1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
7 #include <linux/bitops.h>
8 #include <linux/init.h>
9 #include <linux/module.h>
10 #include <linux/device.h>
11 #include <linux/ioport.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/platform_device.h>
18 #include <linux/spi/pxa2xx_spi.h>
19 #include <linux/spi/spi.h>
20 #include <linux/delay.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/slab.h>
24 #include <linux/clk.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/acpi.h>
27 #include <linux/of_device.h>
29 #include "spi-pxa2xx.h"
31 MODULE_AUTHOR("Stephen Street");
32 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("platform:pxa2xx-spi");
36 #define TIMOUT_DFLT 1000
39 * for testing SSCR1 changes that require SSP restart, basically
40 * everything except the service and interrupt enables, the pxa270 developer
41 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
42 * list, but the PXA255 dev man says all bits without really meaning the
43 * service and interrupt enables
45 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
46 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
47 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
48 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
49 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
50 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
52 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
53 | QUARK_X1000_SSCR1_EFWR \
54 | QUARK_X1000_SSCR1_RFT \
55 | QUARK_X1000_SSCR1_TFT \
56 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
58 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
59 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
60 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
61 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
62 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
68 #define LPSS_CAPS_CS_EN_SHIFT 9
69 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
72 /* LPSS offset from drv_data->ioaddr */
74 /* Register offsets from drv_data->lpss_base or -1 */
83 /* Chip select control */
84 unsigned cs_sel_shift
;
89 /* Keep these sorted with enum pxa_ssp_type */
90 static const struct lpss_config lpss_platforms
[] = {
96 .reg_capabilities
= -1,
98 .tx_threshold_lo
= 160,
99 .tx_threshold_hi
= 224,
106 .reg_capabilities
= -1,
108 .tx_threshold_lo
= 160,
109 .tx_threshold_hi
= 224,
116 .reg_capabilities
= -1,
118 .tx_threshold_lo
= 160,
119 .tx_threshold_hi
= 224,
121 .cs_sel_mask
= 1 << 2,
129 .reg_capabilities
= -1,
131 .tx_threshold_lo
= 32,
132 .tx_threshold_hi
= 56,
139 .reg_capabilities
= 0xfc,
141 .tx_threshold_lo
= 16,
142 .tx_threshold_hi
= 48,
144 .cs_sel_mask
= 3 << 8,
151 .reg_capabilities
= 0xfc,
153 .tx_threshold_lo
= 32,
154 .tx_threshold_hi
= 56,
156 .cs_sel_mask
= 3 << 8,
160 static inline const struct lpss_config
161 *lpss_get_config(const struct driver_data
*drv_data
)
163 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
166 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
168 switch (drv_data
->ssp_type
) {
181 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
183 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
186 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
188 switch (drv_data
->ssp_type
) {
189 case QUARK_X1000_SSP
:
190 return QUARK_X1000_SSCR1_CHANGE_MASK
;
192 return CE4100_SSCR1_CHANGE_MASK
;
194 return SSCR1_CHANGE_MASK
;
199 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
201 switch (drv_data
->ssp_type
) {
202 case QUARK_X1000_SSP
:
203 return RX_THRESH_QUARK_X1000_DFLT
;
205 return RX_THRESH_CE4100_DFLT
;
207 return RX_THRESH_DFLT
;
211 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
215 switch (drv_data
->ssp_type
) {
216 case QUARK_X1000_SSP
:
217 mask
= QUARK_X1000_SSSR_TFL_MASK
;
220 mask
= CE4100_SSSR_TFL_MASK
;
223 mask
= SSSR_TFL_MASK
;
227 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
230 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
235 switch (drv_data
->ssp_type
) {
236 case QUARK_X1000_SSP
:
237 mask
= QUARK_X1000_SSCR1_RFT
;
240 mask
= CE4100_SSCR1_RFT
;
249 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
250 u32
*sccr1_reg
, u32 threshold
)
252 switch (drv_data
->ssp_type
) {
253 case QUARK_X1000_SSP
:
254 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
257 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
260 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
265 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
266 u32 clk_div
, u8 bits
)
268 switch (drv_data
->ssp_type
) {
269 case QUARK_X1000_SSP
:
271 | QUARK_X1000_SSCR0_Motorola
272 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
277 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
279 | (bits
> 16 ? SSCR0_EDSS
: 0);
284 * Read and write LPSS SSP private registers. Caller must first check that
285 * is_lpss_ssp() returns true before these can be called.
287 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
289 WARN_ON(!drv_data
->lpss_base
);
290 return readl(drv_data
->lpss_base
+ offset
);
293 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
294 unsigned offset
, u32 value
)
296 WARN_ON(!drv_data
->lpss_base
);
297 writel(value
, drv_data
->lpss_base
+ offset
);
301 * lpss_ssp_setup - perform LPSS SSP specific setup
302 * @drv_data: pointer to the driver private data
304 * Perform LPSS SSP specific setup. This function must be called first if
305 * one is going to use LPSS SSP private registers.
