2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
23 #include <asm/a.out.h>
27 #include <asm/machvec.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
39 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
41 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist
);
42 DEFINE_PER_CPU(long, __pgtable_quicklist_size
);
44 extern void ia64_tlb_init (void);
46 unsigned long MAX_DMA_ADDRESS
= PAGE_OFFSET
+ 0x100000000UL
;
48 #ifdef CONFIG_VIRTUAL_MEM_MAP
49 unsigned long vmalloc_end
= VMALLOC_END_INIT
;
50 EXPORT_SYMBOL(vmalloc_end
);
51 struct page
*vmem_map
;
52 EXPORT_SYMBOL(vmem_map
);
55 struct page
*zero_page_memmap_ptr
; /* map entry for zero page */
56 EXPORT_SYMBOL(zero_page_memmap_ptr
);
58 #define MIN_PGT_PAGES 25UL
59 #define MAX_PGT_FREES_PER_PASS 16L
60 #define PGT_FRACTION_OF_NODE_MEM 16
65 u64 node_free_pages
, max_pgt_pages
;
68 node_free_pages
= nr_free_pages();
70 node_free_pages
= nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72 max_pgt_pages
= node_free_pages
/ PGT_FRACTION_OF_NODE_MEM
;
73 max_pgt_pages
= max(max_pgt_pages
, MIN_PGT_PAGES
);
78 min_pages_to_free(void)
82 pages_to_free
= pgtable_quicklist_size
- max_pgt_pages();
83 pages_to_free
= min(pages_to_free
, MAX_PGT_FREES_PER_PASS
);
92 if (unlikely(pgtable_quicklist_size
<= MIN_PGT_PAGES
))
96 while (unlikely((pages_to_free
= min_pages_to_free()) > 0)) {
97 while (pages_to_free
--) {
98 free_page((unsigned long)pgtable_quicklist_alloc());
107 lazy_mmu_prot_update (pte_t pte
)
114 return; /* not an executable page... */
116 page
= pte_page(pte
);
117 addr
= (unsigned long) page_address(page
);
119 if (test_bit(PG_arch_1
, &page
->flags
))
120 return; /* i-cache is already coherent with d-cache */
122 if (PageCompound(page
)) {
123 order
= (unsigned long) (page
[1].lru
.prev
);
124 flush_icache_range(addr
, addr
+ (1UL << order
<< PAGE_SHIFT
));
127 flush_icache_range(addr
, addr
+ PAGE_SIZE
);
128 set_bit(PG_arch_1
, &page
->flags
); /* mark page as clean */
132 ia64_set_rbs_bot (void)
134 unsigned long stack_size
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
& -16;
136 if (stack_size
> MAX_USER_STACK_SIZE
)
137 stack_size
= MAX_USER_STACK_SIZE
;
138 current
->thread
.rbs_bot
= STACK_TOP
- stack_size
;
142 * This performs some platform-dependent address space initialization.
143 * On IA-64, we want to setup the VM area for the register backing
144 * store (which grows upwards) and install the gateway page which is
145 * used for signal trampolines, etc.
148 ia64_init_addr_space (void)
150 struct vm_area_struct
*vma
;
155 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
156 * the problem. When the process attempts to write to the register backing store
157 * for the first time, it will get a SEGFAULT in this case.
