staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / mailbox / bcm-pdc-mailbox.c
blob8513c42f70912e3f560949dff47fe469bd6e49ec
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2016 Broadcom
4 */
6 /*
7 * Broadcom PDC Mailbox Driver
8 * The PDC provides a ring based programming interface to one or more hardware
9 * offload engines. For example, the PDC driver works with both SPU-M and SPU2
10 * cryptographic offload hardware. In some chips the PDC is referred to as MDE,
11 * and in others the FA2/FA+ hardware is used with this PDC driver.
13 * The PDC driver registers with the Linux mailbox framework as a mailbox
14 * controller, once for each PDC instance. Ring 0 for each PDC is registered as
15 * a mailbox channel. The PDC driver uses interrupts to determine when data
16 * transfers to and from an offload engine are complete. The PDC driver uses
17 * threaded IRQs so that response messages are handled outside of interrupt
18 * context.
20 * The PDC driver allows multiple messages to be pending in the descriptor
21 * rings. The tx_msg_start descriptor index indicates where the last message
22 * starts. The txin_numd value at this index indicates how many descriptor
23 * indexes make up the message. Similar state is kept on the receive side. When
24 * an rx interrupt indicates a response is ready, the PDC driver processes numd
25 * descriptors from the tx and rx ring, thus processing one response at a time.
28 #include <linux/errno.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/slab.h>
32 #include <linux/debugfs.h>
33 #include <linux/interrupt.h>
34 #include <linux/wait.h>
35 #include <linux/platform_device.h>
36 #include <linux/io.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_address.h>
40 #include <linux/of_irq.h>
41 #include <linux/mailbox_controller.h>
42 #include <linux/mailbox/brcm-message.h>
43 #include <linux/scatterlist.h>
44 #include <linux/dma-direction.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/dmapool.h>
48 #define PDC_SUCCESS 0
50 #define RING_ENTRY_SIZE sizeof(struct dma64dd)
52 /* # entries in PDC dma ring */
53 #define PDC_RING_ENTRIES 512
55 * Minimum number of ring descriptor entries that must be free to tell mailbox
56 * framework that it can submit another request
58 #define PDC_RING_SPACE_MIN 15
60 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
61 /* Rings are 8k aligned */
62 #define RING_ALIGN_ORDER 13
63 #define RING_ALIGN BIT(RING_ALIGN_ORDER)
65 #define RX_BUF_ALIGN_ORDER 5
66 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER)
68 /* descriptor bumping macros */
69 #define XXD(x, max_mask) ((x) & (max_mask))
70 #define TXD(x, max_mask) XXD((x), (max_mask))
71 #define RXD(x, max_mask) XXD((x), (max_mask))
72 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask))
73 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask))
74 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask))
75 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask))
76 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask))
77 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask))
79 /* Length of BCM header at start of SPU msg, in bytes */
80 #define BCM_HDR_LEN 8
83 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
84 * not currently support use of multiple ringsets on a single PDC engine.
86 #define PDC_RINGSET 0
89 * Interrupt mask and status definitions. Enable interrupts for tx and rx on
90 * ring 0
92 #define PDC_RCVINT_0 (16 + PDC_RINGSET)
93 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0)
94 #define PDC_INTMASK (PDC_RCVINTEN_0)
95 #define PDC_LAZY_FRAMECOUNT 1
96 #define PDC_LAZY_TIMEOUT 10000
97 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
98 #define PDC_INTMASK_OFFSET 0x24
99 #define PDC_INTSTATUS_OFFSET 0x20
100 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET)
101 #define FA_RCVLAZY0_OFFSET 0x100
104 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
105 * before frame
107 #define PDC_SPU2_RESP_HDR_LEN 17
108 #define PDC_CKSUM_CTRL BIT(27)
109 #define PDC_CKSUM_CTRL_OFFSET 0x400
111 #define PDC_SPUM_RESP_HDR_LEN 32
114 * Sets the following bits for write to transmit control reg:
115 * 11 - PtyChkDisable - parity check is disabled
116 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
118 #define PDC_TX_CTL 0x000C0800
120 /* Bit in tx control reg to enable tx channel */
121 #define PDC_TX_ENABLE 0x1
124 * Sets the following bits for write to receive control reg:
125 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf
126 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors
127 * that have StartOfFrame set
128 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
129 * remaining bytes in current frame, report error
130 * in rx frame status for current frame
131 * 11 - PtyChkDisable - parity check is disabled
132 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
134 #define PDC_RX_CTL 0x000C0E00
136 /* Bit in rx control reg to enable rx channel */
137 #define PDC_RX_ENABLE 0x1
139 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
141 /* descriptor flags */
142 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */
143 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */
144 #define D64_CTRL1_EOF BIT(30) /* end of frame */
145 #define D64_CTRL1_SOF BIT(31) /* start of frame */
147 #define RX_STATUS_OVERFLOW 0x00800000
148 #define RX_STATUS_LEN 0x0000FFFF
150 #define PDC_TXREGS_OFFSET 0x200
151 #define PDC_RXREGS_OFFSET 0x220
153 /* Maximum size buffer the DMA engine can handle */
154 #define PDC_DMA_BUF_MAX 16384
156 enum pdc_hw {
157 FA_HW, /* FA2/FA+ hardware (i.e. Northstar Plus) */
158 PDC_HW /* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */
161 struct pdc_dma_map {
162 void *ctx; /* opaque context associated with frame */
