USB: quirks for known quirky audio devices
[linux/fpc-iii.git] / include / math-emu / op-common.h
blobbb46e7645d537234bdc44221bccfa8e0e332e4c5
1 /* Software floating-point emulation. Common operations.
2 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Richard Henderson (rth@cygnus.com),
5 Jakub Jelinek (jj@ultra.linux.cz),
6 David S. Miller (davem@redhat.com) and
7 Peter Maydell (pmaydell@chiark.greenend.org.uk).
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Library General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version.
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Library General Public License for more details.
19 You should have received a copy of the GNU Library General Public
20 License along with the GNU C Library; see the file COPYING.LIB. If
21 not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 #ifndef __MATH_EMU_OP_COMMON_H__
25 #define __MATH_EMU_OP_COMMON_H__
27 #define _FP_DECL(wc, X) \
28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \
29 _FP_FRAC_DECL_##wc(X)
32 * Finish truely unpacking a native fp value by classifying the kind
33 * of fp value and normalizing both the exponent and the fraction.
36 #define _FP_UNPACK_CANONICAL(fs, wc, X) \
37 do { \
38 switch (X##_e) \
39 { \
40 default: \
41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
43 X##_e -= _FP_EXPBIAS_##fs; \
44 X##_c = FP_CLS_NORMAL; \
45 break; \
47 case 0: \
48 if (_FP_FRAC_ZEROP_##wc(X)) \
49 X##_c = FP_CLS_ZERO; \
50 else \
51 { \
52 /* a denormalized number */ \
53 _FP_I_TYPE _shift; \
54 _FP_FRAC_CLZ_##wc(_shift, X); \
55 _shift -= _FP_FRACXBITS_##fs; \
56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
58 X##_c = FP_CLS_NORMAL; \
59 FP_SET_EXCEPTION(FP_EX_DENORM); \
60 if (FP_DENORM_ZERO) \
61 { \
62 FP_SET_EXCEPTION(FP_EX_INEXACT); \
63 X##_c = FP_CLS_ZERO; \
64 } \
65 } \
66 break; \
68 case _FP_EXPMAX_##fs: \
69 if (_FP_FRAC_ZEROP_##wc(X)) \
70 X##_c = FP_CLS_INF; \
71 else \
72 { \
73 X##_c = FP_CLS_NAN; \
74 /* Check for signaling NaN */ \
75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
76 FP_SET_EXCEPTION(FP_EX_INVALID); \
77 } \
78 break; \
79 } \
80 } while (0)
83 * Before packing the bits back into the native fp result, take care
84 * of such mundane things as rounding and overflow. Also, for some
85 * kinds of fp values, the original parts may not have been fully
86 * extracted -- but that is ok, we can regenerate them now.
89 #define _FP_PACK_CANONICAL(fs, wc, X) \
90 do { \
91 switch (X##_c) \
92 { \
93 case FP_CLS_NORMAL: \
94 X##_e += _FP_EXPBIAS_##fs; \
95 if (X##_e > 0) \
96 { \
97 _FP_ROUND(wc, X); \
98 if (_FP_FRAC_OVERP_##wc(fs, X)) \
99 { \
100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); \
101 X##_e++; \
103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
104 if (X##_e >= _FP_EXPMAX_##fs) \
106 /* overflow */ \
107 switch (FP_ROUNDMODE) \
109 case FP_RND_NEAREST: \
110 X##_c = FP_CLS_INF; \
111 break; \
112 case FP_RND_PINF: \
113 if (!X##_s) X##_c = FP_CLS_INF; \
114 break; \
115 case FP_RND_MINF: \
116 if (X##_s) X##_c = FP_CLS_INF; \
117 break; \
119 if (X##_c == FP_CLS_INF) \
121 /* Overflow to infinity */ \
122 X##_e = _FP_EXPMAX_##fs; \
123 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
125 else \
127 /* Overflow to maximum normal */ \
128 X##_e = _FP_EXPMAX_##fs - 1; \
129 _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
132 FP_SET_EXCEPTION(FP_EX_INEXACT); \
135 else \
137 /* we've got a denormalized number */ \
138 X##_e = -X##_e + 1; \
139 if (X##_e <= _FP_WFRACBITS_##fs) \
141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
142 _FP_ROUND(wc, X); \
143 if (_FP_FRAC_HIGH_##fs(X) \
144 & (_FP_OVERFLOW_##fs >> 1)) \
146 X##_e = 1; \
147 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
148 FP_SET_EXCEPTION(FP_EX_INEXACT); \
150 else \
152 X##_e = 0; \
153 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
155 if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \
156 (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
157 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
159 else \
161 /* underflow to zero */ \
162 X##_e = 0; \
163 if (!_FP_FRAC_ZEROP_##wc(X)) \
165 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
166 _FP_ROUND(wc, X); \
167 _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
169 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
172 break; \
174 case FP_CLS_ZERO: \
175 X##_e = 0; \
176 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
177 break; \
179 case FP_CLS_INF: \
180 X##_e = _FP_EXPMAX_##fs; \
181 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
182 break; \
184 case FP_CLS_NAN: \
185 X##_e = _FP_EXPMAX_##fs; \
186 if (!_FP_KEEPNANFRACP) \
188 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
189 X##_s = _FP_NANSIGN_##fs; \
191 else \
192 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
193 break; \
195 } while (0)
197 /* This one accepts raw argument and not cooked, returns
198 * 1 if X is a signaling NaN.