159 vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
161 memset(vma
, 0, sizeof(*vma
));
162 vma
->vm_mm
= current
->mm
;
163 vma
->vm_start
= current
->thread
.rbs_bot
& PAGE_MASK
;
164 vma
->vm_end
= vma
->vm_start
+ PAGE_SIZE
;
165 vma
->vm_page_prot
= protection_map
[VM_DATA_DEFAULT_FLAGS
& 0x7];
166 vma
->vm_flags
= VM_DATA_DEFAULT_FLAGS
|VM_GROWSUP
|VM_ACCOUNT
;
167 down_write(¤t
->mm
->mmap_sem
);
168 if (insert_vm_struct(current
->mm
, vma
)) {
169 up_write(¤t
->mm
->mmap_sem
);
170 kmem_cache_free(vm_area_cachep
, vma
);
173 up_write(¤t
->mm
->mmap_sem
);
176 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
177 if (!(current
->personality
& MMAP_PAGE_ZERO
)) {
178 vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
180 memset(vma
, 0, sizeof(*vma
));
181 vma
->vm_mm
= current
->mm
;
182 vma
->vm_end
= PAGE_SIZE
;
183 vma
->vm_page_prot
= __pgprot(pgprot_val(PAGE_READONLY
) | _PAGE_MA_NAT
);
184 vma
->vm_flags
= VM_READ
| VM_MAYREAD
| VM_IO
| VM_RESERVED
;
185 down_write(¤t
->mm
->mmap_sem
);
186 if (insert_vm_struct(current
->mm
, vma
)) {
187 up_write(¤t
->mm
->mmap_sem
);
188 kmem_cache_free(vm_area_cachep
, vma
);
191 up_write(¤t
->mm
->mmap_sem
);
199 unsigned long addr
, eaddr
;
201 addr
= (unsigned long) ia64_imva(__init_begin
);
202 eaddr
= (unsigned long) ia64_imva(__init_end
);
203 while (addr
< eaddr
) {
204 ClearPageReserved(virt_to_page(addr
));
205 init_page_count(virt_to_page(addr
));
210 printk(KERN_INFO
"Freeing unused kernel memory: %ldkB freed\n",
211 (__init_end
- __init_begin
) >> 10);
215 free_initrd_mem (unsigned long start
, unsigned long end
)
219 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
220 * Thus EFI and the kernel may have different page sizes. It is
221 * therefore possible to have the initrd share the same page as
222 * the end of the kernel (given current setup).
224 * To avoid freeing/using the wrong page (kernel sized) we:
225 * - align up the beginning of initrd
226 * - align down the end of initrd
229 * |=============| a000
235 * |=============| 8000
238 * |/////////////| 7000
241 * |=============| 6000
244 * K=kernel using 8KB pages
246 * In this example, we must free page 8000 ONLY. So we must align up
247 * initrd_start and keep initrd_end as is.
249 start
= PAGE_ALIGN(start
);
250 end
= end
& PAGE_MASK
;
253 printk(KERN_INFO
"Freeing initrd memory: %ldkB freed\n", (end
- start
) >> 10);
255 for (; start
< end
; start
+= PAGE_SIZE
) {
256 if (!virt_addr_valid(start
))
258 page
= virt_to_page(start
);
259 ClearPageReserved(page
);
260 init_page_count(page
);
267 * This installs a clean page in the kernel's page table.
269 static struct page
* __init
270 put_kernel_page (struct page
*page
, unsigned long address
, pgprot_t pgprot
)
277 if (!PageReserved(page
))
278 printk(KERN_ERR
"put_kernel_page: page at 0x%p not in reserved memory\n",
281 pgd
= pgd_offset_k(address
); /* note: this is NOT pgd_offset()! */
284 pud
= pud_alloc(&init_mm
, pgd
, address
);
287 pmd
= pmd_alloc(&init_mm
, pud
, address
);
290 pte
= pte_alloc_kernel(pmd
, address
);
295 set_pte(pte
, mk_pte(page
, pgprot
));
298 /* no need for flush_tlb */
308 * Map the gate page twice: once read-only to export the ELF
309 * headers etc. and once execute-only page to enable
310 * privilege-promotion via "epc":
312 page
= virt_to_page(ia64_imva(__start_gate_section
));
313 put_kernel_page(page
, GATE_ADDR
, PAGE_READONLY
);
314 #ifdef HAVE_BUGGY_SEGREL
315 page
= virt_to_page(ia64_imva(__start_gate_section
+ PAGE_SIZE
