cpuidle: teo: Exclude cpuidle overhead from computations
[linux/fpc-iii.git] / kernel / exit.c
bloba46a50d67002d9877b00c8052ba922e02e9740af
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
72 static void __unhash_process(struct task_struct *p, bool group_dead)
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
90 * This function expects the tasklist_lock write-locked.
92 static void __exit_signal(struct task_struct *tsk)
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
117 #endif
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
124 * If there is any task waiting for the group exit
125 * then notify it:
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
176 static void delayed_put_task_struct(struct rcu_head *rhp)
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
185 void put_task_struct_rcu_user(struct task_struct *task)
187 if (refcount_dec_and_test(&task->rcu_users))
188 call_rcu(&task->rcu, delayed_put_task_struct);
191 void release_task(struct task_struct *p)
193 struct task_struct *leader;
194 int zap_leader;
195 repeat:
196 /* don't need to get the RCU readlock here - the process is dead and
197 * can't be modifying its own credentials. But shut RCU-lockdep up */
198 rcu_read_lock();
199 atomic_dec(&__task_cred(p)->user->processes);
200 rcu_read_unlock();
202 proc_flush_task(p);
203 cgroup_release(p);
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
207 __exit_signal(p);
210 * If we are the last non-leader member of the thread
211 * group, and the leader is zombie, then notify the
212 * group leader's parent process. (if it wants notification.)
214 zap_leader = 0;
215 leader = p->group_leader;
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
219 * If we were the last child thread and the leader has
220 * exited already, and the leader's parent ignores SIGCHLD,
221 * then we are the one who should release the leader.
223 zap_leader = do_notify_parent(leader, leader->exit_signal);
224 if (zap_leader)
225 leader->exit_state = EXIT_DEAD;
228 write_unlock_irq(&tasklist_lock);
229 release_thread(p);
230 put_task_struct_rcu_user(p);
232 p = leader;
233 if (unlikely(zap_leader))
234 goto repeat;
237 void rcuwait_wake_up(struct rcuwait *w)
239 struct task_struct *task;
241 rcu_read_lock();
244 * Order condition vs @task, such that everything prior to the load
245 * of @task is visible. This is the condition as to why the user called
246 * rcuwait_trywake() in the first place. Pairs with set_current_state()
247 * barrier (A) in rcuwait_wait_event().
249 * WAIT WAKE
250 * [S] tsk = current [S] cond = true
251 * MB (A) MB (B)
252 * [L] cond [L] tsk
254 smp_mb(); /* (B) */
256 task = rcu_dereference(w->task);
257 if (task)
258 wake_up_process(task);
259 rcu_read_unlock();
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
268 * "I ask you, have you ever known what it is to be an orphan?"
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
273 struct task_struct *p;
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
286 return 1;
289 int is_current_pgrp_orphaned(void)
291 int retval;
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
297 return retval;
300 static bool has_stopped_jobs(struct pid *pgrp)
302 struct task_struct *p;
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
309 return false;
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
323 if (!parent)
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
332 ignored_task = NULL;
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
343 #ifdef CONFIG_MEMCG
345 * A task is exiting. If it owned this mm, find a new owner for the mm.
347 void mm_update_next_owner(struct mm_struct *mm)
349 struct task_struct *c, *g, *p = current;
351 retry:
353 * If the exiting or execing task is not the owner, it's
354 * someone else's problem.
356 if (mm->owner != p)
357 return;
359 * The current owner is exiting/execing and there are no other
360 * candidates. Do not leave the mm pointing to a possibly
361 * freed task structure.
363 if (atomic_read(&mm->mm_users) <= 1) {
364 WRITE_ONCE(mm->owner, NULL);
365 return;
368 read_lock(&tasklist_lock);
370 * Search in the children
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
378 * Search in the siblings
380 list_for_each_entry(c, &p->real_parent->children, sibling) {
381 if (c->mm == mm)
382 goto assign_new_owner;
386 * Search through everything else, we should not get here often.
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
398 read_unlock(&tasklist_lock);
400 * We found no owner yet mm_users > 1: this implies that we are
401 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
404 WRITE_ONCE(mm->owner, NULL);
405 return;
407 assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
411 * The task_lock protects c->mm from changing.
412 * We always want mm->owner->mm == mm
414 task_lock(c);
416 * Delay read_unlock() till we have the task_lock()
417 * to ensure that c does not slip away underneath us
419 read_unlock(&tasklist_lock);
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
425 WRITE_ONCE(mm->owner, c);
426 task_unlock(c);
427 put_task_struct(c);
429 #endif /* CONFIG_MEMCG */
432 * Turn us into a lazy TLB process if we
433 * aren't already..
435 static void exit_mm(void)
437 struct mm_struct *mm = current->mm;
438 struct core_state *core_state;
440 mm_release(current, mm);
441 if (!mm)
442 return;
443 sync_mm_rss(mm);
445 * Serialize with any possible pending coredump.
446 * We must hold mmap_sem around checking core_state
447 * and clearing tsk->mm. The core-inducing thread
448 * will increment ->nr_threads for each thread in the
449 * group with ->mm != NULL.
