staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / hid / hid-core.c
blob210b81a56e1a111507737ac96cf5b510e416b3b6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
36 #include "hid-ids.h"
39 * Version Information
42 #define DRIVER_DESC "HID core driver"
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
54 * Register a new report for a device.
57 struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
73 if (id != 0)
74 report_enum->numbered = 1;
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
83 list_add_tail(&report->list, &report_enum->report_list);
85 return report;
87 EXPORT_SYMBOL_GPL(hid_register_report);
90 * Register a new field for this report.
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
95 struct hid_field *field;
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 values * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
114 return field;
118 * Open a collection. The type/usage is pushed on the stack.
121 static int open_collection(struct hid_parser *parser, unsigned type)
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
127 usage = parser->local.usage[0];
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
179 return 0;
183 * Close a collection.
186 static int close_collection(struct hid_parser *parser)
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
192 parser->collection_stack_ptr--;
193 return 0;
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
203 struct hid_collection *collection = parser->device->collection;
204 int n;
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
211 return 0; /* we know nothing about this usage type */
215 * Add a usage to the temporary parser table.
218 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
220 if (parser->local.usage_index >= HID_MAX_USAGES) {
221 hid_err(parser->device, "usage index exceeded\n");
222 return -1;
224 parser->local.usage[parser->local.usage_index] = usage;
225 parser->local.usage_size[parser->local.usage_index] = size;
226 parser->local.collection_index[parser->local.usage_index] =
227 parser->collection_stack_ptr ?
228 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
229 parser->local.usage_index++;
230 return 0;
234 * Register a new field for this report.
237 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
239 struct hid_report *report;
240 struct hid_field *field;
241 unsigned int usages;
242 unsigned int offset;
243 unsigned int i;
244 unsigned int application;
246 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
248 report = hid_register_report(parser->device, report_type,
249 parser->global.report_id, application);
250 if (!report) {
251 hid_err(parser->device, "hid_register_report failed\n");
252 return -1;
255 /* Handle both signed and unsigned cases properly */
256 if ((parser->global.logical_minimum < 0 &&
257 parser->global.logical_maximum <
258 parser->global.logical_minimum) ||
259 (parser->global.logical_minimum >= 0 &&
260 (__u32)parser->global.logical_maximum <
261 (__u32)parser->global.logical_minimum)) {
262 dbg_hid("logical range invalid 0x%x 0x%x\n",
263 parser->global.logical_minimum,
264 parser->global.logical_maximum);
265 return -1;
268 offset = report->size;
269 report->size += parser->global.report_size * parser->global.report_count;
271 if (!parser->local.usage_index) /* Ignore padding fields */
272 return 0;
274 usages = max_t(unsigned, parser->local.usage_index,
275 parser->global.report_count);
277 field = hid_register_field(report, usages, parser->global.report_count);
278 if (!field)
279 return 0;
281 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
282 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
283 field->application = application;
285 for (i = 0; i < usages; i++) {
286 unsigned j = i;
287 /* Duplicate the last usage we parsed if we have excess values */
288 if (i >= parser->local.usage_index)
289 j = parser->local.usage_index - 1;
290 field->usage[i].hid = parser->local.usage[j];
291 field->usage[i].collection_index =
292 parser->local.collection_index[j];
293 field->usage[i].usage_index = i;
294 field->usage[i].resolution_multiplier = 1;
297 field->maxusage = usages;
298 field->flags = flags;
299 field->report_offset = offset;
300 field->report_type = report_type;
301 field->report_size = parser->global.report_size;
302 field->report_count = parser->global.report_count;
303 field->logical_minimum = parser->global.logical_minimum;
304 field->logical_maximum = parser->global.logical_maximum;
305 field->physical_minimum = parser->global.physical_minimum;
306 field->physical_maximum = parser->global.physical_maximum;
307 field->unit_exponent = parser->global.unit_exponent;
308 field->unit = parser->global.unit;
310 return 0;
314 * Read data value from item.
317 static u32 item_udata(struct hid_item *item)
319 switch (item->size) {
320 case 1: return item->data.u8;
321 case 2: return item->data.u16;
322 case 4: return item->data.u32;
324 return 0;
327 static s32 item_sdata(struct hid_item *item)
329 switch (item->size) {
330 case 1: return item->data.s8;
331 case 2: return item->data.s16;
332 case 4: return item->data.s32;
334 return 0;
338 * Process a global item.
341 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
343 __s32 raw_value;
344 switch (item->tag) {
345 case HID_GLOBAL_ITEM_TAG_PUSH:
347 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
348 hid_err(parser->device, "global environment stack overflow\n");
349 return -1;
352 memcpy(parser->global_stack + parser->global_stack_ptr++,
353 &parser->global, sizeof(struct hid_global));
354 return 0;
356 case HID_GLOBAL_ITEM_TAG_POP:
358 if (!parser->global_stack_ptr) {
359 hid_err(parser->device, "global environment stack underflow\n");
360 return -1;
363 memcpy(&parser->global, parser->global_stack +
364 --parser->global_stack_ptr, sizeof(struct hid_global));
365 return 0;
367 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
368 parser->global.usage_page = item_udata(item);
369 return 0;
371 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
372 parser->global.logical_minimum = item_sdata(item);
373 return 0;
375 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
376 if (parser->global.logical_minimum < 0)
377 parser->global.logical_maximum = item_sdata(item);
378 else
379 parser->global.logical_maximum = item_udata(item);
380 return 0;
382 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
383 parser->global.physical_minimum = item_sdata(item);
384 return 0;
386 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
387 if (parser->global.physical_minimum < 0)
388 parser->global.physical_maximum = item_sdata(item);
389 else
390 parser->global.physical_maximum = item_udata(item);
391 return 0;
393 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
394 /* Many devices provide unit exponent as a two's complement
395 * nibble due to the common misunderstanding of HID
396 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
397 * both this and the standard encoding. */
398 raw_value = item_sdata(item);
399 if (!(raw_value & 0xfffffff0))
400 parser->global.unit_exponent = hid_snto32(raw_value, 4);
401 else
402 parser->global.unit_exponent = raw_value;
403 return 0;
405 case HID_GLOBAL_ITEM_TAG_UNIT:
406 parser->global.unit = item_udata(item);
407 return 0;
409 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
410 parser->global.report_size = item_udata(item);
411 if (parser->global.report_size > 256) {
412 hid_err(parser->device, "invalid report_size %d\n",
413 parser->global.report_size);
414 return -1;
416 return 0;
418 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
419 parser->global.report_count = item_udata(item);
420 if (parser->global.report_count > HID_MAX_USAGES) {
421 hid_err(parser->device, "invalid report_count %d\n",
422 parser->global.report_count);
423 return -1;
425 return 0;
427 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
428 parser->global.report_id = item_udata(item);
429 if (parser->global.report_id == 0 ||
430 parser->global.report_id >= HID_MAX_IDS) {
431 hid_err(parser->device, "report_id %u is invalid\n",
432 parser->global.report_id);
433 return -1;
435 return 0;
437 default:
438 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
439 return -1;
444 * Process a local item.
447 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
449 __u32 data;
450 unsigned n;
451 __u32 count;
453 data = item_udata(item);
455 switch (item->tag) {
456 case HID_LOCAL_ITEM_TAG_DELIMITER:
458 if (data) {
460 * We treat items before the first delimiter
461 * as global to all usage sets (branch 0).
462 * In the moment we process only these global
463 * items and the first delimiter set.
