1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
19 unsigned long blk_max_low_pfn
;
20 EXPORT_SYMBOL(blk_max_low_pfn
);
22 unsigned long blk_max_pfn
;
24 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
26 q
->rq_timeout
= timeout
;
28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
31 * blk_set_default_limits - reset limits to default values
32 * @lim: the queue_limits structure to reset
35 * Returns a queue_limit struct to its default state.
37 void blk_set_default_limits(struct queue_limits
*lim
)
39 lim
->max_segments
= BLK_MAX_SEGMENTS
;
40 lim
->max_discard_segments
= 1;
41 lim
->max_integrity_segments
= 0;
42 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
43 lim
->virt_boundary_mask
= 0;
44 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
45 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
46 lim
->max_dev_sectors
= 0;
47 lim
->chunk_sectors
= 0;
48 lim
->max_write_same_sectors
= 0;
49 lim
->max_write_zeroes_sectors
= 0;
50 lim
->max_discard_sectors
= 0;
51 lim
->max_hw_discard_sectors
= 0;
52 lim
->discard_granularity
= 0;
53 lim
->discard_alignment
= 0;
54 lim
->discard_misaligned
= 0;
55 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
56 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
57 lim
->alignment_offset
= 0;
60 lim
->zoned
= BLK_ZONED_NONE
;
62 EXPORT_SYMBOL(blk_set_default_limits
);
65 * blk_set_stacking_limits - set default limits for stacking devices
66 * @lim: the queue_limits structure to reset
69 * Returns a queue_limit struct to its default state. Should be used
70 * by stacking drivers like DM that have no internal limits.
72 void blk_set_stacking_limits(struct queue_limits
*lim
)
74 blk_set_default_limits(lim
);
76 /* Inherit limits from component devices */
77 lim
->max_segments
= USHRT_MAX
;
78 lim
->max_discard_segments
= USHRT_MAX
;
79 lim
->max_hw_sectors
= UINT_MAX
;
80 lim
->max_segment_size
= UINT_MAX
;
81 lim
->max_sectors
= UINT_MAX
;
82 lim
->max_dev_sectors
= UINT_MAX
;
83 lim
->max_write_same_sectors
= UINT_MAX
;
84 lim
->max_write_zeroes_sectors
= UINT_MAX
;
86 EXPORT_SYMBOL(blk_set_stacking_limits
);
89 * blk_queue_make_request - define an alternate make_request function for a device
90 * @q: the request queue for the device to be affected
91 * @mfn: the alternate make_request function
94 * The normal way for &struct bios to be passed to a device
95 * driver is for them to be collected into requests on a request
96 * queue, and then to allow the device driver to select requests
97 * off that queue when it is ready. This works well for many block
98 * devices. However some block devices (typically virtual devices
99 * such as md or lvm) do not benefit from the processing on the
100 * request queue, and are served best by having the requests passed
101 * directly to them. This can be achieved by providing a function
102 * to blk_queue_make_request().
105 * The driver that does this *must* be able to deal appropriately
106 * with buffers in "highmemory". This can be accomplished by either calling
107 * kmap_atomic() to get a temporary kernel mapping, or by calling
108 * blk_queue_bounce() to create a buffer in normal memory.
110 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
115 q
->nr_requests
= BLKDEV_MAX_RQ
;
117 q
->make_request_fn
= mfn
;
118 blk_queue_dma_alignment(q
, 511);
120 blk_set_default_limits(&q
->limits
);
122 EXPORT_SYMBOL(blk_queue_make_request
);
125 * blk_queue_bounce_limit - set bounce buffer limit for queue
126 * @q: the request queue for the device
127 * @max_addr: the maximum address the device can handle
130 * Different hardware can have different requirements as to what pages
131 * it can do I/O directly to. A low level driver can call
132 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
133 * buffers for doing I/O to pages residing above @max_addr.
135 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
137 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
140 q
->bounce_gfp
= GFP_NOIO
;
141 #if BITS_PER_LONG == 64
143 * Assume anything <= 4GB can be handled by IOMMU. Actually
144 * some IOMMUs can handle everything, but I don't know of a
145 * way to test this here.
147 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
149 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
151 if (b_pfn
< blk_max_low_pfn
)
153 q
->limits
.bounce_pfn
= b_pfn
;
156 init_emergency_isa_pool();
157 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
158 q
->limits
.bounce_pfn
= b_pfn
;
161 EXPORT_SYMBOL(blk_queue_bounce_limit
);
164 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
165 * @q: the request queue for the device
166 * @max_hw_sectors: max hardware sectors in the usual 512b unit
169 * Enables a low level driver to set a hard upper limit,
170 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
171 * the device driver based upon the capabilities of the I/O
174 * max_dev_sectors is a hard limit imposed by the storage device for
175 * READ/WRITE requests. It is set by the disk driver.