200 #define _FP_ISSIGNAN(fs, wc, X) \
201 ({ \
202 int __ret = 0; \
203 if (X##_e == _FP_EXPMAX_##fs) \
205 if (!_FP_FRAC_ZEROP_##wc(X) \
206 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
207 __ret = 1; \
209 __ret; \
217 * Main addition routine. The input values should be cooked.
220 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
221 do { \
222 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
224 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
226 /* shift the smaller number so that its exponent matches the larger */ \
227 _FP_I_TYPE diff = X##_e - Y##_e; \
229 if (diff < 0) \
231 diff = -diff; \
232 if (diff <= _FP_WFRACBITS_##fs) \
233 _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
234 else if (!_FP_FRAC_ZEROP_##wc(X)) \
235 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
236 R##_e = Y##_e; \
238 else \
240 if (diff > 0) \
242 if (diff <= _FP_WFRACBITS_##fs) \
243 _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
244 else if (!_FP_FRAC_ZEROP_##wc(Y)) \
245 _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
247 R##_e = X##_e; \
250 R##_c = FP_CLS_NORMAL; \
252 if (X##_s == Y##_s) \
254 R##_s = X##_s; \
255 _FP_FRAC_ADD_##wc(R, X, Y); \
256 if (_FP_FRAC_OVERP_##wc(fs, R)) \
258 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
259 R##_e++; \
262 else \
264 R##_s = X##_s; \
265 _FP_FRAC_SUB_##wc(R, X, Y); \
266 if (_FP_FRAC_ZEROP_##wc(R)) \
268 /* return an exact zero */ \
269 if (FP_ROUNDMODE == FP_RND_MINF) \
270 R##_s |= Y##_s; \
271 else \
272 R##_s &= Y##_s; \
273 R##_c = FP_CLS_ZERO; \
275 else \
277 if (_FP_FRAC_NEGP_##wc(R)) \
279 _FP_FRAC_SUB_##wc(R, Y, X); \
280 R##_s = Y##_s; \
283 /* renormalize after subtraction */ \
284 _FP_FRAC_CLZ_##wc(diff, R); \
285 diff -= _FP_WFRACXBITS_##fs; \
286 if (diff) \
288 R##_e -= diff; \
289 _FP_FRAC_SLL_##wc(R, diff); \
293 break; \
296 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
297 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
298 break; \
300 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
301 R##_e = X##_e; \
302 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
303 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
304 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
305 _FP_FRAC_COPY_##wc(R, X); \
306 R##_s = X##_s; \
307 R##_c = X##_c; \
308 break; \
310 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
311 R##_e = Y##_e; \
312 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
313 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
314 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
315 _FP_FRAC_COPY_##wc(R, Y); \
316 R##_s = Y##_s; \
317 R##_c = Y##_c; \
318 break; \
320 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
321 if (X##_s != Y##_s) \
323 /* +INF + -INF => NAN */ \
324 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
325 R##_s = _FP_NANSIGN_##fs; \
326 R##_c = FP_CLS_NAN; \
327 FP_SET_EXCEPTION(FP_EX_INVALID); \
328 break; \
330 /* FALLTHRU */ \
332 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
333 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
334 R##_s = X##_s; \
335 R##_c = FP_CLS_INF; \
336 break; \
338 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
339 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
340 R##_s = Y##_s; \
341 R##_c = FP_CLS_INF; \
342 break; \
344 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
345 /* make sure the sign is correct */ \
346 if (FP_ROUNDMODE == FP_RND_MINF) \
347 R##_s = X##_s | Y##_s; \
348 else \
349 R##_s = X##_s & Y##_s; \
350 R##_c = FP_CLS_ZERO; \
351 break; \
353 default: \
354 abort(); \
356 } while (0)
358 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
359 #define _FP_SUB(fs, wc, R, X, Y) \
360 do { \
361 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
362 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
363 } while (0)
367 * Main negation routine. FIXME -- when we care about setting exception
368 * bits reliably, this will not do. We should examine all of the fp classes.
