ENODEV;
1570 if ((id & ID0_S1TS) && ((smmu->version == 1) || (id & ID0_ATOSNS))) {
1571 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1572 dev_notice(smmu->dev, "\taddress translation ops\n");
1575 if (id & ID0_CTTW) {
1576 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1577 dev_notice(smmu->dev, "\tcoherent table walk\n");
1580 if (id & ID0_SMS) {
1581 u32 smr, sid, mask;
1583 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1584 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1585 ID0_NUMSMRG_MASK;
1586 if (smmu->num_mapping_groups == 0) {
1587 dev_err(smmu->dev,
1588 "stream-matching supported, but no SMRs present!\n");
1589 return -ENODEV;
1592 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1593 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1594 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1595 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1597 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1598 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1599 if ((mask & sid) != sid) {
1600 dev_err(smmu->dev,
1601 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1602 mask, sid);
1603 return -ENODEV;
1606 dev_notice(smmu->dev,
1607 "\tstream matching with %u register groups, mask 0x%x",
1608 smmu->num_mapping_groups, mask);
1609 } else {
1610 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1611 ID0_NUMSIDB_MASK;
1614 /* ID1 */
1615 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1616 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1618 /* Check for size mismatch of SMMU address space from mapped region */
1619 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1620 size *= 2 << smmu->pgshift;
1621 if (smmu->size != size)
1622 dev_warn(smmu->dev,
1623 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1624 size, smmu->size);
1626 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1627 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1628 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1629 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1630 return -ENODEV;
1632 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1633 smmu->num_context_banks, smmu->num_s2_context_banks);
1635 /* ID2 */
1636 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1637 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1638 smmu->ipa_size = size;
1640 /* The output mask is also applied for bypass */
1641 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1642 smmu->pa_size = size;
1645 * What the page table walker can address actually depends on which
1646 * descriptor format is in use, but since a) we don't know that yet,
1647 * and b) it can vary per context bank, this will have to do...
1649 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1650 dev_warn(smmu->dev,
1651 "failed to set DMA mask for table walker\n");
1653 if (smmu->version == ARM_SMMU_V1) {
1654 smmu->va_size = smmu->ipa_size;
1655 size = SZ_4K | SZ_2M | SZ_1G;
1656 } else {
1657 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1658 smmu->va_size = arm_smmu_id_size_to_bits(size);
1659 #ifndef CONFIG_64BIT
1660 smmu->va_size = min(32UL, smmu->va_size);
1661 #endif
1662 size = 0;
1663 if (id & ID2_PTFS_4K)
1664 size |= SZ_4K | SZ_2M | SZ_1G;
1665 if (id & ID2_PTFS_16K)
1666 size |= SZ_16K | SZ_32M;
1667 if (id & ID2_PTFS_64K)
1668 size |= SZ_64K | SZ_512M;
1671 arm_smmu_ops.pgsize_bitmap &= size;
1672 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1674 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1675 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1676 smmu->va_size, smmu->ipa_size);
1678 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1679 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1680 smmu->ipa_size, smmu->pa_size);
1682 return 0;
1685 static const struct of_device_id arm_smmu_of_match[] = {
1686 { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1687 { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1688 { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1689 { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1690 { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1691 { },
1693 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1695 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1697 const struct of_device_id *of_id;
1698 struct resource *res;
1699 struct arm_smmu_device *smmu;
1700 struct device *dev = &pdev->dev;
1701 struct rb_node *node;
1702 struct of_phandle_args masterspec;
1703 int num_irqs, i, err;
1705 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1706 if (!smmu) {
1707 dev_err(dev, "failed to allocate arm_smmu_device\n");
1708 return -ENOMEM;
1710 smmu->dev = dev;
1712 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1713 smmu->version = (enum arm_smmu_arch_version)of_id->data;
1715 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1716 smmu->base = devm_ioremap_resource(dev, res);
1717 if (IS_ERR(smmu->base))