165 /* dma descriptor */
166 struct dma64dd {
167 u32 ctrl1; /* misc control bits */
168 u32 ctrl2; /* buffer count and address extension */
169 u32 addrlow; /* memory address of the date buffer, bits 31:0 */
170 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */
173 /* dma registers per channel(xmt or rcv) */
174 struct dma64_regs {
175 u32 control; /* enable, et al */
176 u32 ptr; /* last descriptor posted to chip */
177 u32 addrlow; /* descriptor ring base address low 32-bits */
178 u32 addrhigh; /* descriptor ring base address bits 63:32 */
179 u32 status0; /* last rx descriptor written by hw */
180 u32 status1; /* driver does not use */
183 /* cpp contortions to concatenate w/arg prescan */
184 #ifndef PAD
185 #define _PADLINE(line) pad ## line
186 #define _XSTR(line) _PADLINE(line)
187 #define PAD _XSTR(__LINE__)
188 #endif /* PAD */
190 /* dma registers. matches hw layout. */
191 struct dma64 {
192 struct dma64_regs dmaxmt; /* dma tx */
193 u32 PAD[2];
194 struct dma64_regs dmarcv; /* dma rx */
195 u32 PAD[2];
198 /* PDC registers */
199 struct pdc_regs {
200 u32 devcontrol; /* 0x000 */
201 u32 devstatus; /* 0x004 */
202 u32 PAD;
203 u32 biststatus; /* 0x00c */
204 u32 PAD[4];
205 u32 intstatus; /* 0x020 */
206 u32 intmask; /* 0x024 */
207 u32 gptimer; /* 0x028 */
209 u32 PAD;
210 u32 intrcvlazy_0; /* 0x030 (Only in PDC, not FA2) */
211 u32 intrcvlazy_1; /* 0x034 (Only in PDC, not FA2) */
212 u32 intrcvlazy_2; /* 0x038 (Only in PDC, not FA2) */
213 u32 intrcvlazy_3; /* 0x03c (Only in PDC, not FA2) */
215 u32 PAD[48];
216 u32 fa_intrecvlazy; /* 0x100 (Only in FA2, not PDC) */
217 u32 flowctlthresh; /* 0x104 */
218 u32 wrrthresh; /* 0x108 */
219 u32 gmac_idle_cnt_thresh; /* 0x10c */
221 u32 PAD[4];
222 u32 ifioaccessaddr; /* 0x120 */
223 u32 ifioaccessbyte; /* 0x124 */
224 u32 ifioaccessdata; /* 0x128 */
226 u32 PAD[21];
227 u32 phyaccess; /* 0x180 */
228 u32 PAD;
229 u32 phycontrol; /* 0x188 */
230 u32 txqctl; /* 0x18c */
231 u32 rxqctl; /* 0x190 */
232 u32 gpioselect; /* 0x194 */
233 u32 gpio_output_en; /* 0x198 */
234 u32 PAD; /* 0x19c */
235 u32 txq_rxq_mem_ctl; /* 0x1a0 */
236 u32 memory_ecc_status; /* 0x1a4 */
237 u32 serdes_ctl; /* 0x1a8 */
238 u32 serdes_status0; /* 0x1ac */
239 u32 serdes_status1; /* 0x1b0 */
240 u32 PAD[11]; /* 0x1b4-1dc */
241 u32 clk_ctl_st; /* 0x1e0 */
242 u32 hw_war; /* 0x1e4 (Only in PDC, not FA2) */
243 u32 pwrctl; /* 0x1e8 */
244 u32 PAD[5];
246 #define PDC_NUM_DMA_RINGS 4
247 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */
249 /* more registers follow, but we don't use them */
252 /* structure for allocating/freeing DMA rings */
253 struct pdc_ring_alloc {
254 dma_addr_t dmabase; /* DMA address of start of ring */
255 void *vbase; /* base kernel virtual address of ring */
256 u32 size; /* ring allocation size in bytes */
260 * context associated with a receive descriptor.
261 * @rxp_ctx: opaque context associated with frame that starts at each
262 * rx ring index.
263 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring
264 * index. Retained in order to unmap each sg after reply is processed.
265 * @rxin_numd: Number of rx descriptors associated with the message that starts
266 * at a descriptor index. Not set for every index. For example,
267 * if descriptor index i points to a scatterlist with 4 entries,
268 * then the next three descriptor indexes don't have a value set.
269 * @resp_hdr: Virtual address of buffer used to catch DMA rx status
270 * @resp_hdr_daddr: physical address of DMA rx status buffer
272 struct pdc_rx_ctx {
273 void *rxp_ctx;
274 struct scatterlist *dst_sg;
275 u32 rxin_numd;
276 void *resp_hdr;
277 dma_addr_t resp_hdr_daddr;
280 /* PDC state structure */
281 struct pdc_state {
282 /* Index of the PDC whose state is in this structure instance */
283 u8 pdc_idx;
285 /* Platform device for this PDC instance */
286 struct platform_device *pdev;
289 * Each PDC instance has a mailbox controller. PDC receives request
290 * messages through mailboxes, and sends response messages through the
291 * mailbox framework.
293 struct mbox_controller mbc;
295 unsigned int pdc_irq;
297 /* tasklet for deferred processing after DMA rx interrupt */
298 struct tasklet_struct rx_tasklet;
300 /* Number of bytes of receive status prior to each rx frame */
301 u32 rx_status_len;
302 /* Whether a BCM header is prepended to each frame */
303 bool use_bcm_hdr;
304 /* Sum of length of BCM header and rx status header */
305 u32 pdc_resp_hdr_len;
307 /* The base virtual address of DMA hw registers */
308 void __iomem *pdc_reg_vbase;
310 /* Pool for allocation of DMA rings */
311 struct dma_pool *ring_pool;
313 /* Pool for allocation of metadata buffers for response messages */
314 struct dma_pool *rx_buf_pool;
317 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
318 * DMA address and size of ring allocation.
320 struct pdc_ring_alloc tx_ring_alloc;
321 struct pdc_ring_alloc rx_ring_alloc;
323 struct pdc_regs *regs; /* start of PDC registers */
325 struct dma64_regs *txregs_64; /* dma tx engine registers */
326 struct dma64_regs *rxregs_64; /* dma rx engine registers */
329 * Arrays of PDC_RING_ENTRIES descriptors
330 * To use multiple ringsets, this needs to be extended
332 struct dma64dd *txd_64; /* tx descriptor ring */
333 struct dma64dd *rxd_64; /* rx descriptor ring */
335 /* descriptor ring sizes */
336 u32 ntxd; /* # tx descriptors */
337 u32 nrxd; /* # rx descriptors */
338 u32 nrxpost; /* # rx buffers to keep posted */
339 u32 ntxpost; /* max number of tx buffers that can be posted */
342 * Index of next tx descriptor to reclaim. That is, the descriptor
343 * index of the oldest tx buffer for which the host has yet to process
344 * the corresponding response.
