staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx.c
blobaf3f37ba82c83f26e37c8c93708992734a33c320
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
5 */
7 #include <linux/bitops.h>
8 #include <linux/init.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/ioport.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/spi/pxa2xx_spi.h>
19 #include <linux/spi/spi.h>
20 #include <linux/delay.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/slab.h>
24 #include <linux/clk.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/acpi.h>
27 #include <linux/of_device.h>
29 #include "spi-pxa2xx.h"
31 MODULE_AUTHOR("Stephen Street");
32 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("platform:pxa2xx-spi");
36 #define TIMOUT_DFLT 1000
39 * for testing SSCR1 changes that require SSP restart, basically
40 * everything except the service and interrupt enables, the pxa270 developer
41 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
42 * list, but the PXA255 dev man says all bits without really meaning the
43 * service and interrupt enables
45 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
46 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
47 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
48 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
49 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
50 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
52 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
53 | QUARK_X1000_SSCR1_EFWR \
54 | QUARK_X1000_SSCR1_RFT \
55 | QUARK_X1000_SSCR1_TFT \
56 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
58 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
59 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
60 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
61 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
62 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
68 #define LPSS_CAPS_CS_EN_SHIFT 9
69 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
71 struct lpss_config {
72 /* LPSS offset from drv_data->ioaddr */
73 unsigned offset;
74 /* Register offsets from drv_data->lpss_base or -1 */
75 int reg_general;
76 int reg_ssp;
77 int reg_cs_ctrl;
78 int reg_capabilities;
79 /* FIFO thresholds */
80 u32 rx_threshold;
81 u32 tx_threshold_lo;
82 u32 tx_threshold_hi;
83 /* Chip select control */
84 unsigned cs_sel_shift;
85 unsigned cs_sel_mask;
86 unsigned cs_num;
89 /* Keep these sorted with enum pxa_ssp_type */
90 static const struct lpss_config lpss_platforms[] = {
91 { /* LPSS_LPT_SSP */
92 .offset = 0x800,
93 .reg_general = 0x08,
94 .reg_ssp = 0x0c,
95 .reg_cs_ctrl = 0x18,
96 .reg_capabilities = -1,
97 .rx_threshold = 64,
98 .tx_threshold_lo = 160,
99 .tx_threshold_hi = 224,
101 { /* LPSS_BYT_SSP */
102 .offset = 0x400,
103 .reg_general = 0x08,
104 .reg_ssp = 0x0c,
105 .reg_cs_ctrl = 0x18,
106 .reg_capabilities = -1,
107 .rx_threshold = 64,
108 .tx_threshold_lo = 160,
109 .tx_threshold_hi = 224,
111 { /* LPSS_BSW_SSP */
112 .offset = 0x400,
113 .reg_general = 0x08,
114 .reg_ssp = 0x0c,
115 .reg_cs_ctrl = 0x18,
116 .reg_capabilities = -1,
117 .rx_threshold = 64,
118 .tx_threshold_lo = 160,
119 .tx_threshold_hi = 224,
120 .cs_sel_shift = 2,
121 .cs_sel_mask = 1 << 2,
122 .cs_num = 2,
124 { /* LPSS_SPT_SSP */
125 .offset = 0x200,
126 .reg_general = -1,
127 .reg_ssp = 0x20,
128 .reg_cs_ctrl = 0x24,
129 .reg_capabilities = -1,
130 .rx_threshold = 1,
131 .tx_threshold_lo = 32,
132 .tx_threshold_hi = 56,
134 { /* LPSS_BXT_SSP */
135 .offset = 0x200,
136 .reg_general = -1,
137 .reg_ssp = 0x20,
138 .reg_cs_ctrl = 0x24,
139 .reg_capabilities = 0xfc,
140 .rx_threshold = 1,
141 .tx_threshold_lo = 16,
142 .tx_threshold_hi = 48,
143 .cs_sel_shift = 8,
144 .cs_sel_mask = 3 << 8,
146 { /* LPSS_CNL_SSP */
147 .offset = 0x200,
148 .reg_general = -1,
149 .reg_ssp = 0x20,
150 .reg_cs_ctrl = 0x24,
151 .reg_capabilities = 0xfc,
152 .rx_threshold = 1,
153 .tx_threshold_lo = 32,
154 .tx_threshold_hi = 56,
155 .cs_sel_shift = 8,
156 .cs_sel_mask = 3 << 8,
160 static inline const struct lpss_config
161 *lpss_get_config(const struct driver_data *drv_data)
163 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
166 static bool is_lpss_ssp(const struct driver_data *drv_data)
168 switch (drv_data->ssp_type) {
169 case LPSS_LPT_SSP:
170 case LPSS_BYT_SSP:
171 case LPSS_BSW_SSP:
172 case LPSS_SPT_SSP:
173 case LPSS_BXT_SSP:
174 case LPSS_CNL_SSP:
175 return true;
176 default:
177 return false;
181 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
183 return drv_data->ssp_type == QUARK_X1000_SSP;
186 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
188 switch (drv_data->ssp_type) {
189 case QUARK_X1000_SSP:
190 return QUARK_X1000_SSCR1_CHANGE_MASK;
191 case CE4100_SSP:
192 return CE4100_SSCR1_CHANGE_MASK;
193 default:
194 return SSCR1_CHANGE_MASK;
198 static u32
199 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
201 switch (drv_data->ssp_type) {
202 case QUARK_X1000_SSP:
203 return RX_THRESH_QUARK_X1000_DFLT;
204 case CE4100_SSP:
205 return RX_THRESH_CE4100_DFLT;
206 default:
207 return RX_THRESH_DFLT;
211 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
213 u32 mask;
215 switch (drv_data->ssp_type) {
216 case QUARK_X1000_SSP:
217 mask = QUARK_X1000_SSSR_TFL_MASK;
218 break;
219 case CE4100_SSP:
220 mask = CE4100_SSSR_TFL_MASK;
221 break;
222 default:
223 mask = SSSR_TFL_MASK;
224 break;
227 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
230 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
231 u32 *sccr1_reg)
233 u32 mask;
235 switch (drv_data->ssp_type) {
236 case QUARK_X1000_SSP:
237 mask = QUARK_X1000_SSCR1_RFT;
238 break;
239 case CE4100_SSP:
240 mask = CE4100_SSCR1_RFT;
241 break;
242 default:
243 mask = SSCR1_RFT;
244 break;
246 *sccr1_reg &= ~mask;
249 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
250 u32 *sccr1_reg, u32 threshold)
252 switch (drv_data->ssp_type) {
253 case QUARK_X1000_SSP:
254 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
255 break;
256 case CE4100_SSP:
257 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
258 break;
259 default:
260 *sccr1_reg |= SSCR1_RxTresh(threshold);
261 break;
265 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
266 u32 clk_div, u8 bits)
268 switch (drv_data->ssp_type) {
269 case QUARK_X1000_SSP:
270 return clk_div
271 | QUARK_X1000_SSCR0_Motorola
272 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
273 | SSCR0_SSE;
274 default:
275 return clk_div
276 | SSCR0_Motorola
277 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
278 | SSCR0_SSE
279 | (bits > 16 ? SSCR0_EDSS : 0);
284 * Read and write LPSS SSP private registers. Caller must first check that
285 * is_lpss_ssp() returns true before these can be called.