1718 return PTR_ERR(smmu->base);
1719 smmu->size = resource_size(res);
1721 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1722 &smmu->num_global_irqs)) {
1723 dev_err(dev, "missing #global-interrupts property\n");
1724 return -ENODEV;
1727 num_irqs = 0;
1728 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1729 num_irqs++;
1730 if (num_irqs > smmu->num_global_irqs)
1731 smmu->num_context_irqs++;
1734 if (!smmu->num_context_irqs) {
1735 dev_err(dev, "found %d interrupts but expected at least %d\n",
1736 num_irqs, smmu->num_global_irqs + 1);
1737 return -ENODEV;
1740 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1741 GFP_KERNEL);
1742 if (!smmu->irqs) {
1743 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1744 return -ENOMEM;
1747 for (i = 0; i < num_irqs; ++i) {
1748 int irq = platform_get_irq(pdev, i);
1750 if (irq < 0) {
1751 dev_err(dev, "failed to get irq index %d\n", i);
1752 return -ENODEV;
1754 smmu->irqs[i] = irq;
1757 err = arm_smmu_device_cfg_probe(smmu);
1758 if (err)
1759 return err;
1761 i = 0;
1762 smmu->masters = RB_ROOT;
1763 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1764 "#stream-id-cells", i,
1765 &masterspec)) {
1766 err = register_smmu_master(smmu, dev, &masterspec);
1767 if (err) {
1768 dev_err(dev, "failed to add master %s\n",
1769 masterspec.np->name);
1770 goto out_put_masters;
1773 i++;
1775 dev_notice(dev, "registered %d master devices\n", i);
1777 parse_driver_options(smmu);
1779 if (smmu->version > ARM_SMMU_V1 &&
1780 smmu->num_context_banks != smmu->num_context_irqs) {
1781 dev_err(dev,
1782 "found only %d context interrupt(s) but %d required\n",
1783 smmu->num_context_irqs, smmu->num_context_banks);
1784 err = -ENODEV;
1785 goto out_put_masters;
1788 for (i = 0; i < smmu->num_global_irqs; ++i) {
1789 err = request_irq(smmu->irqs[i],
1790 arm_smmu_global_fault,
1791 IRQF_SHARED,
1792 "arm-smmu global fault",
1793 smmu);
1794 if (err) {
1795 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1796 i, smmu->irqs[i]);
1797 goto out_free_irqs;
1801 INIT_LIST_HEAD(&smmu->list);
1802 spin_lock(&arm_smmu_devices_lock);
1803 list_add(&smmu->list, &arm_smmu_devices);
1804 spin_unlock(&arm_smmu_devices_lock);
1806 arm_smmu_device_reset(smmu);
1807 return 0;
1809 out_free_irqs:
1810 while (i--)
1811 free_irq(smmu->irqs[i], smmu);
1813 out_put_masters:
1814 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1815 struct arm_smmu_master *master
1816 = container_of(node, struct arm_smmu_master, node);
1817 of_node_put(master->of_node);
1820 return err;
1823 static int arm_smmu_device_remove(struct platform_device *pdev)
1825 int i;
1826 struct device *dev = &pdev->dev;
1827 struct arm_smmu_device *curr, *smmu = NULL;
1828 struct rb_node *node;
1830 spin_lock(&arm_smmu_devices_lock);
1831 list_for_each_entry(curr, &arm_smmu_devices, list) {
1832 if (curr->dev == dev) {
1833 smmu = curr;
1834 list_del(&smmu->list);
1835 break;
1838 spin_unlock(&arm_smmu_devices_lock);
1840 if (!smmu)
1841 return -ENODEV;
1843 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1844 struct arm_smmu_master *master
1845 = container_of(node, struct arm_smmu_master, node);
1846 of_node_put(master->of_node);
1849 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1850 dev_err(dev, "removing device with active domains!\n");
1852 for (i = 0; i < smmu->num_global_irqs; ++i)
1853 free_irq(smmu->irqs[i], smmu);
1855 /* Turn the thing off */
1856 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1857 return 0;
1860 static struct platform_driver arm_smmu_driver = {
1861 .driver = {
1862 .name = "arm-smmu",
1863 .of_match_table = of_match_ptr(arm_smmu_of_match),
1865 .probe = arm_smmu_device_dt_probe,
1866 .remove = arm_smmu_device_remove,
1869 static int __init arm_smmu_init(void)
1871 struct device_node *np;
1872 int ret;
1875 * Play nice with systems that don't have an ARM SMMU by checking that
1876 * an ARM SMMU exists in the system before proceeding with the driver
1877 * and IOMMU bus operation registration.
1879 np = of_find_matching_node(NULL, arm_smmu_of_match);
1880 if (!np)
1881 return 0;
1883 of_node_put(np);
1885 ret = platform_driver_register(&arm_smmu_driver);
1886 if (ret)
1887 return ret;
1889 /* Oh, for a proper bus abstraction */
1890 if (!iommu_present(&platform_bus_type))
1891 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1893 #ifdef CONFIG_ARM_AMBA
1894 if (!iommu_present(&amba_bustype))
1895 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1896 #endif
1898 #ifdef CONFIG_PCI
1899 if (!iommu_present(&pci_bus_type))
1900 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1901 #endif
1903 return 0;
1906 static void __exit arm_smmu_exit(void)
1908 return platform_driver_unregister(&arm_smmu_driver);
1911 subsys_initcall(arm_smmu_init);
1912 module_exit(arm_smmu_exit);
1914 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1915 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1916 MODULE_LICENSE("GPL v2");