465 if (parser->local.delimiter_depth != 0) {
466 hid_err(parser->device, "nested delimiters\n");
467 return -1;
469 parser->local.delimiter_depth++;
470 parser->local.delimiter_branch++;
471 } else {
472 if (parser->local.delimiter_depth < 1) {
473 hid_err(parser->device, "bogus close delimiter\n");
474 return -1;
476 parser->local.delimiter_depth--;
478 return 0;
480 case HID_LOCAL_ITEM_TAG_USAGE:
482 if (parser->local.delimiter_branch > 1) {
483 dbg_hid("alternative usage ignored\n");
484 return 0;
487 return hid_add_usage(parser, data, item->size);
489 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
491 if (parser->local.delimiter_branch > 1) {
492 dbg_hid("alternative usage ignored\n");
493 return 0;
496 parser->local.usage_minimum = data;
497 return 0;
499 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
501 if (parser->local.delimiter_branch > 1) {
502 dbg_hid("alternative usage ignored\n");
503 return 0;
506 count = data - parser->local.usage_minimum;
507 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
509 * We do not warn if the name is not set, we are
510 * actually pre-scanning the device.
512 if (dev_name(&parser->device->dev))
513 hid_warn(parser->device,
514 "ignoring exceeding usage max\n");
515 data = HID_MAX_USAGES - parser->local.usage_index +
516 parser->local.usage_minimum - 1;
517 if (data <= 0) {
518 hid_err(parser->device,
519 "no more usage index available\n");
520 return -1;
524 for (n = parser->local.usage_minimum; n <= data; n++)
525 if (hid_add_usage(parser, n, item->size)) {
526 dbg_hid("hid_add_usage failed\n");
527 return -1;
529 return 0;
531 default:
533 dbg_hid("unknown local item tag 0x%x\n", item->tag);
534 return 0;
536 return 0;
540 * Concatenate Usage Pages into Usages where relevant:
541 * As per specification, 6.2.2.8: "When the parser encounters a main item it
542 * concatenates the last declared Usage Page with a Usage to form a complete
543 * usage value."
546 static void hid_concatenate_usage_page(struct hid_parser *parser)
548 int i;
550 for (i = 0; i < parser->local.usage_index; i++)
551 if (parser->local.usage_size[i] <= 2)
552 parser->local.usage[i] += parser->global.usage_page << 16;
556 * Process a main item.
559 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
561 __u32 data;
562 int ret;
564 hid_concatenate_usage_page(parser);
566 data = item_udata(item);
568 switch (item->tag) {
569 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
570 ret = open_collection(parser, data & 0xff);
571 break;
572 case HID_MAIN_ITEM_TAG_END_COLLECTION:
573 ret = close_collection(parser);
574 break;
575 case HID_MAIN_ITEM_TAG_INPUT:
576 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
577 break;
578 case HID_MAIN_ITEM_TAG_OUTPUT:
579 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
580 break;
581 case HID_MAIN_ITEM_TAG_FEATURE:
582 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
583 break;
584 default:
585 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
586 ret = 0;
589 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
591 return ret;
595 * Process a reserved item.
598 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
600 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
601 return 0;
605 * Free a report and all registered fields. The field->usage and
606 * field->value table's are allocated behind the field, so we need
607 * only to free(field) itself.
610 static void hid_free_report(struct hid_report *report)
612 unsigned n;
614 for (n = 0; n < report->maxfield; n++)
615 kfree(report->field[n]);
616 kfree(report);
620 * Close report. This function returns the device
621 * state to the point prior to hid_open_report().
623 static void hid_close_report(struct hid_device *device)
625 unsigned i, j;
627 for (i = 0; i < HID_REPORT_TYPES; i++) {
628 struct hid_report_enum *report_enum = device->report_enum + i;
630 for (j = 0; j < HID_MAX_IDS; j++) {
631 struct hid_report *report = report_enum->report_id_hash[j];
632 if (report)
633 hid_free_report(report);
635 memset(report_enum, 0, sizeof(*report_enum));
636 INIT_LIST_HEAD(&report_enum->report_list);
639 kfree(device->rdesc);
640 device->rdesc = NULL;
641 device->rsize = 0;
643 kfree(device->collection);
644 device->collection = NULL;
645 device->collection_size = 0;
646 device->maxcollection = 0;
647 device->maxapplication = 0;
649 device->status &= ~HID_STAT_PARSED;
653 * Free a device structure, all reports, and all fields.
656 static void hid_device_release(struct device *dev)
658 struct hid_device *hid = to_hid_device(dev);
660 hid_close_report(hid);
661 kfree(hid->dev_rdesc);
662 kfree(hid);
666 * Fetch a report description item from the data stream. We support long
667 * items, though they are not used yet.
670 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
672 u8 b;
674 if ((end - start) <= 0)
675 return NULL;
677 b = *start++;
679 item->type = (b >> 2) & 3;
680 item->tag = (b >> 4) & 15;
682 if (item->tag == HID_ITEM_TAG_LONG) {
684 item->format = HID_ITEM_FORMAT_LONG;
686 if ((end - start) < 2)
687 return NULL;
689 item->size = *start++;
690 item->tag = *start++;
692 if ((end - start) < item->size)
693 return NULL;
695 item->data.longdata = start;
696 start += item->size;
697 return start;
700 item->format = HID_ITEM_FORMAT_SHORT;
701 item->size = b & 3;
703 switch (item->size) {
704 case 0:
705 return start;
707 case 1:
708 if ((end - start) < 1)
709 return NULL;
710 item->data.u8 = *start++;
711 return start;
713 case 2:
714 if ((end - start) < 2)
715 return NULL;
716 item->data.u16 = get_unaligned_le16(start);
717 start = (__u8 *)((__le16 *)start + 1);
718 return start;
720 case 3:
721 item->size++;
722 if ((end - start) < 4)
723 return NULL;
724 item->data.u32 = get_unaligned_le32(start);
725 start = (__u8 *)((__le32 *)start + 1);
726 return start;
729 return NULL;
732 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
734 struct hid_device *hid = parser->device;
736 if (usage == HID_DG_CONTACTID)
737 hid->group = HID_GROUP_MULTITOUCH;
740 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
742 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
743 parser->global.report_size == 8)
744 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
747 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
749 struct hid_device *hid = parser->device;
750 int i;
752 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
753 type == HID_COLLECTION_PHYSICAL)
754 hid->group = HID_GROUP_SENSOR_HUB;
756 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
757 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
758 hid->group == HID_GROUP_MULTITOUCH)
759 hid->group = HID_GROUP_GENERIC;
761 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
762 for (i = 0; i < parser->local.usage_index; i++)
763 if (parser->local.usage[i] == HID_GD_POINTER)
764 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
766 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
767 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
770 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
772 __u32 data;
773 int i;
775 hid_concatenate_usage_page(parser);
777 data = item_udata(item);
779 switch (item->tag) {
780 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
781 hid_scan_collection(parser, data & 0xff);
782 break;
783 case HID_MAIN_ITEM_TAG_END_COLLECTION:
784 break;
785 case HID_MAIN_ITEM_TAG_INPUT:
786 /* ignore constant inputs, they will be ignored by hid-input */
787 if (data & HID_MAIN_ITEM_CONSTANT)
788 break;
789 for (i = 0; i < parser->local.usage_index; i++)
790 hid_scan_input_usage(parser, parser->local.usage[i]);
791 break;
792 case HID_MAIN_ITEM_TAG_OUTPUT:
793 break;
794 case HID_MAIN_ITEM_TAG_FEATURE:
795 for (i = 0; i < parser->local.usage_index; i++)
796 hid_scan_feature_usage(parser, parser->local.usage[i]);
797 break;
800 /* Reset the local parser environment */
801 memset(&parser->local, 0, sizeof(parser->local));
803 return 0;
807 * Scan a report descriptor before the device is added to the bus.
808 * Sets device groups and other properties that determine what driver
809 * to load.