287 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
289 WARN_ON(!drv_data->lpss_base);
290 return readl(drv_data->lpss_base + offset);
293 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
294 unsigned offset, u32 value)
296 WARN_ON(!drv_data->lpss_base);
297 writel(value, drv_data->lpss_base + offset);
301 * lpss_ssp_setup - perform LPSS SSP specific setup
302 * @drv_data: pointer to the driver private data
304 * Perform LPSS SSP specific setup. This function must be called first if
305 * one is going to use LPSS SSP private registers.
307 static void lpss_ssp_setup(struct driver_data *drv_data)
309 const struct lpss_config *config;
310 u32 value;
312 config = lpss_get_config(drv_data);
313 drv_data->lpss_base = drv_data->ioaddr + config->offset;
315 /* Enable software chip select control */
316 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
317 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
318 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
319 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
321 /* Enable multiblock DMA transfers */
322 if (drv_data->controller_info->enable_dma) {
323 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
325 if (config->reg_general >= 0) {
326 value = __lpss_ssp_read_priv(drv_data,
327 config->reg_general);
328 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
329 __lpss_ssp_write_priv(drv_data,
330 config->reg_general, value);
335 static void lpss_ssp_select_cs(struct spi_device *spi,
336 const struct lpss_config *config)
338 struct driver_data *drv_data =
339 spi_controller_get_devdata(spi->controller);
340 u32 value, cs;
342 if (!config->cs_sel_mask)
343 return;
345 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
347 cs = spi->chip_select;
348 cs <<= config->cs_sel_shift;
349 if (cs != (value & config->cs_sel_mask)) {
351 * When switching another chip select output active the
352 * output must be selected first and wait 2 ssp_clk cycles
353 * before changing state to active. Otherwise a short
354 * glitch will occur on the previous chip select since
355 * output select is latched but state control is not.
357 value &= ~config->cs_sel_mask;
358 value |= cs;
359 __lpss_ssp_write_priv(drv_data,
360 config->reg_cs_ctrl, value);
361 ndelay(1000000000 /
362 (drv_data->controller->max_speed_hz / 2));
366 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
368 struct driver_data *drv_data =
369 spi_controller_get_devdata(spi->controller);
370 const struct lpss_config *config;
371 u32 value;
373 config = lpss_get_config(drv_data);
375 if (enable)
376 lpss_ssp_select_cs(spi, config);
378 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
379 if (enable)
380 value &= ~LPSS_CS_CONTROL_CS_HIGH;
381 else
382 value |= LPSS_CS_CONTROL_CS_HIGH;
383 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
386 static void cs_assert(struct spi_device *spi)
388 struct chip_data *chip = spi_get_ctldata(spi);
389 struct driver_data *drv_data =
390 spi_controller_get_devdata(spi->controller);
392 if (drv_data->ssp_type == CE4100_SSP) {
393 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
394 return;
397 if (chip->cs_control) {
398 chip->cs_control(PXA2XX_CS_ASSERT);
399 return;
402 if (chip->gpiod_cs) {
403 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
404 return;
407 if (is_lpss_ssp(drv_data))
408 lpss_ssp_cs_control(spi, true);
411 static void cs_deassert(struct spi_device *spi)
413 struct chip_data *chip = spi_get_ctldata(spi);
414 struct driver_data *drv_data =
415 spi_controller_get_devdata(spi->controller);
416 unsigned long timeout;
418 if (drv_data->ssp_type == CE4100_SSP)
419 return;
421 /* Wait until SSP becomes idle before deasserting the CS */
422 timeout = jiffies + msecs_to_jiffies(10);
423 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
424 !time_after(jiffies, timeout))
425 cpu_relax();
427 if (chip->cs_control) {
428 chip->cs_control(PXA2XX_CS_DEASSERT);
429 return;
432 if (chip->gpiod_cs) {
433 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
434 return;
437 if (is_lpss_ssp(drv_data))
438 lpss_ssp_cs_control(spi, false);
441 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
443 if (level)
444 cs_deassert(spi);
445 else
446 cs_assert(spi);
449 int pxa2xx_spi_flush(struct driver_data *drv_data)
451 unsigned long limit = loops_per_jiffy << 1;
453 do {
454 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
455 pxa2xx_spi_read(drv_data, SSDR);
456 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
457 write_SSSR_CS(drv_data, SSSR_ROR);
459 return limit;
462 static int null_writer(struct driver_data *drv_data)
464 u8 n_bytes = drv_data->n_bytes;
466 if (pxa2xx_spi_txfifo_full(drv_data)
467 || (drv_data->tx == drv_data->tx_end))
468 return 0;
470 pxa2xx_spi_write(drv_data, SSDR, 0);
471 drv_data->tx += n_bytes;
473 return 1;
476 static int null_reader(struct driver_data *drv_data)
478 u8 n_bytes = drv_data->n_bytes;
480 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
481 && (drv_data->rx < drv_data->rx_end)) {
482 pxa2xx_spi_read(drv_data, SSDR);
483 drv_data->rx += n_bytes;
486 return drv_data->rx == drv_data->rx_end;
489 static int u8_writer(struct driver_data *drv_data)
491 if (pxa2xx_spi_txfifo_full(drv_data)
492 || (drv_data->tx == drv_data->tx_end))
493 return 0;
495 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
496 ++drv_data->tx;
498 return 1;
501 static int u8_reader(struct driver_data *drv_data)
503 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
504 && (drv_data->rx < drv_data->rx_end)) {
505 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
506 ++drv_data->rx;
509 return drv_data->rx == drv_data->rx_end;
512 static int u16_writer(struct driver_data *drv_data)
514 if (pxa2xx_spi_txfifo_full(drv_data)
515 || (drv_data->tx == drv_data->tx_end))
516 return 0;
518 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
519 drv_data->tx += 2;
521 return 1;
524 static int u16_reader(struct driver_data *drv_data)
526 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
527 && (drv_data->rx < drv_data->rx_end)) {
528 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
529 drv_data->rx += 2;
532 return drv_data->rx == drv_data->rx_end;
535 static int u32_writer(struct driver_data *drv_data)
537 if (pxa2xx_spi_txfifo_full(drv_data)
538 || (drv_data->tx == drv_data->tx_end))
539 return 0;
