4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
39 static LIST_HEAD(super_blocks
);
40 static DEFINE_SPINLOCK(sb_lock
);
42 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
55 static unsigned long super_cache_scan(struct shrinker
*shrink
,
56 struct shrink_control
*sc
)
58 struct super_block
*sb
;
65 sb
= container_of(shrink
, struct super_block
, s_shrink
);
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
71 if (!(sc
->gfp_mask
& __GFP_FS
))
74 if (!trylock_super(sb
))
77 if (sb
->s_op
->nr_cached_objects
)
78 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
80 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
81 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
82 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
86 /* proportion the scan between the caches */
87 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
88 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
89 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
98 sc
->nr_to_scan
= dentries
+ 1;
99 freed
= prune_dcache_sb(sb
, sc
);
100 sc
->nr_to_scan
= inodes
+ 1;
101 freed
+= prune_icache_sb(sb
, sc
);
104 sc
->nr_to_scan
= fs_objects
+ 1;
105 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
108 up_read(&sb
->s_umount
);
112 static unsigned long super_cache_count(struct shrinker
*shrink
,
113 struct shrink_control
*sc
)
115 struct super_block
*sb
;
116 long total_objects
= 0;
118 sb
= container_of(shrink
, struct super_block
, s_shrink
);
121 * We don't call trylock_super() here as it is a scalability bottleneck,
122 * so we're exposed to partial setup state. The shrinker rwsem does not
123 * protect filesystem operations backing list_lru_shrink_count() or
124 * s_op->nr_cached_objects(). Counts can change between
125 * super_cache_count and super_cache_scan, so we really don't need locks
128 * However, if we are currently mounting the superblock, the underlying
129 * filesystem might be in a state of partial construction and hence it
130 * is dangerous to access it. trylock_super() uses a MS_BORN check to
131 * avoid this situation, so do the same here. The memory barrier is
132 * matched with the one in mount_fs() as we don't hold locks here.
134 if (!(sb
->s_flags
& MS_BORN
))
138 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
139 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
141 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
142 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
144 total_objects
= vfs_pressure_ratio(total_objects
);
145 return total_objects
;
148 static void destroy_super_work(struct work_struct
*work
)
150 struct super_block
*s
= container_of(work
, struct super_block
,
154 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
155 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
159 static void destroy_super_rcu(struct rcu_head
*head
)
161 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
162 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
163 schedule_work(&s
->destroy_work
);
167 * destroy_super - frees a superblock
168 * @s: superblock to free
170 * Frees a superblock.
172 static void destroy_super(struct super_block
*s
)
174 list_lru_destroy(&s
->s_dentry_lru
);
175 list_lru_destroy(&s
->s_inode_lru
);
177 WARN_ON(!list_empty(&s
->s_mounts
));
180 call_rcu(&s
->rcu
, destroy_super_rcu
);
184 * alloc_super - create new superblock
185 * @type: filesystem type superblock should belong to
186 * @flags: the mount flags
188 * Allocates and initializes a new &struct super_block. alloc_super()
189 * returns a pointer new superblock or %NULL if allocation had failed.
191 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
193 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
194 static const struct super_operations default_op
;
200 INIT_LIST_HEAD(&s
->s_mounts
);
202 if (security_sb_alloc(s
))
205 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
206 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
208 &type
->s_writers_key
[i
]))
211 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
212 s
->s_bdi
= &noop_backing_dev_info
;
214 INIT_HLIST_NODE(&s
->s_instances
);
215 INIT_HLIST_BL_HEAD(&s
->s_anon
);
216 mutex_init(&s
->s_sync_lock
);
217 INIT_LIST_HEAD(&s
->s_inodes
);
218 spin_lock_init(&s
->s_inode_list_lock
);
220 if (list_lru_init_memcg(&s
->s_dentry_lru
))
222 if (list_lru_init_memcg(&s
->s_inode_lru
))
225 init_rwsem(&s
->s_umount
);
226 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
228 * sget() can have s_umount recursion.
