staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / spi / spi-ep93xx.c
blob4034e3ec0ba2a8f23bbfc248f1c70e8906df803a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Cirrus Logic EP93xx SPI controller.
5 * Copyright (C) 2010-2011 Mika Westerberg
7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
11 * For more information about the SPI controller see documentation on Cirrus
12 * Logic web site:
13 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
16 #include <linux/io.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dmaengine.h>
22 #include <linux/bitops.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched.h>
27 #include <linux/scatterlist.h>
28 #include <linux/spi/spi.h>
30 #include <linux/platform_data/dma-ep93xx.h>
31 #include <linux/platform_data/spi-ep93xx.h>
33 #define SSPCR0 0x0000
34 #define SSPCR0_MODE_SHIFT 6
35 #define SSPCR0_SCR_SHIFT 8
37 #define SSPCR1 0x0004
38 #define SSPCR1_RIE BIT(0)
39 #define SSPCR1_TIE BIT(1)
40 #define SSPCR1_RORIE BIT(2)
41 #define SSPCR1_LBM BIT(3)
42 #define SSPCR1_SSE BIT(4)
43 #define SSPCR1_MS BIT(5)
44 #define SSPCR1_SOD BIT(6)
46 #define SSPDR 0x0008
48 #define SSPSR 0x000c
49 #define SSPSR_TFE BIT(0)
50 #define SSPSR_TNF BIT(1)
51 #define SSPSR_RNE BIT(2)
52 #define SSPSR_RFF BIT(3)
53 #define SSPSR_BSY BIT(4)
54 #define SSPCPSR 0x0010
56 #define SSPIIR 0x0014
57 #define SSPIIR_RIS BIT(0)
58 #define SSPIIR_TIS BIT(1)
59 #define SSPIIR_RORIS BIT(2)
60 #define SSPICR SSPIIR
62 /* timeout in milliseconds */
63 #define SPI_TIMEOUT 5
64 /* maximum depth of RX/TX FIFO */
65 #define SPI_FIFO_SIZE 8
67 /**
68 * struct ep93xx_spi - EP93xx SPI controller structure
69 * @clk: clock for the controller
70 * @mmio: pointer to ioremap()'d registers
71 * @sspdr_phys: physical address of the SSPDR register
72 * @tx: current byte in transfer to transmit
73 * @rx: current byte in transfer to receive
74 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
75 * frame decreases this level and sending one frame increases it.
76 * @dma_rx: RX DMA channel
77 * @dma_tx: TX DMA channel
78 * @dma_rx_data: RX parameters passed to the DMA engine
79 * @dma_tx_data: TX parameters passed to the DMA engine
80 * @rx_sgt: sg table for RX transfers
81 * @tx_sgt: sg table for TX transfers
82 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
83 * the client
85 struct ep93xx_spi {
86 struct clk *clk;
87 void __iomem *mmio;
88 unsigned long sspdr_phys;
89 size_t tx;
90 size_t rx;
91 size_t fifo_level;
92 struct dma_chan *dma_rx;
93 struct dma_chan *dma_tx;
94 struct ep93xx_dma_data dma_rx_data;
95 struct ep93xx_dma_data dma_tx_data;
96 struct sg_table rx_sgt;
97 struct sg_table tx_sgt;
98 void *zeropage;
101 /* converts bits per word to CR0.DSS value */
102 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
105 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
106 * @master: SPI master
107 * @rate: desired SPI output clock rate
108 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
109 * @div_scr: pointer to return the scr divider
111 static int ep93xx_spi_calc_divisors(struct spi_master *master,
112 u32 rate, u8 *div_cpsr, u8 *div_scr)
114 struct ep93xx_spi *espi = spi_master_get_devdata(master);
115 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
116 int cpsr, scr;
119 * Make sure that max value is between values supported by the
120 * controller.
122 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
125 * Calculate divisors so that we can get speed according the
126 * following formula:
127 * rate = spi_clock_rate / (cpsr * (1 + scr))
129 * cpsr must be even number and starts from 2, scr can be any number
130 * between 0 and 255.