346 u32 txin;
349 * Index of the first receive descriptor for the sequence of
350 * message fragments currently under construction. Used to build up
351 * the rxin_numd count for a message. Updated to rxout when the host
352 * starts a new sequence of rx buffers for a new message.
354 u32 tx_msg_start;
356 /* Index of next tx descriptor to post. */
357 u32 txout;
360 * Number of tx descriptors associated with the message that starts
361 * at this tx descriptor index.
363 u32 txin_numd[PDC_RING_ENTRIES];
366 * Index of next rx descriptor to reclaim. This is the index of
367 * the next descriptor whose data has yet to be processed by the host.
369 u32 rxin;
372 * Index of the first receive descriptor for the sequence of
373 * message fragments currently under construction. Used to build up
374 * the rxin_numd count for a message. Updated to rxout when the host
375 * starts a new sequence of rx buffers for a new message.
377 u32 rx_msg_start;
380 * Saved value of current hardware rx descriptor index.
381 * The last rx buffer written by the hw is the index previous to
382 * this one.
384 u32 last_rx_curr;
386 /* Index of next rx descriptor to post. */
387 u32 rxout;
389 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
392 * Scatterlists used to form request and reply frames beginning at a
393 * given ring index. Retained in order to unmap each sg after reply
394 * is processed
396 struct scatterlist *src_sg[PDC_RING_ENTRIES];
398 struct dentry *debugfs_stats; /* debug FS stats file for this PDC */
400 /* counters */
401 u32 pdc_requests; /* number of request messages submitted */
402 u32 pdc_replies; /* number of reply messages received */
403 u32 last_tx_not_done; /* too few tx descriptors to indicate done */
404 u32 tx_ring_full; /* unable to accept msg because tx ring full */
405 u32 rx_ring_full; /* unable to accept msg because rx ring full */
406 u32 txnobuf; /* unable to create tx descriptor */
407 u32 rxnobuf; /* unable to create rx descriptor */
408 u32 rx_oflow; /* count of rx overflows */
410 /* hardware type - FA2 or PDC/MDE */
411 enum pdc_hw hw_type;
414 /* Global variables */
416 struct pdc_globals {
417 /* Actual number of SPUs in hardware, as reported by device tree */
418 u32 num_spu;
421 static struct pdc_globals pdcg;
423 /* top level debug FS directory for PDC driver */
424 static struct dentry *debugfs_dir;
426 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
427 size_t count, loff_t *offp)
429 struct pdc_state *pdcs;
430 char *buf;
431 ssize_t ret, out_offset, out_count;
433 out_count = 512;
435 buf = kmalloc(out_count, GFP_KERNEL);
436 if (!buf)
437 return -ENOMEM;
439 pdcs = filp->private_data;
440 out_offset = 0;
441 out_offset += snprintf(buf + out_offset, out_count - out_offset,
442 "SPU %u stats:\n", pdcs->pdc_idx);
443 out_offset += snprintf(buf + out_offset, out_count - out_offset,
444 "PDC requests....................%u\n",
445 pdcs->pdc_requests);
446 out_offset += snprintf(buf + out_offset, out_count - out_offset,
447 "PDC responses...................%u\n",
448 pdcs->pdc_replies);
449 out_offset += snprintf(buf + out_offset, out_count - out_offset,
450 "Tx not done.....................%u\n",
451 pdcs->last_tx_not_done);
452 out_offset += snprintf(buf + out_offset, out_count - out_offset,
453 "Tx ring full....................%u\n",
454 pdcs->tx_ring_full);
455 out_offset += snprintf(buf + out_offset, out_count - out_offset,
456 "Rx ring full....................%u\n",
457 pdcs->rx_ring_full);
458 out_offset += snprintf(buf + out_offset, out_count - out_offset,
459 "Tx desc write fail. Ring full...%u\n",
460 pdcs->txnobuf);
461 out_offset += snprintf(buf + out_offset, out_count - out_offset,
462 "Rx desc write fail. Ring full...%u\n",
463 pdcs->rxnobuf);
464 out_offset += snprintf(buf + out_offset, out_count - out_offset,
465 "Receive overflow................%u\n",
466 pdcs->rx_oflow);
467 out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 "Num frags in rx ring............%u\n",
469 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
470 pdcs->nrxpost));
472 if (out_offset > out_count)
473 out_offset = out_count;
475 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
476 kfree(buf);
477 return ret;
480 static const struct file_operations pdc_debugfs_stats = {
481 .owner = THIS_MODULE,
482 .open = simple_open,
483 .read = pdc_debugfs_read,
487 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
488 * directory has not yet been created, create it now. Create a stats file in
489 * this directory for a SPU.
490 * @pdcs: PDC state structure
492 static void pdc_setup_debugfs(struct pdc_state *pdcs)
494 char spu_stats_name[16];
496 if (!debugfs_initialized())
497 return;
499 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
500 if (!debugfs_dir)
501 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
503 /* S_IRUSR == 0400 */
504 pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400,
505 debugfs_dir, pdcs,
506 &pdc_debugfs_stats);
509 static void pdc_free_debugfs(void)
511 debugfs_remove_recursive(debugfs_dir);
512 debugfs_dir = NULL;
516 * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
517 * @pdcs: PDC state for SPU that will generate result
518 * @dma_addr: DMA address of buffer that descriptor is being built for
519 * @buf_len: Length of the receive buffer, in bytes
520 * @flags: Flags to be stored in descriptor
522 static inline void
523 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
524 u32 buf_len, u32 flags)
526 struct device *dev = &pdcs->pdev->dev;
527 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
529 dev_dbg(dev,
530 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
531 pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
533 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
534 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
535 rxd->ctrl1 = cpu_to_le32(flags);
536 rxd->ctrl2 = cpu_to_le32(buf_len);
538 /* bump ring index and return */
539 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
543 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
544 * hardware.