307 static void lpss_ssp_setup(struct driver_data
*drv_data
)
309 const struct lpss_config
*config
;
312 config
= lpss_get_config(drv_data
);
313 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
315 /* Enable software chip select control */
316 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
317 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
318 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
319 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
321 /* Enable multiblock DMA transfers */
322 if (drv_data
->controller_info
->enable_dma
) {
323 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
325 if (config
->reg_general
>= 0) {
326 value
= __lpss_ssp_read_priv(drv_data
,
327 config
->reg_general
);
328 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
329 __lpss_ssp_write_priv(drv_data
,
330 config
->reg_general
, value
);
335 static void lpss_ssp_select_cs(struct spi_device
*spi
,
336 const struct lpss_config
*config
)
338 struct driver_data
*drv_data
=
339 spi_controller_get_devdata(spi
->controller
);
342 if (!config
->cs_sel_mask
)
345 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
347 cs
= spi
->chip_select
;
348 cs
<<= config
->cs_sel_shift
;
349 if (cs
!= (value
& config
->cs_sel_mask
)) {
351 * When switching another chip select output active the
352 * output must be selected first and wait 2 ssp_clk cycles
353 * before changing state to active. Otherwise a short
354 * glitch will occur on the previous chip select since
355 * output select is latched but state control is not.
357 value
&= ~config
->cs_sel_mask
;
359 __lpss_ssp_write_priv(drv_data
,
360 config
->reg_cs_ctrl
, value
);
362 (drv_data
->controller
->max_speed_hz
/ 2));
366 static void lpss_ssp_cs_control(struct spi_device
*spi
, bool enable
)
368 struct driver_data
*drv_data
=
369 spi_controller_get_devdata(spi
->controller
);
370 const struct lpss_config
*config
;
373 config
= lpss_get_config(drv_data
);
376 lpss_ssp_select_cs(spi
, config
);
378 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
380 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
382 value
|= LPSS_CS_CONTROL_CS_HIGH
;
383 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
386 static void cs_assert(struct spi_device
*spi
)
388 struct chip_data
*chip
= spi_get_ctldata(spi
);
389 struct driver_data
*drv_data
=
390 spi_controller_get_devdata(spi
->controller
);
392 if (drv_data
->ssp_type
== CE4100_SSP
) {
393 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
397 if (chip
->cs_control
) {
398 chip
->cs_control(PXA2XX_CS_ASSERT
);
402 if (chip
->gpiod_cs
) {
403 gpiod_set_value(chip
->gpiod_cs
, chip
->gpio_cs_inverted
);
407 if (is_lpss_ssp(drv_data
))
408 lpss_ssp_cs_control(spi
, true);
411 static void cs_deassert(struct spi_device
*spi
)
413 struct chip_data
*chip
= spi_get_ctldata(spi
);
414 struct driver_data
*drv_data
=
415 spi_controller_get_devdata(spi
->controller
);
416 unsigned long timeout
;
418 if (drv_data
->ssp_type
== CE4100_SSP
)
421 /* Wait until SSP becomes idle before deasserting the CS */
422 timeout
= jiffies
+ msecs_to_jiffies(10);
423 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
424 !time_after(jiffies
, timeout
))
427 if (chip
->cs_control
) {
428 chip
->cs_control(PXA2XX_CS_DEASSERT
);
432 if (chip
->gpiod_cs
) {
433 gpiod_set_value(chip
->gpiod_cs
, !chip
->gpio_cs_inverted
);
437 if (is_lpss_ssp(drv_data
))
438 lpss_ssp_cs_control(spi
, false);
441 static void pxa2xx_spi_set_cs(struct spi_device
*spi
, bool level
)
449 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
451 unsigned long limit
= loops_per_jiffy
<< 1;
454 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
455 pxa2xx_spi_read(drv_data
, SSDR
);
456 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
457 write_SSSR_CS(drv_data
, SSSR_ROR
);
462 static int null_writer(struct driver_data
*drv_data
)
464 u8 n_bytes
= drv_data
->n_bytes
;
466 if (pxa2xx_spi_txfifo_full(drv_data
)
467 || (drv_data
->tx
== drv_data
->tx_end
))
470 pxa2xx_spi_write(drv_data
, SSDR
, 0);
471 drv_data
->tx
+= n_bytes
;
476 static int null_reader(struct driver_data
*drv_data
)
478 u8 n_bytes
= drv_data
->n_bytes
;
480 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
481 && (drv_data
->rx
< drv_data
->rx_end
)) {
482 pxa2xx_spi_read(drv_data
, SSDR
);
483 drv_data
->rx
+= n_bytes
;
486 return drv_data
->rx
== drv_data
->rx_end
;
489 static int u8_writer(struct driver_data
*drv_data
)
491 if (pxa2xx_spi_txfifo_full(drv_data
)
492 || (drv_data
->tx
== drv_data
->tx_end
))
495 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
501 static int u8_reader(struct driver_data
*drv_data
)
503 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
504 && (drv_data
->rx
< drv_data
->rx_end
)) {
505 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
509 return drv_data
->rx
== drv_data
->rx_end
;
512 static int u16_writer(struct driver_data
*drv_data
)
514 if (pxa2xx_spi_txfifo_full(drv_data
)
515 || (drv_data
->tx
== drv_data
->tx_end
))
518 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
524 static int u16_reader(struct driver_data
*drv_data
)
526 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
527 && (drv_data
->rx
< drv_data
->rx_end
)) {
528 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
532 return drv_data
->rx
== drv_data
->rx_end
;
535 static int u32_writer(struct driver_data
*drv_data
)
537 if (pxa2xx_spi_txfifo_full(drv_data
)
538 || (drv_data
->tx
== drv_data
->tx_end
))
541 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
547 static int u32_reader(struct driver_data
*drv_data
)
549 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
550 && (drv_data
->rx
< drv_data
->rx_end
)) {
551 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
555 return drv_data
->rx
== drv_data
->rx_end
;
558 static void reset_sccr1(struct driver_data
*drv_data
)
560 struct chip_data
*chip
=
561 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
564 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
565 switch (drv_data
->ssp_type
) {
566 case QUARK_X1000_SSP
:
567 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
570 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