811 static int hid_scan_report(struct hid_device *hid)
813 struct hid_parser *parser;
814 struct hid_item item;
815 __u8 *start = hid->dev_rdesc;
816 __u8 *end = start + hid->dev_rsize;
817 static int (*dispatch_type[])(struct hid_parser *parser,
818 struct hid_item *item) = {
819 hid_scan_main,
820 hid_parser_global,
821 hid_parser_local,
822 hid_parser_reserved
825 parser = vzalloc(sizeof(struct hid_parser));
826 if (!parser)
827 return -ENOMEM;
829 parser->device = hid;
830 hid->group = HID_GROUP_GENERIC;
833 * The parsing is simpler than the one in hid_open_report() as we should
834 * be robust against hid errors. Those errors will be raised by
835 * hid_open_report() anyway.
837 while ((start = fetch_item(start, end, &item)) != NULL)
838 dispatch_type[item.type](parser, &item);
841 * Handle special flags set during scanning.
843 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
844 (hid->group == HID_GROUP_MULTITOUCH))
845 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
848 * Vendor specific handlings
850 switch (hid->vendor) {
851 case USB_VENDOR_ID_WACOM:
852 hid->group = HID_GROUP_WACOM;
853 break;
854 case USB_VENDOR_ID_SYNAPTICS:
855 if (hid->group == HID_GROUP_GENERIC)
856 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
857 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
859 * hid-rmi should take care of them,
860 * not hid-generic
862 hid->group = HID_GROUP_RMI;
863 break;
866 kfree(parser->collection_stack);
867 vfree(parser);
868 return 0;
872 * hid_parse_report - parse device report
874 * @device: hid device
875 * @start: report start
876 * @size: report size
878 * Allocate the device report as read by the bus driver. This function should
879 * only be called from parse() in ll drivers.
881 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
883 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
884 if (!hid->dev_rdesc)
885 return -ENOMEM;
886 hid->dev_rsize = size;
887 return 0;
889 EXPORT_SYMBOL_GPL(hid_parse_report);
891 static const char * const hid_report_names[] = {
892 "HID_INPUT_REPORT",
893 "HID_OUTPUT_REPORT",
894 "HID_FEATURE_REPORT",
897 * hid_validate_values - validate existing device report's value indexes
899 * @device: hid device
900 * @type: which report type to examine
901 * @id: which report ID to examine (0 for first)
902 * @field_index: which report field to examine
903 * @report_counts: expected number of values
905 * Validate the number of values in a given field of a given report, after
906 * parsing.
908 struct hid_report *hid_validate_values(struct hid_device *hid,
909 unsigned int type, unsigned int id,
910 unsigned int field_index,
911 unsigned int report_counts)
913 struct hid_report *report;
915 if (type > HID_FEATURE_REPORT) {
916 hid_err(hid, "invalid HID report type %u\n", type);
917 return NULL;
920 if (id >= HID_MAX_IDS) {
921 hid_err(hid, "invalid HID report id %u\n", id);
922 return NULL;
926 * Explicitly not using hid_get_report() here since it depends on
927 * ->numbered being checked, which may not always be the case when
928 * drivers go to access report values.
930 if (id == 0) {
932 * Validating on id 0 means we should examine the first
933 * report in the list.
935 report = list_entry(
936 hid->report_enum[type].report_list.next,
937 struct hid_report, list);
938 } else {
939 report = hid->report_enum[type].report_id_hash[id];
941 if (!report) {
942 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
943 return NULL;
945 if (report->maxfield <= field_index) {
946 hid_err(hid, "not enough fields in %s %u\n",
947 hid_report_names[type], id);
948 return NULL;
950 if (report->field[field_index]->report_count < report_counts) {
951 hid_err(hid, "not enough values in %s %u field %u\n",
952 hid_report_names[type], id, field_index);
953 return NULL;
955 return report;
957 EXPORT_SYMBOL_GPL(hid_validate_values);
959 static int hid_calculate_multiplier(struct hid_device *hid,
960 struct hid_field *multiplier)
962 int m;
963 __s32 v = *multiplier->value;
964 __s32 lmin = multiplier->logical_minimum;
965 __s32 lmax = multiplier->logical_maximum;
966 __s32 pmin = multiplier->physical_minimum;
967 __s32 pmax = multiplier->physical_maximum;
970 * "Because OS implementations will generally divide the control's
971 * reported count by the Effective Resolution Multiplier, designers
972 * should take care not to establish a potential Effective
973 * Resolution Multiplier of zero."
974 * HID Usage Table, v1.12, Section 4.3.1, p31
976 if (lmax - lmin == 0)
977 return 1;
979 * Handling the unit exponent is left as an exercise to whoever
980 * finds a device where that exponent is not 0.
982 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
983 if (unlikely(multiplier->unit_exponent != 0)) {
984 hid_warn(hid,
985 "unsupported Resolution Multiplier unit exponent %d\n",
986 multiplier->unit_exponent);
989 /* There are no devices with an effective multiplier > 255 */
990 if (unlikely(m == 0 || m > 255 || m < -255)) {
991 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
992 m = 1;
995 return m;
998 static void hid_apply_multiplier_to_field(struct hid_device *hid,
999 struct hid_field *field,
1000 struct hid_collection *multiplier_collection,
1001 int effective_multiplier)
1003 struct hid_collection *collection;
1004 struct hid_usage *usage;
1005 int i;
1008 * If multiplier_collection is NULL, the multiplier applies
1009 * to all fields in the report.
1010 * Otherwise, it is the Logical Collection the multiplier applies to
1011 * but our field may be in a subcollection of that collection.
1013 for (i = 0; i < field->maxusage; i++) {
1014 usage = &field->usage[i];
1016 collection = &hid->collection[usage->collection_index];
1017 while (collection->parent_idx != -1 &&
1018 collection != multiplier_collection)
1019 collection = &hid->collection[collection->parent_idx];
1021 if (collection->parent_idx != -1 ||
1022 multiplier_collection == NULL)
1023 usage->resolution_multiplier = effective_multiplier;
1028 static void hid_apply_multiplier(struct hid_device *hid,
1029 struct hid_field *multiplier)
1031 struct hid_report_enum *rep_enum;
1032 struct hid_report *rep;
1033 struct hid_field *field;
1034 struct hid_collection *multiplier_collection;
1035 int effective_multiplier;
1036 int i;
1039 * "The Resolution Multiplier control must be contained in the same
1040 * Logical Collection as the control(s) to which it is to be applied.
1041 * If no Resolution Multiplier is defined, then the Resolution
1042 * Multiplier defaults to 1. If more than one control exists in a
1043 * Logical Collection, the Resolution Multiplier is associated with
1044 * all controls in the collection. If no Logical Collection is
1045 * defined, the Resolution Multiplier is associated with all
1046 * controls in the report."
1047 * HID Usage Table, v1.12, Section 4.3.1, p30
1049 * Thus, search from the current collection upwards until we find a
1050 * logical collection. Then search all fields for that same parent
1051 * collection. Those are the fields the multiplier applies to.
1053 * If we have more than one multiplier, it will overwrite the
1054 * applicable fields later.
1056 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1057 while (multiplier_collection->parent_idx != -1 &&
1058 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1059 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1061 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1063 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1064 list_for_each_entry(rep, &rep_enum->report_list, list) {
1065 for (i = 0; i < rep->maxfield; i++) {
1066 field = rep->field[i];
1067 hid_apply_multiplier_to_field(hid, field,
1068 multiplier_collection,
1069 effective_multiplier);
1075 * hid_setup_resolution_multiplier - set up all resolution multipliers
1077 * @device: hid device
1079 * Search for all Resolution Multiplier Feature Reports and apply their
1080 * value to all matching Input items. This only updates the internal struct
1081 * fields.