545 * @pdcs: PDC state for the SPU that will process this request
546 * @dma_addr: DMA address of packet to be transmitted
547 * @buf_len: Length of tx buffer, in bytes
548 * @flags: Flags to be stored in descriptor
550 static inline void
551 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
552 u32 flags)
554 struct device *dev = &pdcs->pdev->dev;
555 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
557 dev_dbg(dev,
558 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
559 pdcs->pdc_idx, pdcs->txout, buf_len, flags);
561 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
562 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
563 txd->ctrl1 = cpu_to_le32(flags);
564 txd->ctrl2 = cpu_to_le32(buf_len);
566 /* bump ring index and return */
567 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
571 * pdc_receive_one() - Receive a response message from a given SPU.
572 * @pdcs: PDC state for the SPU to receive from
574 * When the return code indicates success, the response message is available in
575 * the receive buffers provided prior to submission of the request.
577 * Return: PDC_SUCCESS if one or more receive descriptors was processed
578 * -EAGAIN indicates that no response message is available
579 * -EIO an error occurred
581 static int
582 pdc_receive_one(struct pdc_state *pdcs)
584 struct device *dev = &pdcs->pdev->dev;
585 struct mbox_controller *mbc;
586 struct mbox_chan *chan;
587 struct brcm_message mssg;
588 u32 len, rx_status;
589 u32 num_frags;
590 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */
591 u32 frags_rdy; /* number of fragments ready to read */
592 u32 rx_idx; /* ring index of start of receive frame */
593 dma_addr_t resp_hdr_daddr;
594 struct pdc_rx_ctx *rx_ctx;
596 mbc = &pdcs->mbc;
597 chan = &mbc->chans[0];
598 mssg.type = BRCM_MESSAGE_SPU;
601 * return if a complete response message is not yet ready.
602 * rxin_numd[rxin] is the number of fragments in the next msg
603 * to read.
605 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
606 if ((frags_rdy == 0) ||
607 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
608 /* No response ready */
609 return -EAGAIN;
611 num_frags = pdcs->txin_numd[pdcs->txin];
612 WARN_ON(num_frags == 0);
614 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
615 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
617 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
619 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
620 pdcs->pdc_idx, num_frags);
622 rx_idx = pdcs->rxin;
623 rx_ctx = &pdcs->rx_ctx[rx_idx];
624 num_frags = rx_ctx->rxin_numd;
625 /* Return opaque context with result */
626 mssg.ctx = rx_ctx->rxp_ctx;
627 rx_ctx->rxp_ctx = NULL;
628 resp_hdr = rx_ctx->resp_hdr;
629 resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
630 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
631 DMA_FROM_DEVICE);
633 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
635 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
636 pdcs->pdc_idx, num_frags);
638 dev_dbg(dev,
639 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
640 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
641 pdcs->rxout, pdcs->last_rx_curr);
643 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
645 * For SPU-M, get length of response msg and rx overflow status.
647 rx_status = *((u32 *)resp_hdr);
648 len = rx_status & RX_STATUS_LEN;
649 dev_dbg(dev,
650 "SPU response length %u bytes", len);
651 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
652 if (rx_status & RX_STATUS_OVERFLOW) {
653 dev_err_ratelimited(dev,
654 "crypto receive overflow");
655 pdcs->rx_oflow++;
656 } else {
657 dev_info_ratelimited(dev, "crypto rx len = 0");
659 return -EIO;
663 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
665 mbox_chan_received_data(chan, &mssg);
667 pdcs->pdc_replies++;
668 return PDC_SUCCESS;
672 * pdc_receive() - Process as many responses as are available in the rx ring.
673 * @pdcs: PDC state
675 * Called within the hard IRQ.
676 * Return:
678 static int
679 pdc_receive(struct pdc_state *pdcs)
681 int rx_status;
683 /* read last_rx_curr from register once */
684 pdcs->last_rx_curr =
685 (ioread32(&pdcs->rxregs_64->status0) &
686 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
688 do {
689 /* Could be many frames ready */
690 rx_status = pdc_receive_one(pdcs);
691 } while (rx_status == PDC_SUCCESS);
693 return 0;
697 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
698 * descriptors for a given SPU. The scatterlist buffers contain the data for a
699 * SPU request message.
700 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu)
701 * @sg: Scatterlist whose buffers contain part of the SPU request
703 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
704 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
706 * Return: PDC_SUCCESS if successful
707 * < 0 otherwise
709 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
711 u32 flags = 0;
712 u32 eot;
713 u32 tx_avail;
716 * Num descriptors needed. Conservatively assume we need a descriptor
717 * for every entry in sg.
719 u32 num_desc;
720 u32 desc_w = 0; /* Number of tx descriptors written */
721 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
722 dma_addr_t databufptr; /* DMA address to put in descriptor */
724 num_desc = (u32)sg_nents(sg);
726 /* check whether enough tx descriptors are available */
727 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
728 pdcs->ntxpost);
729 if (unlikely(num_desc > tx_avail)) {
730 pdcs->txnobuf++;
731 return -ENOSPC;
734 /* build tx descriptors */
735 if (pdcs->tx_msg_start == pdcs->txout) {
736 /* Start of frame */
737 pdcs->txin_numd[pdcs->tx_msg_start] = 0;
738 pdcs->src_sg[pdcs->txout] = sg;
739 flags = D64_CTRL1_SOF;
742 while (sg) {
743 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
744 eot = D64_CTRL1_EOT;
745 else
746 eot = 0;
749 * If sg buffer larger than PDC limit, split across
750 * multiple descriptors
752 bufcnt = sg_dma_len(sg);
753 databufptr = sg_dma_address(sg);
754 while (bufcnt > PDC_DMA_BUF_MAX) {
755 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
756 flags | eot);
757 desc_w++;
758 bufcnt -= PDC_DMA_BUF_MAX;
759 databufptr += PDC_DMA_BUF_MAX;
760 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
761 eot = D64_CTRL1_EOT;
762 else
763 eot = 0;
765 sg = sg_next(sg);
766 if (!sg)
767 /* Writing last descriptor for frame */
768 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
769 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
770 desc_w++;
771 /* Clear start of frame after first descriptor */
772 flags &= ~D64_CTRL1_SOF;
774 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
776 return PDC_SUCCESS;
780 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
781 * ring.
