staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / ptp / ptp_clock.c
blobe189fa1be21e41f2431de1b20368faf1ff21f9c9
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PTP 1588 clock support
5 * Copyright (C) 2010 OMICRON electronics GmbH
6 */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
20 #include "ptp_private.h"
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27 /* private globals */
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
32 static DEFINE_IDA(ptp_clocks_map);
34 /* time stamp event queue operations */
36 static inline int queue_free(struct timestamp_event_queue *q)
38 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42 struct ptp_clock_event *src)
44 struct ptp_extts_event *dst;
45 unsigned long flags;
46 s64 seconds;
47 u32 remainder;
49 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51 spin_lock_irqsave(&queue->lock, flags);
53 dst = &queue->buf[queue->tail];
54 dst->index = src->index;
55 dst->t.sec = seconds;
56 dst->t.nsec = remainder;
58 if (!queue_free(queue))
59 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
61 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
63 spin_unlock_irqrestore(&queue->lock, flags);
66 static s32 scaled_ppm_to_ppb(long ppm)
69 * The 'freq' field in the 'struct timex' is in parts per
70 * million, but with a 16 bit binary fractional field.
72 * We want to calculate
74 * ppb = scaled_ppm * 1000 / 2^16
76 * which simplifies to
78 * ppb = scaled_ppm * 125 / 2^13
80 s64 ppb = 1 + ppm;
81 ppb *= 125;
82 ppb >>= 13;
83 return (s32) ppb;
86 /* posix clock implementation */
88 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
90 tp->tv_sec = 0;
91 tp->tv_nsec = 1;
92 return 0;
95 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
97 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
99 return ptp->info->settime64(ptp->info, tp);
102 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
105 int err;
107 if (ptp->info->gettimex64)
108 err = ptp->info->gettimex64(ptp->info, tp, NULL);
109 else
110 err = ptp->info->gettime64(ptp->info, tp);
111 return err;
114 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
117 struct ptp_clock_info *ops;
118 int err = -EOPNOTSUPP;
120 ops = ptp->info;
122 if (tx->modes & ADJ_SETOFFSET) {
123 struct timespec64 ts;
124 ktime_t kt;
125 s64 delta;
127 ts.tv_sec = tx->time.tv_sec;
128 ts.tv_nsec = tx->time.tv_usec;
130 if (!(tx->modes & ADJ_NANO))
131 ts.tv_nsec *= 1000;
133 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
134 return -EINVAL;
136 kt = timespec64_to_ktime(ts);
137 delta = ktime_to_ns(kt);
138 err = ops->adjtime(ops, delta);
139 } else if (tx->modes & ADJ_FREQUENCY) {
140 s32 ppb = scaled_ppm_to_ppb(tx->freq);
141 if (ppb > ops->max_adj || ppb < -ops->max_adj)
142 return -ERANGE;
143 if (ops->adjfine)
144 err = ops->adjfine(ops, tx->freq);
145 else
146 err = ops->adjfreq(ops, ppb);
147 ptp->dialed_frequency = tx->freq;
148 } else if (tx->modes == 0) {
149 tx->freq = ptp->dialed_frequency;
150 err = 0;
153 return err;
156 static struct posix_clock_operations ptp_clock_ops = {
157 .owner = THIS_MODULE,
158 .clock_adjtime = ptp_clock_adjtime,
159 .clock_gettime = ptp_clock_gettime,
160 .clock_getres = ptp_clock_getres,
161 .clock_settime = ptp_clock_settime,
162 .ioctl = ptp_ioctl,
163 .open = ptp_open,
164 .poll = ptp_poll,
165 .read = ptp_read,
168 static void delete_ptp_clock(struct posix_clock *pc)
170 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
172 mutex_destroy(&ptp->tsevq_mux);
173 mutex_destroy(&ptp->pincfg_mux);
174 ida_simple_remove(&ptp_clocks_map, ptp->index);
175 kfree(ptp);
178 static void ptp_aux_kworker(struct kthread_work *work)
180 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
181 aux_work.work);
182 struct ptp_clock_info *info = ptp->info;
183 long delay;
185 delay = info->do_aux_work(info);
187 if (delay >= 0)
188 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
191 /* public interface */
193 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
194 struct device *parent)
196 struct ptp_clock *ptp;
197 int err = 0, index, major = MAJOR(ptp_devt);
199 if (info->n_alarm > PTP_MAX_ALARMS)
200 return ERR_PTR(-EINVAL);
202 /* Initialize a clock structure. */
203 err = -ENOMEM;
204 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
205 if (ptp == NULL)
206 goto no_memory;
208 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
209 if (index < 0) {
210 err = index;
211 goto no_slot;
214 ptp->clock.ops = ptp_clock_ops;
215 ptp->clock.release = delete_ptp_clock;
216 ptp->info = info;
217 ptp->devid = MKDEV(major, index);