1083 * The Resolution Multiplier is applied by the hardware. If the multiplier
1084 * is anything other than 1, the hardware will send pre-multiplied events
1085 * so that the same physical interaction generates an accumulated
1086 * accumulated_value = value * * multiplier
1087 * This may be achieved by sending
1088 * - "value * multiplier" for each event, or
1089 * - "value" but "multiplier" times as frequently, or
1090 * - a combination of the above
1091 * The only guarantee is that the same physical interaction always generates
1092 * an accumulated 'value * multiplier'.
1094 * This function must be called before any event processing and after
1095 * any SetRequest to the Resolution Multiplier.
1097 void hid_setup_resolution_multiplier(struct hid_device *hid)
1099 struct hid_report_enum *rep_enum;
1100 struct hid_report *rep;
1101 struct hid_usage *usage;
1102 int i, j;
1104 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1105 list_for_each_entry(rep, &rep_enum->report_list, list) {
1106 for (i = 0; i < rep->maxfield; i++) {
1107 /* Ignore if report count is out of bounds. */
1108 if (rep->field[i]->report_count < 1)
1109 continue;
1111 for (j = 0; j < rep->field[i]->maxusage; j++) {
1112 usage = &rep->field[i]->usage[j];
1113 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1114 hid_apply_multiplier(hid,
1115 rep->field[i]);
1120 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1123 * hid_open_report - open a driver-specific device report
1125 * @device: hid device
1127 * Parse a report description into a hid_device structure. Reports are
1128 * enumerated, fields are attached to these reports.
1129 * 0 returned on success, otherwise nonzero error value.
1131 * This function (or the equivalent hid_parse() macro) should only be
1132 * called from probe() in drivers, before starting the device.
1134 int hid_open_report(struct hid_device *device)
1136 struct hid_parser *parser;
1137 struct hid_item item;
1138 unsigned int size;
1139 __u8 *start;
1140 __u8 *buf;
1141 __u8 *end;
1142 int ret;
1143 static int (*dispatch_type[])(struct hid_parser *parser,
1144 struct hid_item *item) = {
1145 hid_parser_main,
1146 hid_parser_global,
1147 hid_parser_local,
1148 hid_parser_reserved
1151 if (WARN_ON(device->status & HID_STAT_PARSED))
1152 return -EBUSY;
1154 start = device->dev_rdesc;
1155 if (WARN_ON(!start))
1156 return -ENODEV;
1157 size = device->dev_rsize;
1159 buf = kmemdup(start, size, GFP_KERNEL);
1160 if (buf == NULL)
1161 return -ENOMEM;
1163 if (device->driver->report_fixup)
1164 start = device->driver->report_fixup(device, buf, &size);
1165 else
1166 start = buf;
1168 start = kmemdup(start, size, GFP_KERNEL);
1169 kfree(buf);
1170 if (start == NULL)
1171 return -ENOMEM;
1173 device->rdesc = start;
1174 device->rsize = size;
1176 parser = vzalloc(sizeof(struct hid_parser));
1177 if (!parser) {
1178 ret = -ENOMEM;
1179 goto alloc_err;
1182 parser->device = device;
1184 end = start + size;
1186 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1187 sizeof(struct hid_collection), GFP_KERNEL);
1188 if (!device->collection) {
1189 ret = -ENOMEM;
1190 goto err;
1192 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1194 ret = -EINVAL;
1195 while ((start = fetch_item(start, end, &item)) != NULL) {
1197 if (item.format != HID_ITEM_FORMAT_SHORT) {
1198 hid_err(device, "unexpected long global item\n");
1199 goto err;
1202 if (dispatch_type[item.type](parser, &item)) {
1203 hid_err(device, "item %u %u %u %u parsing failed\n",
1204 item.format, (unsigned)item.size,
1205 (unsigned)item.type, (unsigned)item.tag);
1206 goto err;
1209 if (start == end) {
1210 if (parser->collection_stack_ptr) {
1211 hid_err(device, "unbalanced collection at end of report description\n");
1212 goto err;
1214 if (parser->local.delimiter_depth) {
1215 hid_err(device, "unbalanced delimiter at end of report description\n");
1216 goto err;
1220 * fetch initial values in case the device's
1221 * default multiplier isn't the recommended 1
1223 hid_setup_resolution_multiplier(device);
1225 kfree(parser->collection_stack);
1226 vfree(parser);
1227 device->status |= HID_STAT_PARSED;
1229 return 0;
1233 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1234 err:
1235 kfree(parser->collection_stack);
1236 alloc_err:
1237 vfree(parser);
1238 hid_close_report(device);
1239 return ret;
1241 EXPORT_SYMBOL_GPL(hid_open_report);
1244 * Convert a signed n-bit integer to signed 32-bit integer. Common
1245 * cases are done through the compiler, the screwed things has to be
1246 * done by hand.
1249 static s32 snto32(__u32 value, unsigned n)
1251 switch (n) {
1252 case 8: return ((__s8)value);
1253 case 16: return ((__s16)value);
1254 case 32: return ((__s32)value);
1256 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1259 s32 hid_snto32(__u32 value, unsigned n)
1261 return snto32(value, n);
1263 EXPORT_SYMBOL_GPL(hid_snto32);
1266 * Convert a signed 32-bit integer to a signed n-bit integer.
1269 static u32 s32ton(__s32 value, unsigned n)
1271 s32 a = value >> (n - 1);
1272 if (a && a != -1)
1273 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1274 return value & ((1 << n) - 1);
1278 * Extract/implement a data field from/to a little endian report (bit array).
1280 * Code sort-of follows HID spec:
1281 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1283 * While the USB HID spec allows unlimited length bit fields in "report
1284 * descriptors", most devices never use more than 16 bits.
1285 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1286 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1289 static u32 __extract(u8 *report, unsigned offset, int n)
1291 unsigned int idx = offset / 8;
1292 unsigned int bit_nr = 0;
1293 unsigned int bit_shift = offset % 8;
1294 int bits_to_copy = 8 - bit_shift;
1295 u32 value = 0;
1296 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1298 while (n > 0) {
1299 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1300 n -= bits_to_copy;
1301 bit_nr += bits_to_copy;
1302 bits_to_copy = 8;
1303 bit_shift = 0;
1304 idx++;
1307 return value & mask;
1310 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1311 unsigned offset, unsigned n)
1313 if (n > 32) {
1314 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1315 n, current->comm);
1316 n = 32;
1319 return __extract(report, offset, n);
1321 EXPORT_SYMBOL_GPL(hid_field_extract);
1324 * "implement" : set bits in a little endian bit stream.
1325 * Same concepts as "extract" (see comments above).
1326 * The data mangled in the bit stream remains in little endian
1327 * order the whole time. It make more sense to talk about
1328 * endianness of register values by considering a register
1329 * a "cached" copy of the little endian bit stream.
1332 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1334 unsigned int idx = offset / 8;
1335 unsigned int bit_shift = offset % 8;
1336 int bits_to_set = 8 - bit_shift;
1338 while (n - bits_to_set >= 0) {
1339 report[idx] &= ~(0xff << bit_shift);
1340 report[idx] |= value << bit_shift;
1341 value >>= bits_to_set;
1342 n -= bits_to_set;
1343 bits_to_set = 8;
1344 bit_shift = 0;
1345 idx++;
1348 /* last nibble */
1349 if (n) {
1350 u8 bit_mask = ((1U << n) - 1);
1351 report[idx] &= ~(bit_mask << bit_shift);
1352 report[idx] |= value << bit_shift;
1356 static void implement(const struct hid_device *hid, u8 *report,
1357 unsigned offset, unsigned n, u32 value)
1359 if (unlikely(n > 32)) {
1360 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1361 __func__, n, current->comm);
1362 n = 32;
1363 } else if (n < 32) {
1364 u32 m = (1U << n) - 1;
1366 if (unlikely(value > m)) {
1367 hid_warn(hid,
1368 "%s() called with too large value %d (n: %d)! (%s)\n",
1369 __func__, value, n, current->comm);
1370 WARN_ON(1);
1371 value &= m;
1375 __implement(report, offset, n, value);
1379 * Search an array for a value.