782 * @pdcs: PDC state for SPU to process the request
784 * Sets the index of the last descriptor written in both the rx and tx ring.
786 * Return: PDC_SUCCESS
788 static int pdc_tx_list_final(struct pdc_state *pdcs)
791 * write barrier to ensure all register writes are complete
792 * before chip starts to process new request
794 wmb();
795 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
796 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
797 pdcs->pdc_requests++;
799 return PDC_SUCCESS;
803 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
804 * @pdcs: PDC state for SPU handling request
805 * @dst_sg: scatterlist providing rx buffers for response to be returned to
806 * mailbox client
807 * @ctx: Opaque context for this request
809 * Posts a single receive descriptor to hold the metadata that precedes a
810 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
811 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
812 * rx to indicate the start of a new message.
814 * Return: PDC_SUCCESS if successful
815 * < 0 if an error (e.g., rx ring is full)
817 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
818 void *ctx)
820 u32 flags = 0;
821 u32 rx_avail;
822 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */
823 dma_addr_t daddr;
824 void *vaddr;
825 struct pdc_rx_ctx *rx_ctx;
827 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
828 pdcs->nrxpost);
829 if (unlikely(rx_pkt_cnt > rx_avail)) {
830 pdcs->rxnobuf++;
831 return -ENOSPC;
834 /* allocate a buffer for the dma rx status */
835 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
836 if (unlikely(!vaddr))
837 return -ENOMEM;
840 * Update msg_start indexes for both tx and rx to indicate the start
841 * of a new sequence of descriptor indexes that contain the fragments
842 * of the same message.
844 pdcs->rx_msg_start = pdcs->rxout;
845 pdcs->tx_msg_start = pdcs->txout;
847 /* This is always the first descriptor in the receive sequence */
848 flags = D64_CTRL1_SOF;
849 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
851 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
852 flags |= D64_CTRL1_EOT;
854 rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
855 rx_ctx->rxp_ctx = ctx;
856 rx_ctx->dst_sg = dst_sg;
857 rx_ctx->resp_hdr = vaddr;
858 rx_ctx->resp_hdr_daddr = daddr;
859 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
860 return PDC_SUCCESS;
864 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
865 * descriptors for a given SPU. The caller must have already DMA mapped the
866 * scatterlist.
867 * @spu_idx: Indicates which SPU the buffers are for
868 * @sg: Scatterlist whose buffers are added to the receive ring
870 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
871 * multiple receive descriptors are written, each with a buffer <=
872 * PDC_DMA_BUF_MAX.
874 * Return: PDC_SUCCESS if successful
875 * < 0 otherwise (e.g., receive ring is full)
877 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
879 u32 flags = 0;
880 u32 rx_avail;
883 * Num descriptors needed. Conservatively assume we need a descriptor
884 * for every entry from our starting point in the scatterlist.
886 u32 num_desc;
887 u32 desc_w = 0; /* Number of tx descriptors written */
888 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
889 dma_addr_t databufptr; /* DMA address to put in descriptor */
891 num_desc = (u32)sg_nents(sg);
893 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
894 pdcs->nrxpost);
895 if (unlikely(num_desc > rx_avail)) {
896 pdcs->rxnobuf++;
897 return -ENOSPC;
900 while (sg) {
901 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
902 flags = D64_CTRL1_EOT;
903 else
904 flags = 0;
907 * If sg buffer larger than PDC limit, split across
908 * multiple descriptors
910 bufcnt = sg_dma_len(sg);
911 databufptr = sg_dma_address(sg);
912 while (bufcnt > PDC_DMA_BUF_MAX) {
913 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
914 desc_w++;
915 bufcnt -= PDC_DMA_BUF_MAX;
916 databufptr += PDC_DMA_BUF_MAX;
917 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
918 flags = D64_CTRL1_EOT;
919 else
920 flags = 0;
922 pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
923 desc_w++;
924 sg = sg_next(sg);
926 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
928 return PDC_SUCCESS;
932 * pdc_irq_handler() - Interrupt handler called in interrupt context.
933 * @irq: Interrupt number that has fired
934 * @data: device struct for DMA engine that generated the interrupt
936 * We have to clear the device interrupt status flags here. So cache the
937 * status for later use in the thread function. Other than that, just return
938 * WAKE_THREAD to invoke the thread function.
940 * Return: IRQ_WAKE_THREAD if interrupt is ours
941 * IRQ_NONE otherwise
943 static irqreturn_t pdc_irq_handler(int irq, void *data)
945 struct device *dev = (struct device *)data;
946 struct pdc_state *pdcs = dev_get_drvdata(dev);
947 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
949 if (unlikely(intstatus == 0))
950 return IRQ_NONE;
952 /* Disable interrupts until soft handler runs */
953 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
955 /* Clear interrupt flags in device */
956 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
958 /* Wakeup IRQ thread */
959 tasklet_schedule(&pdcs->rx_tasklet);
960 return IRQ_HANDLED;
964 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
965 * a DMA receive interrupt. Reenables the receive interrupt.
966 * @data: PDC state structure
968 static void pdc_tasklet_cb(unsigned long data)
970 struct pdc_state *pdcs = (struct pdc_state *)data;
972 pdc_receive(pdcs);
974 /* reenable interrupts */
975 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
979 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
980 * descriptors in one ringset.