230 * When it cannot find a suitable sb, it allocates a new
231 * one (this one), and tries again to find a suitable old
234 * In case that succeeds, it will acquire the s_umount
235 * lock of the old one. Since these are clearly distrinct
236 * locks, and this object isn't exposed yet, there's no
239 * Annotate this by putting this lock in a different
242 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
244 atomic_set(&s
->s_active
, 1);
245 mutex_init(&s
->s_vfs_rename_mutex
);
246 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
247 mutex_init(&s
->s_dquot
.dqio_mutex
);
248 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
249 s
->s_maxbytes
= MAX_NON_LFS
;
250 s
->s_op
= &default_op
;
251 s
->s_time_gran
= 1000000000;
252 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
254 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
255 s
->s_shrink
.scan_objects
= super_cache_scan
;
256 s
->s_shrink
.count_objects
= super_cache_count
;
257 s
->s_shrink
.batch
= 1024;
258 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
266 /* Superblock refcounting */
269 * Drop a superblock's refcount. The caller must hold sb_lock.
271 static void __put_super(struct super_block
*sb
)
273 if (!--sb
->s_count
) {
274 list_del_init(&sb
->s_list
);
280 * put_super - drop a temporary reference to superblock
281 * @sb: superblock in question
283 * Drops a temporary reference, frees superblock if there's no
286 static void put_super(struct super_block
*sb
)
290 spin_unlock(&sb_lock
);
295 * deactivate_locked_super - drop an active reference to superblock
296 * @s: superblock to deactivate
298 * Drops an active reference to superblock, converting it into a temprory
299 * one if there is no other active references left. In that case we
300 * tell fs driver to shut it down and drop the temporary reference we
303 * Caller holds exclusive lock on superblock; that lock is released.
305 void deactivate_locked_super(struct super_block
*s
)
307 struct file_system_type
*fs
= s
->s_type
;
308 if (atomic_dec_and_test(&s
->s_active
)) {
309 cleancache_invalidate_fs(s
);
310 unregister_shrinker(&s
->s_shrink
);
314 * Since list_lru_destroy() may sleep, we cannot call it from
315 * put_super(), where we hold the sb_lock. Therefore we destroy
316 * the lru lists right now.
318 list_lru_destroy(&s
->s_dentry_lru
);
319 list_lru_destroy(&s
->s_inode_lru
);
324 up_write(&s
->s_umount
);
328 EXPORT_SYMBOL(deactivate_locked_super
);
331 * deactivate_super - drop an active reference to superblock
332 * @s: superblock to deactivate
334 * Variant of deactivate_locked_super(), except that superblock is *not*
335 * locked by caller. If we are going to drop the final active reference,
336 * lock will be acquired prior to that.
338 void deactivate_super(struct super_block
*s
)
340 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
341 down_write(&s
->s_umount
);
342 deactivate_locked_super(s
);
346 EXPORT_SYMBOL(deactivate_super
);
349 * grab_super - acquire an active reference
350 * @s: reference we are trying to make active
352 * Tries to acquire an active reference. grab_super() is used when we
353 * had just found a superblock in super_blocks or fs_type->fs_supers
354 * and want to turn it into a full-blown active reference. grab_super()
355 * is called with sb_lock held and drops it. Returns 1 in case of
356 * success, 0 if we had failed (superblock contents was already dead or
357 * dying when grab_super() had been called). Note that this is only
358 * called for superblocks not in rundown mode (== ones still on ->fs_supers
359 * of their type), so increment of ->s_count is OK here.
361 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
364 spin_unlock(&sb_lock
);
365 down_write(&s
->s_umount
);
366 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
370 up_write(&s
->s_umount
);
376 * trylock_super - try to grab ->s_umount shared
377 * @sb: reference we are trying to grab
379 * Try to prevent fs shutdown. This is used in places where we
380 * cannot take an active reference but we need to ensure that the
381 * filesystem is not shut down while we are working on it. It returns
382 * false if we cannot acquire s_umount or if we lose the race and
383 * filesystem already got into shutdown, and returns true with the s_umount
384 * lock held in read mode in case of success. On successful return,
385 * the caller must drop the s_umount lock when done.
387 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
388 * The reason why it's safe is that we are OK with doing trylock instead
389 * of down_read(). There's a couple of places that are OK with that, but
390 * it's very much not a general-purpose interface.