1382 static int search(__s32 *array, __s32 value, unsigned n)
1384 while (n--) {
1385 if (*array++ == value)
1386 return 0;
1388 return -1;
1392 * hid_match_report - check if driver's raw_event should be called
1394 * @hid: hid device
1395 * @report_type: type to match against
1397 * compare hid->driver->report_table->report_type to report->type
1399 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1401 const struct hid_report_id *id = hid->driver->report_table;
1403 if (!id) /* NULL means all */
1404 return 1;
1406 for (; id->report_type != HID_TERMINATOR; id++)
1407 if (id->report_type == HID_ANY_ID ||
1408 id->report_type == report->type)
1409 return 1;
1410 return 0;
1414 * hid_match_usage - check if driver's event should be called
1416 * @hid: hid device
1417 * @usage: usage to match against
1419 * compare hid->driver->usage_table->usage_{type,code} to
1420 * usage->usage_{type,code}
1422 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1424 const struct hid_usage_id *id = hid->driver->usage_table;
1426 if (!id) /* NULL means all */
1427 return 1;
1429 for (; id->usage_type != HID_ANY_ID - 1; id++)
1430 if ((id->usage_hid == HID_ANY_ID ||
1431 id->usage_hid == usage->hid) &&
1432 (id->usage_type == HID_ANY_ID ||
1433 id->usage_type == usage->type) &&
1434 (id->usage_code == HID_ANY_ID ||
1435 id->usage_code == usage->code))
1436 return 1;
1437 return 0;
1440 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1441 struct hid_usage *usage, __s32 value, int interrupt)
1443 struct hid_driver *hdrv = hid->driver;
1444 int ret;
1446 if (!list_empty(&hid->debug_list))
1447 hid_dump_input(hid, usage, value);
1449 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1450 ret = hdrv->event(hid, field, usage, value);
1451 if (ret != 0) {
1452 if (ret < 0)
1453 hid_err(hid, "%s's event failed with %d\n",
1454 hdrv->name, ret);
1455 return;
1459 if (hid->claimed & HID_CLAIMED_INPUT)
1460 hidinput_hid_event(hid, field, usage, value);
1461 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1462 hid->hiddev_hid_event(hid, field, usage, value);
1466 * Analyse a received field, and fetch the data from it. The field
1467 * content is stored for next report processing (we do differential
1468 * reporting to the layer).
1471 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1472 __u8 *data, int interrupt)
1474 unsigned n;
1475 unsigned count = field->report_count;
1476 unsigned offset = field->report_offset;
1477 unsigned size = field->report_size;
1478 __s32 min = field->logical_minimum;
1479 __s32 max = field->logical_maximum;
1480 __s32 *value;
1482 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1483 if (!value)
1484 return;
1486 for (n = 0; n < count; n++) {
1488 value[n] = min < 0 ?
1489 snto32(hid_field_extract(hid, data, offset + n * size,
1490 size), size) :
1491 hid_field_extract(hid, data, offset + n * size, size);
1493 /* Ignore report if ErrorRollOver */
1494 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1495 value[n] >= min && value[n] <= max &&
1496 value[n] - min < field->maxusage &&
1497 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1498 goto exit;
1501 for (n = 0; n < count; n++) {
1503 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1504 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1505 continue;
1508 if (field->value[n] >= min && field->value[n] <= max
1509 && field->value[n] - min < field->maxusage
1510 && field->usage[field->value[n] - min].hid
1511 && search(value, field->value[n], count))
1512 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1514 if (value[n] >= min && value[n] <= max
1515 && value[n] - min < field->maxusage
1516 && field->usage[value[n] - min].hid
1517 && search(field->value, value[n], count))
1518 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1521 memcpy(field->value, value, count * sizeof(__s32));
1522 exit:
1523 kfree(value);
1527 * Output the field into the report.
1530 static void hid_output_field(const struct hid_device *hid,
1531 struct hid_field *field, __u8 *data)
1533 unsigned count = field->report_count;
1534 unsigned offset = field->report_offset;
1535 unsigned size = field->report_size;
1536 unsigned n;
1538 for (n = 0; n < count; n++) {
1539 if (field->logical_minimum < 0) /* signed values */
1540 implement(hid, data, offset + n * size, size,
1541 s32ton(field->value[n], size));
1542 else /* unsigned values */
1543 implement(hid, data, offset + n * size, size,
1544 field->value[n]);
1549 * Create a report. 'data' has to be allocated using
1550 * hid_alloc_report_buf() so that it has proper size.
1553 void hid_output_report(struct hid_report *report, __u8 *data)
1555 unsigned n;
1557 if (report->id > 0)
1558 *data++ = report->id;
1560 memset(data, 0, ((report->size - 1) >> 3) + 1);
1561 for (n = 0; n < report->maxfield; n++)
1562 hid_output_field(report->device, report->field[n], data);
1564 EXPORT_SYMBOL_GPL(hid_output_report);
1567 * Allocator for buffer that is going to be passed to hid_output_report()
1569 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1572 * 7 extra bytes are necessary to achieve proper functionality
1573 * of implement() working on 8 byte chunks
1576 u32 len = hid_report_len(report) + 7;
1578 return kmalloc(len, flags);
1580 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1583 * Set a field value. The report this field belongs to has to be
1584 * created and transferred to the device, to set this value in the
1585 * device.
1588 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1590 unsigned size;
1592 if (!field)
1593 return -1;
1595 size = field->report_size;
1597 hid_dump_input(field->report->device, field->usage + offset, value);
1599 if (offset >= field->report_count) {
1600 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1601 offset, field->report_count);
1602 return -1;
1604 if (field->logical_minimum < 0) {
1605 if (value != snto32(s32ton(value, size), size)) {
1606 hid_err(field->report->device, "value %d is out of range\n", value);
1607 return -1;
1610 field->value[offset] = value;
1611 return 0;
1613 EXPORT_SYMBOL_GPL(hid_set_field);
1615 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1616 const u8 *data)
1618 struct hid_report *report;
1619 unsigned int n = 0; /* Normally report number is 0 */
1621 /* Device uses numbered reports, data[0] is report number */
1622 if (report_enum->numbered)
1623 n = *data;
1625 report = report_enum->report_id_hash[n];
1626 if (report == NULL)
1627 dbg_hid("undefined report_id %u received\n", n);
1629 return report;
1633 * Implement a generic .request() callback, using .raw_request()
1634 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1636 int __hid_request(struct hid_device *hid, struct hid_report *report,
1637 int reqtype)
1639 char *buf;
1640 int ret;
1641 u32 len;
1643 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1644 if (!buf)
1645 return -ENOMEM;
1647 len = hid_report_len(report);
1649 if (reqtype == HID_REQ_SET_REPORT)
1650 hid_output_report(report, buf);
1652 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1653 report->type, reqtype);
1654 if (ret < 0) {
1655 dbg_hid("unable to complete request: %d\n", ret);
1656 goto out;
1659 if (reqtype == HID_REQ_GET_REPORT)
1660 hid_input_report(hid, report->type, buf, ret, 0);
1662 ret = 0;
1664 out:
1665 kfree(buf);
1666 return ret;
1668 EXPORT_SYMBOL_GPL(__hid_request);
1670 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1671 int interrupt)
1673 struct hid_report_enum *report_enum = hid->report_enum + type;
1674 struct hid_report *report;
1675 struct hid_driver *hdrv;
1676 unsigned int a;
1677 u32 rsize, csize = size;
1678 u8 *cdata = data;
1679 int ret = 0;
1681 report = hid_get_report(report_enum, data);
1682 if (!report)
1683 goto out;
1685 if (report_enum->numbered) {
1686 cdata++;
1687 csize--;
1690 rsize = ((report->size - 1) >> 3) + 1;
1692 if (rsize > HID_MAX_BUFFER_SIZE)
1693 rsize = HID_MAX_BUFFER_SIZE;
1695 if (csize < rsize) {
1696 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1697 csize, rsize);
1698 memset(cdata + csize, 0, rsize - csize);
1701 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1702 hid->hiddev_report_event(hid, report);
1703 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1704 ret = hidraw_report_event(hid, data, size);
1705 if (ret)
1706 goto out;
1709 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1710 for (a = 0; a < report->maxfield; a++)
1711 hid_input_field(hid, report->field[a], cdata, interrupt);
1712 hdrv = hid->driver;
1713 if (hdrv && hdrv->report)
1714 hdrv->report(hid, report);
1717 if (hid->claimed & HID_CLAIMED_INPUT)
1718 hidinput_report_event(hid, report);
1719 out:
1720 return ret;
1722 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1725 * hid_input_report - report data from lower layer (usb, bt...)
