staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / dma / sun4i-dma.c
blob1f80568b2613eaeb5f7998a76269292abdca5232
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2014 Emilio López
4 * Emilio López <emilio@elopez.com.ar>
5 */
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dmapool.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
19 #include "virt-dma.h"
21 /** Common macros to normal and dedicated DMA registers **/
23 #define SUN4I_DMA_CFG_LOADING BIT(31)
24 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
25 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
26 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
27 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
28 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
29 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
30 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
31 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
33 /** Normal DMA register values **/
35 /* Normal DMA source/destination data request type values */
36 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
37 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
39 /** Normal DMA register layout **/
41 /* Dedicated DMA source/destination address mode values */
42 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0
43 #define SUN4I_NDMA_ADDR_MODE_IO 1
45 /* Normal DMA configuration register layout */
46 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
47 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
48 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
49 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
50 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
52 /** Dedicated DMA register values **/
54 /* Dedicated DMA source/destination address mode values */
55 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0
56 #define SUN4I_DDMA_ADDR_MODE_IO 1
57 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
58 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
60 /* Dedicated DMA source/destination data request type values */
61 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
62 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
64 /** Dedicated DMA register layout **/
66 /* Dedicated DMA configuration register layout */
67 #define SUN4I_DDMA_CFG_BUSY BIT(30)
68 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
69 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
70 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
71 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
73 /* Dedicated DMA parameter register layout */
74 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
75 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
76 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
77 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
79 /** DMA register offsets **/
81 /* General register offsets */
82 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0
83 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
85 /* Normal DMA register offsets */
86 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
87 #define SUN4I_NDMA_CFG_REG 0x0
88 #define SUN4I_NDMA_SRC_ADDR_REG 0x4
89 #define SUN4I_NDMA_DST_ADDR_REG 0x8
90 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC
92 /* Dedicated DMA register offsets */
93 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
94 #define SUN4I_DDMA_CFG_REG 0x0
95 #define SUN4I_DDMA_SRC_ADDR_REG 0x4
96 #define SUN4I_DDMA_DST_ADDR_REG 0x8
97 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC
98 #define SUN4I_DDMA_PARA_REG 0x18
100 /** DMA Driver **/
103 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
104 * that's 16 channels. As for endpoints, there's 29 and 21
105 * respectively. Given that the Normal DMA endpoints (other than
106 * SDRAM) can be used as tx/rx, we need 78 vchans in total
108 #define SUN4I_NDMA_NR_MAX_CHANNELS 8
109 #define SUN4I_DDMA_NR_MAX_CHANNELS 8
110 #define SUN4I_DMA_NR_MAX_CHANNELS \
111 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
112 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
113 #define SUN4I_DDMA_NR_MAX_VCHANS 21
114 #define SUN4I_DMA_NR_MAX_VCHANS \
115 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
117 /* This set of SUN4I_DDMA timing parameters were found experimentally while
118 * working with the SPI driver and seem to make it behave correctly */
119 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
120 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
121 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
122 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
123 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
125 struct sun4i_dma_pchan {
126 /* Register base of channel */