392 bool trylock_super(struct super_block
*sb
)
394 if (down_read_trylock(&sb
->s_umount
)) {
395 if (!hlist_unhashed(&sb
->s_instances
) &&
396 sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
398 up_read(&sb
->s_umount
);
405 * generic_shutdown_super - common helper for ->kill_sb()
406 * @sb: superblock to kill
408 * generic_shutdown_super() does all fs-independent work on superblock
409 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
410 * that need destruction out of superblock, call generic_shutdown_super()
411 * and release aforementioned objects. Note: dentries and inodes _are_
412 * taken care of and do not need specific handling.
414 * Upon calling this function, the filesystem may no longer alter or
415 * rearrange the set of dentries belonging to this super_block, nor may it
416 * change the attachments of dentries to inodes.
418 void generic_shutdown_super(struct super_block
*sb
)
420 const struct super_operations
*sop
= sb
->s_op
;
423 shrink_dcache_for_umount(sb
);
425 sb
->s_flags
&= ~MS_ACTIVE
;
427 fsnotify_unmount_inodes(sb
);
428 cgroup_writeback_umount();
432 if (sb
->s_dio_done_wq
) {
433 destroy_workqueue(sb
->s_dio_done_wq
);
434 sb
->s_dio_done_wq
= NULL
;
440 if (!list_empty(&sb
->s_inodes
)) {
441 printk("VFS: Busy inodes after unmount of %s. "
442 "Self-destruct in 5 seconds. Have a nice day...\n",
447 /* should be initialized for __put_super_and_need_restart() */
448 hlist_del_init(&sb
->s_instances
);
449 spin_unlock(&sb_lock
);
450 up_write(&sb
->s_umount
);
453 EXPORT_SYMBOL(generic_shutdown_super
);
456 * sget - find or create a superblock
457 * @type: filesystem type superblock should belong to
458 * @test: comparison callback
459 * @set: setup callback
460 * @flags: mount flags
461 * @data: argument to each of them
463 struct super_block
*sget(struct file_system_type
*type
,
464 int (*test
)(struct super_block
*,void *),
465 int (*set
)(struct super_block
*,void *),
469 struct super_block
*s
= NULL
;
470 struct super_block
*old
;
476 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
477 if (!test(old
, data
))
479 if (!grab_super(old
))
482 up_write(&s
->s_umount
);
490 spin_unlock(&sb_lock
);
491 s
= alloc_super(type
, flags
);
493 return ERR_PTR(-ENOMEM
);
499 spin_unlock(&sb_lock
);
500 up_write(&s
->s_umount
);
505 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
506 list_add_tail(&s
->s_list
, &super_blocks
);
507 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
508 spin_unlock(&sb_lock
);
509 get_filesystem(type
);
510 err
= register_shrinker(&s
->s_shrink
);
512 deactivate_locked_super(s
);
520 void drop_super(struct super_block
*sb
)
522 up_read(&sb
->s_umount
);
526 EXPORT_SYMBOL(drop_super
);
529 * iterate_supers - call function for all active superblocks
530 * @f: function to call
531 * @arg: argument to pass to it
533 * Scans the superblock list and calls given function, passing it
534 * locked superblock and given argument.
536 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
538 struct super_block
*sb
, *p
= NULL
;
541 list_for_each_entry(sb
, &super_blocks
, s_list
) {
542 if (hlist_unhashed(&sb
->s_instances
))
545 spin_unlock(&sb_lock
);
547 down_read(&sb
->s_umount
);
548 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
550 up_read(&sb
->s_umount
);
559 spin_unlock(&sb_lock
);
563 * iterate_supers_type - call function for superblocks of given type
565 * @f: function to call
566 * @arg: argument to pass to it
568 * Scans the superblock list and calls given function, passing it
569 * locked superblock and given argument.
571 void iterate_supers_type(struct file_system_type
*type
,
572 void (*f
)(struct super_block
*, void *), void *arg
)
574 struct super_block
*sb
, *p
= NULL
;
577 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
579 spin_unlock(&sb_lock
);
581 down_read(&sb
->s_umount
);
582 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
584 up_read(&sb
->s_umount
);
593 spin_unlock(&sb_lock
);
596 EXPORT_SYMBOL(iterate_supers_type
);
599 * get_super - get the superblock of a device
600 * @bdev: device to get the superblock for
602 * Scans the superblock list and finds the superblock of the file system
603 * mounted on the device given. %NULL is returned if no match is found.