1727 * @hid: hid device
1728 * @type: HID report type (HID_*_REPORT)
1729 * @data: report contents
1730 * @size: size of data parameter
1731 * @interrupt: distinguish between interrupt and control transfers
1733 * This is data entry for lower layers.
1735 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1737 struct hid_report_enum *report_enum;
1738 struct hid_driver *hdrv;
1739 struct hid_report *report;
1740 int ret = 0;
1742 if (!hid)
1743 return -ENODEV;
1745 if (down_trylock(&hid->driver_input_lock))
1746 return -EBUSY;
1748 if (!hid->driver) {
1749 ret = -ENODEV;
1750 goto unlock;
1752 report_enum = hid->report_enum + type;
1753 hdrv = hid->driver;
1755 if (!size) {
1756 dbg_hid("empty report\n");
1757 ret = -1;
1758 goto unlock;
1761 /* Avoid unnecessary overhead if debugfs is disabled */
1762 if (!list_empty(&hid->debug_list))
1763 hid_dump_report(hid, type, data, size);
1765 report = hid_get_report(report_enum, data);
1767 if (!report) {
1768 ret = -1;
1769 goto unlock;
1772 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1773 ret = hdrv->raw_event(hid, report, data, size);
1774 if (ret < 0)
1775 goto unlock;
1778 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1780 unlock:
1781 up(&hid->driver_input_lock);
1782 return ret;
1784 EXPORT_SYMBOL_GPL(hid_input_report);
1786 bool hid_match_one_id(const struct hid_device *hdev,
1787 const struct hid_device_id *id)
1789 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1790 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1791 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1792 (id->product == HID_ANY_ID || id->product == hdev->product);
1795 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1796 const struct hid_device_id *id)
1798 for (; id->bus; id++)
1799 if (hid_match_one_id(hdev, id))
1800 return id;
1802 return NULL;
1805 static const struct hid_device_id hid_hiddev_list[] = {
1806 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1807 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1811 static bool hid_hiddev(struct hid_device *hdev)
1813 return !!hid_match_id(hdev, hid_hiddev_list);
1817 static ssize_t
1818 read_report_descriptor(struct file *filp, struct kobject *kobj,
1819 struct bin_attribute *attr,
1820 char *buf, loff_t off, size_t count)
1822 struct device *dev = kobj_to_dev(kobj);
1823 struct hid_device *hdev = to_hid_device(dev);
1825 if (off >= hdev->rsize)
1826 return 0;
1828 if (off + count > hdev->rsize)
1829 count = hdev->rsize - off;
1831 memcpy(buf, hdev->rdesc + off, count);
1833 return count;
1836 static ssize_t
1837 show_country(struct device *dev, struct device_attribute *attr,
1838 char *buf)
1840 struct hid_device *hdev = to_hid_device(dev);
1842 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1845 static struct bin_attribute dev_bin_attr_report_desc = {
1846 .attr = { .name = "report_descriptor", .mode = 0444 },
1847 .read = read_report_descriptor,
1848 .size = HID_MAX_DESCRIPTOR_SIZE,
1851 static const struct device_attribute dev_attr_country = {
1852 .attr = { .name = "country", .mode = 0444 },
1853 .show = show_country,
1856 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1858 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1859 "Joystick", "Gamepad", "Keyboard", "Keypad",
1860 "Multi-Axis Controller"
1862 const char *type, *bus;
1863 char buf[64] = "";
1864 unsigned int i;
1865 int len;
1866 int ret;
1868 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1869 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1870 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1871 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1872 if (hdev->bus != BUS_USB)
1873 connect_mask &= ~HID_CONNECT_HIDDEV;
1874 if (hid_hiddev(hdev))
1875 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1877 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1878 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1879 hdev->claimed |= HID_CLAIMED_INPUT;
1881 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1882 !hdev->hiddev_connect(hdev,
1883 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1884 hdev->claimed |= HID_CLAIMED_HIDDEV;
1885 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1886 hdev->claimed |= HID_CLAIMED_HIDRAW;
1888 if (connect_mask & HID_CONNECT_DRIVER)
1889 hdev->claimed |= HID_CLAIMED_DRIVER;
1891 /* Drivers with the ->raw_event callback set are not required to connect
1892 * to any other listener. */
1893 if (!hdev->claimed && !hdev->driver->raw_event) {
1894 hid_err(hdev, "device has no listeners, quitting\n");
1895 return -ENODEV;
1898 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1899 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1900 hdev->ff_init(hdev);
1902 len = 0;
1903 if (hdev->claimed & HID_CLAIMED_INPUT)
1904 len += sprintf(buf + len, "input");
1905 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1906 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1907 ((struct hiddev *)hdev->hiddev)->minor);
1908 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1909 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1910 ((struct hidraw *)hdev->hidraw)->minor);
1912 type = "Device";
1913 for (i = 0; i < hdev->maxcollection; i++) {
1914 struct hid_collection *col = &hdev->collection[i];
1915 if (col->type == HID_COLLECTION_APPLICATION &&
1916 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1917 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1918 type = types[col->usage & 0xffff];
1919 break;
1923 switch (hdev->bus) {
1924 case BUS_USB:
1925 bus = "USB";
1926 break;
1927 case BUS_BLUETOOTH:
1928 bus = "BLUETOOTH";
1929 break;
1930 case BUS_I2C:
1931 bus = "I2C";
1932 break;
1933 default:
1934 bus = "<UNKNOWN>";
1937 ret = device_create_file(&hdev->dev, &dev_attr_country);
1938 if (ret)
1939 hid_warn(hdev,
1940 "can't create sysfs country code attribute err: %d\n", ret);
1942 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1943 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1944 type, hdev->name, hdev->phys);
1946 return 0;
1948 EXPORT_SYMBOL_GPL(hid_connect);
1950 void hid_disconnect(struct hid_device *hdev)
1952 device_remove_file(&hdev->dev, &dev_attr_country);
1953 if (hdev->claimed & HID_CLAIMED_INPUT)
1954 hidinput_disconnect(hdev);
1955 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1956 hdev->hiddev_disconnect(hdev);
1957 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1958 hidraw_disconnect(hdev);
1959 hdev->claimed = 0;
1961 EXPORT_SYMBOL_GPL(hid_disconnect);
1964 * hid_hw_start - start underlying HW
1965 * @hdev: hid device
1966 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1968 * Call this in probe function *after* hid_parse. This will setup HW
1969 * buffers and start the device (if not defeirred to device open).