541 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
542 drv_data->tx += 4;
544 return 1;
547 static int u32_reader(struct driver_data *drv_data)
549 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
550 && (drv_data->rx < drv_data->rx_end)) {
551 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
552 drv_data->rx += 4;
555 return drv_data->rx == drv_data->rx_end;
558 static void reset_sccr1(struct driver_data *drv_data)
560 struct chip_data *chip =
561 spi_get_ctldata(drv_data->controller->cur_msg->spi);
562 u32 sccr1_reg;
564 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
565 switch (drv_data->ssp_type) {
566 case QUARK_X1000_SSP:
567 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
568 break;
569 case CE4100_SSP:
570 sccr1_reg &= ~CE4100_SSCR1_RFT;
571 break;
572 default:
573 sccr1_reg &= ~SSCR1_RFT;
574 break;
576 sccr1_reg |= chip->threshold;
577 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
580 static void int_error_stop(struct driver_data *drv_data, const char* msg)
582 /* Stop and reset SSP */
583 write_SSSR_CS(drv_data, drv_data->clear_sr);
584 reset_sccr1(drv_data);
585 if (!pxa25x_ssp_comp(drv_data))
586 pxa2xx_spi_write(drv_data, SSTO, 0);
587 pxa2xx_spi_flush(drv_data);
588 pxa2xx_spi_write(drv_data, SSCR0,
589 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
591 dev_err(&drv_data->pdev->dev, "%s\n", msg);
593 drv_data->controller->cur_msg->status = -EIO;
594 spi_finalize_current_transfer(drv_data->controller);
597 static void int_transfer_complete(struct driver_data *drv_data)
599 /* Clear and disable interrupts */
600 write_SSSR_CS(drv_data, drv_data->clear_sr);
601 reset_sccr1(drv_data);
602 if (!pxa25x_ssp_comp(drv_data))
603 pxa2xx_spi_write(drv_data, SSTO, 0);
605 spi_finalize_current_transfer(drv_data->controller);
608 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
610 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
611 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
613 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
615 if (irq_status & SSSR_ROR) {
616 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
617 return IRQ_HANDLED;
620 if (irq_status & SSSR_TUR) {
621 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
622 return IRQ_HANDLED;
625 if (irq_status & SSSR_TINT) {
626 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
627 if (drv_data->read(drv_data)) {
628 int_transfer_complete(drv_data);
629 return IRQ_HANDLED;
633 /* Drain rx fifo, Fill tx fifo and prevent overruns */
634 do {
635 if (drv_data->read(drv_data)) {
636 int_transfer_complete(drv_data);
637 return IRQ_HANDLED;
639 } while (drv_data->write(drv_data));
641 if (drv_data->read(drv_data)) {
642 int_transfer_complete(drv_data);
643 return IRQ_HANDLED;
646 if (drv_data->tx == drv_data->tx_end) {
647 u32 bytes_left;
648 u32 sccr1_reg;
650 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
651 sccr1_reg &= ~SSCR1_TIE;
654 * PXA25x_SSP has no timeout, set up rx threshould for the
655 * remaining RX bytes.
657 if (pxa25x_ssp_comp(drv_data)) {
658 u32 rx_thre;
660 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
662 bytes_left = drv_data->rx_end - drv_data->rx;
663 switch (drv_data->n_bytes) {
664 case 4:
665 bytes_left >>= 2;
666 break;
667 case 2:
668 bytes_left >>= 1;
669 break;
672 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
673 if (rx_thre > bytes_left)
674 rx_thre = bytes_left;
676 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
678 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
681 /* We did something */
682 return IRQ_HANDLED;
685 static void handle_bad_msg(struct driver_data *drv_data)
687 pxa2xx_spi_write(drv_data, SSCR0,
688 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
689 pxa2xx_spi_write(drv_data, SSCR1,
690 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
691 if (!pxa25x_ssp_comp(drv_data))
692 pxa2xx_spi_write(drv_data, SSTO, 0);
693 write_SSSR_CS(drv_data, drv_data->clear_sr);
695 dev_err(&drv_data->pdev->dev,
696 "bad message state in interrupt handler\n");
699 static irqreturn_t ssp_int(int irq, void *dev_id)
701 struct driver_data *drv_data = dev_id;
702 u32 sccr1_reg;
703 u32 mask = drv_data->mask_sr;
704 u32 status;
707 * The IRQ might be shared with other peripherals so we must first
708 * check that are we RPM suspended or not. If we are we assume that
709 * the IRQ was not for us (we shouldn't be RPM suspended when the
710 * interrupt is enabled).
712 if (pm_runtime_suspended(&drv_data->pdev->dev))
713 return IRQ_NONE;
716 * If the device is not yet in RPM suspended state and we get an
717 * interrupt that is meant for another device, check if status bits
718 * are all set to one. That means that the device is already
719 * powered off.
721 status = pxa2xx_spi_read(drv_data, SSSR);
722 if (status == ~0)
723 return IRQ_NONE;
725 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
727 /* Ignore possible writes if we don't need to write */
728 if (!(sccr1_reg & SSCR1_TIE))
729 mask &= ~SSSR_TFS;
731 /* Ignore RX timeout interrupt if it is disabled */
732 if (!(sccr1_reg & SSCR1_TINTE))
733 mask &= ~SSSR_TINT;
735 if (!(status & mask))
736 return IRQ_NONE;
738 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
739 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
741 if (!drv_data->controller->cur_msg) {
742 handle_bad_msg(drv_data);
743 /* Never fail */
744 return IRQ_HANDLED;
747 return drv_data->transfer_handler(drv_data);
751 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
752 * input frequency by fractions of 2^24. It also has a divider by 5.
754 * There are formulas to get baud rate value for given input frequency and
755 * divider parameters, such as DDS_CLK_RATE and SCR:
757 * Fsys = 200MHz
759 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
760 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
762 * DDS_CLK_RATE either 2^n or 2^n / 5.
763 * SCR is in range 0 .. 255
765 * Divisor = 5^i * 2^j * 2 * k
766 * i = [0, 1] i = 1 iff j = 0 or j > 3
767 * j = [0, 23] j = 0 iff i = 1
768 * k = [1, 256]
769 * Special case: j = 0, i = 1: Divisor = 2 / 5
771 * Accordingly to the specification the recommended values for DDS_CLK_RATE
772 * are:
773 * Case 1: 2^n, n = [0, 23]
774 * Case 2: 2^24 * 2 / 5 (0x666666)
775 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
777 * In all cases the lowest possible value is better.