606 struct super_block
*get_super(struct block_device
*bdev
)
608 struct super_block
*sb
;
615 list_for_each_entry(sb
, &super_blocks
, s_list
) {
616 if (hlist_unhashed(&sb
->s_instances
))
618 if (sb
->s_bdev
== bdev
) {
620 spin_unlock(&sb_lock
);
621 down_read(&sb
->s_umount
);
623 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
625 up_read(&sb
->s_umount
);
626 /* nope, got unmounted */
632 spin_unlock(&sb_lock
);
636 EXPORT_SYMBOL(get_super
);
639 * get_super_thawed - get thawed superblock of a device
640 * @bdev: device to get the superblock for
642 * Scans the superblock list and finds the superblock of the file system
643 * mounted on the device. The superblock is returned once it is thawed
644 * (or immediately if it was not frozen). %NULL is returned if no match
647 struct super_block
*get_super_thawed(struct block_device
*bdev
)
650 struct super_block
*s
= get_super(bdev
);
651 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
653 up_read(&s
->s_umount
);
654 wait_event(s
->s_writers
.wait_unfrozen
,
655 s
->s_writers
.frozen
== SB_UNFROZEN
);
659 EXPORT_SYMBOL(get_super_thawed
);
662 * get_active_super - get an active reference to the superblock of a device
663 * @bdev: device to get the superblock for
665 * Scans the superblock list and finds the superblock of the file system
666 * mounted on the device given. Returns the superblock with an active
667 * reference or %NULL if none was found.
669 struct super_block
*get_active_super(struct block_device
*bdev
)
671 struct super_block
*sb
;
678 list_for_each_entry(sb
, &super_blocks
, s_list
) {
679 if (hlist_unhashed(&sb
->s_instances
))
681 if (sb
->s_bdev
== bdev
) {
684 up_write(&sb
->s_umount
);
688 spin_unlock(&sb_lock
);
692 struct super_block
*user_get_super(dev_t dev
)
694 struct super_block
*sb
;
698 list_for_each_entry(sb
, &super_blocks
, s_list
) {
699 if (hlist_unhashed(&sb
->s_instances
))
701 if (sb
->s_dev
== dev
) {
703 spin_unlock(&sb_lock
);
704 down_read(&sb
->s_umount
);
706 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
708 up_read(&sb
->s_umount
);
709 /* nope, got unmounted */
715 spin_unlock(&sb_lock
);
720 * do_remount_sb - asks filesystem to change mount options.
721 * @sb: superblock in question
722 * @flags: numeric part of options
723 * @data: the rest of options
724 * @force: whether or not to force the change
726 * Alters the mount options of a mounted file system.
728 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
733 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
737 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
741 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
744 if (!hlist_empty(&sb
->s_pins
)) {
745 up_write(&sb
->s_umount
);
746 group_pin_kill(&sb
->s_pins
);
747 down_write(&sb
->s_umount
);
750 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
752 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
755 shrink_dcache_sb(sb
);
757 /* If we are remounting RDONLY and current sb is read/write,
758 make sure there are no rw files opened */
761 sb
->s_readonly_remount
= 1;
764 retval
= sb_prepare_remount_readonly(sb
);
770 if (sb
->s_op
->remount_fs
) {
771 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
774 goto cancel_readonly
;
775 /* If forced remount, go ahead despite any errors */
776 WARN(1, "forced remount of a %s fs returned %i\n",
777 sb
->s_type
->name
, retval
);
780 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
781 /* Needs to be ordered wrt mnt_is_readonly() */
783 sb
->s_readonly_remount
= 0;
786 * Some filesystems modify their metadata via some other path than the
787 * bdev buffer cache (eg. use a private mapping, or directories in
788 * pagecache, etc). Also file data modifications go via their own
789 * mappings. So If we try to mount readonly then copy the filesystem
790 * from bdev, we could get stale data, so invalidate it to give a best
791 * effort at coherency.
793 if (remount_ro
&& sb
->s_bdev
)
794 invalidate_bdev(sb
->s_bdev
);
798 sb
->s_readonly_remount
= 0;
802 static void do_emergency_remount(struct work_struct
*work
)
804 struct super_block
*sb
, *p
= NULL
;
807 list_for_each_entry(sb
, &super_blocks
, s_list
) {
808 if (hlist_unhashed(&sb
->s_instances
))
811 spin_unlock(&sb_lock
);
812 down_write(&sb
->s_umount
);
813 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
814 !(sb
->s_flags
& MS_RDONLY
)) {
816 * What lock protects sb->s_flags??