451 down_read(&mm->mmap_sem);
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
456 up_read(&mm->mmap_sem);
458 self.task = current;
459 self.next = xchg(&core_state->dumper.next, &self);
461 * Implies mb(), the result of xchg() must be visible
462 * to core_state->dumper.
464 if (atomic_dec_and_test(&core_state->nr_threads))
465 complete(&core_state->startup);
467 for (;;) {
468 set_current_state(TASK_UNINTERRUPTIBLE);
469 if (!self.task) /* see coredump_finish() */
470 break;
471 freezable_schedule();
473 __set_current_state(TASK_RUNNING);
474 down_read(&mm->mmap_sem);
476 mmgrab(mm);
477 BUG_ON(mm != current->active_mm);
478 /* more a memory barrier than a real lock */
479 task_lock(current);
480 current->mm = NULL;
481 up_read(&mm->mmap_sem);
482 enter_lazy_tlb(mm, current);
483 task_unlock(current);
484 mm_update_next_owner(mm);
485 mmput(mm);
486 if (test_thread_flag(TIF_MEMDIE))
487 exit_oom_victim();
490 static struct task_struct *find_alive_thread(struct task_struct *p)
492 struct task_struct *t;
494 for_each_thread(p, t) {
495 if (!(t->flags & PF_EXITING))
496 return t;
498 return NULL;
501 static struct task_struct *find_child_reaper(struct task_struct *father,
502 struct list_head *dead)
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *reaper = pid_ns->child_reaper;
508 struct task_struct *p, *n;
510 if (likely(reaper != father))
511 return reaper;
513 reaper = find_alive_thread(father);
514 if (reaper) {
515 pid_ns->child_reaper = reaper;
516 return reaper;
519 write_unlock_irq(&tasklist_lock);
520 if (unlikely(pid_ns == &init_pid_ns)) {
521 panic("Attempted to kill init! exitcode=0x%08x\n",
522 father->signal->group_exit_code ?: father->exit_code);
525 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
526 list_del_init(&p->ptrace_entry);
527 release_task(p);
530 zap_pid_ns_processes(pid_ns);
531 write_lock_irq(&tasklist_lock);
533 return father;
537 * When we die, we re-parent all our children, and try to:
538 * 1. give them to another thread in our thread group, if such a member exists
539 * 2. give it to the first ancestor process which prctl'd itself as a
540 * child_subreaper for its children (like a service manager)
541 * 3. give it to the init process (PID 1) in our pid namespace
543 static struct task_struct *find_new_reaper(struct task_struct *father,
544 struct task_struct *child_reaper)
546 struct task_struct *thread, *reaper;
548 thread = find_alive_thread(father);
549 if (thread)
550 return thread;
552 if (father->signal->has_child_subreaper) {
553 unsigned int ns_level = task_pid(father)->level;
555 * Find the first ->is_child_subreaper ancestor in our pid_ns.
556 * We can't check reaper != child_reaper to ensure we do not
557 * cross the namespaces, the exiting parent could be injected
558 * by setns() + fork().
559 * We check pid->level, this is slightly more efficient than
560 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
562 for (reaper = father->real_parent;
563 task_pid(reaper)->level == ns_level;
564 reaper = reaper->real_parent) {
565 if (reaper == &init_task)
566 break;
567 if (!reaper->signal->is_child_subreaper)
568 continue;
569 thread = find_alive_thread(reaper);
570 if (thread)
571 return thread;
575 return child_reaper;
579 * Any that need to be release_task'd are put on the @dead list.
581 static void reparent_leader(struct task_struct *father, struct task_struct *p,
582 struct list_head *dead)
584 if (unlikely(p->exit_state == EXIT_DEAD))
585 return;
587 /* We don't want people slaying init. */
588 p->exit_signal = SIGCHLD;
590 /* If it has exited notify the new parent about this child's death. */
591 if (!p->ptrace &&
592 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
593 if (do_notify_parent(p, p->exit_signal)) {
594 p->exit_state = EXIT_DEAD;
595 list_add(&p->ptrace_entry, dead);
599 kill_orphaned_pgrp(p, father);
603 * This does two things:
605 * A. Make init inherit all the child processes
606 * B. Check to see if any process groups have become orphaned
607 * as a result of our exiting, and if they have any stopped
608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
610 static void forget_original_parent(struct task_struct *father,
611 struct list_head *dead)
613 struct task_struct *p, *t, *reaper;
615 if (unlikely(!list_empty(&father->ptraced)))
616 exit_ptrace(father, dead);
618 /* Can drop and reacquire tasklist_lock */
619 reaper = find_child_reaper(father, dead);
620 if (list_empty(&father->children))
621 return;
623 reaper = find_new_reaper(father, reaper);
624 list_for_each_entry(p, &father->children, sibling) {
625 for_each_thread(p, t) {
626 t->real_parent = reaper;
627 BUG_ON((!t->ptrace) != (t->parent == father));
628 if (likely(!t->ptrace))
629 t->parent = t->real_parent;
630 if (t->pdeath_signal)
631 group_send_sig_info(t->pdeath_signal,
632 SEND_SIG_NOINFO, t,
633 PIDTYPE_TGID);
636 * If this is a threaded reparent there is no need to
637 * notify anyone anything has happened.