981 * @pdcs: PDC instance state
982 * @ringset: index of ringset being used
984 * Return: PDC_SUCCESS if ring initialized
985 * < 0 otherwise
987 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
989 int i;
990 int err = PDC_SUCCESS;
991 struct dma64 *dma_reg;
992 struct device *dev = &pdcs->pdev->dev;
993 struct pdc_ring_alloc tx;
994 struct pdc_ring_alloc rx;
996 /* Allocate tx ring */
997 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
998 if (unlikely(!tx.vbase)) {
999 err = -ENOMEM;
1000 goto done;
1003 /* Allocate rx ring */
1004 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1005 if (unlikely(!rx.vbase)) {
1006 err = -ENOMEM;
1007 goto fail_dealloc;
1010 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase);
1011 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase);
1012 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase);
1013 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase);
1015 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1016 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1018 pdcs->rxin = 0;
1019 pdcs->rx_msg_start = 0;
1020 pdcs->last_rx_curr = 0;
1021 pdcs->rxout = 0;
1022 pdcs->txin = 0;
1023 pdcs->tx_msg_start = 0;
1024 pdcs->txout = 0;
1026 /* Set descriptor array base addresses */
1027 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1028 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1030 /* Tell device the base DMA address of each ring */
1031 dma_reg = &pdcs->regs->dmaregs[ringset];
1033 /* But first disable DMA and set curptr to 0 for both TX & RX */
1034 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1035 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1036 &dma_reg->dmarcv.control);
1037 iowrite32(0, &dma_reg->dmaxmt.ptr);
1038 iowrite32(0, &dma_reg->dmarcv.ptr);
1040 /* Set base DMA addresses */
1041 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1042 &dma_reg->dmaxmt.addrlow);
1043 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1044 &dma_reg->dmaxmt.addrhigh);
1046 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1047 &dma_reg->dmarcv.addrlow);
1048 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1049 &dma_reg->dmarcv.addrhigh);
1051 /* Re-enable DMA */
1052 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1053 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1054 &dma_reg->dmarcv.control);
1056 /* Initialize descriptors */
1057 for (i = 0; i < PDC_RING_ENTRIES; i++) {
1058 /* Every tx descriptor can be used for start of frame. */
1059 if (i != pdcs->ntxpost) {
1060 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1061 &pdcs->txd_64[i].ctrl1);
1062 } else {
1063 /* Last descriptor in ringset. Set End of Table. */
1064 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1065 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1068 /* Every rx descriptor can be used for start of frame */
1069 if (i != pdcs->nrxpost) {
1070 iowrite32(D64_CTRL1_SOF,
1071 &pdcs->rxd_64[i].ctrl1);
1072 } else {
1073 /* Last descriptor in ringset. Set End of Table. */
1074 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1075 &pdcs->rxd_64[i].ctrl1);
1078 return PDC_SUCCESS;
1080 fail_dealloc:
1081 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1082 done:
1083 return err;
1086 static void pdc_ring_free(struct pdc_state *pdcs)
1088 if (pdcs->tx_ring_alloc.vbase) {
1089 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1090 pdcs->tx_ring_alloc.dmabase);
1091 pdcs->tx_ring_alloc.vbase = NULL;
1094 if (pdcs->rx_ring_alloc.vbase) {
1095 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1096 pdcs->rx_ring_alloc.dmabase);
1097 pdcs->rx_ring_alloc.vbase = NULL;
1102 * pdc_desc_count() - Count the number of DMA descriptors that will be required
1103 * for a given scatterlist. Account for the max length of a DMA buffer.
1104 * @sg: Scatterlist to be DMA'd
1105 * Return: Number of descriptors required
1107 static u32 pdc_desc_count(struct scatterlist *sg)
1109 u32 cnt = 0;
1111 while (sg) {
1112 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1113 sg = sg_next(sg);
1115 return cnt;
1119 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1120 * and the rx ring has room for rx_cnt descriptors.
1121 * @pdcs: PDC state
1122 * @tx_cnt: The number of descriptors required in the tx ring
1123 * @rx_cnt: The number of descriptors required i the rx ring
1125 * Return: true if one of the rings does not have enough space
1126 * false if sufficient space is available in both rings
1128 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1130 u32 rx_avail;
1131 u32 tx_avail;
1132 bool full = false;
1134 /* Check if the tx and rx rings are likely to have enough space */
1135 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1136 pdcs->nrxpost);
1137 if (unlikely(rx_cnt > rx_avail)) {
1138 pdcs->rx_ring_full++;
1139 full = true;
1142 if (likely(!full)) {
1143 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1144 pdcs->ntxpost);
1145 if (unlikely(tx_cnt > tx_avail)) {
1146 pdcs->tx_ring_full++;
1147 full = true;
1150 return full;
1154 * pdc_last_tx_done() - If both the tx and rx rings have at least
1155 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1156 * framework can submit another message.
1157 * @chan: mailbox channel to check
1158 * Return: true if PDC can accept another message on this channel
1160 static bool pdc_last_tx_done(struct mbox_chan *chan)
1162 struct pdc_state *pdcs = chan->con_priv;
1163 bool ret;
1165 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1166 PDC_RING_SPACE_MIN))) {
1167 pdcs->last_tx_not_done++;
1168 ret = false;
1169 } else {
1170 ret = true;
1172 return ret;
1176 * pdc_send_data() - mailbox send_data function
1177 * @chan: The mailbox channel on which the data is sent. The channel
1178 * corresponds to a DMA ringset.
1179 * @data: The mailbox message to be sent. The message must be a
1180 * brcm_message structure.
1182 * This function is registered as the send_data function for the mailbox
1183 * controller. From the destination scatterlist in the mailbox message, it
1184 * creates a sequence of receive descriptors in the rx ring. From the source
1185 * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1186 * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1187 * initiate the DMA transfer.
1189 * This function does the DMA map and unmap of the src and dst scatterlists in
1190 * the mailbox message.
1192 * Return: 0 if successful
1193 * -ENOTSUPP if the mailbox message is a type this driver does not
1194 * support
1195 * < 0 if an error
1197 static int pdc_send_data(struct mbox_chan *chan, void *data)
1199 struct pdc_state *pdcs = chan->con_priv;
1200 struct device *dev = &pdcs->pdev->dev;
1201 struct brcm_message *mssg = data;
1202 int err = PDC_SUCCESS;
1203 int src_nent;
1204 int dst_nent;
1205 int nent;
1206 u32 tx_desc_req;
1207 u32 rx_desc_req;
1209 if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1210 return -ENOTSUPP;
1212 src_nent = sg_nents(mssg->spu.src);
1213 if (likely(src_nent)) {
1214 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1215 if (unlikely(nent == 0))
1216 return -EIO;
1219 dst_nent = sg_nents(mssg->spu.dst);
1220 if (likely(dst_nent)) {
1221 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1222 DMA_FROM_DEVICE);
1223 if (unlikely(nent == 0)) {
1224 dma_unmap_sg(dev, mssg->spu.src, src_nent,
1225 DMA_TO_DEVICE);
1226 return -EIO;
1231 * Check if the tx and rx rings have enough space. Do this prior to
1232 * writing any tx or rx descriptors. Need to ensure that we do not write
1233 * a partial set of descriptors, or write just rx descriptors but
1234 * corresponding tx descriptors don't fit. Note that we want this check
1235 * and the entire sequence of descriptor to happen without another
1236 * thread getting in. The channel spin lock in the mailbox framework
1237 * ensures this.