371 #define _FP_NEG(fs, wc, R, X) \
372 do { \
373 _FP_FRAC_COPY_##wc(R, X); \
374 R##_c = X##_c; \
375 R##_e = X##_e; \
376 R##_s = 1 ^ X##_s; \
377 } while (0)
381 * Main multiplication routine. The input values should be cooked.
384 #define _FP_MUL(fs, wc, R, X, Y) \
385 do { \
386 R##_s = X##_s ^ Y##_s; \
387 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
389 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
390 R##_c = FP_CLS_NORMAL; \
391 R##_e = X##_e + Y##_e + 1; \
393 _FP_MUL_MEAT_##fs(R,X,Y); \
395 if (_FP_FRAC_OVERP_##wc(fs, R)) \
396 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
397 else \
398 R##_e--; \
399 break; \
401 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
402 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
403 break; \
405 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
406 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
407 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
408 R##_s = X##_s; \
410 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
411 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
412 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
413 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
414 _FP_FRAC_COPY_##wc(R, X); \
415 R##_c = X##_c; \
416 break; \
418 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
419 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
420 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
421 R##_s = Y##_s; \
423 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
424 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
425 _FP_FRAC_COPY_##wc(R, Y); \
426 R##_c = Y##_c; \
427 break; \
429 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
430 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
431 R##_s = _FP_NANSIGN_##fs; \
432 R##_c = FP_CLS_NAN; \
433 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
434 FP_SET_EXCEPTION(FP_EX_INVALID); \
435 break; \
437 default: \
438 abort(); \
440 } while (0)
444 * Main division routine. The input values should be cooked.
447 #define _FP_DIV(fs, wc, R, X, Y) \
448 do { \
449 R##_s = X##_s ^ Y##_s; \
450 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
452 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
453 R##_c = FP_CLS_NORMAL; \
454 R##_e = X##_e - Y##_e; \
456 _FP_DIV_MEAT_##fs(R,X,Y); \
457 break; \
459 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
460 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
461 break; \
463 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
464 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
465 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
466 R##_s = X##_s; \
467 _FP_FRAC_COPY_##wc(R, X); \
468 R##_c = X##_c; \
469 break; \
471 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
472 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
473 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
474 R##_s = Y##_s; \
475 _FP_FRAC_COPY_##wc(R, Y); \
476 R##_c = Y##_c; \
477 break; \
479 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
480 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
481 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
482 R##_c = FP_CLS_ZERO; \
483 break; \
485 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
486 FP_SET_EXCEPTION(FP_EX_DIVZERO); \
487 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
488 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
489 R##_c = FP_CLS_INF; \
490 break; \
492 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
493 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
494 R##_s = _FP_NANSIGN_##fs; \
495 R##_c = FP_CLS_NAN; \
496 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
497 FP_SET_EXCEPTION(FP_EX_INVALID); \
498 break; \
500 default: \
501 abort(); \
503 } while (0)
507 * Main differential comparison routine. The inputs should be raw not
508 * cooked. The return is -1,0,1 for normal values, 2 otherwise.