177 * max_sectors is a soft limit imposed by the block layer for
178 * filesystem type requests. This value can be overridden on a
179 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
180 * The soft limit can not exceed max_hw_sectors.
182 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
184 struct queue_limits
*limits
= &q
->limits
;
185 unsigned int max_sectors
;
187 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
188 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
189 printk(KERN_INFO
"%s: set to minimum %d\n",
190 __func__
, max_hw_sectors
);
193 limits
->max_hw_sectors
= max_hw_sectors
;
194 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
195 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
196 limits
->max_sectors
= max_sectors
;
197 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
199 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
202 * blk_queue_chunk_sectors - set size of the chunk for this queue
203 * @q: the request queue for the device
204 * @chunk_sectors: chunk sectors in the usual 512b unit
207 * If a driver doesn't want IOs to cross a given chunk size, it can set
208 * this limit and prevent merging across chunks. Note that the chunk size
209 * must currently be a power-of-2 in sectors. Also note that the block
210 * layer must accept a page worth of data at any offset. So if the
211 * crossing of chunks is a hard limitation in the driver, it must still be
212 * prepared to split single page bios.
214 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
216 BUG_ON(!is_power_of_2(chunk_sectors
));
217 q
->limits
.chunk_sectors
= chunk_sectors
;
219 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
222 * blk_queue_max_discard_sectors - set max sectors for a single discard
223 * @q: the request queue for the device
224 * @max_discard_sectors: maximum number of sectors to discard
226 void blk_queue_max_discard_sectors(struct request_queue
*q
,
227 unsigned int max_discard_sectors
)
229 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
230 q
->limits
.max_discard_sectors
= max_discard_sectors
;
232 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
235 * blk_queue_max_write_same_sectors - set max sectors for a single write same
236 * @q: the request queue for the device
237 * @max_write_same_sectors: maximum number of sectors to write per command
239 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
240 unsigned int max_write_same_sectors
)
242 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
244 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
247 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
249 * @q: the request queue for the device
250 * @max_write_zeroes_sectors: maximum number of sectors to write per command
252 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
253 unsigned int max_write_zeroes_sectors
)
255 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
257 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
260 * blk_queue_max_segments - set max hw segments for a request for this queue
261 * @q: the request queue for the device
262 * @max_segments: max number of segments
265 * Enables a low level driver to set an upper limit on the number of
266 * hw data segments in a request.
268 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
272 printk(KERN_INFO
"%s: set to minimum %d\n",
273 __func__
, max_segments
);
276 q
->limits
.max_segments
= max_segments
;
278 EXPORT_SYMBOL(blk_queue_max_segments
);
281 * blk_queue_max_discard_segments - set max segments for discard requests
282 * @q: the request queue for the device
283 * @max_segments: max number of segments
286 * Enables a low level driver to set an upper limit on the number of
287 * segments in a discard request.
289 void blk_queue_max_discard_segments(struct request_queue
*q
,
290 unsigned short max_segments
)
292 q
->limits
.max_discard_segments
= max_segments
;
294 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
297 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
298 * @q: the request queue for the device
299 * @max_size: max size of segment in bytes
302 * Enables a low level driver to set an upper limit on the size of a
305 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
307 if (max_size
< PAGE_SIZE
) {
308 max_size
= PAGE_SIZE
;
309 printk(KERN_INFO
"%s: set to minimum %d\n",
313 /* see blk_queue_virt_boundary() for the explanation */
314 WARN_ON_ONCE(q
->limits
.virt_boundary_mask
);
316 q
->limits
.max_segment_size
= max_size
;
318 EXPORT_SYMBOL(blk_queue_max_segment_size
);
321 * blk_queue_logical_block_size - set logical block size for the queue
322 * @q: the request queue for the device
323 * @size: the logical block size, in bytes
326 * This should be set to the lowest possible block size that the
327 * storage device can address. The default of 512 covers most
330 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
332 q
->limits
.logical_block_size
= size
;
334 if (q
->limits
.physical_block_size
< size
)
335 q
->limits
.physical_block_size
= size
;
337 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
338 q
->limits
.io_min
= q
->limits
.physical_block_size
;
340 EXPORT_SYMBOL(blk_queue_logical_block_size
);
343 * blk_queue_physical_block_size - set physical block size for the queue