573 sccr1_reg
&= ~SSCR1_RFT
;
576 sccr1_reg
|= chip
->threshold
;
577 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
580 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
582 /* Stop and reset SSP */
583 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
584 reset_sccr1(drv_data
);
585 if (!pxa25x_ssp_comp(drv_data
))
586 pxa2xx_spi_write(drv_data
, SSTO
, 0);
587 pxa2xx_spi_flush(drv_data
);
588 pxa2xx_spi_write(drv_data
, SSCR0
,
589 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
591 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
593 drv_data
->controller
->cur_msg
->status
= -EIO
;
594 spi_finalize_current_transfer(drv_data
->controller
);
597 static void int_transfer_complete(struct driver_data
*drv_data
)
599 /* Clear and disable interrupts */
600 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
601 reset_sccr1(drv_data
);
602 if (!pxa25x_ssp_comp(drv_data
))
603 pxa2xx_spi_write(drv_data
, SSTO
, 0);
605 spi_finalize_current_transfer(drv_data
->controller
);
608 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
610 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
611 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
613 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
615 if (irq_status
& SSSR_ROR
) {
616 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
620 if (irq_status
& SSSR_TUR
) {
621 int_error_stop(drv_data
, "interrupt_transfer: fifo underrun");
625 if (irq_status
& SSSR_TINT
) {
626 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
627 if (drv_data
->read(drv_data
)) {
628 int_transfer_complete(drv_data
);
633 /* Drain rx fifo, Fill tx fifo and prevent overruns */
635 if (drv_data
->read(drv_data
)) {
636 int_transfer_complete(drv_data
);
639 } while (drv_data
->write(drv_data
));
641 if (drv_data
->read(drv_data
)) {
642 int_transfer_complete(drv_data
);
646 if (drv_data
->tx
== drv_data
->tx_end
) {
650 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
651 sccr1_reg
&= ~SSCR1_TIE
;
654 * PXA25x_SSP has no timeout, set up rx threshould for the
655 * remaining RX bytes.
657 if (pxa25x_ssp_comp(drv_data
)) {
660 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
662 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
663 switch (drv_data
->n_bytes
) {
672 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
673 if (rx_thre
> bytes_left
)
674 rx_thre
= bytes_left
;
676 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
678 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
681 /* We did something */
685 static void handle_bad_msg(struct driver_data
*drv_data
)
687 pxa2xx_spi_write(drv_data
, SSCR0
,
688 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
689 pxa2xx_spi_write(drv_data
, SSCR1
,
690 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
691 if (!pxa25x_ssp_comp(drv_data
))
692 pxa2xx_spi_write(drv_data
, SSTO
, 0);
693 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
695 dev_err(&drv_data
->pdev
->dev
,
696 "bad message state in interrupt handler\n");
699 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
701 struct driver_data
*drv_data
= dev_id
;
703 u32 mask
= drv_data
->mask_sr
;
707 * The IRQ might be shared with other peripherals so we must first
708 * check that are we RPM suspended or not. If we are we assume that
709 * the IRQ was not for us (we shouldn't be RPM suspended when the
710 * interrupt is enabled).
712 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
716 * If the device is not yet in RPM suspended state and we get an
717 * interrupt that is meant for another device, check if status bits
718 * are all set to one. That means that the device is already
721 status
= pxa2xx_spi_read(drv_data
, SSSR
);
725 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
727 /* Ignore possible writes if we don't need to write */
728 if (!(sccr1_reg
& SSCR1_TIE
))
731 /* Ignore RX timeout interrupt if it is disabled */
732 if (!(sccr1_reg
& SSCR1_TINTE
))
735 if (!(status
& mask
))
738 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
739 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
741 if (!drv_data
->controller
->cur_msg
) {
742 handle_bad_msg(drv_data
);
747 return drv_data
->transfer_handler(drv_data
);
751 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
752 * input frequency by fractions of 2^24. It also has a divider by 5.
754 * There are formulas to get baud rate value for given input frequency and
755 * divider parameters, such as DDS_CLK_RATE and SCR:
759 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
760 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
762 * DDS_CLK_RATE either 2^n or 2^n / 5.
763 * SCR is in range 0 .. 255
765 * Divisor = 5^i * 2^j * 2 * k
766 * i = [0, 1] i = 1 iff j = 0 or j > 3
767 * j = [0, 23] j = 0 iff i = 1
769 * Special case: j = 0, i = 1: Divisor = 2 / 5
771 * Accordingly to the specification the recommended values for DDS_CLK_RATE
773 * Case 1: 2^n, n = [0, 23]
774 * Case 2: 2^24 * 2 / 5 (0x666666)
775 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
777 * In all cases the lowest possible value is better.
779 * The function calculates parameters for all cases and chooses the one closest
780 * to the asked baud rate.
782 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
784 unsigned long xtal
= 200000000;
785 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
788 unsigned long fref1
= fref
/ 2; /* case 1 */
789 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
791 unsigned long q
, q1
, q2
;
797 /* Set initial value for DDS_CLK_RATE */
798 mul
= (1 << 24) >> 1;
800 /* Calculate initial quot */
801 q1
= DIV_ROUND_UP(fref1
, rate
);
803 /* Scale q1 if it's too big */
805 /* Scale q1 to range [1, 512] */
806 scale
= fls_long(q1
- 1);
812 /* Round the result if we have a remainder */
816 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
821 /* Get the remainder */
822 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
826 q2
= DIV_ROUND_UP(fref2
, rate
);
827 r2
= abs(fref2
/ q2
- rate
);
830 * Choose the best between two: less remainder we have the better. We
831 * can't go case 2 if q2 is greater than 256 since SCR register can
832 * hold only values 0 .. 255.