639 if (!same_thread_group(reaper, father))
640 reparent_leader(father, p, dead);
642 list_splice_tail_init(&father->children, &reaper->children);
646 * Send signals to all our closest relatives so that they know
647 * to properly mourn us..
649 static void exit_notify(struct task_struct *tsk, int group_dead)
651 bool autoreap;
652 struct task_struct *p, *n;
653 LIST_HEAD(dead);
655 write_lock_irq(&tasklist_lock);
656 forget_original_parent(tsk, &dead);
658 if (group_dead)
659 kill_orphaned_pgrp(tsk->group_leader, NULL);
661 tsk->exit_state = EXIT_ZOMBIE;
662 if (unlikely(tsk->ptrace)) {
663 int sig = thread_group_leader(tsk) &&
664 thread_group_empty(tsk) &&
665 !ptrace_reparented(tsk) ?
666 tsk->exit_signal : SIGCHLD;
667 autoreap = do_notify_parent(tsk, sig);
668 } else if (thread_group_leader(tsk)) {
669 autoreap = thread_group_empty(tsk) &&
670 do_notify_parent(tsk, tsk->exit_signal);
671 } else {
672 autoreap = true;
675 if (autoreap) {
676 tsk->exit_state = EXIT_DEAD;
677 list_add(&tsk->ptrace_entry, &dead);
680 /* mt-exec, de_thread() is waiting for group leader */
681 if (unlikely(tsk->signal->notify_count < 0))
682 wake_up_process(tsk->signal->group_exit_task);
683 write_unlock_irq(&tasklist_lock);
685 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
686 list_del_init(&p->ptrace_entry);
687 release_task(p);
691 #ifdef CONFIG_DEBUG_STACK_USAGE
692 static void check_stack_usage(void)
694 static DEFINE_SPINLOCK(low_water_lock);
695 static int lowest_to_date = THREAD_SIZE;
696 unsigned long free;
698 free = stack_not_used(current);
700 if (free >= lowest_to_date)
701 return;
703 spin_lock(&low_water_lock);
704 if (free < lowest_to_date) {
705 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
706 current->comm, task_pid_nr(current), free);
707 lowest_to_date = free;
709 spin_unlock(&low_water_lock);
711 #else
712 static inline void check_stack_usage(void) {}
713 #endif
715 void __noreturn do_exit(long code)
717 struct task_struct *tsk = current;
718 int group_dead;
720 profile_task_exit(tsk);
721 kcov_task_exit(tsk);
723 WARN_ON(blk_needs_flush_plug(tsk));
725 if (unlikely(in_interrupt()))
726 panic("Aiee, killing interrupt handler!");
727 if (unlikely(!tsk->pid))
728 panic("Attempted to kill the idle task!");
731 * If do_exit is called because this processes oopsed, it's possible
732 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
733 * continuing. Amongst other possible reasons, this is to prevent
734 * mm_release()->clear_child_tid() from writing to a user-controlled
735 * kernel address.
737 set_fs(USER_DS);
739 ptrace_event(PTRACE_EVENT_EXIT, code);
741 validate_creds_for_do_exit(tsk);
744 * We're taking recursive faults here in do_exit. Safest is to just
745 * leave this task alone and wait for reboot.
747 if (unlikely(tsk->flags & PF_EXITING)) {
748 pr_alert("Fixing recursive fault but reboot is needed!\n");
750 * We can do this unlocked here. The futex code uses
751 * this flag just to verify whether the pi state
752 * cleanup has been done or not. In the worst case it
753 * loops once more. We pretend that the cleanup was
754 * done as there is no way to return. Either the
755 * OWNER_DIED bit is set by now or we push the blocked
756 * task into the wait for ever nirwana as well.
758 tsk->flags |= PF_EXITPIDONE;
759 set_current_state(TASK_UNINTERRUPTIBLE);
760 schedule();
763 exit_signals(tsk); /* sets PF_EXITING */
765 * Ensure that all new tsk->pi_lock acquisitions must observe
766 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
768 smp_mb();
770 * Ensure that we must observe the pi_state in exit_mm() ->
771 * mm_release() -> exit_pi_state_list().
773 raw_spin_lock_irq(&tsk->pi_lock);
774 raw_spin_unlock_irq(&tsk->pi_lock);
776 if (unlikely(in_atomic())) {
777 pr_info("note: %s[%d] exited with preempt_count %d\n",
778 current->comm, task_pid_nr(current),
779 preempt_count());
780 preempt_count_set(PREEMPT_ENABLED);
783 /* sync mm's RSS info before statistics gathering */
784 if (tsk->mm)
785 sync_mm_rss(tsk->mm);
786 acct_update_integrals(tsk);
787 group_dead = atomic_dec_and_test(&tsk->signal->live);
788 if (group_dead) {
789 #ifdef CONFIG_POSIX_TIMERS
790 hrtimer_cancel(&tsk->signal->real_timer);
791 exit_itimers(tsk->signal);
792 #endif
793 if (tsk->mm)
794 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
796 acct_collect(code, group_dead);
797 if (group_dead)
798 tty_audit_exit();
799 audit_free(tsk);
801 tsk->exit_code = code;
802 taskstats_exit(tsk, group_dead);
804 exit_mm();
806 if (group_dead)
807 acct_process();
808 trace_sched_process_exit(tsk);
810 exit_sem(tsk);
811 exit_shm(tsk);
812 exit_files(tsk);
813 exit_fs(tsk);
814 if (group_dead)
815 disassociate_ctty(1);
816 exit_task_namespaces(tsk);
817 exit_task_work(tsk);
818 exit_thread(tsk);
819 exit_umh(tsk);
822 * Flush inherited counters to the parent - before the parent
823 * gets woken up by child-exit notifications.