344 * @q: the request queue for the device
345 * @size: the physical block size, in bytes
348 * This should be set to the lowest possible sector size that the
349 * hardware can operate on without reverting to read-modify-write
352 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
354 q
->limits
.physical_block_size
= size
;
356 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
357 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
359 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
360 q
->limits
.io_min
= q
->limits
.physical_block_size
;
362 EXPORT_SYMBOL(blk_queue_physical_block_size
);
365 * blk_queue_alignment_offset - set physical block alignment offset
366 * @q: the request queue for the device
367 * @offset: alignment offset in bytes
370 * Some devices are naturally misaligned to compensate for things like
371 * the legacy DOS partition table 63-sector offset. Low-level drivers
372 * should call this function for devices whose first sector is not
375 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
377 q
->limits
.alignment_offset
=
378 offset
& (q
->limits
.physical_block_size
- 1);
379 q
->limits
.misaligned
= 0;
381 EXPORT_SYMBOL(blk_queue_alignment_offset
);
384 * blk_limits_io_min - set minimum request size for a device
385 * @limits: the queue limits
386 * @min: smallest I/O size in bytes
389 * Some devices have an internal block size bigger than the reported
390 * hardware sector size. This function can be used to signal the
391 * smallest I/O the device can perform without incurring a performance
394 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
396 limits
->io_min
= min
;
398 if (limits
->io_min
< limits
->logical_block_size
)
399 limits
->io_min
= limits
->logical_block_size
;
401 if (limits
->io_min
< limits
->physical_block_size
)
402 limits
->io_min
= limits
->physical_block_size
;
404 EXPORT_SYMBOL(blk_limits_io_min
);
407 * blk_queue_io_min - set minimum request size for the queue
408 * @q: the request queue for the device
409 * @min: smallest I/O size in bytes
412 * Storage devices may report a granularity or preferred minimum I/O
413 * size which is the smallest request the device can perform without
414 * incurring a performance penalty. For disk drives this is often the
415 * physical block size. For RAID arrays it is often the stripe chunk
416 * size. A properly aligned multiple of minimum_io_size is the
417 * preferred request size for workloads where a high number of I/O
418 * operations is desired.
420 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
422 blk_limits_io_min(&q
->limits
, min
);
424 EXPORT_SYMBOL(blk_queue_io_min
);
427 * blk_limits_io_opt - set optimal request size for a device
428 * @limits: the queue limits
429 * @opt: smallest I/O size in bytes
432 * Storage devices may report an optimal I/O size, which is the
433 * device's preferred unit for sustained I/O. This is rarely reported
434 * for disk drives. For RAID arrays it is usually the stripe width or
435 * the internal track size. A properly aligned multiple of
436 * optimal_io_size is the preferred request size for workloads where
437 * sustained throughput is desired.
439 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
441 limits
->io_opt
= opt
;
443 EXPORT_SYMBOL(blk_limits_io_opt
);
446 * blk_queue_io_opt - set optimal request size for the queue
447 * @q: the request queue for the device
448 * @opt: optimal request size in bytes
451 * Storage devices may report an optimal I/O size, which is the
452 * device's preferred unit for sustained I/O. This is rarely reported
453 * for disk drives. For RAID arrays it is usually the stripe width or
454 * the internal track size. A properly aligned multiple of
455 * optimal_io_size is the preferred request size for workloads where
456 * sustained throughput is desired.
458 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
460 blk_limits_io_opt(&q
->limits
, opt
);
462 EXPORT_SYMBOL(blk_queue_io_opt
);
465 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
466 * @t: the stacking driver (top)
467 * @b: the underlying device (bottom)
469 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
471 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
473 EXPORT_SYMBOL(blk_queue_stack_limits
);
476 * blk_stack_limits - adjust queue_limits for stacked devices
477 * @t: the stacking driver limits (top device)
478 * @b: the underlying queue limits (bottom, component device)
479 * @start: first data sector within component device
482 * This function is used by stacking drivers like MD and DM to ensure
483 * that all component devices have compatible block sizes and
484 * alignments. The stacking driver must provide a queue_limits
485 * struct (top) and then iteratively call the stacking function for
486 * all component (bottom) devices. The stacking function will
487 * attempt to combine the values and ensure proper alignment.
489 * Returns 0 if the top and bottom queue_limits are compatible. The
490 * top device's block sizes and alignment offsets may be adjusted to
491 * ensure alignment with the bottom device. If no compatible sizes
492 * and alignments exist, -1 is returned and the resulting top
493 * queue_limits will have the misaligned flag set to indicate that
494 * the alignment_offset is undefined.