127 void __iomem *base;
128 /* vchan currently being serviced */
129 struct sun4i_dma_vchan *vchan;
130 /* Is this a dedicated pchan? */
131 int is_dedicated;
134 struct sun4i_dma_vchan {
135 struct virt_dma_chan vc;
136 struct dma_slave_config cfg;
137 struct sun4i_dma_pchan *pchan;
138 struct sun4i_dma_promise *processing;
139 struct sun4i_dma_contract *contract;
140 u8 endpoint;
141 int is_dedicated;
144 struct sun4i_dma_promise {
145 u32 cfg;
146 u32 para;
147 dma_addr_t src;
148 dma_addr_t dst;
149 size_t len;
150 struct list_head list;
153 /* A contract is a set of promises */
154 struct sun4i_dma_contract {
155 struct virt_dma_desc vd;
156 struct list_head demands;
157 struct list_head completed_demands;
158 int is_cyclic;
161 struct sun4i_dma_dev {
162 DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
163 struct dma_device slave;
164 struct sun4i_dma_pchan *pchans;
165 struct sun4i_dma_vchan *vchans;
166 void __iomem *base;
167 struct clk *clk;
168 int irq;
169 spinlock_t lock;
172 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
174 return container_of(dev, struct sun4i_dma_dev, slave);
177 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
179 return container_of(chan, struct sun4i_dma_vchan, vc.chan);
182 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
184 return container_of(vd, struct sun4i_dma_contract, vd);
187 static struct device *chan2dev(struct dma_chan *chan)
189 return &chan->dev->device;
192 static int convert_burst(u32 maxburst)
194 if (maxburst > 8)
195 return -EINVAL;
197 /* 1 -> 0, 4 -> 1, 8 -> 2 */
198 return (maxburst >> 2);
201 static int convert_buswidth(enum dma_slave_buswidth addr_width)
203 if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
204 return -EINVAL;
206 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
207 return (addr_width >> 1);
210 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
212 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
214 vchan_free_chan_resources(&vchan->vc);
217 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
218 struct sun4i_dma_vchan *vchan)
220 struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
221 unsigned long flags;
222 int i, max;
225 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
226 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
228 if (vchan->is_dedicated) {
229 i = SUN4I_NDMA_NR_MAX_CHANNELS;
230 max = SUN4I_DMA_NR_MAX_CHANNELS;
231 } else {
232 i = 0;
233 max = SUN4I_NDMA_NR_MAX_CHANNELS;
236 spin_lock_irqsave(&priv->lock, flags);
237 for_each_clear_bit_from(i, priv->pchans_used, max) {
238 pchan = &pchans[i];
239 pchan->vchan = vchan;
240 set_bit(i, priv->pchans_used);
241 break;
243 spin_unlock_irqrestore(&priv->lock, flags);
245 return pchan;
248 static void release_pchan(struct sun4i_dma_dev *priv,
249 struct sun4i_dma_pchan *pchan)
251 unsigned long flags;
252 int nr = pchan - priv->pchans;
254 spin_lock_irqsave(&priv->lock, flags);
256 pchan->vchan = NULL;
257 clear_bit(nr, priv->pchans_used);
259 spin_unlock_irqrestore(&priv->lock, flags);
262 static void configure_pchan(struct sun4i_dma_pchan *pchan,
263 struct sun4i_dma_promise *d)
266 * Configure addresses and misc parameters depending on type
267 * SUN4I_DDMA has an extra field with timing parameters
269 if (pchan->is_dedicated) {
270 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
271 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
272 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
273 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
274 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
275 } else {
276 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
277 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
278 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
279 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
283 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
284 struct sun4i_dma_pchan *pchan,
285 int half, int end)
287 u32 reg;
288 int pchan_number = pchan - priv->pchans;
289 unsigned long flags;
291 spin_lock_irqsave(&priv->lock, flags);
293 reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
295 if (half)
296 reg |= BIT(pchan_number * 2);
297 else
298 reg &= ~BIT(pchan_number * 2);
300 if (end)
301 reg |= BIT(pchan_number * 2 + 1);
302 else
303 reg &= ~BIT(pchan_number * 2 + 1);
305 writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
307 spin_unlock_irqrestore(&priv->lock, flags);
311 * Execute pending operations on a vchan
313 * When given a vchan, this function will try to acquire a suitable
314 * pchan and, if successful, will configure it to fulfill a promise
315 * from the next pending contract.
317 * This function must be called with &vchan->vc.lock held.