));
316 put_kernel_page(page
, GATE_ADDR
+ PAGE_SIZE
, PAGE_GATE
);
318 put_kernel_page(page
, GATE_ADDR
+ PERCPU_PAGE_SIZE
, PAGE_GATE
);
319 /* Fill in the holes (if any) with read-only zero pages: */
323 for (addr
= GATE_ADDR
+ PAGE_SIZE
;
324 addr
< GATE_ADDR
+ PERCPU_PAGE_SIZE
;
327 put_kernel_page(ZERO_PAGE(0), addr
,
329 put_kernel_page(ZERO_PAGE(0), addr
+ PERCPU_PAGE_SIZE
,
338 ia64_mmu_init (void *my_cpu_data
)
340 unsigned long psr
, pta
, impl_va_bits
;
341 extern void __devinit
tlb_init (void);
343 #ifdef CONFIG_DISABLE_VHPT
344 # define VHPT_ENABLE_BIT 0
346 # define VHPT_ENABLE_BIT 1
349 /* Pin mapping for percpu area into TLB */
350 psr
= ia64_clear_ic();
351 ia64_itr(0x2, IA64_TR_PERCPU_DATA
, PERCPU_ADDR
,
352 pte_val(pfn_pte(__pa(my_cpu_data
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
359 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
360 * address space. The IA-64 architecture guarantees that at least 50 bits of
361 * virtual address space are implemented but if we pick a large enough page size
362 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
363 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
364 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
365 * problem in practice. Alternatively, we could truncate the top of the mapped
366 * address space to not permit mappings that would overlap with the VMLPT.
370 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
372 * The virtual page table has to cover the entire implemented address space within
373 * a region even though not all of this space may be mappable. The reason for
374 * this is that the Access bit and Dirty bit fault handlers perform
375 * non-speculative accesses to the virtual page table, so the address range of the
376 * virtual page table itself needs to be covered by virtual page table.
378 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
379 # define POW2(n) (1ULL << (n))
381 impl_va_bits
= ffz(~(local_cpu_data
->unimpl_va_mask
| (7UL << 61)));
383 if (impl_va_bits
< 51 || impl_va_bits
> 61)
384 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits
- 1);
386 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
387 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
388 * the test makes sure that our mapped space doesn't overlap the
389 * unimplemented hole in the middle of the region.
391 if ((mapped_space_bits
- PAGE_SHIFT
> vmlpt_bits
- pte_bits
) ||
392 (mapped_space_bits
> impl_va_bits
- 1))
393 panic("Cannot build a big enough virtual-linear page table"
394 " to cover mapped address space.\n"
395 " Try using a smaller page size.\n");
398 /* place the VMLPT at the end of each page-table mapped region: */
399 pta
= POW2(61) - POW2(vmlpt_bits
);
402 * Set the (virtually mapped linear) page table address. Bit
403 * 8 selects between the short and long format, bits 2-7 the
404 * size of the table, and bit 0 whether the VHPT walker is
407 ia64_set_pta(pta
| (0 << 8) | (vmlpt_bits
<< 2) | VHPT_ENABLE_BIT
);
411 #ifdef CONFIG_HUGETLB_PAGE
412 ia64_set_rr(HPAGE_REGION_BASE
, HPAGE_SHIFT
<< 2);
417 #ifdef CONFIG_VIRTUAL_MEM_MAP
418 int vmemmap_find_next_valid_pfn(int node
, int i
)
420 unsigned long end_address
, hole_next_pfn
;
421 unsigned long stop_address
;
422 pg_data_t
*pgdat
= NODE_DATA(node
);
424 end_address
= (unsigned long) &vmem_map
[pgdat
->node_start_pfn
+ i
];
425 end_address
= PAGE_ALIGN(end_address
);
427 stop_address
= (unsigned long) &vmem_map
[
428 pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