1239 tx_desc_req = pdc_desc_count(mssg->spu.src);
1240 rx_desc_req = pdc_desc_count(mssg->spu.dst);
1241 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1242 return -ENOSPC;
1244 /* Create rx descriptors to SPU catch response */
1245 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1246 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1248 /* Create tx descriptors to submit SPU request */
1249 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1250 err |= pdc_tx_list_final(pdcs); /* initiate transfer */
1252 if (unlikely(err))
1253 dev_err(&pdcs->pdev->dev,
1254 "%s failed with error %d", __func__, err);
1256 return err;
1259 static int pdc_startup(struct mbox_chan *chan)
1261 return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1264 static void pdc_shutdown(struct mbox_chan *chan)
1266 struct pdc_state *pdcs = chan->con_priv;
1268 if (!pdcs)
1269 return;
1271 dev_dbg(&pdcs->pdev->dev,
1272 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1273 pdc_ring_free(pdcs);
1277 * pdc_hw_init() - Use the given initialization parameters to initialize the
1278 * state for one of the PDCs.
1279 * @pdcs: state of the PDC
1281 static
1282 void pdc_hw_init(struct pdc_state *pdcs)
1284 struct platform_device *pdev;
1285 struct device *dev;
1286 struct dma64 *dma_reg;
1287 int ringset = PDC_RINGSET;
1289 pdev = pdcs->pdev;
1290 dev = &pdev->dev;
1292 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1293 dev_dbg(dev, "state structure: %p",
1294 pdcs);
1295 dev_dbg(dev, " - base virtual addr of hw regs %p",
1296 pdcs->pdc_reg_vbase);
1298 /* initialize data structures */
1299 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1300 pdcs->txregs_64 = (struct dma64_regs *)
1301 (((u8 *)pdcs->pdc_reg_vbase) +
1302 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1303 pdcs->rxregs_64 = (struct dma64_regs *)
1304 (((u8 *)pdcs->pdc_reg_vbase) +
1305 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1307 pdcs->ntxd = PDC_RING_ENTRIES;
1308 pdcs->nrxd = PDC_RING_ENTRIES;
1309 pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1310 pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1311 iowrite32(0, &pdcs->regs->intmask);
1313 dma_reg = &pdcs->regs->dmaregs[ringset];
1315 /* Configure DMA but will enable later in pdc_ring_init() */
1316 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1318 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1319 &dma_reg->dmarcv.control);
1321 /* Reset current index pointers after making sure DMA is disabled */
1322 iowrite32(0, &dma_reg->dmaxmt.ptr);
1323 iowrite32(0, &dma_reg->dmarcv.ptr);
1325 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1326 iowrite32(PDC_CKSUM_CTRL,
1327 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1331 * pdc_hw_disable() - Disable the tx and rx control in the hw.
1332 * @pdcs: PDC state structure
1335 static void pdc_hw_disable(struct pdc_state *pdcs)
1337 struct dma64 *dma_reg;
1339 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1340 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1341 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1342 &dma_reg->dmarcv.control);
1346 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1347 * header returned with each response message.
1348 * @pdcs: PDC state structure
1350 * The metadata is not returned to the mailbox client. So the PDC driver
1351 * manages these buffers.
1353 * Return: PDC_SUCCESS
1354 * -ENOMEM if pool creation fails
1356 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1358 struct platform_device *pdev;
1359 struct device *dev;
1361 pdev = pdcs->pdev;
1362 dev = &pdev->dev;
1364 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1365 if (pdcs->use_bcm_hdr)
1366 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1368 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1369 pdcs->pdc_resp_hdr_len,
1370 RX_BUF_ALIGN, 0);
1371 if (!pdcs->rx_buf_pool)
1372 return -ENOMEM;
1374 return PDC_SUCCESS;
1378 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1379 * specify a threaded IRQ handler for deferred handling of interrupts outside of
1380 * interrupt context.
1381 * @pdcs: PDC state
1383 * Set the interrupt mask for transmit and receive done.
1384 * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1386 * Return: PDC_SUCCESS
1387 * <0 if threaded irq request fails
1389 static int pdc_interrupts_init(struct pdc_state *pdcs)
1391 struct platform_device *pdev = pdcs->pdev;
1392 struct device *dev = &pdev->dev;
1393 struct device_node *dn = pdev->dev.of_node;
1394 int err;
1396 /* interrupt configuration */
1397 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1399 if (pdcs->hw_type == FA_HW)
1400 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1401 FA_RCVLAZY0_OFFSET);
1402 else
1403 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1404 PDC_RCVLAZY0_OFFSET);
1406 /* read irq from device tree */
1407 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1408 dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1409 dev_name(dev), pdcs->pdc_irq, pdcs);
1411 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1412 dev_name(dev), dev);
1413 if (err) {
1414 dev_err(dev, "IRQ %u request failed with err %d\n",
1415 pdcs->pdc_irq, err);
1416 return err;
1418 return PDC_SUCCESS;
1421 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1422 .send_data = pdc_send_data,
1423 .last_tx_done = pdc_last_tx_done,
1424 .startup = pdc_startup,
1425 .shutdown = pdc_shutdown
1429 * pdc_mb_init() - Initialize the mailbox controller.
1430 * @pdcs: PDC state
1432 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1433 * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1434 * complete interrupt to determine when a mailbox message has successfully been
1435 * transmitted.