132 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
133 for (scr = 0; scr <= 255; scr++) {
134 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
135 *div_scr = (u8)scr;
136 *div_cpsr = (u8)cpsr;
137 return 0;
142 return -EINVAL;
145 static int ep93xx_spi_chip_setup(struct spi_master *master,
146 struct spi_device *spi,
147 struct spi_transfer *xfer)
149 struct ep93xx_spi *espi = spi_master_get_devdata(master);
150 u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
151 u8 div_cpsr = 0;
152 u8 div_scr = 0;
153 u16 cr0;
154 int err;
156 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
157 &div_cpsr, &div_scr);
158 if (err)
159 return err;
161 cr0 = div_scr << SSPCR0_SCR_SHIFT;
162 cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
163 cr0 |= dss;
165 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
166 spi->mode, div_cpsr, div_scr, dss);
167 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
169 writel(div_cpsr, espi->mmio + SSPCPSR);
170 writel(cr0, espi->mmio + SSPCR0);
172 return 0;
175 static void ep93xx_do_write(struct spi_master *master)
177 struct ep93xx_spi *espi = spi_master_get_devdata(master);
178 struct spi_transfer *xfer = master->cur_msg->state;
179 u32 val = 0;
181 if (xfer->bits_per_word > 8) {
182 if (xfer->tx_buf)
183 val = ((u16 *)xfer->tx_buf)[espi->tx];
184 espi->tx += 2;
185 } else {
186 if (xfer->tx_buf)
187 val = ((u8 *)xfer->tx_buf)[espi->tx];
188 espi->tx += 1;
190 writel(val, espi->mmio + SSPDR);
193 static void ep93xx_do_read(struct spi_master *master)
195 struct ep93xx_spi *espi = spi_master_get_devdata(master);
196 struct spi_transfer *xfer = master->cur_msg->state;
197 u32 val;
199 val = readl(espi->mmio + SSPDR);
200 if (xfer->bits_per_word > 8) {
201 if (xfer->rx_buf)
202 ((u16 *)xfer->rx_buf)[espi->rx] = val;
203 espi->rx += 2;
204 } else {
205 if (xfer->rx_buf)
206 ((u8 *)xfer->rx_buf)[espi->rx] = val;
207 espi->rx += 1;
212 * ep93xx_spi_read_write() - perform next RX/TX transfer
213 * @espi: ep93xx SPI controller struct
215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216 * called several times, the whole transfer will be completed. Returns
217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
219 * When this function is finished, RX FIFO should be empty and TX FIFO should be
220 * full.
222 static int ep93xx_spi_read_write(struct spi_master *master)
224 struct ep93xx_spi *espi = spi_master_get_devdata(master);
225 struct spi_transfer *xfer = master->cur_msg->state;
227 /* read as long as RX FIFO has frames in it */
228 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
229 ep93xx_do_read(master);
230 espi->fifo_level--;
233 /* write as long as TX FIFO has room */
234 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
235 ep93xx_do_write(master);
236 espi->fifo_level++;
239 if (espi->rx == xfer->len)
240 return 0;
242 return -EINPROGRESS;
245 static enum dma_transfer_direction
246 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
248 switch (dir) {
249 case DMA_TO_DEVICE:
250 return DMA_MEM_TO_DEV;
251 case DMA_FROM_DEVICE:
252 return DMA_DEV_TO_MEM;
253 default:
254 return DMA_TRANS_NONE;
259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
260 * @master: SPI master
261 * @dir: DMA transfer direction
263 * Function configures the DMA, maps the buffer and prepares the DMA
264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265 * in case of failure.