];
436 pgd
= pgd_offset_k(end_address
);
437 if (pgd_none(*pgd
)) {
438 end_address
+= PGDIR_SIZE
;
442 pud
= pud_offset(pgd
, end_address
);
443 if (pud_none(*pud
)) {
444 end_address
+= PUD_SIZE
;
448 pmd
= pmd_offset(pud
, end_address
);
449 if (pmd_none(*pmd
)) {
450 end_address
+= PMD_SIZE
;
454 pte
= pte_offset_kernel(pmd
, end_address
);
456 if (pte_none(*pte
)) {
457 end_address
+= PAGE_SIZE
;
459 if ((end_address
< stop_address
) &&
460 (end_address
!= ALIGN(end_address
, 1UL << PMD_SHIFT
)))
464 /* Found next valid vmem_map page */
466 } while (end_address
< stop_address
);
468 end_address
= min(end_address
, stop_address
);
469 end_address
= end_address
- (unsigned long) vmem_map
+ sizeof(struct page
) - 1;
470 hole_next_pfn
= end_address
/ sizeof(struct page
);
471 return hole_next_pfn
- pgdat
->node_start_pfn
;
475 create_mem_map_page_table (u64 start
, u64 end
, void *arg
)
477 unsigned long address
, start_page
, end_page
;
478 struct page
*map_start
, *map_end
;
485 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
486 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
488 start_page
= (unsigned long) map_start
& PAGE_MASK
;
489 end_page
= PAGE_ALIGN((unsigned long) map_end
);
490 node
= paddr_to_nid(__pa(start
));
492 for (address
= start_page
; address
< end_page
; address
+= PAGE_SIZE
) {
493 pgd
= pgd_offset_k(address
);
495 pgd_populate(&init_mm
, pgd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
496 pud
= pud_offset(pgd
, address
);
499 pud_populate(&init_mm
, pud
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
500 pmd
= pmd_offset(pud
, address
);
503 pmd_populate_kernel(&init_mm
, pmd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
504 pte
= pte_offset_kernel(pmd
, address
);
507 set_pte(pte
, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
)) >> PAGE_SHIFT
,
513 struct memmap_init_callback_data
{
521 virtual_memmap_init (u64 start
, u64 end
, void *arg
)
523 struct memmap_init_callback_data
*args
;
524 struct page
*map_start
, *map_end
;
526 args
= (struct memmap_init_callback_data
*) arg
;
527 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
528 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
530 if (map_start
< args
->start
)
531 map_start
= args
->start
;
532 if (map_end
> args
->end
)
536 * We have to initialize "out of bounds" struct page elements that fit completely
537 * on the same pages that were allocated for the "in bounds" elements because they
538 * may be referenced later (and found to be "reserved").
540 map_start
-= ((unsigned long) map_start
& (PAGE_SIZE
- 1)) / sizeof(struct page
);
541 map_end
+= ((PAGE_ALIGN((unsigned long) map_end
) - (unsigned long) map_end
)
542 / sizeof(struct page
));
544 if (map_start
< map_end
)
545 memmap_init_zone((unsigned long)(map_end
- map_start
),
546 args
->nid
, args
->zone
, page_to_pfn(map_start
),
552 memmap_init (unsigned long size
, int nid
, unsigned long zone
,
553 unsigned long start_pfn
)
556 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
);
559 struct memmap_init_callback_data args
;
561 start
= pfn_to_page(start_pfn
);
563 args
.end
= start
+ size
;
567 efi_memmap_walk(virtual_memmap_init
, &args
);
572 ia64_pfn_valid (unsigned long pfn
)
575 struct page
*pg
= pfn_to_page(pfn
);
577 return (__get_user(byte
, (char __user
*) pg
) == 0)
578 && ((((u64
)pg
& PAGE_MASK
) == (((u64
)(pg
+ 1) - 1) & PAGE_MASK
))
579 || (__get_user(byte
, (char __user
*) (pg
+ 1) - 1) == 0));
581 EXPORT_SYMBOL(ia64_pfn_valid
);