319 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
320 struct sun4i_dma_vchan *vchan)
322 struct sun4i_dma_promise *promise = NULL;
323 struct sun4i_dma_contract *contract = NULL;
324 struct sun4i_dma_pchan *pchan;
325 struct virt_dma_desc *vd;
326 int ret;
328 lockdep_assert_held(&vchan->vc.lock);
330 /* We need a pchan to do anything, so secure one if available */
331 pchan = find_and_use_pchan(priv, vchan);
332 if (!pchan)
333 return -EBUSY;
336 * Channel endpoints must not be repeated, so if this vchan
337 * has already submitted some work, we can't do anything else
339 if (vchan->processing) {
340 dev_dbg(chan2dev(&vchan->vc.chan),
341 "processing something to this endpoint already\n");
342 ret = -EBUSY;
343 goto release_pchan;
346 do {
347 /* Figure out which contract we're working with today */
348 vd = vchan_next_desc(&vchan->vc);
349 if (!vd) {
350 dev_dbg(chan2dev(&vchan->vc.chan),
351 "No pending contract found");
352 ret = 0;
353 goto release_pchan;
356 contract = to_sun4i_dma_contract(vd);
357 if (list_empty(&contract->demands)) {
358 /* The contract has been completed so mark it as such */
359 list_del(&contract->vd.node);
360 vchan_cookie_complete(&contract->vd);
361 dev_dbg(chan2dev(&vchan->vc.chan),
362 "Empty contract found and marked complete");
364 } while (list_empty(&contract->demands));
366 /* Now find out what we need to do */
367 promise = list_first_entry(&contract->demands,
368 struct sun4i_dma_promise, list);
369 vchan->processing = promise;
371 /* ... and make it reality */
372 if (promise) {
373 vchan->contract = contract;
374 vchan->pchan = pchan;
375 set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
376 configure_pchan(pchan, promise);
379 return 0;
381 release_pchan:
382 release_pchan(priv, pchan);
383 return ret;
386 static int sanitize_config(struct dma_slave_config *sconfig,
387 enum dma_transfer_direction direction)
389 switch (direction) {
390 case DMA_MEM_TO_DEV:
391 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
392 !sconfig->dst_maxburst)
393 return -EINVAL;
395 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
396 sconfig->src_addr_width = sconfig->dst_addr_width;
398 if (!sconfig->src_maxburst)
399 sconfig->src_maxburst = sconfig->dst_maxburst;
401 break;
403 case DMA_DEV_TO_MEM:
404 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
405 !sconfig->src_maxburst)
406 return -EINVAL;
408 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
409 sconfig->dst_addr_width = sconfig->src_addr_width;
411 if (!sconfig->dst_maxburst)
412 sconfig->dst_maxburst = sconfig->src_maxburst;
414 break;
415 default:
416 return 0;
419 return 0;
423 * Generate a promise, to be used in a normal DMA contract.
425 * A NDMA promise contains all the information required to program the
426 * normal part of the DMA Engine and get data copied. A non-executed
427 * promise will live in the demands list on a contract. Once it has been
428 * completed, it will be moved to the completed demands list for later freeing.
429 * All linked promises will be freed when the corresponding contract is freed
431 static struct sun4i_dma_promise *
432 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
433 size_t len, struct dma_slave_config *sconfig,
434 enum dma_transfer_direction direction)
436 struct sun4i_dma_promise *promise;
437 int ret;
439 ret = sanitize_config(sconfig, direction);
440 if (ret)
441 return NULL;
443 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
444 if (!promise)
445 return NULL;
447 promise->src = src;
448 promise->dst = dest;
449 promise->len = len;
450 promise->cfg = SUN4I_DMA_CFG_LOADING |
451 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
453 dev_dbg(chan2dev(chan),
454 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
455 sconfig->src_maxburst, sconfig->dst_maxburst,
456 sconfig->src_addr_width, sconfig->dst_addr_width);
458 /* Source burst */
459 ret = convert_burst(sconfig->src_maxburst);
460 if (ret < 0)
461 goto fail;
462 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
464 /* Destination burst */
465 ret = convert_burst(sconfig->dst_maxburst);
466 if (ret < 0)
467 goto fail;
468 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
470 /* Source bus width */
471 ret = convert_buswidth(sconfig->src_addr_width);
472 if (ret < 0)
473 goto fail;
474 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
476 /* Destination bus width */
477 ret = convert_buswidth(sconfig->dst_addr_width);
478 if (ret < 0)
479 goto fail;
480 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
482 return promise;
484 fail:
485 kfree(promise);
486 return NULL;
490 * Generate a promise, to be used in a dedicated DMA contract.
492 * A DDMA promise contains all the information required to program the
493 * Dedicated part of the DMA Engine and get data copied. A non-executed
494 * promise will live in the demands list on a contract. Once it has been
495 * completed, it will be moved to the completed demands list for later freeing.