818 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
820 up_write(&sb
->s_umount
);
828 spin_unlock(&sb_lock
);
830 printk("Emergency Remount complete\n");
833 void emergency_remount(void)
835 struct work_struct
*work
;
837 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
839 INIT_WORK(work
, do_emergency_remount
);
845 * Unnamed block devices are dummy devices used by virtual
846 * filesystems which don't use real block-devices. -- jrs
849 static DEFINE_IDA(unnamed_dev_ida
);
850 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
851 /* Many userspace utilities consider an FSID of 0 invalid.
852 * Always return at least 1 from get_anon_bdev.
854 static int unnamed_dev_start
= 1;
856 int get_anon_bdev(dev_t
*p
)
862 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
864 spin_lock(&unnamed_dev_lock
);
865 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
867 unnamed_dev_start
= dev
+ 1;
868 spin_unlock(&unnamed_dev_lock
);
869 if (error
== -EAGAIN
)
870 /* We raced and lost with another CPU. */
875 if (dev
>= (1 << MINORBITS
)) {
876 spin_lock(&unnamed_dev_lock
);
877 ida_remove(&unnamed_dev_ida
, dev
);
878 if (unnamed_dev_start
> dev
)
879 unnamed_dev_start
= dev
;
880 spin_unlock(&unnamed_dev_lock
);
883 *p
= MKDEV(0, dev
& MINORMASK
);
886 EXPORT_SYMBOL(get_anon_bdev
);
888 void free_anon_bdev(dev_t dev
)
890 int slot
= MINOR(dev
);
891 spin_lock(&unnamed_dev_lock
);
892 ida_remove(&unnamed_dev_ida
, slot
);
893 if (slot
< unnamed_dev_start
)
894 unnamed_dev_start
= slot
;
895 spin_unlock(&unnamed_dev_lock
);
897 EXPORT_SYMBOL(free_anon_bdev
);
899 int set_anon_super(struct super_block
*s
, void *data
)
901 return get_anon_bdev(&s
->s_dev
);
904 EXPORT_SYMBOL(set_anon_super
);
906 void kill_anon_super(struct super_block
*sb
)
908 dev_t dev
= sb
->s_dev
;
909 generic_shutdown_super(sb
);
913 EXPORT_SYMBOL(kill_anon_super
);
915 void kill_litter_super(struct super_block
*sb
)
918 d_genocide(sb
->s_root
);
922 EXPORT_SYMBOL(kill_litter_super
);
924 static int ns_test_super(struct super_block
*sb
, void *data
)
926 return sb
->s_fs_info
== data
;
929 static int ns_set_super(struct super_block
*sb
, void *data
)
931 sb
->s_fs_info
= data
;
932 return set_anon_super(sb
, NULL
);
935 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
936 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
938 struct super_block
*sb
;
940 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
946 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
948 deactivate_locked_super(sb
);
952 sb
->s_flags
|= MS_ACTIVE
;
955 return dget(sb
->s_root
);
958 EXPORT_SYMBOL(mount_ns
);
961 static int set_bdev_super(struct super_block
*s
, void *data
)
964 s
->s_dev
= s
->s_bdev
->bd_dev
;
967 * We set the bdi here to the queue backing, file systems can
968 * overwrite this in ->fill_super()
970 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
974 static int test_bdev_super(struct super_block
*s
, void *data
)
976 return (void *)s
->s_bdev
== data
;
979 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
980 int flags
, const char *dev_name
, void *data
,
981 int (*fill_super
)(struct super_block
*, void *, int))
983 struct block_device
*bdev
;
984 struct super_block
*s
;
985 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
988 if (!(flags
& MS_RDONLY
))
991 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
993 return ERR_CAST(bdev
);
996 * once the super is inserted into the list by sget, s_umount
997 * will protect the lockfs code from trying to start a snapshot
998 * while we are mounting
1000 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1001 if (bdev
->bd_fsfreeze_count
> 0) {
1002 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1006 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
1008 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1013 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
1014 deactivate_locked_super(s
);
1020 * s_umount nests inside bd_mutex during
1021 * __invalidate_device(). blkdev_put() acquires
1022 * bd_mutex and can't be called under s_umount. Drop
1023 * s_umount temporarily. This is safe as we're
1024 * holding an active reference.