834 if (r2
>= r1
|| q2
> 256) {
835 /* case 1 is better */
839 /* case 2 is better */
842 mul
= (1 << 24) * 2 / 5;
845 /* Check case 3 only if the divisor is big enough */
846 if (fref
/ rate
>= 80) {
850 /* Calculate initial quot */
851 q1
= DIV_ROUND_UP(fref
, rate
);
854 /* Get the remainder */
855 fssp
= (u64
)fref
* m
;
856 do_div(fssp
, 1 << 24);
857 r1
= abs(fssp
- rate
);
859 /* Choose this one if it suits better */
861 /* case 3 is better */
871 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
873 unsigned long ssp_clk
= drv_data
->controller
->max_speed_hz
;
874 const struct ssp_device
*ssp
= drv_data
->ssp
;
876 rate
= min_t(int, ssp_clk
, rate
);
879 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
880 * that the SSP transmission rate can be greater than the device rate
882 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
883 return (DIV_ROUND_UP(ssp_clk
, 2 * rate
) - 1) & 0xff;
885 return (DIV_ROUND_UP(ssp_clk
, rate
) - 1) & 0xfff;
888 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
891 struct chip_data
*chip
=
892 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
893 unsigned int clk_div
;
895 switch (drv_data
->ssp_type
) {
896 case QUARK_X1000_SSP
:
897 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
900 clk_div
= ssp_get_clk_div(drv_data
, rate
);
906 static bool pxa2xx_spi_can_dma(struct spi_controller
*controller
,
907 struct spi_device
*spi
,
908 struct spi_transfer
*xfer
)
910 struct chip_data
*chip
= spi_get_ctldata(spi
);
912 return chip
->enable_dma
&&
913 xfer
->len
<= MAX_DMA_LEN
&&
914 xfer
->len
>= chip
->dma_burst_size
;
917 static int pxa2xx_spi_transfer_one(struct spi_controller
*controller
,
918 struct spi_device
*spi
,
919 struct spi_transfer
*transfer
)
921 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
922 struct spi_message
*message
= controller
->cur_msg
;
923 struct chip_data
*chip
= spi_get_ctldata(spi
);
924 u32 dma_thresh
= chip
->dma_threshold
;
925 u32 dma_burst
= chip
->dma_burst_size
;
926 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
935 /* Check if we can DMA this transfer */
936 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
938 /* reject already-mapped transfers; PIO won't always work */
939 if (message
->is_dma_mapped
940 || transfer
->rx_dma
|| transfer
->tx_dma
) {
942 "Mapped transfer length of %u is greater than %d\n",
943 transfer
->len
, MAX_DMA_LEN
);
947 /* warn ... we force this to PIO mode */
948 dev_warn_ratelimited(&spi
->dev
,
949 "DMA disabled for transfer length %ld greater than %d\n",
950 (long)transfer
->len
, MAX_DMA_LEN
);
953 /* Setup the transfer state based on the type of transfer */
954 if (pxa2xx_spi_flush(drv_data
) == 0) {
955 dev_err(&spi
->dev
, "Flush failed\n");
958 drv_data
->n_bytes
= chip
->n_bytes
;
959 drv_data
->tx
= (void *)transfer
->tx_buf
;
960 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
961 drv_data
->rx
= transfer
->rx_buf
;
962 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
963 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
964 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
966 /* Change speed and bit per word on a per transfer */
967 bits
= transfer
->bits_per_word
;
968 speed
= transfer
->speed_hz
;
970 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
973 drv_data
->n_bytes
= 1;
974 drv_data
->read
= drv_data
->read
!= null_reader
?
975 u8_reader
: null_reader
;
976 drv_data
->write
= drv_data
->write
!= null_writer
?
977 u8_writer
: null_writer
;
978 } else if (bits
<= 16) {
979 drv_data
->n_bytes
= 2;
980 drv_data
->read
= drv_data
->read
!= null_reader
?
981 u16_reader
: null_reader
;
982 drv_data
->write
= drv_data
->write
!= null_writer
?
983 u16_writer
: null_writer
;
984 } else if (bits
<= 32) {
985 drv_data
->n_bytes
= 4;
986 drv_data
->read
= drv_data
->read
!= null_reader
?
987 u32_reader
: null_reader
;
988 drv_data
->write
= drv_data
->write
!= null_writer
?