584 find_largest_hole (u64 start
, u64 end
, void *arg
)
588 static u64 last_end
= PAGE_OFFSET
;
590 /* NOTE: this algorithm assumes efi memmap table is ordered */
592 if (*max_gap
< (start
- last_end
))
593 *max_gap
= start
- last_end
;
599 register_active_ranges(u64 start
, u64 end
, void *arg
)
601 add_active_range(0, __pa(start
) >> PAGE_SHIFT
, __pa(end
) >> PAGE_SHIFT
);
604 #endif /* CONFIG_VIRTUAL_MEM_MAP */
607 count_reserved_pages (u64 start
, u64 end
, void *arg
)
609 unsigned long num_reserved
= 0;
610 unsigned long *count
= arg
;
612 for (; start
< end
; start
+= PAGE_SIZE
)
613 if (PageReserved(virt_to_page(start
)))
615 *count
+= num_reserved
;
620 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
621 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
622 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
623 * useful for performance testing, but conceivably could also come in handy for debugging
627 static int nolwsys __initdata
;
630 nolwsys_setup (char *s
)
636 __setup("nolwsys", nolwsys_setup
);
641 long reserved_pages
, codesize
, datasize
, initsize
;
644 static struct kcore_list kcore_mem
, kcore_vmem
, kcore_kernel
;
646 BUG_ON(PTRS_PER_PGD
* sizeof(pgd_t
) != PAGE_SIZE
);
647 BUG_ON(PTRS_PER_PMD
* sizeof(pmd_t
) != PAGE_SIZE
);
648 BUG_ON(PTRS_PER_PTE
* sizeof(pte_t
) != PAGE_SIZE
);
652 * This needs to be called _after_ the command line has been parsed but _before_
653 * any drivers that may need the PCI DMA interface are initialized or bootmem has
659 #ifdef CONFIG_FLATMEM
662 max_mapnr
= max_low_pfn
;
665 high_memory
= __va(max_low_pfn
* PAGE_SIZE
);
667 kclist_add(&kcore_mem
, __va(0), max_low_pfn
* PAGE_SIZE
);
668 kclist_add(&kcore_vmem
, (void *)VMALLOC_START
, VMALLOC_END
-VMALLOC_START
);
669 kclist_add(&kcore_kernel
, _stext
, _end
- _stext
);
671 for_each_online_pgdat(pgdat
)
672 if (pgdat
->bdata
->node_bootmem_map
)
673 totalram_pages
+= free_all_bootmem_node(pgdat
);
676 efi_memmap_walk(count_reserved_pages
, &reserved_pages
);
678 codesize
= (unsigned long) _etext
- (unsigned long) _stext
;
679 datasize
= (unsigned long) _edata
- (unsigned long) _etext
;
680 initsize
= (unsigned long) __init_end
- (unsigned long) __init_begin
;
682 printk(KERN_INFO
"Memory: %luk/%luk available (%luk code, %luk reserved, "
683 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT
- 10),
684 num_physpages
<< (PAGE_SHIFT
- 10), codesize
>> 10,
685 reserved_pages
<< (PAGE_SHIFT
- 10), datasize
>> 10, initsize
>> 10);
689 * For fsyscall entrpoints with no light-weight handler, use the ordinary
690 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
691 * code can tell them apart.
693 for (i
= 0; i
< NR_syscalls
; ++i
) {
694 extern unsigned long fsyscall_table
[NR_syscalls
];
695 extern unsigned long sys_call_table
[NR_syscalls
];
697 if (!fsyscall_table
[i
] || nolwsys
)
698 fsyscall_table
[i
] = sys_call_table
[i
] | 1;
702 #ifdef CONFIG_IA32_SUPPORT
707 #ifdef CONFIG_MEMORY_HOTPLUG
708 void online_page(struct page
*page
)
710 ClearPageReserved(page
);
711 init_page_count(page
);
717 int arch_add_memory(int nid
, u64 start
, u64 size
)
721 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
722 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
725 pgdat
= NODE_DATA(nid
);
727 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
728 ret
= __add_pages(zone
, start_pfn
, nr_pages
);
731 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
737 int remove_memory(u64 start
, u64 size
)
741 EXPORT_SYMBOL_GPL(remove_memory
);