511 #define _FP_CMP(fs, wc, ret, X, Y, un) \
512 do { \
513 /* NANs are unordered */ \
514 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
515 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
517 ret = un; \
519 else \
521 int __is_zero_x; \
522 int __is_zero_y; \
524 __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
525 __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
527 if (__is_zero_x && __is_zero_y) \
528 ret = 0; \
529 else if (__is_zero_x) \
530 ret = Y##_s ? 1 : -1; \
531 else if (__is_zero_y) \
532 ret = X##_s ? -1 : 1; \
533 else if (X##_s != Y##_s) \
534 ret = X##_s ? -1 : 1; \
535 else if (X##_e > Y##_e) \
536 ret = X##_s ? -1 : 1; \
537 else if (X##_e < Y##_e) \
538 ret = X##_s ? 1 : -1; \
539 else if (_FP_FRAC_GT_##wc(X, Y)) \
540 ret = X##_s ? -1 : 1; \
541 else if (_FP_FRAC_GT_##wc(Y, X)) \
542 ret = X##_s ? 1 : -1; \
543 else \
544 ret = 0; \
546 } while (0)
549 /* Simplification for strict equality. */
551 #define _FP_CMP_EQ(fs, wc, ret, X, Y) \
552 do { \
553 /* NANs are unordered */ \
554 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
555 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
557 ret = 1; \
559 else \
561 ret = !(X##_e == Y##_e \
562 && _FP_FRAC_EQ_##wc(X, Y) \
563 && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
565 } while (0)
568 * Main square root routine. The input value should be cooked.
571 #define _FP_SQRT(fs, wc, R, X) \
572 do { \
573 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
574 _FP_W_TYPE q; \
575 switch (X##_c) \
577 case FP_CLS_NAN: \
578 _FP_FRAC_COPY_##wc(R, X); \
579 R##_s = X##_s; \
580 R##_c = FP_CLS_NAN; \
581 break; \
582 case FP_CLS_INF: \
583 if (X##_s) \
585 R##_s = _FP_NANSIGN_##fs; \
586 R##_c = FP_CLS_NAN; /* NAN */ \
587 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
588 FP_SET_EXCEPTION(FP_EX_INVALID); \
590 else \
592 R##_s = 0; \
593 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
595 break; \
596 case FP_CLS_ZERO: \
597 R##_s = X##_s; \
598 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
599 break; \
600 case FP_CLS_NORMAL: \
601 R##_s = 0; \
602 if (X##_s) \
604 R##_c = FP_CLS_NAN; /* sNAN */ \
605 R##_s = _FP_NANSIGN_##fs; \
606 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
607 FP_SET_EXCEPTION(FP_EX_INVALID); \
608 break; \
610 R##_c = FP_CLS_NORMAL; \
611 if (X##_e & 1) \
612 _FP_FRAC_SLL_##wc(X, 1); \
613 R##_e = X##_e >> 1; \
614 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
615 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
616 q = _FP_OVERFLOW_##fs >> 1; \
617 _FP_SQRT_MEAT_##wc(R, S, T, X, q); \
619 } while (0)
622 * Convert from FP to integer
625 /* RSIGNED can have following values:
626 * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
627 * the result is either 0 or (2^rsize)-1 depending on the sign in such case.
628 * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
629 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
630 * on the sign in such case.
631 * 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
632 * set plus the result is truncated to fit into destination.
633 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
634 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
635 * on the sign in such case.
637 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
638 do { \
639 switch (X##_c) \
641 case FP_CLS_NORMAL: \
642 if (X##_e < 0) \
644 FP_SET_EXCEPTION(FP_EX_INEXACT); \
645 case FP_CLS_ZERO: \
646 r = 0; \
648 else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
649 || (!rsigned && X##_s)) \
650 { /* overflow */ \
651 case FP_CLS_NAN: \
652 case FP_CLS_INF: \
653 if (rsigned == 2) \
655 if (X##_c != FP_CLS_NORMAL \
656 || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \
657 r = 0; \
658 else \
660 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
661 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
664 else if (rsigned) \
666 r = 1; \
667 r <<= rsize - 1; \
668 r -= 1 - X##_s; \
670 else \
672 r = 0; \
673 if (X##_s) \
674 r = ~r; \
676 FP_SET_EXCEPTION(FP_EX_INVALID); \
678 else \
680 if (_FP_W_TYPE_SIZE*wc < rsize) \
682 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