825 * because of cgroup mode, must be called before cgroup_exit()
827 perf_event_exit_task(tsk);
829 sched_autogroup_exit_task(tsk);
830 cgroup_exit(tsk);
833 * FIXME: do that only when needed, using sched_exit tracepoint
835 flush_ptrace_hw_breakpoint(tsk);
837 exit_tasks_rcu_start();
838 exit_notify(tsk, group_dead);
839 proc_exit_connector(tsk);
840 mpol_put_task_policy(tsk);
841 #ifdef CONFIG_FUTEX
842 if (unlikely(current->pi_state_cache))
843 kfree(current->pi_state_cache);
844 #endif
846 * Make sure we are holding no locks:
848 debug_check_no_locks_held();
850 * We can do this unlocked here. The futex code uses this flag
851 * just to verify whether the pi state cleanup has been done
852 * or not. In the worst case it loops once more.
854 tsk->flags |= PF_EXITPIDONE;
856 if (tsk->io_context)
857 exit_io_context(tsk);
859 if (tsk->splice_pipe)
860 free_pipe_info(tsk->splice_pipe);
862 if (tsk->task_frag.page)
863 put_page(tsk->task_frag.page);
865 validate_creds_for_do_exit(tsk);
867 check_stack_usage();
868 preempt_disable();
869 if (tsk->nr_dirtied)
870 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
871 exit_rcu();
872 exit_tasks_rcu_finish();
874 lockdep_free_task(tsk);
875 do_task_dead();
877 EXPORT_SYMBOL_GPL(do_exit);
879 void complete_and_exit(struct completion *comp, long code)
881 if (comp)
882 complete(comp);
884 do_exit(code);
886 EXPORT_SYMBOL(complete_and_exit);
888 SYSCALL_DEFINE1(exit, int, error_code)
890 do_exit((error_code&0xff)<<8);
894 * Take down every thread in the group. This is called by fatal signals
895 * as well as by sys_exit_group (below).
897 void
898 do_group_exit(int exit_code)
900 struct signal_struct *sig = current->signal;
902 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
904 if (signal_group_exit(sig))
905 exit_code = sig->group_exit_code;
906 else if (!thread_group_empty(current)) {
907 struct sighand_struct *const sighand = current->sighand;
909 spin_lock_irq(&sighand->siglock);
910 if (signal_group_exit(sig))
911 /* Another thread got here before we took the lock. */
912 exit_code = sig->group_exit_code;
913 else {
914 sig->group_exit_code = exit_code;
915 sig->flags = SIGNAL_GROUP_EXIT;
916 zap_other_threads(current);
918 spin_unlock_irq(&sighand->siglock);
921 do_exit(exit_code);
922 /* NOTREACHED */
926 * this kills every thread in the thread group. Note that any externally
927 * wait4()-ing process will get the correct exit code - even if this
928 * thread is not the thread group leader.
930 SYSCALL_DEFINE1(exit_group, int, error_code)
932 do_group_exit((error_code & 0xff) << 8);
933 /* NOTREACHED */
934 return 0;
937 struct waitid_info {
938 pid_t pid;
939 uid_t uid;
940 int status;
941 int cause;
944 struct wait_opts {
945 enum pid_type wo_type;
946 int wo_flags;
947 struct pid *wo_pid;
949 struct waitid_info *wo_info;
950 int wo_stat;
951 struct rusage *wo_rusage;
953 wait_queue_entry_t child_wait;
954 int notask_error;
957 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
959 return wo->wo_type == PIDTYPE_MAX ||
960 task_pid_type(p, wo->wo_type) == wo->wo_pid;
963 static int
964 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
966 if (!eligible_pid(wo, p))
967 return 0;
970 * Wait for all children (clone and not) if __WALL is set or
971 * if it is traced by us.
973 if (ptrace || (wo->wo_flags & __WALL))
974 return 1;
977 * Otherwise, wait for clone children *only* if __WCLONE is set;
978 * otherwise, wait for non-clone children *only*.
980 * Note: a "clone" child here is one that reports to its parent
981 * using a signal other than SIGCHLD, or a non-leader thread which
982 * we can only see if it is traced by us.
984 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
985 return 0;
987 return 1;
991 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
992 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
993 * the lock and this task is uninteresting. If we return nonzero, we have
994 * released the lock and the system call should return.