496 * All linked promises will be freed when the corresponding contract is freed
498 static struct sun4i_dma_promise *
499 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
500 size_t len, struct dma_slave_config *sconfig)
502 struct sun4i_dma_promise *promise;
503 int ret;
505 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
506 if (!promise)
507 return NULL;
509 promise->src = src;
510 promise->dst = dest;
511 promise->len = len;
512 promise->cfg = SUN4I_DMA_CFG_LOADING |
513 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
515 /* Source burst */
516 ret = convert_burst(sconfig->src_maxburst);
517 if (ret < 0)
518 goto fail;
519 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
521 /* Destination burst */
522 ret = convert_burst(sconfig->dst_maxburst);
523 if (ret < 0)
524 goto fail;
525 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
527 /* Source bus width */
528 ret = convert_buswidth(sconfig->src_addr_width);
529 if (ret < 0)
530 goto fail;
531 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
533 /* Destination bus width */
534 ret = convert_buswidth(sconfig->dst_addr_width);
535 if (ret < 0)
536 goto fail;
537 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
539 return promise;
541 fail:
542 kfree(promise);
543 return NULL;
547 * Generate a contract
549 * Contracts function as DMA descriptors. As our hardware does not support
550 * linked lists, we need to implement SG via software. We use a contract
551 * to hold all the pieces of the request and process them serially one
552 * after another. Each piece is represented as a promise.
554 static struct sun4i_dma_contract *generate_dma_contract(void)
556 struct sun4i_dma_contract *contract;
558 contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
559 if (!contract)
560 return NULL;
562 INIT_LIST_HEAD(&contract->demands);
563 INIT_LIST_HEAD(&contract->completed_demands);
565 return contract;
569 * Get next promise on a cyclic transfer
571 * Cyclic contracts contain a series of promises which are executed on a
572 * loop. This function returns the next promise from a cyclic contract,
573 * so it can be programmed into the hardware.
575 static struct sun4i_dma_promise *
576 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
578 struct sun4i_dma_promise *promise;
580 promise = list_first_entry_or_null(&contract->demands,
581 struct sun4i_dma_promise, list);
582 if (!promise) {
583 list_splice_init(&contract->completed_demands,
584 &contract->demands);
585 promise = list_first_entry(&contract->demands,
586 struct sun4i_dma_promise, list);
589 return promise;
593 * Free a contract and all its associated promises
595 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
597 struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
598 struct sun4i_dma_promise *promise, *tmp;
600 /* Free all the demands and completed demands */
601 list_for_each_entry_safe(promise, tmp, &contract->demands, list)
602 kfree(promise);
604 list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
605 kfree(promise);
607 kfree(contract);
610 static struct dma_async_tx_descriptor *
611 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
612 dma_addr_t src, size_t len, unsigned long flags)
614 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
615 struct dma_slave_config *sconfig = &vchan->cfg;
616 struct sun4i_dma_promise *promise;
617 struct sun4i_dma_contract *contract;
619 contract = generate_dma_contract();
620 if (!contract)
621 return NULL;
624 * We can only do the copy to bus aligned addresses, so
625 * choose the best one so we get decent performance. We also
626 * maximize the burst size for this same reason.
628 sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629 sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
630 sconfig->src_maxburst = 8;
631 sconfig->dst_maxburst = 8;
633 if (vchan->is_dedicated)
634 promise = generate_ddma_promise(chan, src, dest, len, sconfig);
635 else
636 promise = generate_ndma_promise(chan, src, dest, len, sconfig,
637 DMA_MEM_TO_MEM);
639 if (!promise) {
640 kfree(contract);
641 return NULL;
644 /* Configure memcpy mode */
645 if (vchan->is_dedicated) {
646 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
647 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
648 } else {
649 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
650 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
653 /* Fill the contract with our only promise */
654 list_add_tail(&promise->list, &contract->demands);
656 /* And add it to the vchan */
657 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
660 static struct dma_async_tx_descriptor *
661 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
662 size_t period_len, enum dma_transfer_direction dir,
663 unsigned long flags)
665 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
666 struct dma_slave_config *sconfig = &vchan->cfg;
667 struct sun4i_dma_promise *promise;
668 struct sun4i_dma_contract *contract;
669 dma_addr_t src, dest;
670 u32 endpoints;
671 int nr_periods, offset, plength, i;
673 if (!is_slave_direction(dir)) {
674 dev_err(chan2dev(chan), "Invalid DMA direction\n");
675 return NULL;
678 if (vchan->is_dedicated) {
680 * As we are using this just for audio data, we need to use
681 * normal DMA. There is nothing stopping us from supporting
682 * dedicated DMA here as well, so if a client comes up and
683 * requires it, it will be simple to implement it.