496 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
499 unsigned int top
, bottom
, alignment
, ret
= 0;
501 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
502 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
503 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
504 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
505 b
->max_write_same_sectors
);
506 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
507 b
->max_write_zeroes_sectors
);
508 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
510 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
511 b
->seg_boundary_mask
);
512 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
513 b
->virt_boundary_mask
);
515 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
516 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
517 b
->max_discard_segments
);
518 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
519 b
->max_integrity_segments
);
521 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
522 b
->max_segment_size
);
524 t
->misaligned
|= b
->misaligned
;
526 alignment
= queue_limit_alignment_offset(b
, start
);
528 /* Bottom device has different alignment. Check that it is
529 * compatible with the current top alignment.
531 if (t
->alignment_offset
!= alignment
) {
533 top
= max(t
->physical_block_size
, t
->io_min
)
534 + t
->alignment_offset
;
535 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
537 /* Verify that top and bottom intervals line up */
538 if (max(top
, bottom
) % min(top
, bottom
)) {
544 t
->logical_block_size
= max(t
->logical_block_size
,
545 b
->logical_block_size
);
547 t
->physical_block_size
= max(t
->physical_block_size
,
548 b
->physical_block_size
);
550 t
->io_min
= max(t
->io_min
, b
->io_min
);
551 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
553 /* Physical block size a multiple of the logical block size? */
554 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
555 t
->physical_block_size
= t
->logical_block_size
;
560 /* Minimum I/O a multiple of the physical block size? */
561 if (t
->io_min
& (t
->physical_block_size
- 1)) {
562 t
->io_min
= t
->physical_block_size
;
567 /* Optimal I/O a multiple of the physical block size? */
568 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
574 t
->raid_partial_stripes_expensive
=
575 max(t
->raid_partial_stripes_expensive
,
576 b
->raid_partial_stripes_expensive
);
578 /* Find lowest common alignment_offset */
579 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
580 % max(t
->physical_block_size
, t
->io_min
);
582 /* Verify that new alignment_offset is on a logical block boundary */
583 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
588 /* Discard alignment and granularity */
589 if (b
->discard_granularity
) {
590 alignment
= queue_limit_discard_alignment(b
, start
);
592 if (t
->discard_granularity
!= 0 &&
593 t
->discard_alignment
!= alignment
) {
594 top
= t
->discard_granularity
+ t
->discard_alignment
;
595 bottom
= b
->discard_granularity
+ alignment
;
597 /* Verify that top and bottom intervals line up */
598 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
599 t
->discard_misaligned
= 1;
602 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
603 b
->max_discard_sectors
);
604 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
605 b
->max_hw_discard_sectors
);
606 t
->discard_granularity
= max(t
->discard_granularity
,
607 b
->discard_granularity
);
608 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
609 t
->discard_granularity
;
612 if (b
->chunk_sectors
)
613 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
618 EXPORT_SYMBOL(blk_stack_limits
);
621 * bdev_stack_limits - adjust queue limits for stacked drivers
622 * @t: the stacking driver limits (top device)
623 * @bdev: the component block_device (bottom)
624 * @start: first data sector within component device
627 * Merges queue limits for a top device and a block_device. Returns
628 * 0 if alignment didn't change. Returns -1 if adding the bottom
629 * device caused misalignment.
631 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
634 struct request_queue
*bq
= bdev_get_queue(bdev
);
636 start
+= get_start_sect(bdev
);
638 return blk_stack_limits(t
, &bq
->limits
, start
);
640 EXPORT_SYMBOL(bdev_stack_limits
);
643 * disk_stack_limits - adjust queue limits for stacked drivers
644 * @disk: MD/DM gendisk (top)
645 * @bdev: the underlying block device (bottom)
646 * @offset: offset to beginning of data within component device
649 * Merges the limits for a top level gendisk and a bottom level
652 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
655 struct request_queue
*t
= disk
->queue
;
657 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
658 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
660 disk_name(disk
, 0, top
);
661 bdevname(bdev
, bottom
);
663 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
667 EXPORT_SYMBOL(disk_stack_limits
);
670 * blk_queue_update_dma_pad - update pad mask
671 * @q: the request queue for the device
674 * Update dma pad mask.
676 * Appending pad buffer to a request modifies the last entry of a
677 * scatter list such that it includes the pad buffer.