989 u32_writer
: null_writer
;
992 * if bits/word is changed in dma mode, then must check the
993 * thresholds and burst also
995 if (chip
->enable_dma
) {
996 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1000 dev_warn_ratelimited(&spi
->dev
,
1001 "DMA burst size reduced to match bits_per_word\n");
1004 dma_mapped
= controller
->can_dma
&&
1005 controller
->can_dma(controller
, spi
, transfer
) &&
1006 controller
->cur_msg_mapped
;
1009 /* Ensure we have the correct interrupt handler */
1010 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1012 err
= pxa2xx_spi_dma_prepare(drv_data
, transfer
);
1016 /* Clear status and start DMA engine */
1017 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1018 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1020 pxa2xx_spi_dma_start(drv_data
);
1022 /* Ensure we have the correct interrupt handler */
1023 drv_data
->transfer_handler
= interrupt_transfer
;
1026 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1027 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1030 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1031 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1032 if (!pxa25x_ssp_comp(drv_data
))
1033 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1034 controller
->max_speed_hz
1035 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1036 dma_mapped
? "DMA" : "PIO");
1038 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1039 controller
->max_speed_hz
/ 2
1040 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1041 dma_mapped
? "DMA" : "PIO");
1043 if (is_lpss_ssp(drv_data
)) {
1044 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1045 != chip
->lpss_rx_threshold
)
1046 pxa2xx_spi_write(drv_data
, SSIRF
,
1047 chip
->lpss_rx_threshold
);
1048 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1049 != chip
->lpss_tx_threshold
)
1050 pxa2xx_spi_write(drv_data
, SSITF
,
1051 chip
->lpss_tx_threshold
);
1054 if (is_quark_x1000_ssp(drv_data
) &&
1055 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1056 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1058 /* see if we need to reload the config registers */
1059 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1060 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1061 != (cr1
& change_mask
)) {
1062 /* stop the SSP, and update the other bits */
1063 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1064 if (!pxa25x_ssp_comp(drv_data
))
1065 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1066 /* first set CR1 without interrupt and service enables */
1067 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1068 /* restart the SSP */
1069 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1072 if (!pxa25x_ssp_comp(drv_data
))
1073 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1076 if (drv_data
->ssp_type
== MMP2_SSP
) {
1077 u8 tx_level
= (pxa2xx_spi_read(drv_data
, SSSR
)
1078 & SSSR_TFL_MASK
) >> 8;
1081 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1082 dev_warn(&spi
->dev
, "%d bytes of garbage in TXFIFO!\n",
1084 if (tx_level
> transfer
->len
)
1085 tx_level
= transfer
->len
;
1086 drv_data
->tx
+= tx_level
;
1090 if (spi_controller_is_slave(controller
)) {
1091 while (drv_data
->write(drv_data
))
1093 if (drv_data
->gpiod_ready
) {
1094 gpiod_set_value(drv_data
->gpiod_ready
, 1);
1096 gpiod_set_value(drv_data
->gpiod_ready
, 0);
1101 * Release the data by enabling service requests and interrupts,
1102 * without changing any mode bits
1104 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1109 static int pxa2xx_spi_slave_abort(struct spi_controller
*controller
)
1111 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1113 /* Stop and reset SSP */
1114 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1115 reset_sccr1(drv_data
);
1116 if (!pxa25x_ssp_comp(drv_data
))
1117 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1118 pxa2xx_spi_flush(drv_data
);
1119 pxa2xx_spi_write(drv_data
, SSCR0
,
1120 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1122 dev_dbg(&drv_data
->pdev
->dev
, "transfer aborted\n");
1124 drv_data
->controller
->cur_msg
->status
= -EINTR
;
1125 spi_finalize_current_transfer(drv_data
->controller
);
1130 static void pxa2xx_spi_handle_err(struct spi_controller
*controller
,
1131 struct spi_message
*msg
)
1133 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1135 /* Disable the SSP */
1136 pxa2xx_spi_write(drv_data
, SSCR0
,
1137 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1138 /* Clear and disable interrupts and service requests */
1139 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1140 pxa2xx_spi_write(drv_data
, SSCR1
,
1141 pxa2xx_spi_read(drv_data
, SSCR1
)
1142 & ~(drv_data
->int_cr1
| drv_data
->dma_cr1
));
1143 if (!pxa25x_ssp_comp(drv_data
))
1144 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1147 * Stop the DMA if running. Note DMA callback handler may have unset
1148 * the dma_running already, which is fine as stopping is not needed
1149 * then but we shouldn't rely this flag for anything else than
1150 * stopping. For instance to differentiate between PIO and DMA
1153 if (atomic_read(&drv_data
->dma_running
))
1154 pxa2xx_spi_dma_stop(drv_data
);
1157 static int pxa2xx_spi_unprepare_transfer(struct spi_controller
*controller
)
1159 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1161 /* Disable the SSP now */
1162 pxa2xx_spi_write(drv_data
, SSCR0
,
1163 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1168 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1169 struct pxa2xx_spi_chip
*chip_info
)
1171 struct driver_data
*drv_data
=
1172 spi_controller_get_devdata(spi
->controller
);
1173 struct gpio_desc
*gpiod
;
1179 if (drv_data
->cs_gpiods
) {
1180 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1182 chip
->gpiod_cs
= gpiod
;
1183 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1184 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1190 if (chip_info
== NULL
)
1193 /* NOTE: setup() can be called multiple times, possibly with
1194 * different chip_info, release previously requested GPIO
1196 if (chip
->gpiod_cs
) {
1197 gpiod_put(chip
->gpiod_cs
);
1198 chip
->gpiod_cs
= NULL
;
1201 /* If (*cs_control) is provided, ignore GPIO chip select */
1202 if (chip_info
->cs_control
) {
1203 chip
->cs_control
= chip_info
->cs_control
;
1207 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1208 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1210 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1211 chip_info
->gpio_cs
);
1215 gpiod
= gpio_to_desc(chip_info
->gpio_cs
);
1216 chip
->gpiod_cs
= gpiod
;
1217 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1219 err
= gpiod_direction_output(gpiod
, !chip
->gpio_cs_inverted
);
1225 static int setup(struct spi_device
*spi
)
1227 struct pxa2xx_spi_chip
*chip_info
;
1228 struct chip_data
*chip
;
1229 const struct lpss_config
*config
;
1230 struct driver_data
*drv_data
=
1231 spi_controller_get_devdata(spi
->controller
);
1232 uint tx_thres
, tx_hi_thres
, rx_thres
;
1234 switch (drv_data
->ssp_type
) {
1235 case QUARK_X1000_SSP
:
1236 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1238 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1241 tx_thres
= TX_THRESH_CE4100_DFLT
;
1243 rx_thres
= RX_THRESH_CE4100_DFLT
;
1251 config
= lpss_get_config(drv_data
);
1252 tx_thres
= config
->tx_threshold_lo
;
1253 tx_hi_thres
= config
->tx_threshold_hi
;
1254 rx_thres
= config
->rx_threshold
;
1258 if (spi_controller_is_slave(drv_data
->controller
)) {
1262 tx_thres
= TX_THRESH_DFLT
;
1263 rx_thres
= RX_THRESH_DFLT
;
1268 /* Only alloc on first setup */
1269 chip
= spi_get_ctldata(spi
);
1271 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1275 if (drv_data
->ssp_type
== CE4100_SSP
) {
1276 if (spi
->chip_select
> 4) {
1278 "failed setup: cs number must not be > 4.\n");
1283 chip
->frm
= spi
->chip_select
;
1285 chip
->enable_dma
= drv_data
->controller_info
->enable_dma
;
1286 chip
->timeout
= TIMOUT_DFLT
;
1289 /* protocol drivers may change the chip settings, so...