685 dev_err(chan2dev(chan),
686 "Cyclic transfers are only supported on Normal DMA\n");
687 return NULL;
690 contract = generate_dma_contract();
691 if (!contract)
692 return NULL;
694 contract->is_cyclic = 1;
696 /* Figure out the endpoints and the address we need */
697 if (dir == DMA_MEM_TO_DEV) {
698 src = buf;
699 dest = sconfig->dst_addr;
700 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
701 SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
702 SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO);
703 } else {
704 src = sconfig->src_addr;
705 dest = buf;
706 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
707 SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) |
708 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
712 * We will be using half done interrupts to make two periods
713 * out of a promise, so we need to program the DMA engine less
714 * often
718 * The engine can interrupt on half-transfer, so we can use
719 * this feature to program the engine half as often as if we
720 * didn't use it (keep in mind the hardware doesn't support
721 * linked lists).
723 * Say you have a set of periods (| marks the start/end, I for
724 * interrupt, P for programming the engine to do a new
725 * transfer), the easy but slow way would be to do
727 * |---|---|---|---| (periods / promises)
728 * P I,P I,P I,P I
730 * Using half transfer interrupts you can do
732 * |-------|-------| (promises as configured on hw)
733 * |---|---|---|---| (periods)
734 * P I I,P I I
736 * Which requires half the engine programming for the same
737 * functionality.
739 nr_periods = DIV_ROUND_UP(len / period_len, 2);
740 for (i = 0; i < nr_periods; i++) {
741 /* Calculate the offset in the buffer and the length needed */
742 offset = i * period_len * 2;
743 plength = min((len - offset), (period_len * 2));
744 if (dir == DMA_MEM_TO_DEV)
745 src = buf + offset;
746 else
747 dest = buf + offset;
749 /* Make the promise */
750 promise = generate_ndma_promise(chan, src, dest,
751 plength, sconfig, dir);
752 if (!promise) {
753 /* TODO: should we free everything? */
754 return NULL;
756 promise->cfg |= endpoints;
758 /* Then add it to the contract */
759 list_add_tail(&promise->list, &contract->demands);
762 /* And add it to the vchan */
763 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
766 static struct dma_async_tx_descriptor *
767 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
768 unsigned int sg_len, enum dma_transfer_direction dir,
769 unsigned long flags, void *context)
771 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
772 struct dma_slave_config *sconfig = &vchan->cfg;
773 struct sun4i_dma_promise *promise;
774 struct sun4i_dma_contract *contract;
775 u8 ram_type, io_mode, linear_mode;
776 struct scatterlist *sg;
777 dma_addr_t srcaddr, dstaddr;
778 u32 endpoints, para;
779 int i;
781 if (!sgl)
782 return NULL;
784 if (!is_slave_direction(dir)) {
785 dev_err(chan2dev(chan), "Invalid DMA direction\n");
786 return NULL;
789 contract = generate_dma_contract();
790 if (!contract)
791 return NULL;
793 if (vchan->is_dedicated) {
794 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
795 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
796 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
797 } else {
798 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
799 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
800 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
803 if (dir == DMA_MEM_TO_DEV)
804 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
805 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
806 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
807 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
808 else
809 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
810 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
811 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
812 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
814 for_each_sg(sgl, sg, sg_len, i) {
815 /* Figure out addresses */
816 if (dir == DMA_MEM_TO_DEV) {
817 srcaddr = sg_dma_address(sg);
818 dstaddr = sconfig->dst_addr;
819 } else {
820 srcaddr = sconfig->src_addr;
821 dstaddr = sg_dma_address(sg);
825 * These are the magic DMA engine timings that keep SPI going.