679 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
681 if (mask
> q
->dma_pad_mask
)
682 q
->dma_pad_mask
= mask
;
684 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
687 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
688 * @q: the request queue for the device
689 * @dma_drain_needed: fn which returns non-zero if drain is necessary
690 * @buf: physically contiguous buffer
691 * @size: size of the buffer in bytes
693 * Some devices have excess DMA problems and can't simply discard (or
694 * zero fill) the unwanted piece of the transfer. They have to have a
695 * real area of memory to transfer it into. The use case for this is
696 * ATAPI devices in DMA mode. If the packet command causes a transfer
697 * bigger than the transfer size some HBAs will lock up if there
698 * aren't DMA elements to contain the excess transfer. What this API
699 * does is adjust the queue so that the buf is always appended
700 * silently to the scatterlist.
702 * Note: This routine adjusts max_hw_segments to make room for appending
703 * the drain buffer. If you call blk_queue_max_segments() after calling
704 * this routine, you must set the limit to one fewer than your device
705 * can support otherwise there won't be room for the drain buffer.
707 int blk_queue_dma_drain(struct request_queue
*q
,
708 dma_drain_needed_fn
*dma_drain_needed
,
709 void *buf
, unsigned int size
)
711 if (queue_max_segments(q
) < 2)
713 /* make room for appending the drain */
714 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
715 q
->dma_drain_needed
= dma_drain_needed
;
716 q
->dma_drain_buffer
= buf
;
717 q
->dma_drain_size
= size
;
721 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
724 * blk_queue_segment_boundary - set boundary rules for segment merging
725 * @q: the request queue for the device
726 * @mask: the memory boundary mask
728 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
730 if (mask
< PAGE_SIZE
- 1) {
731 mask
= PAGE_SIZE
- 1;
732 printk(KERN_INFO
"%s: set to minimum %lx\n",
736 q
->limits
.seg_boundary_mask
= mask
;
738 EXPORT_SYMBOL(blk_queue_segment_boundary
);
741 * blk_queue_virt_boundary - set boundary rules for bio merging
742 * @q: the request queue for the device
743 * @mask: the memory boundary mask
745 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
747 q
->limits
.virt_boundary_mask
= mask
;
750 * Devices that require a virtual boundary do not support scatter/gather
751 * I/O natively, but instead require a descriptor list entry for each
752 * page (which might not be idential to the Linux PAGE_SIZE). Because
753 * of that they are not limited by our notion of "segment size".
755 q
->limits
.max_segment_size
= UINT_MAX
;
757 EXPORT_SYMBOL(blk_queue_virt_boundary
);
760 * blk_queue_dma_alignment - set dma length and memory alignment
761 * @q: the request queue for the device
762 * @mask: alignment mask
765 * set required memory and length alignment for direct dma transactions.
766 * this is used when building direct io requests for the queue.
769 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
771 q
->dma_alignment
= mask
;
773 EXPORT_SYMBOL(blk_queue_dma_alignment
);
776 * blk_queue_update_dma_alignment - update dma length and memory alignment
777 * @q: the request queue for the device
778 * @mask: alignment mask
781 * update required memory and length alignment for direct dma transactions.
782 * If the requested alignment is larger than the current alignment, then
783 * the current queue alignment is updated to the new value, otherwise it
784 * is left alone. The design of this is to allow multiple objects
785 * (driver, device, transport etc) to set their respective
786 * alignments without having them interfere.
789 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
791 BUG_ON(mask
> PAGE_SIZE
);
793 if (mask
> q
->dma_alignment
)
794 q
->dma_alignment
= mask
;
796 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
799 * blk_set_queue_depth - tell the block layer about the device queue depth
800 * @q: the request queue for the device
801 * @depth: queue depth
804 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
806 q
->queue_depth
= depth
;
807 wbt_set_queue_depth(q
, depth
);
809 EXPORT_SYMBOL(blk_set_queue_depth
);
812 * blk_queue_write_cache - configure queue's write cache
813 * @q: the request queue for the device
814 * @wc: write back cache on or off
815 * @fua: device supports FUA writes, if true
817 * Tell the block layer about the write cache of @q.
819 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
822 blk_queue_flag_set(QUEUE_FLAG_WC
, q
);
824 blk_queue_flag_clear(QUEUE_FLAG_WC
, q
);
826 blk_queue_flag_set(QUEUE_FLAG_FUA
, q
);
828 blk_queue_flag_clear(QUEUE_FLAG_FUA
, q
);
830 wbt_set_write_cache(q
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
832 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
834 static int __init
blk_settings_init(void)
836 blk_max_low_pfn
= max_low_pfn
- 1;
837 blk_max_pfn
= max_pfn
- 1;
840 subsys_initcall(blk_settings_init
);