1290 * if chip_info exists, use it */
1291 chip_info
= spi
->controller_data
;
1293 /* chip_info isn't always needed */
1296 if (chip_info
->timeout
)
1297 chip
->timeout
= chip_info
->timeout
;
1298 if (chip_info
->tx_threshold
)
1299 tx_thres
= chip_info
->tx_threshold
;
1300 if (chip_info
->tx_hi_threshold
)
1301 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1302 if (chip_info
->rx_threshold
)
1303 rx_thres
= chip_info
->rx_threshold
;
1304 chip
->dma_threshold
= 0;
1305 if (chip_info
->enable_loopback
)
1306 chip
->cr1
= SSCR1_LBM
;
1308 if (spi_controller_is_slave(drv_data
->controller
)) {
1309 chip
->cr1
|= SSCR1_SCFR
;
1310 chip
->cr1
|= SSCR1_SCLKDIR
;
1311 chip
->cr1
|= SSCR1_SFRMDIR
;
1312 chip
->cr1
|= SSCR1_SPH
;
1315 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1316 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1317 | SSITF_TxHiThresh(tx_hi_thres
);
1319 /* set dma burst and threshold outside of chip_info path so that if
1320 * chip_info goes away after setting chip->enable_dma, the
1321 * burst and threshold can still respond to changes in bits_per_word */
1322 if (chip
->enable_dma
) {
1323 /* set up legal burst and threshold for dma */
1324 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1326 &chip
->dma_burst_size
,
1327 &chip
->dma_threshold
)) {
1329 "in setup: DMA burst size reduced to match bits_per_word\n");
1332 "in setup: DMA burst size set to %u\n",
1333 chip
->dma_burst_size
);
1336 switch (drv_data
->ssp_type
) {
1337 case QUARK_X1000_SSP
:
1338 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1339 & QUARK_X1000_SSCR1_RFT
)
1340 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1341 & QUARK_X1000_SSCR1_TFT
);
1344 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1345 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1348 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1349 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1353 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1354 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1355 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1357 if (spi
->mode
& SPI_LOOP
)
1358 chip
->cr1
|= SSCR1_LBM
;
1360 if (spi
->bits_per_word
<= 8) {
1362 chip
->read
= u8_reader
;
1363 chip
->write
= u8_writer
;
1364 } else if (spi
->bits_per_word
<= 16) {
1366 chip
->read
= u16_reader
;
1367 chip
->write
= u16_writer
;
1368 } else if (spi
->bits_per_word
<= 32) {
1370 chip
->read
= u32_reader
;
1371 chip
->write
= u32_writer
;
1374 spi_set_ctldata(spi
, chip
);
1376 if (drv_data
->ssp_type
== CE4100_SSP
)
1379 return setup_cs(spi
, chip
, chip_info
);
1382 static void cleanup(struct spi_device
*spi
)
1384 struct chip_data
*chip
= spi_get_ctldata(spi
);
1385 struct driver_data
*drv_data
=
1386 spi_controller_get_devdata(spi
->controller
);
1391 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1393 gpiod_put(chip
->gpiod_cs
);
1398 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1399 { "INT33C0", LPSS_LPT_SSP
},
1400 { "INT33C1", LPSS_LPT_SSP
},
1401 { "INT3430", LPSS_LPT_SSP
},
1402 { "INT3431", LPSS_LPT_SSP
},
1403 { "80860F0E", LPSS_BYT_SSP
},
1404 { "8086228E", LPSS_BSW_SSP
},
1407 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1410 * PCI IDs of compound devices that integrate both host controller and private
1411 * integrated DMA engine. Please note these are not used in module
1412 * autoloading and probing in this module but matching the LPSS SSP type.