1970 * hid_hw_stop must be called if this was successful.
1972 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1974 int error;
1976 error = hdev->ll_driver->start(hdev);
1977 if (error)
1978 return error;
1980 if (connect_mask) {
1981 error = hid_connect(hdev, connect_mask);
1982 if (error) {
1983 hdev->ll_driver->stop(hdev);
1984 return error;
1988 return 0;
1990 EXPORT_SYMBOL_GPL(hid_hw_start);
1993 * hid_hw_stop - stop underlying HW
1994 * @hdev: hid device
1996 * This is usually called from remove function or from probe when something
1997 * failed and hid_hw_start was called already.
1999 void hid_hw_stop(struct hid_device *hdev)
2001 hid_disconnect(hdev);
2002 hdev->ll_driver->stop(hdev);
2004 EXPORT_SYMBOL_GPL(hid_hw_stop);
2007 * hid_hw_open - signal underlying HW to start delivering events
2008 * @hdev: hid device
2010 * Tell underlying HW to start delivering events from the device.
2011 * This function should be called sometime after successful call
2012 * to hid_hw_start().
2014 int hid_hw_open(struct hid_device *hdev)
2016 int ret;
2018 ret = mutex_lock_killable(&hdev->ll_open_lock);
2019 if (ret)
2020 return ret;
2022 if (!hdev->ll_open_count++) {
2023 ret = hdev->ll_driver->open(hdev);
2024 if (ret)
2025 hdev->ll_open_count--;
2028 mutex_unlock(&hdev->ll_open_lock);
2029 return ret;
2031 EXPORT_SYMBOL_GPL(hid_hw_open);
2034 * hid_hw_close - signal underlaying HW to stop delivering events
2036 * @hdev: hid device
2038 * This function indicates that we are not interested in the events
2039 * from this device anymore. Delivery of events may or may not stop,
2040 * depending on the number of users still outstanding.
2042 void hid_hw_close(struct hid_device *hdev)
2044 mutex_lock(&hdev->ll_open_lock);
2045 if (!--hdev->ll_open_count)
2046 hdev->ll_driver->close(hdev);
2047 mutex_unlock(&hdev->ll_open_lock);
2049 EXPORT_SYMBOL_GPL(hid_hw_close);
2051 struct hid_dynid {
2052 struct list_head list;
2053 struct hid_device_id id;
2057 * store_new_id - add a new HID device ID to this driver and re-probe devices
2058 * @driver: target device driver
2059 * @buf: buffer for scanning device ID data
2060 * @count: input size
2062 * Adds a new dynamic hid device ID to this driver,
2063 * and causes the driver to probe for all devices again.
2065 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2066 size_t count)
2068 struct hid_driver *hdrv = to_hid_driver(drv);
2069 struct hid_dynid *dynid;
2070 __u32 bus, vendor, product;
2071 unsigned long driver_data = 0;
2072 int ret;
2074 ret = sscanf(buf, "%x %x %x %lx",
2075 &bus, &vendor, &product, &driver_data);
2076 if (ret < 3)
2077 return -EINVAL;
2079 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2080 if (!dynid)
2081 return -ENOMEM;
2083 dynid->id.bus = bus;
2084 dynid->id.group = HID_GROUP_ANY;
2085 dynid->id.vendor = vendor;
2086 dynid->id.product = product;
2087 dynid->id.driver_data = driver_data;
2089 spin_lock(&hdrv->dyn_lock);
2090 list_add_tail(&dynid->list, &hdrv->dyn_list);
2091 spin_unlock(&hdrv->dyn_lock);
2093 ret = driver_attach(&hdrv->driver);
2095 return ret ? : count;
2097 static DRIVER_ATTR_WO(new_id);
2099 static struct attribute *hid_drv_attrs[] = {
2100 &driver_attr_new_id.attr,
2101 NULL,
2103 ATTRIBUTE_GROUPS(hid_drv);
2105 static void hid_free_dynids(struct hid_driver *hdrv)
2107 struct hid_dynid *dynid, *n;
2109 spin_lock(&hdrv->dyn_lock);
2110 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2111 list_del(&dynid->list);
2112 kfree(dynid);
2114 spin_unlock(&hdrv->dyn_lock);
2117 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2118 struct hid_driver *hdrv)
2120 struct hid_dynid *dynid;
2122 spin_lock(&hdrv->dyn_lock);
2123 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2124 if (hid_match_one_id(hdev, &dynid->id)) {
2125 spin_unlock(&hdrv->dyn_lock);
2126 return &dynid->id;
2129 spin_unlock(&hdrv->dyn_lock);
2131 return hid_match_id(hdev, hdrv->id_table);
2133 EXPORT_SYMBOL_GPL(hid_match_device);
2135 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2137 struct hid_driver *hdrv = to_hid_driver(drv);
2138 struct hid_device *hdev = to_hid_device(dev);
2140 return hid_match_device(hdev, hdrv) != NULL;
2144 * hid_compare_device_paths - check if both devices share the same path
2145 * @hdev_a: hid device
2146 * @hdev_b: hid device
2147 * @separator: char to use as separator
2149 * Check if two devices share the same path up to the last occurrence of
2150 * the separator char. Both paths must exist (i.e., zero-length paths
2151 * don't match).
2153 bool hid_compare_device_paths(struct hid_device *hdev_a,
2154 struct hid_device *hdev_b, char separator)
2156 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2157 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2159 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2160 return false;
2162 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2164 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2166 static int hid_device_probe(struct device *dev)
2168 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2169 struct hid_device *hdev = to_hid_device(dev);
2170 const struct hid_device_id *id;
2171 int ret = 0;
2173 if (down_interruptible(&hdev->driver_input_lock)) {
2174 ret = -EINTR;
2175 goto end;
2177 hdev->io_started = false;
2179 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2181 if (!hdev->driver) {
2182 id = hid_match_device(hdev, hdrv);
2183 if (id == NULL) {
2184 ret = -ENODEV;
2185 goto unlock;
2188 if (hdrv->match) {
2189 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2190 ret = -ENODEV;
2191 goto unlock;
2193 } else {
2195 * hid-generic implements .match(), so if
2196 * hid_ignore_special_drivers is set, we can safely
2197 * return.