996 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
998 int state, status;
999 pid_t pid = task_pid_vnr(p);
1000 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1001 struct waitid_info *infop;
1003 if (!likely(wo->wo_flags & WEXITED))
1004 return 0;
1006 if (unlikely(wo->wo_flags & WNOWAIT)) {
1007 status = p->exit_code;
1008 get_task_struct(p);
1009 read_unlock(&tasklist_lock);
1010 sched_annotate_sleep();
1011 if (wo->wo_rusage)
1012 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1013 put_task_struct(p);
1014 goto out_info;
1017 * Move the task's state to DEAD/TRACE, only one thread can do this.
1019 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1020 EXIT_TRACE : EXIT_DEAD;
1021 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1022 return 0;
1024 * We own this thread, nobody else can reap it.
1026 read_unlock(&tasklist_lock);
1027 sched_annotate_sleep();
1030 * Check thread_group_leader() to exclude the traced sub-threads.
1032 if (state == EXIT_DEAD && thread_group_leader(p)) {
1033 struct signal_struct *sig = p->signal;
1034 struct signal_struct *psig = current->signal;
1035 unsigned long maxrss;
1036 u64 tgutime, tgstime;
1039 * The resource counters for the group leader are in its
1040 * own task_struct. Those for dead threads in the group
1041 * are in its signal_struct, as are those for the child
1042 * processes it has previously reaped. All these
1043 * accumulate in the parent's signal_struct c* fields.
1045 * We don't bother to take a lock here to protect these
1046 * p->signal fields because the whole thread group is dead
1047 * and nobody can change them.
1049 * psig->stats_lock also protects us from our sub-theads
1050 * which can reap other children at the same time. Until
1051 * we change k_getrusage()-like users to rely on this lock
1052 * we have to take ->siglock as well.
1054 * We use thread_group_cputime_adjusted() to get times for
1055 * the thread group, which consolidates times for all threads
1056 * in the group including the group leader.
1058 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1059 spin_lock_irq(&current->sighand->siglock);
1060 write_seqlock(&psig->stats_lock);
1061 psig->cutime += tgutime + sig->cutime;
1062 psig->cstime += tgstime + sig->cstime;
1063 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1064 psig->cmin_flt +=
1065 p->min_flt + sig->min_flt + sig->cmin_flt;
1066 psig->cmaj_flt +=
1067 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1068 psig->cnvcsw +=
1069 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1070 psig->cnivcsw +=
1071 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1072 psig->cinblock +=
1073 task_io_get_inblock(p) +
1074 sig->inblock + sig->cinblock;
1075 psig->coublock +=
1076 task_io_get_oublock(p) +
1077 sig->oublock + sig->coublock;
1078 maxrss = max(sig->maxrss, sig->cmaxrss);
1079 if (psig->cmaxrss < maxrss)
1080 psig->cmaxrss = maxrss;
1081 task_io_accounting_add(&psig->ioac, &p->ioac);
1082 task_io_accounting_add(&psig->ioac, &sig->ioac);
1083 write_sequnlock(&psig->stats_lock);
1084 spin_unlock_irq(&current->sighand->siglock);
1087 if (wo->wo_rusage)
1088 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1089 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090 ? p->signal->group_exit_code : p->exit_code;
1091 wo->wo_stat = status;
1093 if (state == EXIT_TRACE) {
1094 write_lock_irq(&tasklist_lock);
1095 /* We dropped tasklist, ptracer could die and untrace */
1096 ptrace_unlink(p);
1098 /* If parent wants a zombie, don't release it now */
1099 state = EXIT_ZOMBIE;
1100 if (do_notify_parent(p, p->exit_signal))
1101 state = EXIT_DEAD;
1102 p->exit_state = state;
1103 write_unlock_irq(&tasklist_lock);
1105 if (state == EXIT_DEAD)
1106 release_task(p);
1108 out_info:
1109 infop = wo->wo_info;
1110 if (infop) {
1111 if ((status & 0x7f) == 0) {
1112 infop->cause = CLD_EXITED;
1113 infop->status = status >> 8;
1114 } else {
1115 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1116 infop->status = status & 0x7f;
1118 infop->pid = pid;
1119 infop->uid = uid;
1122 return pid;
1125 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1127 if (ptrace) {
1128 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1129 return &p->exit_code;
1130 } else {
1131 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1132 return &p->signal->group_exit_code;
1134 return NULL;
1138 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1139 * @wo: wait options
1140 * @ptrace: is the wait for ptrace
1141 * @p: task to wait for
1143 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1145 * CONTEXT:
1146 * read_lock(&tasklist_lock), which is released if return value is
1147 * non-zero. Also, grabs and releases @p->sighand->siglock.
1149 * RETURNS:
1150 * 0 if wait condition didn't exist and search for other wait conditions
1151 * should continue. Non-zero return, -errno on failure and @p's pid on
1152 * success, implies that tasklist_lock is released and wait condition
1153 * search should terminate.
1155 static int wait_task_stopped(struct wait_opts *wo,
1156 int ptrace, struct task_struct *p)
1158 struct waitid_info *infop;
1159 int exit_code, *p_code, why;
1160 uid_t uid = 0; /* unneeded, required by compiler */
1161 pid_t pid;
1164 * Traditionally we see ptrace'd stopped tasks regardless of options.