267 static struct dma_async_tx_descriptor *
268 ep93xx_spi_dma_prepare(struct spi_master *master,
269 enum dma_data_direction dir)
271 struct ep93xx_spi *espi = spi_master_get_devdata(master);
272 struct spi_transfer *xfer = master->cur_msg->state;
273 struct dma_async_tx_descriptor *txd;
274 enum dma_slave_buswidth buswidth;
275 struct dma_slave_config conf;
276 struct scatterlist *sg;
277 struct sg_table *sgt;
278 struct dma_chan *chan;
279 const void *buf, *pbuf;
280 size_t len = xfer->len;
281 int i, ret, nents;
283 if (xfer->bits_per_word > 8)
284 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
285 else
286 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
288 memset(&conf, 0, sizeof(conf));
289 conf.direction = ep93xx_dma_data_to_trans_dir(dir);
291 if (dir == DMA_FROM_DEVICE) {
292 chan = espi->dma_rx;
293 buf = xfer->rx_buf;
294 sgt = &espi->rx_sgt;
296 conf.src_addr = espi->sspdr_phys;
297 conf.src_addr_width = buswidth;
298 } else {
299 chan = espi->dma_tx;
300 buf = xfer->tx_buf;
301 sgt = &espi->tx_sgt;
303 conf.dst_addr = espi->sspdr_phys;
304 conf.dst_addr_width = buswidth;
307 ret = dmaengine_slave_config(chan, &conf);
308 if (ret)
309 return ERR_PTR(ret);
312 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313 * because we are using @espi->zeropage to provide a zero RX buffer
314 * for the TX transfers and we have only allocated one page for that.
316 * For performance reasons we allocate a new sg_table only when
317 * needed. Otherwise we will re-use the current one. Eventually the
318 * last sg_table is released in ep93xx_spi_release_dma().
321 nents = DIV_ROUND_UP(len, PAGE_SIZE);
322 if (nents != sgt->nents) {
323 sg_free_table(sgt);
325 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
326 if (ret)
327 return ERR_PTR(ret);
330 pbuf = buf;
331 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
332 size_t bytes = min_t(size_t, len, PAGE_SIZE);
334 if (buf) {
335 sg_set_page(sg, virt_to_page(pbuf), bytes,
336 offset_in_page(pbuf));
337 } else {
338 sg_set_page(sg, virt_to_page(espi->zeropage),
339 bytes, 0);
342 pbuf += bytes;
343 len -= bytes;
346 if (WARN_ON(len)) {
347 dev_warn(&master->dev, "len = %zu expected 0!\n", len);
348 return ERR_PTR(-EINVAL);
351 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
352 if (!nents)
353 return ERR_PTR(-ENOMEM);
355 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
356 DMA_CTRL_ACK);
357 if (!txd) {
358 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
359 return ERR_PTR(-ENOMEM);
361 return txd;
365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
366 * @master: SPI master
367 * @dir: DMA transfer direction
369 * Function finishes with the DMA transfer. After this, the DMA buffer is
370 * unmapped.
372 static void ep93xx_spi_dma_finish(struct spi_master *master,
373 enum dma_data_direction dir)
375 struct ep93xx_spi *espi = spi_master_get_devdata(master);
376 struct dma_chan *chan;
377 struct sg_table *sgt;
379 if (dir == DMA_FROM_DEVICE) {
380 chan = espi->dma_rx;
381 sgt = &espi->rx_sgt;
382 } else {
383 chan = espi->dma_tx;
384 sgt = &espi->tx_sgt;
387 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
390 static void ep93xx_spi_dma_callback(void *callback_param)
392 struct spi_master *master = callback_param;
394 ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
395 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
397 spi_finalize_current_transfer(master);
400 static int ep93xx_spi_dma_transfer(struct spi_master *master)
402 struct ep93xx_spi *espi = spi_master_get_devdata(master);
403 struct dma_async_tx_descriptor *rxd, *txd;
405 rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
406 if (IS_ERR(rxd)) {
407 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
408 return PTR_ERR(rxd);
411 txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
412 if (IS_ERR(txd)) {
413 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
414 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
415 return PTR_ERR(txd);
418 /* We are ready when RX is done */
419 rxd->callback = ep93xx_spi_dma_callback;
420 rxd->callback_param = master;
422 /* Now submit both descriptors and start DMA */
423 dmaengine_submit(rxd);
424 dmaengine_submit(txd);
426 dma_async_issue_pending(espi->dma_rx);
427 dma_async_issue_pending(espi->dma_tx);
429 /* signal that we need to wait for completion */
430 return 1;
433 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
435 struct spi_master *master = dev_id;
436 struct ep93xx_spi *espi = spi_master_get_devdata(master);
437 u32 val;
440 * If we got ROR (receive overrun) interrupt we know that something is
441 * wrong. Just abort the message.