2199 if (hid_ignore_special_drivers) {
2200 ret = -ENODEV;
2201 goto unlock;
2205 /* reset the quirks that has been previously set */
2206 hdev->quirks = hid_lookup_quirk(hdev);
2207 hdev->driver = hdrv;
2208 if (hdrv->probe) {
2209 ret = hdrv->probe(hdev, id);
2210 } else { /* default probe */
2211 ret = hid_open_report(hdev);
2212 if (!ret)
2213 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2215 if (ret) {
2216 hid_close_report(hdev);
2217 hdev->driver = NULL;
2220 unlock:
2221 if (!hdev->io_started)
2222 up(&hdev->driver_input_lock);
2223 end:
2224 return ret;
2227 static int hid_device_remove(struct device *dev)
2229 struct hid_device *hdev = to_hid_device(dev);
2230 struct hid_driver *hdrv;
2231 int ret = 0;
2233 if (down_interruptible(&hdev->driver_input_lock)) {
2234 ret = -EINTR;
2235 goto end;
2237 hdev->io_started = false;
2239 hdrv = hdev->driver;
2240 if (hdrv) {
2241 if (hdrv->remove)
2242 hdrv->remove(hdev);
2243 else /* default remove */
2244 hid_hw_stop(hdev);
2245 hid_close_report(hdev);
2246 hdev->driver = NULL;
2249 if (!hdev->io_started)
2250 up(&hdev->driver_input_lock);
2251 end:
2252 return ret;
2255 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2256 char *buf)
2258 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2260 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2261 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2263 static DEVICE_ATTR_RO(modalias);
2265 static struct attribute *hid_dev_attrs[] = {
2266 &dev_attr_modalias.attr,
2267 NULL,
2269 static struct bin_attribute *hid_dev_bin_attrs[] = {
2270 &dev_bin_attr_report_desc,
2271 NULL
2273 static const struct attribute_group hid_dev_group = {
2274 .attrs = hid_dev_attrs,
2275 .bin_attrs = hid_dev_bin_attrs,
2277 __ATTRIBUTE_GROUPS(hid_dev);
2279 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2281 struct hid_device *hdev = to_hid_device(dev);
2283 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2284 hdev->bus, hdev->vendor, hdev->product))
2285 return -ENOMEM;
2287 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2288 return -ENOMEM;
2290 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2291 return -ENOMEM;
2293 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2294 return -ENOMEM;
2296 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2297 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2298 return -ENOMEM;
2300 return 0;
2303 struct bus_type hid_bus_type = {
2304 .name = "hid",
2305 .dev_groups = hid_dev_groups,
2306 .drv_groups = hid_drv_groups,
2307 .match = hid_bus_match,
2308 .probe = hid_device_probe,
2309 .remove = hid_device_remove,
2310 .uevent = hid_uevent,
2312 EXPORT_SYMBOL(hid_bus_type);
2314 int hid_add_device(struct hid_device *hdev)
2316 static atomic_t id = ATOMIC_INIT(0);
2317 int ret;
2319 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2320 return -EBUSY;
2322 hdev->quirks = hid_lookup_quirk(hdev);
2324 /* we need to kill them here, otherwise they will stay allocated to
2325 * wait for coming driver */
2326 if (hid_ignore(hdev))
2327 return -ENODEV;
2330 * Check for the mandatory transport channel.
2332 if (!hdev->ll_driver->raw_request) {
2333 hid_err(hdev, "transport driver missing .raw_request()\n");
2334 return -EINVAL;
2338 * Read the device report descriptor once and use as template
2339 * for the driver-specific modifications.
2341 ret = hdev->ll_driver->parse(hdev);
2342 if (ret)
2343 return ret;
2344 if (!hdev->dev_rdesc)
2345 return -ENODEV;
2348 * Scan generic devices for group information
2350 if (hid_ignore_special_drivers) {
2351 hdev->group = HID_GROUP_GENERIC;
2352 } else if (!hdev->group &&
2353 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2354 ret = hid_scan_report(hdev);
2355 if (ret)
2356 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2359 /* XXX hack, any other cleaner solution after the driver core
2360 * is converted to allow more than 20 bytes as the device name? */
2361 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2362 hdev->vendor, hdev->product, atomic_inc_return(&id));
2364 hid_debug_register(hdev, dev_name(&hdev->dev));
2365 ret = device_add(&hdev->dev);
2366 if (!ret)
2367 hdev->status |= HID_STAT_ADDED;
2368 else
2369 hid_debug_unregister(hdev);
2371 return ret;
2373 EXPORT_SYMBOL_GPL(hid_add_device);
2376 * hid_allocate_device - allocate new hid device descriptor
2378 * Allocate and initialize hid device, so that hid_destroy_device might be
2379 * used to free it.
2381 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2382 * error value.
2384 struct hid_device *hid_allocate_device(void)
2386 struct hid_device *hdev;
2387 int ret = -ENOMEM;
2389 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2390 if (hdev == NULL)
2391 return ERR_PTR(ret);
2393 device_initialize(&hdev->dev);
2394 hdev->dev.release = hid_device_release;
2395 hdev->dev.bus = &hid_bus_type;
2396 device_enable_async_suspend(&hdev->dev);
2398 hid_close_report(hdev);
2400 init_waitqueue_head(&hdev->debug_wait);
2401 INIT_LIST_HEAD(&hdev->debug_list);
2402 spin_lock_init(&hdev->debug_list_lock);
2403 sema_init(&hdev->driver_input_lock, 1);
2404 mutex_init(&hdev->ll_open_lock);
2406 return hdev;
2408 EXPORT_SYMBOL_GPL(hid_allocate_device);
2410 static void hid_remove_device(struct hid_device *hdev)
2412 if (hdev->status & HID_STAT_ADDED) {
2413 device_del(&hdev->dev);
2414 hid_debug_unregister(hdev);
2415 hdev->status &= ~HID_STAT_ADDED;
2417 kfree(hdev->dev_rdesc);
2418 hdev->dev_rdesc = NULL;
2419 hdev->dev_rsize = 0;
2423 * hid_destroy_device - free previously allocated device
2425 * @hdev: hid device
2427 * If you allocate hid_device through hid_allocate_device, you should ever
2428 * free by this function.
2430 void hid_destroy_device(struct hid_device *hdev)
2432 hid_remove_device(hdev);
2433 put_device(&hdev->dev);
2435 EXPORT_SYMBOL_GPL(hid_destroy_device);
2438 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2440 struct hid_driver *hdrv = data;
2441 struct hid_device *hdev = to_hid_device(dev);
2443 if (hdev->driver == hdrv &&
2444 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2445 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2446 return device_reprobe(dev);
2448 return 0;
2451 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2453 struct hid_driver *hdrv = to_hid_driver(drv);
2455 if (hdrv->match) {
2456 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2457 __hid_bus_reprobe_drivers);
2460 return 0;
2463 static int __bus_removed_driver(struct device_driver *drv, void *data)
2465 return bus_rescan_devices(&hid_bus_type);
2468 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2469 const char *mod_name)
2471 int ret;
2473 hdrv->driver.name = hdrv->name;
2474 hdrv->driver.bus = &hid_bus_type;
2475 hdrv->driver.owner = owner;
2476 hdrv->driver.mod_name = mod_name;
2478 INIT_LIST_HEAD(&hdrv->dyn_list);
2479 spin_lock_init(&hdrv->dyn_lock);
2481 ret = driver_register(&hdrv->driver);
2483 if (ret == 0)
2484 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2485 __hid_bus_driver_added);
2487 return ret;
2489 EXPORT_SYMBOL_GPL(__hid_register_driver);
2491 void hid_unregister_driver(struct hid_driver *hdrv)
2493 driver_unregister(&hdrv->driver);
2494 hid_free_dynids(hdrv);
2496 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2498 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2500 int hid_check_keys_pressed(struct hid_device *hid)
2502 struct hid_input *hidinput;
2503 int i;
2505 if (!(hid->claimed & HID_CLAIMED_INPUT))
2506 return 0;
2508 list_for_each_entry(hidinput, &hid->inputs, list) {
2509 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2510 if (hidinput->input->key[i])
2511 return 1;
2514 return 0;
2517 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2519 static int __init hid_init(void)
2521 int ret;
2523 if (hid_debug)
2524 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2525 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2527 ret = bus_register(&hid_bus_type);
2528 if (ret) {
2529 pr_err("can't register hid bus\n");
2530 goto err;
2533 ret = hidraw_init();
2534 if (ret)
2535 goto err_bus;
2537 hid_debug_init();
2539 return 0;
2540 err_bus:
2541 bus_unregister(&hid_bus_type);
2542 err:
2543 return ret;
2546 static void __exit hid_exit(void)
2548 hid_debug_exit();
2549 hidraw_exit();
2550 bus_unregister(&hid_bus_type);
2551 hid_quirks_exit(HID_BUS_ANY);
2554 module_init(hid_init);
2555 module_exit(hid_exit);
2557 MODULE_AUTHOR("Andreas Gal");
2558 MODULE_AUTHOR("Vojtech Pavlik");
2559 MODULE_AUTHOR("Jiri Kosina");
2560 MODULE_LICENSE("GPL");