779 * The function calculates parameters for all cases and chooses the one closest
780 * to the asked baud rate.
782 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
784 unsigned long xtal = 200000000;
785 unsigned long fref = xtal / 2; /* mandatory division by 2,
786 see (2) */
787 /* case 3 */
788 unsigned long fref1 = fref / 2; /* case 1 */
789 unsigned long fref2 = fref * 2 / 5; /* case 2 */
790 unsigned long scale;
791 unsigned long q, q1, q2;
792 long r, r1, r2;
793 u32 mul;
795 /* Case 1 */
797 /* Set initial value for DDS_CLK_RATE */
798 mul = (1 << 24) >> 1;
800 /* Calculate initial quot */
801 q1 = DIV_ROUND_UP(fref1, rate);
803 /* Scale q1 if it's too big */
804 if (q1 > 256) {
805 /* Scale q1 to range [1, 512] */
806 scale = fls_long(q1 - 1);
807 if (scale > 9) {
808 q1 >>= scale - 9;
809 mul >>= scale - 9;
812 /* Round the result if we have a remainder */
813 q1 += q1 & 1;
816 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
817 scale = __ffs(q1);
818 q1 >>= scale;
819 mul >>= scale;
821 /* Get the remainder */
822 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
824 /* Case 2 */
826 q2 = DIV_ROUND_UP(fref2, rate);
827 r2 = abs(fref2 / q2 - rate);
830 * Choose the best between two: less remainder we have the better. We
831 * can't go case 2 if q2 is greater than 256 since SCR register can
832 * hold only values 0 .. 255.
834 if (r2 >= r1 || q2 > 256) {
835 /* case 1 is better */
836 r = r1;
837 q = q1;
838 } else {
839 /* case 2 is better */
840 r = r2;
841 q = q2;
842 mul = (1 << 24) * 2 / 5;
845 /* Check case 3 only if the divisor is big enough */
846 if (fref / rate >= 80) {
847 u64 fssp;
848 u32 m;
850 /* Calculate initial quot */
851 q1 = DIV_ROUND_UP(fref, rate);
852 m = (1 << 24) / q1;
854 /* Get the remainder */
855 fssp = (u64)fref * m;
856 do_div(fssp, 1 << 24);
857 r1 = abs(fssp - rate);
859 /* Choose this one if it suits better */
860 if (r1 < r) {
861 /* case 3 is better */
862 q = 1;
863 mul = m;
867 *dds = mul;
868 return q - 1;
871 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
873 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
874 const struct ssp_device *ssp = drv_data->ssp;
876 rate = min_t(int, ssp_clk, rate);
879 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
880 * that the SSP transmission rate can be greater than the device rate
882 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
883 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
884 else
885 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
888 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
889 int rate)
891 struct chip_data *chip =
892 spi_get_ctldata(drv_data->controller->cur_msg->spi);
893 unsigned int clk_div;
895 switch (drv_data->ssp_type) {
896 case QUARK_X1000_SSP:
897 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
898 break;
899 default:
900 clk_div = ssp_get_clk_div(drv_data, rate);
901 break;
903 return clk_div << 8;
906 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
907 struct spi_device *spi,
908 struct spi_transfer *xfer)
910 struct chip_data *chip = spi_get_ctldata(spi);
912 return chip->enable_dma &&
913 xfer->len <= MAX_DMA_LEN &&
914 xfer->len >= chip->dma_burst_size;
917 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
918 struct spi_device *spi,
919 struct spi_transfer *transfer)
921 struct driver_data *drv_data = spi_controller_get_devdata(controller);
922 struct spi_message *message = controller->cur_msg;
923 struct chip_data *chip = spi_get_ctldata(spi);
924 u32 dma_thresh = chip->dma_threshold;
925 u32 dma_burst = chip->dma_burst_size;
926 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
927 u32 clk_div;
928 u8 bits;
929 u32 speed;
930 u32 cr0;
931 u32 cr1;
932 int err;
933 int dma_mapped;
935 /* Check if we can DMA this transfer */
936 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
938 /* reject already-mapped transfers; PIO won't always work */
939 if (message->is_dma_mapped
940 || transfer->rx_dma || transfer->tx_dma) {
941 dev_err(&spi->dev,
942 "Mapped transfer length of %u is greater than %d\n",
943 transfer->len, MAX_DMA_LEN);
944 return -EINVAL;
947 /* warn ... we force this to PIO mode */
948 dev_warn_ratelimited(&spi->dev,
949 "DMA disabled for transfer length %ld greater than %d\n",
950 (long)transfer->len, MAX_DMA_LEN);
953 /* Setup the transfer state based on the type of transfer */
954 if (pxa2xx_spi_flush(drv_data) == 0) {
955 dev_err(&spi->dev, "Flush failed\n");
956 return -EIO;
958 drv_data->n_bytes = chip->n_bytes;
959 drv_data->tx = (void *)transfer->tx_buf;
960 drv_data->tx_end = drv_data->tx + transfer->len;
961 drv_data->rx = transfer->rx_buf;
962 drv_data->rx_end = drv_data->rx + transfer->len;
963 drv_data->write = drv_data->tx ? chip->write : null_writer;
964 drv_data->read = drv_data->rx ? chip->read : null_reader;
966 /* Change speed and bit per word on a per transfer */
967 bits = transfer->bits_per_word;
968 speed = transfer->speed_hz;
970 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
972 if (bits <= 8) {
973 drv_data->n_bytes = 1;
974 drv_data->read = drv_data->read != null_reader ?
975 u8_reader : null_reader;
976 drv_data->write = drv_data->write != null_writer ?
977 u8_writer : null_writer;
978 } else if (bits <= 16) {
979 drv_data->n_bytes = 2;
980 drv_data->read = drv_data->read != null_reader ?
981 u16_reader : null_reader;
982 drv_data->write = drv_data->write != null_writer ?
983 u16_writer : null_writer;
984 } else if (bits <= 32) {
985 drv_data->n_bytes = 4;
986 drv_data->read = drv_data->read != null_reader ?
987 u32_reader : null_reader;
988 drv_data->write = drv_data->write != null_writer ?