1437 * Return: 0 on success
1438 * < 0 if there is an allocation or registration failure
1440 static int pdc_mb_init(struct pdc_state *pdcs)
1442 struct device *dev = &pdcs->pdev->dev;
1443 struct mbox_controller *mbc;
1444 int chan_index;
1445 int err;
1447 mbc = &pdcs->mbc;
1448 mbc->dev = dev;
1449 mbc->ops = &pdc_mbox_chan_ops;
1450 mbc->num_chans = 1;
1451 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1452 GFP_KERNEL);
1453 if (!mbc->chans)
1454 return -ENOMEM;
1456 mbc->txdone_irq = false;
1457 mbc->txdone_poll = true;
1458 mbc->txpoll_period = 1;
1459 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1460 mbc->chans[chan_index].con_priv = pdcs;
1462 /* Register mailbox controller */
1463 err = devm_mbox_controller_register(dev, mbc);
1464 if (err) {
1465 dev_crit(dev,
1466 "Failed to register PDC mailbox controller. Error %d.",
1467 err);
1468 return err;
1470 return 0;
1473 /* Device tree API */
1474 static const int pdc_hw = PDC_HW;
1475 static const int fa_hw = FA_HW;
1477 static const struct of_device_id pdc_mbox_of_match[] = {
1478 {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw},
1479 {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw},
1480 { /* sentinel */ }
1482 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1485 * pdc_dt_read() - Read application-specific data from device tree.
1486 * @pdev: Platform device
1487 * @pdcs: PDC state
1489 * Reads the number of bytes of receive status that precede each received frame.
1490 * Reads whether transmit and received frames should be preceded by an 8-byte
1491 * BCM header.
1493 * Return: 0 if successful
1494 * -ENODEV if device not available
1496 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1498 struct device *dev = &pdev->dev;
1499 struct device_node *dn = pdev->dev.of_node;
1500 const struct of_device_id *match;
1501 const int *hw_type;
1502 int err;
1504 err = of_property_read_u32(dn, "brcm,rx-status-len",
1505 &pdcs->rx_status_len);
1506 if (err < 0)
1507 dev_err(dev,
1508 "%s failed to get DMA receive status length from device tree",
1509 __func__);
1511 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1513 pdcs->hw_type = PDC_HW;
1515 match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev);
1516 if (match != NULL) {
1517 hw_type = match->data;
1518 pdcs->hw_type = *hw_type;
1521 return 0;
1525 * pdc_probe() - Probe function for PDC driver.
1526 * @pdev: PDC platform device
1528 * Reserve and map register regions defined in device tree.
1529 * Allocate and initialize tx and rx DMA rings.
1530 * Initialize a mailbox controller for each PDC.
1532 * Return: 0 if successful
1533 * < 0 if an error
1535 static int pdc_probe(struct platform_device *pdev)
1537 int err = 0;
1538 struct device *dev = &pdev->dev;
1539 struct resource *pdc_regs;
1540 struct pdc_state *pdcs;
1542 /* PDC state for one SPU */
1543 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1544 if (!pdcs) {
1545 err = -ENOMEM;
1546 goto cleanup;
1549 pdcs->pdev = pdev;
1550 platform_set_drvdata(pdev, pdcs);
1551 pdcs->pdc_idx = pdcg.num_spu;
1552 pdcg.num_spu++;
1554 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
1555 if (err) {
1556 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1557 goto cleanup;
1560 /* Create DMA pool for tx ring */
1561 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1562 RING_ALIGN, 0);
1563 if (!pdcs->ring_pool) {
1564 err = -ENOMEM;
1565 goto cleanup;
1568 err = pdc_dt_read(pdev, pdcs);
1569 if (err)
1570 goto cleanup_ring_pool;
1572 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1573 if (!pdc_regs) {
1574 err = -ENODEV;
1575 goto cleanup_ring_pool;
1577 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1578 &pdc_regs->start, &pdc_regs->end);
1580 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1581 if (IS_ERR(pdcs->pdc_reg_vbase)) {
1582 err = PTR_ERR(pdcs->pdc_reg_vbase);
1583 dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1584 goto cleanup_ring_pool;
1587 /* create rx buffer pool after dt read to know how big buffers are */
1588 err = pdc_rx_buf_pool_create(pdcs);
1589 if (err)
1590 goto cleanup_ring_pool;
1592 pdc_hw_init(pdcs);
1594 /* Init tasklet for deferred DMA rx processing */
1595 tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs);
1597 err = pdc_interrupts_init(pdcs);
1598 if (err)
1599 goto cleanup_buf_pool;
1601 /* Initialize mailbox controller */
1602 err = pdc_mb_init(pdcs);
1603 if (err)
1604 goto cleanup_buf_pool;
1606 pdcs->debugfs_stats = NULL;
1607 pdc_setup_debugfs(pdcs);
1609 dev_dbg(dev, "pdc_probe() successful");
1610 return PDC_SUCCESS;
1612 cleanup_buf_pool:
1613 tasklet_kill(&pdcs->rx_tasklet);
1614 dma_pool_destroy(pdcs->rx_buf_pool);
1616 cleanup_ring_pool:
1617 dma_pool_destroy(pdcs->ring_pool);
1619 cleanup:
1620 return err;
1623 static int pdc_remove(struct platform_device *pdev)
1625 struct pdc_state *pdcs = platform_get_drvdata(pdev);
1627 pdc_free_debugfs();
1629 tasklet_kill(&pdcs->rx_tasklet);
1631 pdc_hw_disable(pdcs);
1633 dma_pool_destroy(pdcs->rx_buf_pool);
1634 dma_pool_destroy(pdcs->ring_pool);
1635 return 0;
1638 static struct platform_driver pdc_mbox_driver = {
1639 .probe = pdc_probe,
1640 .remove = pdc_remove,
1641 .driver = {
1642 .name = "brcm-iproc-pdc-mbox",
1643 .of_match_table = of_match_ptr(pdc_mbox_of_match),
1646 module_platform_driver(pdc_mbox_driver);
1648 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1649 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1650 MODULE_LICENSE("GPL v2");