1026 up_write(&s
->s_umount
);
1027 blkdev_put(bdev
, mode
);
1028 down_write(&s
->s_umount
);
1030 char b
[BDEVNAME_SIZE
];
1033 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
1034 sb_set_blocksize(s
, block_size(bdev
));
1035 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1037 deactivate_locked_super(s
);
1041 s
->s_flags
|= MS_ACTIVE
;
1045 return dget(s
->s_root
);
1050 blkdev_put(bdev
, mode
);
1052 return ERR_PTR(error
);
1054 EXPORT_SYMBOL(mount_bdev
);
1056 void kill_block_super(struct super_block
*sb
)
1058 struct block_device
*bdev
= sb
->s_bdev
;
1059 fmode_t mode
= sb
->s_mode
;
1061 bdev
->bd_super
= NULL
;
1062 generic_shutdown_super(sb
);
1063 sync_blockdev(bdev
);
1064 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1065 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1068 EXPORT_SYMBOL(kill_block_super
);
1071 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1072 int flags
, void *data
,
1073 int (*fill_super
)(struct super_block
*, void *, int))
1076 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1081 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1083 deactivate_locked_super(s
);
1084 return ERR_PTR(error
);
1086 s
->s_flags
|= MS_ACTIVE
;
1087 return dget(s
->s_root
);
1089 EXPORT_SYMBOL(mount_nodev
);
1091 static int compare_single(struct super_block
*s
, void *p
)
1096 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1097 int flags
, void *data
,
1098 int (*fill_super
)(struct super_block
*, void *, int))
1100 struct super_block
*s
;
1103 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1107 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1109 deactivate_locked_super(s
);
1110 return ERR_PTR(error
);
1112 s
->s_flags
|= MS_ACTIVE
;
1114 do_remount_sb(s
, flags
, data
, 0);
1116 return dget(s
->s_root
);
1118 EXPORT_SYMBOL(mount_single
);
1121 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1123 struct dentry
*root
;
1124 struct super_block
*sb
;
1125 char *secdata
= NULL
;
1126 int error
= -ENOMEM
;
1128 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1129 secdata
= alloc_secdata();
1133 error
= security_sb_copy_data(data
, secdata
);
1135 goto out_free_secdata
;
1138 root
= type
->mount(type
, flags
, name
, data
);
1140 error
= PTR_ERR(root
);
1141 goto out_free_secdata
;
1145 WARN_ON(!sb
->s_bdi
);
1148 * Write barrier is for super_cache_count(). We place it before setting
1149 * MS_BORN as the data dependency between the two functions is the
1150 * superblock structure contents that we just set up, not the MS_BORN
1154 sb
->s_flags
|= MS_BORN
;
1156 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1161 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1162 * but s_maxbytes was an unsigned long long for many releases. Throw
1163 * this warning for a little while to try and catch filesystems that
1164 * violate this rule.
1166 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1167 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1169 up_write(&sb
->s_umount
);
1170 free_secdata(secdata
);
1174 deactivate_locked_super(sb
);
1176 free_secdata(secdata
);
1178 return ERR_PTR(error
);
1182 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1185 void __sb_end_write(struct super_block
*sb
, int level
)
1187 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1189 EXPORT_SYMBOL(__sb_end_write
);
1192 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1195 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1197 bool force_trylock
= false;
1200 #ifdef CONFIG_LOCKDEP
1202 * We want lockdep to tell us about possible deadlocks with freezing
1203 * but it's it bit tricky to properly instrument it. Getting a freeze
1204 * protection works as getting a read lock but there are subtle
1205 * problems. XFS for example gets freeze protection on internal level
1206 * twice in some cases, which is OK only because we already hold a
1207 * freeze protection also on higher level. Due to these cases we have
1208 * to use wait == F (trylock mode) which must not fail.