826 * I haven't seen any interface on DMAEngine to configure
827 * timings, and so far they seem to work for everything we
828 * support, so I've kept them here. I don't know if other
829 * devices need different timings because, as usual, we only
830 * have the "para" bitfield meanings, but no comment on what
831 * the values should be when doing a certain operation :|
833 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
835 /* And make a suitable promise */
836 if (vchan->is_dedicated)
837 promise = generate_ddma_promise(chan, srcaddr, dstaddr,
838 sg_dma_len(sg),
839 sconfig);
840 else
841 promise = generate_ndma_promise(chan, srcaddr, dstaddr,
842 sg_dma_len(sg),
843 sconfig, dir);
845 if (!promise)
846 return NULL; /* TODO: should we free everything? */
848 promise->cfg |= endpoints;
849 promise->para = para;
851 /* Then add it to the contract */
852 list_add_tail(&promise->list, &contract->demands);
856 * Once we've got all the promises ready, add the contract
857 * to the pending list on the vchan
859 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
862 static int sun4i_dma_terminate_all(struct dma_chan *chan)
864 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
865 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
866 struct sun4i_dma_pchan *pchan = vchan->pchan;
867 LIST_HEAD(head);
868 unsigned long flags;
870 spin_lock_irqsave(&vchan->vc.lock, flags);
871 vchan_get_all_descriptors(&vchan->vc, &head);
872 spin_unlock_irqrestore(&vchan->vc.lock, flags);
875 * Clearing the configuration register will halt the pchan. Interrupts
876 * may still trigger, so don't forget to disable them.
878 if (pchan) {
879 if (pchan->is_dedicated)
880 writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
881 else
882 writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
883 set_pchan_interrupt(priv, pchan, 0, 0);
884 release_pchan(priv, pchan);
887 spin_lock_irqsave(&vchan->vc.lock, flags);
888 vchan_dma_desc_free_list(&vchan->vc, &head);
889 /* Clear these so the vchan is usable again */
890 vchan->processing = NULL;
891 vchan->pchan = NULL;
892 spin_unlock_irqrestore(&vchan->vc.lock, flags);
894 return 0;
897 static int sun4i_dma_config(struct dma_chan *chan,
898 struct dma_slave_config *config)
900 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
902 memcpy(&vchan->cfg, config, sizeof(*config));
904 return 0;
907 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
908 struct of_dma *ofdma)
910 struct sun4i_dma_dev *priv = ofdma->of_dma_data;
911 struct sun4i_dma_vchan *vchan;
912 struct dma_chan *chan;
913 u8 is_dedicated = dma_spec->args[0];
914 u8 endpoint = dma_spec->args[1];
916 /* Check if type is Normal or Dedicated */
917 if (is_dedicated != 0 && is_dedicated != 1)
918 return NULL;
920 /* Make sure the endpoint looks sane */
921 if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
922 (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
923 return NULL;
925 chan = dma_get_any_slave_channel(&priv->slave);
926 if (!chan)
927 return NULL;
929 /* Assign the endpoint to the vchan */
930 vchan = to_sun4i_dma_vchan(chan);
931 vchan->is_dedicated = is_dedicated;
932 vchan->endpoint = endpoint;
934 return chan;
937 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
938 dma_cookie_t cookie,
939 struct dma_tx_state *state)
941 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
942 struct sun4i_dma_pchan *pchan = vchan->pchan;
943 struct sun4i_dma_contract *contract;
944 struct sun4i_dma_promise *promise;
945 struct virt_dma_desc *vd;
946 unsigned long flags;
947 enum dma_status ret;
948 size_t bytes = 0;
950 ret = dma_cookie_status(chan, cookie, state);
951 if (!state || (ret == DMA_COMPLETE))
952 return ret;
954 spin_lock_irqsave(&vchan->vc.lock, flags);
955 vd = vchan_find_desc(&vchan->vc, cookie);
956 if (!vd)
957 goto exit;
958 contract = to_sun4i_dma_contract(vd);
960 list_for_each_entry(promise, &contract->demands, list)
961 bytes += promise->len;
964 * The hardware is configured to return the remaining byte
965 * quantity. If possible, replace the first listed element's
966 * full size with the actual remaining amount
968 promise = list_first_entry_or_null(&contract->demands,
969 struct sun4i_dma_promise, list);
970 if (promise && pchan) {
971 bytes -= promise->len;
972 if (pchan->is_dedicated)
973 bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
974 else
975 bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
978 exit:
980 dma_set_residue(state, bytes);
981 spin_unlock_irqrestore(&vchan->vc.lock, flags);
983 return ret;
986 static void sun4i_dma_issue_pending(struct dma_chan *chan)
988 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
989 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
990 unsigned long flags;
992 spin_lock_irqsave(&vchan->vc.lock, flags);
995 * If there are pending transactions for this vchan, push one of
996 * them into the engine to get the ball rolling.