443 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
444 /* clear the overrun interrupt */
445 writel(0, espi->mmio + SSPICR);
446 dev_warn(&master->dev,
447 "receive overrun, aborting the message\n");
448 master->cur_msg->status = -EIO;
449 } else {
451 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452 * simply execute next data transfer.
454 if (ep93xx_spi_read_write(master)) {
456 * In normal case, there still is some processing left
457 * for current transfer. Let's wait for the next
458 * interrupt then.
460 return IRQ_HANDLED;
465 * Current transfer is finished, either with error or with success. In
466 * any case we disable interrupts and notify the worker to handle
467 * any post-processing of the message.
469 val = readl(espi->mmio + SSPCR1);
470 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
471 writel(val, espi->mmio + SSPCR1);
473 spi_finalize_current_transfer(master);
475 return IRQ_HANDLED;
478 static int ep93xx_spi_transfer_one(struct spi_master *master,
479 struct spi_device *spi,
480 struct spi_transfer *xfer)
482 struct ep93xx_spi *espi = spi_master_get_devdata(master);
483 u32 val;
484 int ret;
486 ret = ep93xx_spi_chip_setup(master, spi, xfer);
487 if (ret) {
488 dev_err(&master->dev, "failed to setup chip for transfer\n");
489 return ret;
492 master->cur_msg->state = xfer;
493 espi->rx = 0;
494 espi->tx = 0;
497 * There is no point of setting up DMA for the transfers which will
498 * fit into the FIFO and can be transferred with a single interrupt.
499 * So in these cases we will be using PIO and don't bother for DMA.
501 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
502 return ep93xx_spi_dma_transfer(master);
504 /* Using PIO so prime the TX FIFO and enable interrupts */
505 ep93xx_spi_read_write(master);
507 val = readl(espi->mmio + SSPCR1);
508 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
509 writel(val, espi->mmio + SSPCR1);
511 /* signal that we need to wait for completion */
512 return 1;
515 static int ep93xx_spi_prepare_message(struct spi_master *master,
516 struct spi_message *msg)
518 struct ep93xx_spi *espi = spi_master_get_devdata(master);
519 unsigned long timeout;
522 * Just to be sure: flush any data from RX FIFO.
524 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
525 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
526 if (time_after(jiffies, timeout)) {
527 dev_warn(&master->dev,
528 "timeout while flushing RX FIFO\n");
529 return -ETIMEDOUT;
531 readl(espi->mmio + SSPDR);
535 * We explicitly handle FIFO level. This way we don't have to check TX
536 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
538 espi->fifo_level = 0;
540 return 0;
543 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
545 struct ep93xx_spi *espi = spi_master_get_devdata(master);
546 u32 val;
547 int ret;
549 ret = clk_enable(espi->clk);
550 if (ret)
551 return ret;
553 val = readl(espi->mmio + SSPCR1);
554 val |= SSPCR1_SSE;
555 writel(val, espi->mmio + SSPCR1);
557 return 0;
560 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
562 struct ep93xx_spi *espi = spi_master_get_devdata(master);
563 u32 val;
565 val = readl(espi->mmio + SSPCR1);
566 val &= ~SSPCR1_SSE;
567 writel(val, espi->mmio + SSPCR1);
569 clk_disable(espi->clk);
571 return 0;
574 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
576 if (ep93xx_dma_chan_is_m2p(chan))
577 return false;
579 chan->private = filter_param;
580 return true;
583 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
585 dma_cap_mask_t mask;
586 int ret;
588 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
589 if (!espi->zeropage)
590 return -ENOMEM;
592 dma_cap_zero(mask);
593 dma_cap_set(DMA_SLAVE, mask);
595 espi->dma_rx_data.port = EP93XX_DMA_SSP;
596 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
597 espi->dma_rx_data.name = "ep93xx-spi-rx";
599 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
600 &espi->dma_rx_data);
601 if (!espi->dma_rx) {
602 ret = -ENODEV;
603 goto fail_free_page;
606 espi->dma_tx_data.port = EP93XX_DMA_SSP;
607 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