989 u32_writer : null_writer;
992 * if bits/word is changed in dma mode, then must check the
993 * thresholds and burst also
995 if (chip->enable_dma) {
996 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
997 spi,
998 bits, &dma_burst,
999 &dma_thresh))
1000 dev_warn_ratelimited(&spi->dev,
1001 "DMA burst size reduced to match bits_per_word\n");
1004 dma_mapped = controller->can_dma &&
1005 controller->can_dma(controller, spi, transfer) &&
1006 controller->cur_msg_mapped;
1007 if (dma_mapped) {
1009 /* Ensure we have the correct interrupt handler */
1010 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1012 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1013 if (err)
1014 return err;
1016 /* Clear status and start DMA engine */
1017 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1018 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1020 pxa2xx_spi_dma_start(drv_data);
1021 } else {
1022 /* Ensure we have the correct interrupt handler */
1023 drv_data->transfer_handler = interrupt_transfer;
1025 /* Clear status */
1026 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1027 write_SSSR_CS(drv_data, drv_data->clear_sr);
1030 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1031 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1032 if (!pxa25x_ssp_comp(drv_data))
1033 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1034 controller->max_speed_hz
1035 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1036 dma_mapped ? "DMA" : "PIO");
1037 else
1038 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1039 controller->max_speed_hz / 2
1040 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1041 dma_mapped ? "DMA" : "PIO");
1043 if (is_lpss_ssp(drv_data)) {
1044 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1045 != chip->lpss_rx_threshold)
1046 pxa2xx_spi_write(drv_data, SSIRF,
1047 chip->lpss_rx_threshold);
1048 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1049 != chip->lpss_tx_threshold)
1050 pxa2xx_spi_write(drv_data, SSITF,
1051 chip->lpss_tx_threshold);
1054 if (is_quark_x1000_ssp(drv_data) &&
1055 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1056 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1058 /* see if we need to reload the config registers */
1059 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1060 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1061 != (cr1 & change_mask)) {
1062 /* stop the SSP, and update the other bits */
1063 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1064 if (!pxa25x_ssp_comp(drv_data))
1065 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1066 /* first set CR1 without interrupt and service enables */
1067 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1068 /* restart the SSP */
1069 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1071 } else {
1072 if (!pxa25x_ssp_comp(drv_data))
1073 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1076 if (drv_data->ssp_type == MMP2_SSP) {
1077 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1078 & SSSR_TFL_MASK) >> 8;
1080 if (tx_level) {
1081 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1082 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1083 tx_level);
1084 if (tx_level > transfer->len)
1085 tx_level = transfer->len;
1086 drv_data->tx += tx_level;
1090 if (spi_controller_is_slave(controller)) {
1091 while (drv_data->write(drv_data))
1093 if (drv_data->gpiod_ready) {
1094 gpiod_set_value(drv_data->gpiod_ready, 1);
1095 udelay(1);
1096 gpiod_set_value(drv_data->gpiod_ready, 0);
1101 * Release the data by enabling service requests and interrupts,
1102 * without changing any mode bits
1104 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1106 return 1;
1109 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1111 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1113 /* Stop and reset SSP */
1114 write_SSSR_CS(drv_data, drv_data->clear_sr);
1115 reset_sccr1(drv_data);
1116 if (!pxa25x_ssp_comp(drv_data))
1117 pxa2xx_spi_write(drv_data, SSTO, 0);
1118 pxa2xx_spi_flush(drv_data);
1119 pxa2xx_spi_write(drv_data, SSCR0,
1120 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1122 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1124 drv_data->controller->cur_msg->status = -EINTR;
1125 spi_finalize_current_transfer(drv_data->controller);
1127 return 0;
1130 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1131 struct spi_message *msg)
1133 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1135 /* Disable the SSP */
1136 pxa2xx_spi_write(drv_data, SSCR0,
1137 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1138 /* Clear and disable interrupts and service requests */
1139 write_SSSR_CS(drv_data, drv_data->clear_sr);
1140 pxa2xx_spi_write(drv_data, SSCR1,
1141 pxa2xx_spi_read(drv_data, SSCR1)
1142 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1143 if (!pxa25x_ssp_comp(drv_data))
1144 pxa2xx_spi_write(drv_data, SSTO, 0);
1147 * Stop the DMA if running. Note DMA callback handler may have unset
1148 * the dma_running already, which is fine as stopping is not needed
1149 * then but we shouldn't rely this flag for anything else than
1150 * stopping. For instance to differentiate between PIO and DMA
1151 * transfers.
1153 if (atomic_read(&drv_data->dma_running))
1154 pxa2xx_spi_dma_stop(drv_data);
1157 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1159 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1161 /* Disable the SSP now */
1162 pxa2xx_spi_write(drv_data, SSCR0,
1163 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1165 return 0;
1168 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1169 struct pxa2xx_spi_chip *chip_info)
1171 struct driver_data *drv_data =
1172 spi_controller_get_devdata(spi->controller);
1173 struct gpio_desc *gpiod;
1174 int err = 0;
1176 if (chip == NULL)
1177 return 0;
1179 if (drv_data->cs_gpiods) {
1180 gpiod = drv_data->cs_gpiods[spi->chip_select];
1181 if (gpiod) {
1182 chip->gpiod_cs = gpiod;
1183 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1184 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1187 return 0;
1190 if (chip_info == NULL)
1191 return 0;
1193 /* NOTE: setup() can be called multiple times, possibly with
1194 * different chip_info, release previously requested GPIO
1196 if (chip->gpiod_cs) {
1197 gpiod_put(chip->gpiod_cs);
1198 chip->gpiod_cs = NULL;
1201 /* If (*cs_control) is provided, ignore GPIO chip select */
1202 if (chip_info->cs_control) {
1203 chip->cs_control = chip_info->cs_control;
1204 return 0;
1207 if (gpio_is_valid(chip_info->gpio_cs)) {
1208 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1209 if (err) {
1210 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1211 chip_info->gpio_cs);
1212 return err;
1215 gpiod = gpio_to_desc(chip_info->gpio_cs);
1216 chip->gpiod_cs = gpiod;
1217 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1219 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1222 return err;
1225 static int setup(struct spi_device *spi)
1227 struct pxa2xx_spi_chip *chip_info;
1228 struct chip_data *chip;
1229 const struct lpss_config *config;
1230 struct driver_data *drv_data =
1231 spi_controller_get_devdata(spi->controller);
1232 uint tx_thres, tx_hi_thres, rx_thres;
1234 switch (drv_data->ssp_type) {
1235 case QUARK_X1000_SSP:
1236 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1237 tx_hi_thres = 0;
1238 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1239 break;
1240 case CE4100_SSP:
1241 tx_thres = TX_THRESH_CE4100_DFLT;
1242 tx_hi_thres = 0;
1243 rx_thres = RX_THRESH_CE4100_DFLT;
1244 break;
1245 case LPSS_LPT_SSP:
1246 case LPSS_BYT_SSP:
1247 case LPSS_BSW_SSP:
1248 case LPSS_SPT_SSP:
1249 case LPSS_BXT_SSP:
1250 case LPSS_CNL_SSP:
1251 config = lpss_get_config(drv_data);
1252 tx_thres = config->tx_threshold_lo;
1253 tx_hi_thres = config->tx_threshold_hi;
1254 rx_thres = config->rx_threshold;
1255 break;
1256 default:
1257 tx_hi_thres = 0;
1258 if (spi_controller_is_slave(drv_data->controller)) {
1259 tx_thres = 1;
1260 rx_thres = 2;
1261 } else {
1262 tx_thres = TX_THRESH_DFLT;
1263 rx_thres = RX_THRESH_DFLT;
1265 break;
1268 /* Only alloc on first setup */
1269 chip = spi_get_ctldata(spi);
1270 if (!chip) {
1271 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1272 if (!chip)
1273 return -ENOMEM;
1275 if (drv_data->ssp_type == CE4100_SSP) {
1276 if (spi->chip_select > 4) {
1277 dev_err(&spi->dev,
1278 "failed setup: cs number must not be > 4.\n");
1279 kfree(chip);
1280 return -EINVAL;
1283 chip->frm = spi->chip_select;
1285 chip->enable_dma = drv_data->controller_info->enable_dma;
1286 chip->timeout = TIMOUT_DFLT;
1289 /* protocol drivers may change the chip settings, so...