218 ptp->index = index;
219 spin_lock_init(&ptp->tsevq.lock);
220 mutex_init(&ptp->tsevq_mux);
221 mutex_init(&ptp->pincfg_mux);
222 init_waitqueue_head(&ptp->tsev_wq);
224 if (ptp->info->do_aux_work) {
225 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
226 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
227 if (IS_ERR(ptp->kworker)) {
228 err = PTR_ERR(ptp->kworker);
229 pr_err("failed to create ptp aux_worker %d\n", err);
230 goto kworker_err;
234 err = ptp_populate_pin_groups(ptp);
235 if (err)
236 goto no_pin_groups;
238 /* Create a new device in our class. */
239 ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
240 ptp, ptp->pin_attr_groups,
241 "ptp%d", ptp->index);
242 if (IS_ERR(ptp->dev)) {
243 err = PTR_ERR(ptp->dev);
244 goto no_device;
247 /* Register a new PPS source. */
248 if (info->pps) {
249 struct pps_source_info pps;
250 memset(&pps, 0, sizeof(pps));
251 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
252 pps.mode = PTP_PPS_MODE;
253 pps.owner = info->owner;
254 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
255 if (IS_ERR(ptp->pps_source)) {
256 err = PTR_ERR(ptp->pps_source);
257 pr_err("failed to register pps source\n");
258 goto no_pps;
262 /* Create a posix clock. */
263 err = posix_clock_register(&ptp->clock, ptp->devid);
264 if (err) {
265 pr_err("failed to create posix clock\n");
266 goto no_clock;
269 return ptp;
271 no_clock:
272 if (ptp->pps_source)
273 pps_unregister_source(ptp->pps_source);
274 no_pps:
275 device_destroy(ptp_class, ptp->devid);
276 no_device:
277 ptp_cleanup_pin_groups(ptp);
278 no_pin_groups:
279 if (ptp->kworker)
280 kthread_destroy_worker(ptp->kworker);
281 kworker_err:
282 mutex_destroy(&ptp->tsevq_mux);
283 mutex_destroy(&ptp->pincfg_mux);
284 ida_simple_remove(&ptp_clocks_map, index);
285 no_slot:
286 kfree(ptp);
287 no_memory:
288 return ERR_PTR(err);
290 EXPORT_SYMBOL(ptp_clock_register);
292 int ptp_clock_unregister(struct ptp_clock *ptp)
294 ptp->defunct = 1;
295 wake_up_interruptible(&ptp->tsev_wq);
297 if (ptp->kworker) {
298 kthread_cancel_delayed_work_sync(&ptp->aux_work);
299 kthread_destroy_worker(ptp->kworker);
302 /* Release the clock's resources. */
303 if (ptp->pps_source)
304 pps_unregister_source(ptp->pps_source);
306 device_destroy(ptp_class, ptp->devid);
307 ptp_cleanup_pin_groups(ptp);
309 posix_clock_unregister(&ptp->clock);
310 return 0;
312 EXPORT_SYMBOL(ptp_clock_unregister);
314 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
316 struct pps_event_time evt;
318 switch (event->type) {
320 case PTP_CLOCK_ALARM:
321 break;
323 case PTP_CLOCK_EXTTS:
324 enqueue_external_timestamp(&ptp->tsevq, event);
325 wake_up_interruptible(&ptp->tsev_wq);
326 break;
328 case PTP_CLOCK_PPS:
329 pps_get_ts(&evt);
330 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
331 break;
333 case PTP_CLOCK_PPSUSR:
334 pps_event(ptp->pps_source, &event->pps_times,
335 PTP_PPS_EVENT, NULL);
336 break;
339 EXPORT_SYMBOL(ptp_clock_event);
341 int ptp_clock_index(struct ptp_clock *ptp)
343 return ptp->index;
345 EXPORT_SYMBOL(ptp_clock_index);
347 int ptp_find_pin(struct ptp_clock *ptp,
348 enum ptp_pin_function func, unsigned int chan)
350 struct ptp_pin_desc *pin = NULL;
351 int i;
353 mutex_lock(&ptp->pincfg_mux);
354 for (i = 0; i < ptp->info->n_pins; i++) {
355 if (ptp->info->pin_config[i].func == func &&
356 ptp->info->pin_config[i].chan == chan) {
357 pin = &ptp->info->pin_config[i];
358 break;
361 mutex_unlock(&ptp->pincfg_mux);
363 return pin ? i : -1;
365 EXPORT_SYMBOL(ptp_find_pin);
367 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
369 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
371 EXPORT_SYMBOL(ptp_schedule_worker);
373 /* module operations */
375 static void __exit ptp_exit(void)
377 class_destroy(ptp_class);
378 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
379 ida_destroy(&ptp_clocks_map);
382 static int __init ptp_init(void)
384 int err;
386 ptp_class = class_create(THIS_MODULE, "ptp");
387 if (IS_ERR(ptp_class)) {
388 pr_err("ptp: failed to allocate class\n");
389 return PTR_ERR(ptp_class);
392 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
393 if (err < 0) {
394 pr_err("ptp: failed to allocate device region\n");
395 goto no_region;
398 ptp_class->dev_groups = ptp_groups;
399 pr_info("PTP clock support registered\n");
400 return 0;
402 no_region:
403 class_destroy(ptp_class);
404 return err;
407 subsys_initcall(ptp_init);
408 module_exit(ptp_exit);
410 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
411 MODULE_DESCRIPTION("PTP clocks support");
412 MODULE_LICENSE("GPL");