608 espi->dma_tx_data.name = "ep93xx-spi-tx";
610 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
611 &espi->dma_tx_data);
612 if (!espi->dma_tx) {
613 ret = -ENODEV;
614 goto fail_release_rx;
617 return 0;
619 fail_release_rx:
620 dma_release_channel(espi->dma_rx);
621 espi->dma_rx = NULL;
622 fail_free_page:
623 free_page((unsigned long)espi->zeropage);
625 return ret;
628 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
630 if (espi->dma_rx) {
631 dma_release_channel(espi->dma_rx);
632 sg_free_table(&espi->rx_sgt);
634 if (espi->dma_tx) {
635 dma_release_channel(espi->dma_tx);
636 sg_free_table(&espi->tx_sgt);
639 if (espi->zeropage)
640 free_page((unsigned long)espi->zeropage);
643 static int ep93xx_spi_probe(struct platform_device *pdev)
645 struct spi_master *master;
646 struct ep93xx_spi_info *info;
647 struct ep93xx_spi *espi;
648 struct resource *res;
649 int irq;
650 int error;
652 info = dev_get_platdata(&pdev->dev);
653 if (!info) {
654 dev_err(&pdev->dev, "missing platform data\n");
655 return -EINVAL;
658 irq = platform_get_irq(pdev, 0);
659 if (irq < 0) {
660 dev_err(&pdev->dev, "failed to get irq resources\n");
661 return -EBUSY;
664 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
665 if (!res) {
666 dev_err(&pdev->dev, "unable to get iomem resource\n");
667 return -ENODEV;
670 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
671 if (!master)
672 return -ENOMEM;
674 master->use_gpio_descriptors = true;
675 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
676 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
677 master->prepare_message = ep93xx_spi_prepare_message;
678 master->transfer_one = ep93xx_spi_transfer_one;
679 master->bus_num = pdev->id;
680 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
681 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
683 * The SPI core will count the number of GPIO descriptors to figure
684 * out the number of chip selects available on the platform.
686 master->num_chipselect = 0;
688 platform_set_drvdata(pdev, master);
690 espi = spi_master_get_devdata(master);
692 espi->clk = devm_clk_get(&pdev->dev, NULL);
693 if (IS_ERR(espi->clk)) {
694 dev_err(&pdev->dev, "unable to get spi clock\n");
695 error = PTR_ERR(espi->clk);
696 goto fail_release_master;
700 * Calculate maximum and minimum supported clock rates
701 * for the controller.
703 master->max_speed_hz = clk_get_rate(espi->clk) / 2;
704 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
706 espi->sspdr_phys = res->start + SSPDR;
708 espi->mmio = devm_ioremap_resource(&pdev->dev, res);
709 if (IS_ERR(espi->mmio)) {
710 error = PTR_ERR(espi->mmio);
711 goto fail_release_master;
714 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
715 0, "ep93xx-spi", master);
716 if (error) {
717 dev_err(&pdev->dev, "failed to request irq\n");
718 goto fail_release_master;
721 if (info->use_dma && ep93xx_spi_setup_dma(espi))
722 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
724 /* make sure that the hardware is disabled */
725 writel(0, espi->mmio + SSPCR1);
727 error = devm_spi_register_master(&pdev->dev, master);
728 if (error) {
729 dev_err(&pdev->dev, "failed to register SPI master\n");
730 goto fail_free_dma;
733 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
734 (unsigned long)res->start, irq);
736 return 0;
738 fail_free_dma:
739 ep93xx_spi_release_dma(espi);
740 fail_release_master:
741 spi_master_put(master);
743 return error;
746 static int ep93xx_spi_remove(struct platform_device *pdev)
748 struct spi_master *master = platform_get_drvdata(pdev);
749 struct ep93xx_spi *espi = spi_master_get_devdata(master);
751 ep93xx_spi_release_dma(espi);
753 return 0;
756 static struct platform_driver ep93xx_spi_driver = {
757 .driver = {
758 .name = "ep93xx-spi",
760 .probe = ep93xx_spi_probe,
761 .remove = ep93xx_spi_remove,
763 module_platform_driver(ep93xx_spi_driver);
765 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
766 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
767 MODULE_LICENSE("GPL");
768 MODULE_ALIAS("platform:ep93xx-spi");