1166 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1167 return 0;
1169 if (!task_stopped_code(p, ptrace))
1170 return 0;
1172 exit_code = 0;
1173 spin_lock_irq(&p->sighand->siglock);
1175 p_code = task_stopped_code(p, ptrace);
1176 if (unlikely(!p_code))
1177 goto unlock_sig;
1179 exit_code = *p_code;
1180 if (!exit_code)
1181 goto unlock_sig;
1183 if (!unlikely(wo->wo_flags & WNOWAIT))
1184 *p_code = 0;
1186 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1187 unlock_sig:
1188 spin_unlock_irq(&p->sighand->siglock);
1189 if (!exit_code)
1190 return 0;
1193 * Now we are pretty sure this task is interesting.
1194 * Make sure it doesn't get reaped out from under us while we
1195 * give up the lock and then examine it below. We don't want to
1196 * keep holding onto the tasklist_lock while we call getrusage and
1197 * possibly take page faults for user memory.
1199 get_task_struct(p);
1200 pid = task_pid_vnr(p);
1201 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1202 read_unlock(&tasklist_lock);
1203 sched_annotate_sleep();
1204 if (wo->wo_rusage)
1205 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1206 put_task_struct(p);
1208 if (likely(!(wo->wo_flags & WNOWAIT)))
1209 wo->wo_stat = (exit_code << 8) | 0x7f;
1211 infop = wo->wo_info;
1212 if (infop) {
1213 infop->cause = why;
1214 infop->status = exit_code;
1215 infop->pid = pid;
1216 infop->uid = uid;
1218 return pid;
1222 * Handle do_wait work for one task in a live, non-stopped state.
1223 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1224 * the lock and this task is uninteresting. If we return nonzero, we have
1225 * released the lock and the system call should return.
1227 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1229 struct waitid_info *infop;
1230 pid_t pid;
1231 uid_t uid;
1233 if (!unlikely(wo->wo_flags & WCONTINUED))
1234 return 0;
1236 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1237 return 0;
1239 spin_lock_irq(&p->sighand->siglock);
1240 /* Re-check with the lock held. */
1241 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1242 spin_unlock_irq(&p->sighand->siglock);
1243 return 0;
1245 if (!unlikely(wo->wo_flags & WNOWAIT))
1246 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1247 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1248 spin_unlock_irq(&p->sighand->siglock);
1250 pid = task_pid_vnr(p);
1251 get_task_struct(p);
1252 read_unlock(&tasklist_lock);
1253 sched_annotate_sleep();
1254 if (wo->wo_rusage)
1255 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1256 put_task_struct(p);
1258 infop = wo->wo_info;
1259 if (!infop) {
1260 wo->wo_stat = 0xffff;
1261 } else {
1262 infop->cause = CLD_CONTINUED;
1263 infop->pid = pid;
1264 infop->uid = uid;
1265 infop->status = SIGCONT;
1267 return pid;
1271 * Consider @p for a wait by @parent.
1273 * -ECHILD should be in ->notask_error before the first call.
1274 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1275 * Returns zero if the search for a child should continue;
1276 * then ->notask_error is 0 if @p is an eligible child,
1277 * or still -ECHILD.
1279 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1280 struct task_struct *p)
1283 * We can race with wait_task_zombie() from another thread.
1284 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1285 * can't confuse the checks below.
1287 int exit_state = READ_ONCE(p->exit_state);
1288 int ret;
1290 if (unlikely(exit_state == EXIT_DEAD))
1291 return 0;
1293 ret = eligible_child(wo, ptrace, p);
1294 if (!ret)
1295 return ret;
1297 if (unlikely(exit_state == EXIT_TRACE)) {
1299 * ptrace == 0 means we are the natural parent. In this case
1300 * we should clear notask_error, debugger will notify us.
1302 if (likely(!ptrace))
1303 wo->notask_error = 0;
1304 return 0;
1307 if (likely(!ptrace) && unlikely(p->ptrace)) {
1309 * If it is traced by its real parent's group, just pretend
1310 * the caller is ptrace_do_wait() and reap this child if it
1311 * is zombie.
1313 * This also hides group stop state from real parent; otherwise
1314 * a single stop can be reported twice as group and ptrace stop.
1315 * If a ptracer wants to distinguish these two events for its
1316 * own children it should create a separate process which takes
1317 * the role of real parent.
1319 if (!ptrace_reparented(p))
1320 ptrace = 1;
1323 /* slay zombie? */
1324 if (exit_state == EXIT_ZOMBIE) {
1325 /* we don't reap group leaders with subthreads */
1326 if (!delay_group_leader(p)) {
1328 * A zombie ptracee is only visible to its ptracer.
1329 * Notification and reaping will be cascaded to the
1330 * real parent when the ptracer detaches.
1332 if (unlikely(ptrace) || likely(!p->ptrace))
1333 return wait_task_zombie(wo, p);
1337 * Allow access to stopped/continued state via zombie by
1338 * falling through. Clearing of notask_error is complex.