998 if (vchan_issue_pending(&vchan->vc))
999 __execute_vchan_pending(priv, vchan);
1001 spin_unlock_irqrestore(&vchan->vc.lock, flags);
1004 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1006 struct sun4i_dma_dev *priv = dev_id;
1007 struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1008 struct sun4i_dma_vchan *vchan;
1009 struct sun4i_dma_contract *contract;
1010 struct sun4i_dma_promise *promise;
1011 unsigned long pendirq, irqs, disableirqs;
1012 int bit, i, free_room, allow_mitigation = 1;
1014 pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1016 handle_pending:
1018 disableirqs = 0;
1019 free_room = 0;
1021 for_each_set_bit(bit, &pendirq, 32) {
1022 pchan = &pchans[bit >> 1];
1023 vchan = pchan->vchan;
1024 if (!vchan) /* a terminated channel may still interrupt */
1025 continue;
1026 contract = vchan->contract;
1029 * Disable the IRQ and free the pchan if it's an end
1030 * interrupt (odd bit)
1032 if (bit & 1) {
1033 spin_lock(&vchan->vc.lock);
1036 * Move the promise into the completed list now that
1037 * we're done with it
1039 list_del(&vchan->processing->list);
1040 list_add_tail(&vchan->processing->list,
1041 &contract->completed_demands);
1044 * Cyclic DMA transfers are special:
1045 * - There's always something we can dispatch
1046 * - We need to run the callback
1047 * - Latency is very important, as this is used by audio
1048 * We therefore just cycle through the list and dispatch
1049 * whatever we have here, reusing the pchan. There's
1050 * no need to run the thread after this.
1052 * For non-cyclic transfers we need to look around,
1053 * so we can program some more work, or notify the
1054 * client that their transfers have been completed.
1056 if (contract->is_cyclic) {
1057 promise = get_next_cyclic_promise(contract);
1058 vchan->processing = promise;
1059 configure_pchan(pchan, promise);
1060 vchan_cyclic_callback(&contract->vd);
1061 } else {
1062 vchan->processing = NULL;
1063 vchan->pchan = NULL;
1065 free_room = 1;
1066 disableirqs |= BIT(bit);
1067 release_pchan(priv, pchan);
1070 spin_unlock(&vchan->vc.lock);
1071 } else {
1072 /* Half done interrupt */
1073 if (contract->is_cyclic)
1074 vchan_cyclic_callback(&contract->vd);
1075 else
1076 disableirqs |= BIT(bit);
1080 /* Disable the IRQs for events we handled */
1081 spin_lock(&priv->lock);
1082 irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1083 writel_relaxed(irqs & ~disableirqs,
1084 priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1085 spin_unlock(&priv->lock);
1087 /* Writing 1 to the pending field will clear the pending interrupt */
1088 writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1091 * If a pchan was freed, we may be able to schedule something else,
1092 * so have a look around
1094 if (free_room) {
1095 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1096 vchan = &priv->vchans[i];
1097 spin_lock(&vchan->vc.lock);
1098 __execute_vchan_pending(priv, vchan);
1099 spin_unlock(&vchan->vc.lock);
1104 * Handle newer interrupts if some showed up, but only do it once
1105 * to avoid a too long a loop
1107 if (allow_mitigation) {
1108 pendirq = readl_relaxed(priv->base +
1109 SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1110 if (pendirq) {
1111 allow_mitigation = 0;
1112 goto handle_pending;
1116 return IRQ_HANDLED;
1119 static int sun4i_dma_probe(struct platform_device *pdev)
1121 struct sun4i_dma_dev *priv;
1122 struct resource *res;
1123 int i, j, ret;
1125 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1126 if (!priv)
1127 return -ENOMEM;
1129 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1130 priv->base = devm_ioremap_resource(&pdev->dev, res);
1131 if (IS_ERR(priv->base))
1132 return PTR_ERR(priv->base);
1134 priv->irq = platform_get_irq(pdev, 0);
1135 if (priv->irq < 0) {
1136 dev_err(&pdev->dev, "Cannot claim IRQ\n");
1137 return priv->irq;
1140 priv->clk = devm_clk_get(&pdev->dev, NULL);
1141 if (IS_ERR(priv->clk)) {
1142 dev_err(&pdev->dev, "No clock specified\n");
1143 return PTR_ERR(priv->clk);
1146 platform_set_drvdata(pdev, priv);
1147 spin_lock_init(&priv->lock);
1149 dma_cap_zero(priv->slave.cap_mask);