1414 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1416 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1417 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1419 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1420 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1422 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1423 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1425 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1426 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1427 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1429 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1430 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1431 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1433 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1434 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1435 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1437 { PCI_VDEVICE(INTEL
, 0x34aa), LPSS_CNL_SSP
},
1438 { PCI_VDEVICE(INTEL
, 0x34ab), LPSS_CNL_SSP
},
1439 { PCI_VDEVICE(INTEL
, 0x34fb), LPSS_CNL_SSP
},
1441 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1442 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1443 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1445 { PCI_VDEVICE(INTEL
, 0x9daa), LPSS_CNL_SSP
},
1446 { PCI_VDEVICE(INTEL
, 0x9dab), LPSS_CNL_SSP
},
1447 { PCI_VDEVICE(INTEL
, 0x9dfb), LPSS_CNL_SSP
},
1449 { PCI_VDEVICE(INTEL
, 0xa32a), LPSS_CNL_SSP
},
1450 { PCI_VDEVICE(INTEL
, 0xa32b), LPSS_CNL_SSP
},
1451 { PCI_VDEVICE(INTEL
, 0xa37b), LPSS_CNL_SSP
},
1453 { PCI_VDEVICE(INTEL
, 0x02aa), LPSS_CNL_SSP
},
1454 { PCI_VDEVICE(INTEL
, 0x02ab), LPSS_CNL_SSP
},
1455 { PCI_VDEVICE(INTEL
, 0x02fb), LPSS_CNL_SSP
},
1459 static const struct of_device_id pxa2xx_spi_of_match
[] = {
1460 { .compatible
= "marvell,mmp2-ssp", .data
= (void *)MMP2_SSP
},
1463 MODULE_DEVICE_TABLE(of
, pxa2xx_spi_of_match
);
1467 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1472 if (adev
&& adev
->pnp
.unique_id
&&
1473 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1478 #else /* !CONFIG_ACPI */
1480 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1485 #endif /* CONFIG_ACPI */
1490 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1492 return param
== chan
->device
->dev
;
1495 #endif /* CONFIG_PCI */
1497 static struct pxa2xx_spi_controller
*
1498 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1500 struct pxa2xx_spi_controller
*pdata
;
1501 struct acpi_device
*adev
;
1502 struct ssp_device
*ssp
;
1503 struct resource
*res
;
1504 const struct acpi_device_id
*adev_id
= NULL
;
1505 const struct pci_device_id
*pcidev_id
= NULL
;
1506 const struct of_device_id
*of_id
= NULL
;
1507 enum pxa_ssp_type type
;
1509 adev
= ACPI_COMPANION(&pdev
->dev
);
1511 if (pdev
->dev
.of_node
)
1512 of_id
= of_match_device(pdev
->dev
.driver
->of_match_table
,
1514 else if (dev_is_pci(pdev
->dev
.parent
))
1515 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
,
1516 to_pci_dev(pdev
->dev
.parent
));
1518 adev_id
= acpi_match_device(pdev
->dev
.driver
->acpi_match_table
,
1524 type
= (enum pxa_ssp_type
)adev_id
->driver_data
;
1526 type
= (enum pxa_ssp_type
)pcidev_id
->driver_data
;
1528 type
= (enum pxa_ssp_type
)of_id
->data
;
1532 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1536 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1542 ssp
->phys_base
= res
->start
;
1543 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1544 if (IS_ERR(ssp
->mmio_base
))
1549 pdata
->tx_param
= pdev
->dev
.parent
;
1550 pdata
->rx_param
= pdev
->dev
.parent
;
1551 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1555 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1556 ssp
->irq
= platform_get_irq(pdev
, 0);
1559 ssp
->port_id
= pxa2xx_spi_get_port_id(adev
);
1561 pdata
->is_slave
= of_property_read_bool(pdev
->dev
.of_node
, "spi-slave");
1562 pdata
->num_chipselect
= 1;
1563 pdata
->enable_dma
= true;
1564 pdata
->dma_burst_size
= 1;
1569 static int pxa2xx_spi_fw_translate_cs(struct spi_controller
*controller
,
1572 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1574 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1575 switch (drv_data
->ssp_type
) {
1577 * For Atoms the ACPI DeviceSelection used by the Windows
1578 * driver starts from 1 instead of 0 so translate it here
1579 * to match what Linux expects.
1593 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1595 struct device
*dev
= &pdev
->dev
;
1596 struct pxa2xx_spi_controller
*platform_info
;
1597 struct spi_controller
*controller
;
1598 struct driver_data
*drv_data
;
1599 struct ssp_device
*ssp
;
1600 const struct lpss_config
*config
;
1604 platform_info
= dev_get_platdata(dev
);
1605 if (!platform_info
) {
1606 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1607 if (!platform_info
) {
1608 dev_err(&pdev
->dev
, "missing platform data\n");
1613 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1615 ssp
= &platform_info
->ssp
;
1617 if (!ssp
->mmio_base
) {
1618 dev_err(&pdev
->dev
, "failed to get ssp\n");
1622 if (platform_info
->is_slave
)
1623 controller
= spi_alloc_slave(dev
, sizeof(struct driver_data
));
1625 controller
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1628 dev_err(&pdev
->dev
, "cannot alloc spi_controller\n");
1632 drv_data
= spi_controller_get_devdata(controller
);
1633 drv_data
->controller
= controller
;
1634 drv_data
->controller_info
= platform_info
;
1635 drv_data
->pdev
= pdev
;
1636 drv_data
->ssp
= ssp
;
1638 controller
->dev
.of_node
= pdev
->dev
.of_node
;
1639 /* the spi->mode bits understood by this driver: */
1640 controller
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1642 controller
->bus_num
= ssp
->port_id
;
1643 controller
->dma_alignment
= DMA_ALIGNMENT
;
1644 controller
->cleanup
= cleanup
;
1645 controller
->setup
= setup
;
1646 controller
->set_cs
= pxa2xx_spi_set_cs
;
1647 controller
->transfer_one
= pxa2xx_spi_transfer_one
;
1648 controller
->slave_abort
= pxa2xx_spi_slave_abort
;
1649 controller
->handle_err
= pxa2xx_spi_handle_err
;
1650 controller
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1651 controller
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1652 controller