1340 * When !@ptrace:
1342 * If WEXITED is set, notask_error should naturally be
1343 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1344 * so, if there are live subthreads, there are events to
1345 * wait for. If all subthreads are dead, it's still safe
1346 * to clear - this function will be called again in finite
1347 * amount time once all the subthreads are released and
1348 * will then return without clearing.
1350 * When @ptrace:
1352 * Stopped state is per-task and thus can't change once the
1353 * target task dies. Only continued and exited can happen.
1354 * Clear notask_error if WCONTINUED | WEXITED.
1356 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1357 wo->notask_error = 0;
1358 } else {
1360 * @p is alive and it's gonna stop, continue or exit, so
1361 * there always is something to wait for.
1363 wo->notask_error = 0;
1367 * Wait for stopped. Depending on @ptrace, different stopped state
1368 * is used and the two don't interact with each other.
1370 ret = wait_task_stopped(wo, ptrace, p);
1371 if (ret)
1372 return ret;
1375 * Wait for continued. There's only one continued state and the
1376 * ptracer can consume it which can confuse the real parent. Don't
1377 * use WCONTINUED from ptracer. You don't need or want it.
1379 return wait_task_continued(wo, p);
1383 * Do the work of do_wait() for one thread in the group, @tsk.
1385 * -ECHILD should be in ->notask_error before the first call.
1386 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1387 * Returns zero if the search for a child should continue; then
1388 * ->notask_error is 0 if there were any eligible children,
1389 * or still -ECHILD.
1391 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1393 struct task_struct *p;
1395 list_for_each_entry(p, &tsk->children, sibling) {
1396 int ret = wait_consider_task(wo, 0, p);
1398 if (ret)
1399 return ret;
1402 return 0;
1405 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1407 struct task_struct *p;
1409 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1410 int ret = wait_consider_task(wo, 1, p);
1412 if (ret)
1413 return ret;
1416 return 0;
1419 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1420 int sync, void *key)
1422 struct wait_opts *wo = container_of(wait, struct wait_opts,
1423 child_wait);
1424 struct task_struct *p = key;
1426 if (!eligible_pid(wo, p))
1427 return 0;
1429 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1430 return 0;
1432 return default_wake_function(wait, mode, sync, key);
1435 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1437 __wake_up_sync_key(&parent->signal->wait_chldexit,
1438 TASK_INTERRUPTIBLE, 1, p);
1441 static long do_wait(struct wait_opts *wo)
1443 struct task_struct *tsk;
1444 int retval;
1446 trace_sched_process_wait(wo->wo_pid);
1448 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1449 wo->child_wait.private = current;
1450 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1451 repeat:
1453 * If there is nothing that can match our criteria, just get out.
1454 * We will clear ->notask_error to zero if we see any child that
1455 * might later match our criteria, even if we are not able to reap
1456 * it yet.
1458 wo->notask_error = -ECHILD;
1459 if ((wo->wo_type < PIDTYPE_MAX) &&
1460 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1461 goto notask;
1463 set_current_state(TASK_INTERRUPTIBLE);
1464 read_lock(&tasklist_lock);
1465 tsk = current;
1466 do {
1467 retval = do_wait_thread(wo, tsk);
1468 if (retval)
1469 goto end;
1471 retval = ptrace_do_wait(wo, tsk);
1472 if (retval)
1473 goto end;
1475 if (wo->wo_flags & __WNOTHREAD)
1476 break;
1477 } while_each_thread(current, tsk);
1478 read_unlock(&tasklist_lock);
1480 notask:
1481 retval = wo->notask_error;
1482 if (!retval && !(wo->wo_flags & WNOHANG)) {
1483 retval = -ERESTARTSYS;
1484 if (!signal_pending(current)) {
1485 schedule();
1486 goto repeat;
1489 end:
1490 __set_current_state(TASK_RUNNING);
1491 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1492 return retval;
1495 static struct pid *pidfd_get_pid(unsigned int fd)
1497 struct fd f;
1498 struct pid *pid;
1500 f = fdget(fd);
1501 if (!f.file)
1502 return ERR_PTR(-EBADF);
1504 pid = pidfd_pid(f.file);
1505 if (!IS_ERR(pid))
1506 get_pid(pid);
1508 fdput(f);
1509 return pid;
1512 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1513 int options, struct rusage *ru)
1515 struct wait_opts wo;
1516 struct pid *pid = NULL;
1517 enum pid_type type;
1518 long ret;
1520 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1521 __WNOTHREAD|__WCLONE|__WALL))
1522 return -EINVAL;
1523 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1524 return -EINVAL;
1526 switch (which) {
1527 case P_ALL:
1528 type = PIDTYPE_MAX;
1529 break;
1530 case P_PID:
1531 type = PIDTYPE_PID;
1532 if (upid <= 0)
1533 return -EINVAL;