1150 dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1151 dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1152 dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1153 dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1155 INIT_LIST_HEAD(&priv->slave.channels);
1156 priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources;
1157 priv->slave.device_tx_status = sun4i_dma_tx_status;
1158 priv->slave.device_issue_pending = sun4i_dma_issue_pending;
1159 priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg;
1160 priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy;
1161 priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic;
1162 priv->slave.device_config = sun4i_dma_config;
1163 priv->slave.device_terminate_all = sun4i_dma_terminate_all;
1164 priv->slave.copy_align = 2;
1165 priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1166 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1167 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1168 priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1169 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1170 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1171 priv->slave.directions = BIT(DMA_DEV_TO_MEM) |
1172 BIT(DMA_MEM_TO_DEV);
1173 priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1175 priv->slave.dev = &pdev->dev;
1177 priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1178 sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1179 priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1180 sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1181 if (!priv->vchans || !priv->pchans)
1182 return -ENOMEM;
1185 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1186 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1187 * dedicated ones
1189 for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1190 priv->pchans[i].base = priv->base +
1191 SUN4I_NDMA_CHANNEL_REG_BASE(i);
1193 for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1194 priv->pchans[i].base = priv->base +
1195 SUN4I_DDMA_CHANNEL_REG_BASE(j);
1196 priv->pchans[i].is_dedicated = 1;
1199 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1200 struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1202 spin_lock_init(&vchan->vc.lock);
1203 vchan->vc.desc_free = sun4i_dma_free_contract;
1204 vchan_init(&vchan->vc, &priv->slave);
1207 ret = clk_prepare_enable(priv->clk);
1208 if (ret) {
1209 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1210 return ret;
1214 * Make sure the IRQs are all disabled and accounted for. The bootloader
1215 * likes to leave these dirty
1217 writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1218 writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1220 ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1221 0, dev_name(&pdev->dev), priv);
1222 if (ret) {
1223 dev_err(&pdev->dev, "Cannot request IRQ\n");
1224 goto err_clk_disable;
1227 ret = dma_async_device_register(&priv->slave);
1228 if (ret) {
1229 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1230 goto err_clk_disable;
1233 ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1234 priv);
1235 if (ret) {
1236 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1237 goto err_dma_unregister;
1240 dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1242 return 0;
1244 err_dma_unregister:
1245 dma_async_device_unregister(&priv->slave);
1246 err_clk_disable:
1247 clk_disable_unprepare(priv->clk);
1248 return ret;
1251 static int sun4i_dma_remove(struct platform_device *pdev)
1253 struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1255 /* Disable IRQ so no more work is scheduled */
1256 disable_irq(priv->irq);
1258 of_dma_controller_free(pdev->dev.of_node);
1259 dma_async_device_unregister(&priv->slave);
1261 clk_disable_unprepare(priv->clk);
1263 return 0;
1266 static const struct of_device_id sun4i_dma_match[] = {
1267 { .compatible = "allwinner,sun4i-a10-dma" },
1268 { /* sentinel */ },
1270 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1272 static struct platform_driver sun4i_dma_driver = {
1273 .probe = sun4i_dma_probe,
1274 .remove = sun4i_dma_remove,
1275 .driver = {
1276 .name = "sun4i-dma",
1277 .of_match_table = sun4i_dma_match,
1281 module_platform_driver(sun4i_dma_driver);
1283 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1284 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1285 MODULE_LICENSE("GPL");