683 r <<= X##_e - _FP_WFRACBITS_##fs; \
685 else \
687 if (X##_e >= _FP_WFRACBITS_##fs) \
688 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
689 else if (X##_e < _FP_WFRACBITS_##fs - 1) \
691 _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
692 _FP_WFRACBITS_##fs); \
693 if (_FP_FRAC_LOW_##wc(X) & 1) \
694 FP_SET_EXCEPTION(FP_EX_INEXACT); \
695 _FP_FRAC_SRL_##wc(X, 1); \
697 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
699 if (rsigned && X##_s) \
700 r = -r; \
702 break; \
704 } while (0)
706 #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
707 do { \
708 r = 0; \
709 switch (X##_c) \
711 case FP_CLS_NORMAL: \
712 if (X##_e >= _FP_FRACBITS_##fs - 1) \
714 if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \
716 if (X##_e >= _FP_WFRACBITS_##fs - 1) \
718 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
719 r <<= X##_e - _FP_WFRACBITS_##fs + 1; \
721 else \
723 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \
724 + _FP_FRACBITS_##fs - 1); \
725 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
729 else \
731 if (X##_e <= -_FP_WORKBITS - 1) \
732 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
733 else \
734 _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \
735 _FP_WFRACBITS_##fs); \
736 _FP_ROUND(wc, X); \
737 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
738 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
740 if (rsigned && X##_s) \
741 r = -r; \
742 if (X##_e >= rsize - (rsigned > 0 || X##_s) \
743 || (!rsigned && X##_s)) \
744 { /* overflow */ \
745 case FP_CLS_NAN: \
746 case FP_CLS_INF: \
747 if (!rsigned) \
749 r = 0; \
750 if (X##_s) \
751 r = ~r; \
753 else if (rsigned != 2) \
755 r = 1; \
756 r <<= rsize - 1; \
757 r -= 1 - X##_s; \
759 FP_SET_EXCEPTION(FP_EX_INVALID); \
761 break; \
762 case FP_CLS_ZERO: \
763 break; \
765 } while (0)
767 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
768 do { \
769 if (r) \
771 unsigned rtype ur_; \
772 X##_c = FP_CLS_NORMAL; \
774 if ((X##_s = (r < 0))) \
775 ur_ = (unsigned rtype) -r; \
776 else \
777 ur_ = (unsigned rtype) r; \
778 if (rsize <= _FP_W_TYPE_SIZE) \
779 __FP_CLZ(X##_e, ur_); \
780 else \
781 __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \
782 (_FP_W_TYPE)ur_); \
783 if (rsize < _FP_W_TYPE_SIZE) \
784 X##_e -= (_FP_W_TYPE_SIZE - rsize); \
785 X##_e = rsize - X##_e - 1; \
787 if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \
788 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
789 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \
790 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \
791 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
793 else \
795 X##_c = FP_CLS_ZERO, X##_s = 0; \
797 } while (0)
800 #define FP_CONV(dfs,sfs,dwc,swc,D,S) \
801 do { \
802 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
803 D##_e = S##_e; \
804 D##_c = S##_c; \
805 D##_s = S##_s; \
806 } while (0)
809 * Helper primitives.
812 /* Count leading zeros in a word. */
814 #ifndef __FP_CLZ
815 #if _FP_W_TYPE_SIZE < 64
816 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
817 #define __FP_CLZ(r, x) \
818 do { \
819 _FP_W_TYPE _t = (x); \
820 r = _FP_W_TYPE_SIZE - 1; \
821 if (_t > 0xffff) r -= 16; \
822 if (_t > 0xffff) _t >>= 16; \
823 if (_t > 0xff) r -= 8; \
824 if (_t > 0xff) _t >>= 8; \
825 if (_t & 0xf0) r -= 4; \
826 if (_t & 0xf0) _t >>= 4; \
827 if (_t & 0xc) r -= 2; \
828 if (_t & 0xc) _t >>= 2; \
829 if (_t & 0x2) r -= 1; \
830 } while (0)
831 #else /* not _FP_W_TYPE_SIZE < 64 */
832 #define __FP_CLZ(r, x) \
833 do { \
834 _FP_W_TYPE _t = (x); \
835 r = _FP_W_TYPE_SIZE - 1; \
836 if (_t > 0xffffffff) r -= 32; \
837 if (_t > 0xffffffff) _t >>= 32; \
838 if (_t > 0xffff) r -= 16; \
839 if (_t > 0xffff) _t >>= 16; \
840 if (_t > 0xff) r -= 8; \
841 if (_t > 0xff) _t >>= 8; \
842 if (_t & 0xf0) r -= 4; \
843 if (_t & 0xf0) _t >>= 4; \
844 if (_t & 0xc) r -= 2; \
845 if (_t & 0xc) _t >>= 2; \
846 if (_t & 0x2) r -= 1; \
847 } while (0)
848 #endif /* not _FP_W_TYPE_SIZE < 64 */
849 #endif /* ndef __FP_CLZ */
851 #define _FP_DIV_HELP_imm(q, r, n, d) \
852 do { \
853 q = n / d, r = n % d; \
854 } while (0)
856 #endif /* __MATH_EMU_OP_COMMON_H__ */