1535 pid = find_get_pid(upid);
1536 break;
1537 case P_PGID:
1538 type = PIDTYPE_PGID;
1539 if (upid < 0)
1540 return -EINVAL;
1542 if (upid)
1543 pid = find_get_pid(upid);
1544 else
1545 pid = get_task_pid(current, PIDTYPE_PGID);
1546 break;
1547 case P_PIDFD:
1548 type = PIDTYPE_PID;
1549 if (upid < 0)
1550 return -EINVAL;
1552 pid = pidfd_get_pid(upid);
1553 if (IS_ERR(pid))
1554 return PTR_ERR(pid);
1555 break;
1556 default:
1557 return -EINVAL;
1560 wo.wo_type = type;
1561 wo.wo_pid = pid;
1562 wo.wo_flags = options;
1563 wo.wo_info = infop;
1564 wo.wo_rusage = ru;
1565 ret = do_wait(&wo);
1567 put_pid(pid);
1568 return ret;
1571 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1572 infop, int, options, struct rusage __user *, ru)
1574 struct rusage r;
1575 struct waitid_info info = {.status = 0};
1576 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1577 int signo = 0;
1579 if (err > 0) {
1580 signo = SIGCHLD;
1581 err = 0;
1582 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1583 return -EFAULT;
1585 if (!infop)
1586 return err;
1588 if (!user_access_begin(infop, sizeof(*infop)))
1589 return -EFAULT;
1591 unsafe_put_user(signo, &infop->si_signo, Efault);
1592 unsafe_put_user(0, &infop->si_errno, Efault);
1593 unsafe_put_user(info.cause, &infop->si_code, Efault);
1594 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1595 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1596 unsafe_put_user(info.status, &infop->si_status, Efault);
1597 user_access_end();
1598 return err;
1599 Efault:
1600 user_access_end();
1601 return -EFAULT;
1604 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1605 struct rusage *ru)
1607 struct wait_opts wo;
1608 struct pid *pid = NULL;
1609 enum pid_type type;
1610 long ret;
1612 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1613 __WNOTHREAD|__WCLONE|__WALL))
1614 return -EINVAL;
1616 /* -INT_MIN is not defined */
1617 if (upid == INT_MIN)
1618 return -ESRCH;
1620 if (upid == -1)
1621 type = PIDTYPE_MAX;
1622 else if (upid < 0) {
1623 type = PIDTYPE_PGID;
1624 pid = find_get_pid(-upid);
1625 } else if (upid == 0) {
1626 type = PIDTYPE_PGID;
1627 pid = get_task_pid(current, PIDTYPE_PGID);
1628 } else /* upid > 0 */ {
1629 type = PIDTYPE_PID;
1630 pid = find_get_pid(upid);
1633 wo.wo_type = type;
1634 wo.wo_pid = pid;
1635 wo.wo_flags = options | WEXITED;
1636 wo.wo_info = NULL;
1637 wo.wo_stat = 0;
1638 wo.wo_rusage = ru;
1639 ret = do_wait(&wo);
1640 put_pid(pid);
1641 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1642 ret = -EFAULT;
1644 return ret;
1647 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1648 int, options, struct rusage __user *, ru)
1650 struct rusage r;
1651 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1653 if (err > 0) {
1654 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1655 return -EFAULT;
1657 return err;
1660 #ifdef __ARCH_WANT_SYS_WAITPID
1663 * sys_waitpid() remains for compatibility. waitpid() should be
1664 * implemented by calling sys_wait4() from libc.a.
1666 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1668 return kernel_wait4(pid, stat_addr, options, NULL);
1671 #endif
1673 #ifdef CONFIG_COMPAT
1674 COMPAT_SYSCALL_DEFINE4(wait4,
1675 compat_pid_t, pid,
1676 compat_uint_t __user *, stat_addr,
1677 int, options,
1678 struct compat_rusage __user *, ru)
1680 struct rusage r;
1681 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1682 if (err > 0) {
1683 if (ru && put_compat_rusage(&r, ru))
1684 return -EFAULT;
1686 return err;
1689 COMPAT_SYSCALL_DEFINE5(waitid,
1690 int, which, compat_pid_t, pid,
1691 struct compat_siginfo __user *, infop, int, options,
1692 struct compat_rusage __user *, uru)
1694 struct rusage ru;
1695 struct waitid_info info = {.status = 0};
1696 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1697 int signo = 0;
1698 if (err > 0) {
1699 signo = SIGCHLD;
1700 err = 0;
1701 if (uru) {
1702 /* kernel_waitid() overwrites everything in ru */
1703 if (COMPAT_USE_64BIT_TIME)
1704 err = copy_to_user(uru, &ru, sizeof(ru));
1705 else
1706 err = put_compat_rusage(&ru, uru);
1707 if (err)
1708 return -EFAULT;
1712 if (!infop)
1713 return err;
1715 if (!user_access_begin(infop, sizeof(*infop)))
1716 return -EFAULT;
1718 unsafe_put_user(signo, &infop->si_signo, Efault);
1719 unsafe_put_user(0, &infop->si_errno, Efault);
1720 unsafe_put_user(info.cause, &infop->si_code, Efault);
1721 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1722 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1723 unsafe_put_user(info.status, &infop->si_status, Efault);
1724 user_access_end();
1725 return err;
1726 Efault:
1727 user_access_end();
1728 return -EFAULT;
1730 #endif
1732 __weak void abort(void)
1734 BUG();
1736 /* if that doesn't kill us, halt */
1737 panic("Oops failed to kill thread");
1739 EXPORT_SYMBOL(abort);