1290 * if chip_info exists, use it */
1291 chip_info = spi->controller_data;
1293 /* chip_info isn't always needed */
1294 chip->cr1 = 0;
1295 if (chip_info) {
1296 if (chip_info->timeout)
1297 chip->timeout = chip_info->timeout;
1298 if (chip_info->tx_threshold)
1299 tx_thres = chip_info->tx_threshold;
1300 if (chip_info->tx_hi_threshold)
1301 tx_hi_thres = chip_info->tx_hi_threshold;
1302 if (chip_info->rx_threshold)
1303 rx_thres = chip_info->rx_threshold;
1304 chip->dma_threshold = 0;
1305 if (chip_info->enable_loopback)
1306 chip->cr1 = SSCR1_LBM;
1308 if (spi_controller_is_slave(drv_data->controller)) {
1309 chip->cr1 |= SSCR1_SCFR;
1310 chip->cr1 |= SSCR1_SCLKDIR;
1311 chip->cr1 |= SSCR1_SFRMDIR;
1312 chip->cr1 |= SSCR1_SPH;
1315 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1316 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1317 | SSITF_TxHiThresh(tx_hi_thres);
1319 /* set dma burst and threshold outside of chip_info path so that if
1320 * chip_info goes away after setting chip->enable_dma, the
1321 * burst and threshold can still respond to changes in bits_per_word */
1322 if (chip->enable_dma) {
1323 /* set up legal burst and threshold for dma */
1324 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1325 spi->bits_per_word,
1326 &chip->dma_burst_size,
1327 &chip->dma_threshold)) {
1328 dev_warn(&spi->dev,
1329 "in setup: DMA burst size reduced to match bits_per_word\n");
1331 dev_dbg(&spi->dev,
1332 "in setup: DMA burst size set to %u\n",
1333 chip->dma_burst_size);
1336 switch (drv_data->ssp_type) {
1337 case QUARK_X1000_SSP:
1338 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1339 & QUARK_X1000_SSCR1_RFT)
1340 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1341 & QUARK_X1000_SSCR1_TFT);
1342 break;
1343 case CE4100_SSP:
1344 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1345 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1346 break;
1347 default:
1348 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1349 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1350 break;
1353 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1354 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1355 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1357 if (spi->mode & SPI_LOOP)
1358 chip->cr1 |= SSCR1_LBM;
1360 if (spi->bits_per_word <= 8) {
1361 chip->n_bytes = 1;
1362 chip->read = u8_reader;
1363 chip->write = u8_writer;
1364 } else if (spi->bits_per_word <= 16) {
1365 chip->n_bytes = 2;
1366 chip->read = u16_reader;
1367 chip->write = u16_writer;
1368 } else if (spi->bits_per_word <= 32) {
1369 chip->n_bytes = 4;
1370 chip->read = u32_reader;
1371 chip->write = u32_writer;
1374 spi_set_ctldata(spi, chip);
1376 if (drv_data->ssp_type == CE4100_SSP)
1377 return 0;
1379 return setup_cs(spi, chip, chip_info);
1382 static void cleanup(struct spi_device *spi)
1384 struct chip_data *chip = spi_get_ctldata(spi);
1385 struct driver_data *drv_data =
1386 spi_controller_get_devdata(spi->controller);
1388 if (!chip)
1389 return;
1391 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1392 chip->gpiod_cs)
1393 gpiod_put(chip->gpiod_cs);
1395 kfree(chip);
1398 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1399 { "INT33C0", LPSS_LPT_SSP },
1400 { "INT33C1", LPSS_LPT_SSP },
1401 { "INT3430", LPSS_LPT_SSP },
1402 { "INT3431", LPSS_LPT_SSP },
1403 { "80860F0E", LPSS_BYT_SSP },
1404 { "8086228E", LPSS_BSW_SSP },
1405 { },
1407 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1410 * PCI IDs of compound devices that integrate both host controller and private
1411 * integrated DMA engine. Please note these are not used in module
1412 * autoloading and probing in this module but matching the LPSS SSP type.