1213 for (i
= 0; i
< level
- 1; i
++)
1214 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1215 force_trylock
= true;
1220 if (wait
&& !force_trylock
)
1221 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1223 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1225 WARN_ON(force_trylock
& !ret
);
1228 EXPORT_SYMBOL(__sb_start_write
);
1231 * sb_wait_write - wait until all writers to given file system finish
1232 * @sb: the super for which we wait
1233 * @level: type of writers we wait for (normal vs page fault)
1235 * This function waits until there are no writers of given type to given file
1238 static void sb_wait_write(struct super_block
*sb
, int level
)
1240 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1242 * We are going to return to userspace and forget about this lock, the
1243 * ownership goes to the caller of thaw_super() which does unlock.
1245 * FIXME: we should do this before return from freeze_super() after we
1246 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1247 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1248 * this leads to lockdep false-positives, so currently we do the early
1249 * release right after acquire.
1251 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
-1, 0, _THIS_IP_
);
1254 static void sb_freeze_unlock(struct super_block
*sb
)
1258 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1259 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1261 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1262 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1266 * freeze_super - lock the filesystem and force it into a consistent state
1267 * @sb: the super to lock
1269 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1270 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1273 * During this function, sb->s_writers.frozen goes through these values:
1275 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1277 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1278 * writes should be blocked, though page faults are still allowed. We wait for
1279 * all writes to complete and then proceed to the next stage.
1281 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1282 * but internal fs threads can still modify the filesystem (although they
1283 * should not dirty new pages or inodes), writeback can run etc. After waiting
1284 * for all running page faults we sync the filesystem which will clean all
1285 * dirty pages and inodes (no new dirty pages or inodes can be created when
1288 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1289 * modification are blocked (e.g. XFS preallocation truncation on inode
1290 * reclaim). This is usually implemented by blocking new transactions for
1291 * filesystems that have them and need this additional guard. After all
1292 * internal writers are finished we call ->freeze_fs() to finish filesystem
1293 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1294 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1296 * sb->s_writers.frozen is protected by sb->s_umount.
1298 int freeze_super(struct super_block
*sb
)
1302 atomic_inc(&sb
->s_active
);
1303 down_write(&sb
->s_umount
);
1304 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1305 deactivate_locked_super(sb
);
1309 if (!(sb
->s_flags
& MS_BORN
)) {
1310 up_write(&sb
->s_umount
);
1311 return 0; /* sic - it's "nothing to do" */
1314 if (sb
->s_flags
& MS_RDONLY
) {
1315 /* Nothing to do really... */
1316 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1317 up_write(&sb
->s_umount
);
1321 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1322 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1323 up_write(&sb
->s_umount
);
1324 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1325 down_write(&sb
->s_umount
);
1327 /* Now we go and block page faults... */
1328 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1329 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1331 /* All writers are done so after syncing there won't be dirty data */
1332 sync_filesystem(sb
);
1334 /* Now wait for internal filesystem counter */
1335 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1336 sb_wait_write(sb
, SB_FREEZE_FS
);
1338 if (sb
->s_op
->freeze_fs
) {
1339 ret
= sb
->s_op
->freeze_fs(sb
);
1342 "VFS:Filesystem freeze failed\n");
1343 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1344 sb_freeze_unlock(sb
);
1345 wake_up(&sb
->s_writers
.wait_unfrozen
);
1346 deactivate_locked_super(sb
);
1351 * For debugging purposes so that fs can warn if it sees write activity
1352 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1354 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1355 up_write(&sb
->s_umount
);
1358 EXPORT_SYMBOL(freeze_super
);
1361 * thaw_super -- unlock filesystem
1362 * @sb: the super to thaw
1364 * Unlocks the filesystem and marks it writeable again after freeze_super().
1366 int thaw_super(struct super_block
*sb
)
1370 down_write(&sb
->s_umount
);
1371 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1372 up_write(&sb
->s_umount
);
1376 if (sb
->s_flags
& MS_RDONLY
) {
1377 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1381 if (sb
->s_op
->unfreeze_fs
) {
1382 error
= sb
->s_op
->unfreeze_fs(sb
);
1385 "VFS:Filesystem thaw failed\n");
1386 up_write(&sb
->s_umount
);
1391 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1392 sb_freeze_unlock(sb
);
1394 wake_up(&sb
->s_writers
.wait_unfrozen
);
1395 deactivate_locked_super(sb
);
1398 EXPORT_SYMBOL(thaw_super
);