1414 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1415 /* SPT-LP */
1416 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1417 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1418 /* SPT-H */
1419 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1420 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1421 /* KBL-H */
1422 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1423 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1424 /* BXT A-Step */
1425 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1426 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1427 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1428 /* BXT B-Step */
1429 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1430 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1431 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1432 /* GLK */
1433 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1434 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1435 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1436 /* ICL-LP */
1437 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1438 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1439 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1440 /* APL */
1441 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1442 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1443 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1444 /* CNL-LP */
1445 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1446 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1447 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1448 /* CNL-H */
1449 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1450 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1451 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1452 /* CML-LP */
1453 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1454 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1455 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1456 { },
1459 static const struct of_device_id pxa2xx_spi_of_match[] = {
1460 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1463 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1465 #ifdef CONFIG_ACPI
1467 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1469 unsigned int devid;
1470 int port_id = -1;
1472 if (adev && adev->pnp.unique_id &&
1473 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1474 port_id = devid;
1475 return port_id;
1478 #else /* !CONFIG_ACPI */
1480 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1482 return -1;
1485 #endif /* CONFIG_ACPI */
1488 #ifdef CONFIG_PCI
1490 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1492 return param == chan->device->dev;
1495 #endif /* CONFIG_PCI */
1497 static struct pxa2xx_spi_controller *
1498 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1500 struct pxa2xx_spi_controller *pdata;
1501 struct acpi_device *adev;
1502 struct ssp_device *ssp;
1503 struct resource *res;
1504 const struct acpi_device_id *adev_id = NULL;
1505 const struct pci_device_id *pcidev_id = NULL;
1506 const struct of_device_id *of_id = NULL;
1507 enum pxa_ssp_type type;
1509 adev = ACPI_COMPANION(&pdev->dev);
1511 if (pdev->dev.of_node)
1512 of_id = of_match_device(pdev->dev.driver->of_match_table,
1513 &pdev->dev);
1514 else if (dev_is_pci(pdev->dev.parent))
1515 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1516 to_pci_dev(pdev->dev.parent));
1517 else if (adev)
1518 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1519 &pdev->dev);
1520 else
1521 return NULL;
1523 if (adev_id)
1524 type = (enum pxa_ssp_type)adev_id->driver_data;
1525 else if (pcidev_id)
1526 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1527 else if (of_id)
1528 type = (enum pxa_ssp_type)of_id->data;
1529 else
1530 return NULL;
1532 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1533 if (!pdata)
1534 return NULL;
1536 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1537 if (!res)
1538 return NULL;
1540 ssp = &pdata->ssp;
1542 ssp->phys_base = res->start;
1543 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1544 if (IS_ERR(ssp->mmio_base))
1545 return NULL;
1547 #ifdef CONFIG_PCI
1548 if (pcidev_id) {
1549 pdata->tx_param = pdev->dev.parent;
1550 pdata->rx_param = pdev->dev.parent;
1551 pdata->dma_filter = pxa2xx_spi_idma_filter;
1553 #endif
1555 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1556 ssp->irq = platform_get_irq(pdev, 0);
1557 ssp->type = type;
1558 ssp->pdev = pdev;
1559 ssp->port_id = pxa2xx_spi_get_port_id(adev);
1561 pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave");
1562 pdata->num_chipselect = 1;
1563 pdata->enable_dma = true;
1564 pdata->dma_burst_size = 1;
1566 return pdata;
1569 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1570 unsigned int cs)
1572 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1574 if (has_acpi_companion(&drv_data->pdev->dev)) {
1575 switch (drv_data->ssp_type) {
1577 * For Atoms the ACPI DeviceSelection used by the Windows
1578 * driver starts from 1 instead of 0 so translate it here
1579 * to match what Linux expects.
1581 case LPSS_BYT_SSP:
1582 case LPSS_BSW_SSP:
1583 return cs - 1;
1585 default:
1586 break;
1590 return cs;
1593 static int pxa2xx_spi_probe(struct platform_device *pdev)
1595 struct device *dev = &pdev->dev;
1596 struct pxa2xx_spi_controller *platform_info;
1597 struct spi_controller *controller;
1598 struct driver_data *drv_data;
1599 struct ssp_device *ssp;
1600 const struct lpss_config *config;
1601 int status, count;
1602 u32 tmp;
1604 platform_info = dev_get_platdata(dev);
1605 if (!platform_info) {
1606 platform_info = pxa2xx_spi_init_pdata(pdev);
1607 if (!platform_info) {
1608 dev_err(&pdev->dev, "missing platform data\n");
1609 return -ENODEV;
1613 ssp = pxa_ssp_request(pdev->id, pdev->name);
1614 if (!ssp)
1615 ssp = &platform_info->ssp;
1617 if (!ssp->mmio_base) {
1618 dev_err(&pdev->dev, "failed to get ssp\n");
1619 return -ENODEV;
1622 if (platform_info->is_slave)
1623 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1624 else
1625 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1627 if (!controller) {
1628 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1629 pxa_ssp_free(ssp);
1630 return -ENOMEM;
1632 drv_data = spi_controller_get_devdata(controller);
1633 drv_data->controller = controller;
1634 drv_data->controller_info = platform_info;
1635 drv_data->pdev = pdev;
1636 drv_data->ssp = ssp;
1638 controller->dev.of_node = pdev->dev.of_node;
1639 /* the spi->mode bits understood by this driver: */
1640 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1642 controller->bus_num = ssp->port_id;
1643 controller->dma_alignment = DMA_ALIGNMENT;
1644 controller->cleanup = cleanup;
1645 controller->setup = setup;
1646 controller->set_cs = pxa2xx_spi_set_cs;
1647 controller->transfer_one = pxa2xx_spi_transfer_one;
1648 controller->slave_abort = pxa2xx_spi_slave_abort;
1649 controller->handle_err = pxa2xx_spi_handle_err;
1650 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1651 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1652 controller->auto_runtime_pm = true;
1653 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1655 drv_data->ssp_type = ssp->type;
1657 drv_data->ioaddr = ssp->mmio_base;
1658 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1659 if (pxa25x_ssp_comp(drv_data)) {
1660 switch (drv_data->ssp_type) {
1661 case QUARK_X1000_SSP:
1662 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1663 break;
1664 default:
1665 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1666 break;
1669 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1670 drv_data->dma_cr1 = 0;
1671 drv_data->clear_sr = SSSR_ROR;
1672 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1673 } else {
1674 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1675 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1676 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1677 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1678 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1679 | SSSR_ROR | SSSR_TUR;
1682 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1683 drv_data);
1684 if (status < 0) {
1685 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1686 goto out_error_controller_alloc;
1689 /* Setup DMA if requested */
1690 if (platform_info->enable_dma) {
1691 status = pxa2xx_spi_dma_setup(drv_data);
1692 if (status) {
1693 dev_warn(dev, "no DMA channels available, using PIO\n");
1694 platform_info->enable_dma = false;
1695 } else {
1696 controller->can_dma = pxa2xx_spi_can_dma;
1697 controller->max_dma_len = MAX_DMA_LEN;
1701 /* Enable SOC clock */
1702 status = clk_prepare_enable(ssp->clk);
1703 if (status)
1704 goto out_error_dma_irq_alloc;
1706 controller->max_speed_hz = clk_get_rate(ssp->clk);
1708 /* Load default SSP configuration */
1709 pxa2xx_spi_write(drv_data, SSCR0, 0);
1710 switch (drv_data->ssp_type) {
1711 case QUARK_X1000_SSP:
1712 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1713 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1714 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1716 /* using the Motorola SPI protocol and use 8 bit frame */
1717 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1718 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1719 break;
1720 case CE4100_SSP:
1721 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1722 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1723 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1724 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1725 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1726 break;
1727 default:
1729 if (spi_controller_is_slave(controller)) {
1730 tmp = SSCR1_SCFR |
1731 SSCR1_SCLKDIR |
1732 SSCR1_SFRMDIR |
1733 SSCR1_RxTresh(2) |
1734 SSCR1_TxTresh(1) |
1735 SSCR1_SPH;
1736 } else {
1737 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1738 SSCR1_TxTresh(TX_THRESH_DFLT);
1740 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1741 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1742 if (!spi_controller_is_slave(controller))
1743 tmp |= SSCR0_SCR(2);
1744 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1745 break;
1748 if (!pxa25x_ssp_comp(drv_data))
1749 pxa2xx_spi_write(drv_data, SSTO, 0);
1751 if (!is_quark_x1000_ssp(drv_data))
1752 pxa2xx_spi_write(drv_data, SSPSP, 0);
1754 if (is_lpss_ssp(drv_data)) {
1755 lpss_ssp_setup(drv_data);
1756 config = lpss_get_config(drv_data);
1757 if (config->reg_capabilities >= 0) {
1758 tmp = __lpss_ssp_read_priv(drv_data,
1759 config->reg_capabilities);
1760 tmp &= LPSS_CAPS_CS_EN_MASK;
1761 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1762 platform_info->num_chipselect = ffz(tmp);
1763 } else if (config->cs_num) {
1764 platform_info->num_chipselect = config->cs_num;
1767 controller->num_chipselect = platform_info->num_chipselect;
1769 count = gpiod_count(&pdev->dev, "cs");
1770 if (count > 0) {
1771 int i;
1773 controller->num_chipselect = max_t(int, count,
1774 controller->num_chipselect);
1776 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1777 controller->num_chipselect, sizeof(struct gpio_desc *),
1778 GFP_KERNEL);
1779 if (!drv_data->cs_gpiods) {
1780 status = -ENOMEM;
1781 goto out_error_clock_enabled;
1784 for (i = 0; i < controller->num_chipselect; i++) {
1785 struct gpio_desc *gpiod;
1787 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1788 if (IS_ERR(gpiod)) {
1789 /* Means use native chip select */
1790 if (PTR_ERR(gpiod) == -ENOENT)
1791 continue;
1793 status = PTR_ERR(gpiod);
1794 goto out_error_clock_enabled;
1795 } else {
1796 drv_data->cs_gpiods[i] = gpiod;
1801 if (platform_info->is_slave) {
1802 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1803 "ready", GPIOD_OUT_LOW);
1804 if (IS_ERR(drv_data->gpiod_ready)) {
1805 status = PTR_ERR(drv_data->gpiod_ready);
1806 goto out_error_clock_enabled;
1810 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1811 pm_runtime_use_autosuspend(&pdev->dev);
1812 pm_runtime_set_active(&pdev->dev);
1813 pm_runtime_enable(&pdev->dev);
1815 /* Register with the SPI framework */
1816 platform_set_drvdata(pdev, drv_data);
1817 status = devm_spi_register_controller(&pdev->dev, controller);
1818 if (status != 0) {
1819 dev_err(&pdev->dev, "problem registering spi controller\n");
1820 goto out_error_clock_enabled;
1823 return status;
1825 out_error_clock_enabled:
1826 pm_runtime_put_noidle(&pdev->dev);
1827 pm_runtime_disable(&pdev->dev);
1828 clk_disable_unprepare(ssp->clk);
1830 out_error_dma_irq_alloc:
1831 pxa2xx_spi_dma_release(drv_data);
1832 free_irq(ssp->irq, drv_data);
1834 out_error_controller_alloc:
1835 spi_controller_put(controller);
1836 pxa_ssp_free(ssp);
1837 return status;
1840 static int pxa2xx_spi_remove(struct platform_device *pdev)
1842 struct driver_data *drv_data = platform_get_drvdata(pdev);
1843 struct ssp_device *ssp;
1845 if (!drv_data)
1846 return 0;
1847 ssp = drv_data->ssp;
1849 pm_runtime_get_sync(&pdev->dev);
1851 /* Disable the SSP at the peripheral and SOC level */
1852 pxa2xx_spi_write(drv_data, SSCR0, 0);
1853 clk_disable_unprepare(ssp->clk);
1855 /* Release DMA */
1856 if (drv_data->controller_info->enable_dma)
1857 pxa2xx_spi_dma_release(drv_data);
1859 pm_runtime_put_noidle(&pdev->dev);
1860 pm_runtime_disable(&pdev->dev);
1862 /* Release IRQ */
1863 free_irq(ssp->irq, drv_data);
1865 /* Release SSP */
1866 pxa_ssp_free(ssp);
1868 return 0;
1871 #ifdef CONFIG_PM_SLEEP
1872 static int pxa2xx_spi_suspend(struct device *dev)
1874 struct driver_data *drv_data = dev_get_drvdata(dev);
1875 struct ssp_device *ssp = drv_data->ssp;
1876 int status;
1878 status = spi_controller_suspend(drv_data->controller);
1879 if (status != 0)
1880 return status;
1881 pxa2xx_spi_write(drv_data, SSCR0, 0);
1883 if (!pm_runtime_suspended(dev))
1884 clk_disable_unprepare(ssp->clk);
1886 return 0;
1889 static int pxa2xx_spi_resume(struct device *dev)
1891 struct driver_data *drv_data = dev_get_drvdata(dev);
1892 struct ssp_device *ssp = drv_data->ssp;
1893 int status;
1895 /* Enable the SSP clock */
1896 if (!pm_runtime_suspended(dev)) {
1897 status = clk_prepare_enable(ssp->clk);
1898 if (status)
1899 return status;
1902 /* Start the queue running */
1903 return spi_controller_resume(drv_data->controller);
1905 #endif
1907 #ifdef CONFIG_PM
1908 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1910 struct driver_data *drv_data = dev_get_drvdata(dev);
1912 clk_disable_unprepare(drv_data->ssp->clk);
1913 return 0;
1916 static int pxa2xx_spi_runtime_resume(struct device *dev)
1918 struct driver_data *drv_data = dev_get_drvdata(dev);
1919 int status;
1921 status = clk_prepare_enable(drv_data->ssp->clk);
1922 return status;
1924 #endif
1926 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1927 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1928 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1929 pxa2xx_spi_runtime_resume, NULL)
1932 static struct platform_driver driver = {
1933 .driver = {
1934 .name = "pxa2xx-spi",
1935 .pm = &pxa2xx_spi_pm_ops,
1936 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1937 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1939 .probe = pxa2xx_spi_probe,
1940 .remove = pxa2xx_spi_remove,
1943 static int __init pxa2xx_spi_init(void)
1945 return platform_driver_register(&driver);
1947 subsys_initcall(pxa2xx_spi_init);
1949 static void __exit pxa2xx_spi_exit(void)
1951 platform_driver_unregister(&driver);
1953 module_exit(pxa2xx_spi_exit);
1955 MODULE_SOFTDEP("pre: dw_dmac");