->auto_runtime_pm
= true;
1653 controller
->flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
;
1655 drv_data
->ssp_type
= ssp
->type
;
1657 drv_data
->ioaddr
= ssp
->mmio_base
;
1658 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1659 if (pxa25x_ssp_comp(drv_data
)) {
1660 switch (drv_data
->ssp_type
) {
1661 case QUARK_X1000_SSP
:
1662 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1665 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1669 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1670 drv_data
->dma_cr1
= 0;
1671 drv_data
->clear_sr
= SSSR_ROR
;
1672 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1674 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1675 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1676 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1677 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1678 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
1679 | SSSR_ROR
| SSSR_TUR
;
1682 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1685 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1686 goto out_error_controller_alloc
;
1689 /* Setup DMA if requested */
1690 if (platform_info
->enable_dma
) {
1691 status
= pxa2xx_spi_dma_setup(drv_data
);
1693 dev_warn(dev
, "no DMA channels available, using PIO\n");
1694 platform_info
->enable_dma
= false;
1696 controller
->can_dma
= pxa2xx_spi_can_dma
;
1697 controller
->max_dma_len
= MAX_DMA_LEN
;
1701 /* Enable SOC clock */
1702 status
= clk_prepare_enable(ssp
->clk
);
1704 goto out_error_dma_irq_alloc
;
1706 controller
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1708 /* Load default SSP configuration */
1709 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1710 switch (drv_data
->ssp_type
) {
1711 case QUARK_X1000_SSP
:
1712 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1713 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1714 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1716 /* using the Motorola SPI protocol and use 8 bit frame */
1717 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1718 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1721 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1722 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1723 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1724 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1725 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1729 if (spi_controller_is_slave(controller
)) {
1737 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1738 SSCR1_TxTresh(TX_THRESH_DFLT
);
1740 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1741 tmp
= SSCR0_Motorola
| SSCR0_DataSize(8);
1742 if (!spi_controller_is_slave(controller
))
1743 tmp
|= SSCR0_SCR(2);
1744 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1748 if (!pxa25x_ssp_comp(drv_data
))
1749 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1751 if (!is_quark_x1000_ssp(drv_data
))
1752 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1754 if (is_lpss_ssp(drv_data
)) {
1755 lpss_ssp_setup(drv_data
);
1756 config
= lpss_get_config(drv_data
);
1757 if (config
->reg_capabilities
>= 0) {
1758 tmp
= __lpss_ssp_read_priv(drv_data
,
1759 config
->reg_capabilities
);
1760 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1761 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1762 platform_info
->num_chipselect
= ffz(tmp
);
1763 } else if (config
->cs_num
) {
1764 platform_info
->num_chipselect
= config
->cs_num
;
1767 controller
->num_chipselect
= platform_info
->num_chipselect
;
1769 count
= gpiod_count(&pdev
->dev
, "cs");
1773 controller
->num_chipselect
= max_t(int, count
,
1774 controller
->num_chipselect
);
1776 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1777 controller
->num_chipselect
, sizeof(struct gpio_desc
*),
1779 if (!drv_data
->cs_gpiods
) {
1781 goto out_error_clock_enabled
;
1784 for (i
= 0; i
< controller
->num_chipselect
; i
++) {
1785 struct gpio_desc
*gpiod
;
1787 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1788 if (IS_ERR(gpiod
)) {
1789 /* Means use native chip select */
1790 if (PTR_ERR(gpiod
) == -ENOENT
)
1793 status
= PTR_ERR(gpiod
);
1794 goto out_error_clock_enabled
;
1796 drv_data
->cs_gpiods
[i
] = gpiod
;
1801 if (platform_info
->is_slave
) {
1802 drv_data
->gpiod_ready
= devm_gpiod_get_optional(dev
,
1803 "ready", GPIOD_OUT_LOW
);
1804 if (IS_ERR(drv_data
->gpiod_ready
)) {
1805 status
= PTR_ERR(drv_data
->gpiod_ready
);
1806 goto out_error_clock_enabled
;
1810 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1811 pm_runtime_use_autosuspend(&pdev
->dev
);
1812 pm_runtime_set_active(&pdev
->dev
);
1813 pm_runtime_enable(&pdev
->dev
);
1815 /* Register with the SPI framework */
1816 platform_set_drvdata(pdev
, drv_data
);
1817 status
= devm_spi_register_controller(&pdev
->dev
, controller
);
1819 dev_err(&pdev
->dev
, "problem registering spi controller\n");
1820 goto out_error_clock_enabled
;
1825 out_error_clock_enabled
:
1826 pm_runtime_put_noidle(&pdev
->dev
);
1827 pm_runtime_disable(&pdev
->dev
);
1828 clk_disable_unprepare(ssp
->clk
);
1830 out_error_dma_irq_alloc
:
1831 pxa2xx_spi_dma_release(drv_data
);
1832 free_irq(ssp
->irq
, drv_data
);
1834 out_error_controller_alloc
:
1835 spi_controller_put(controller
);
1840 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1842 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1843 struct ssp_device
*ssp
;
1847 ssp
= drv_data
->ssp
;
1849 pm_runtime_get_sync(&pdev
->dev
);
1851 /* Disable the SSP at the peripheral and SOC level */
1852 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1853 clk_disable_unprepare(ssp
->clk
);
1856 if (drv_data
->controller_info
->enable_dma
)
1857 pxa2xx_spi_dma_release(drv_data
);
1859 pm_runtime_put_noidle(&pdev
->dev
);
1860 pm_runtime_disable(&pdev
->dev
);
1863 free_irq(ssp
->irq
, drv_data
);
1871 #ifdef CONFIG_PM_SLEEP
1872 static int pxa2xx_spi_suspend(struct device
*dev
)
1874 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1875 struct ssp_device
*ssp
= drv_data
->ssp
;
1878 status
= spi_controller_suspend(drv_data
->controller
);
1881 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1883 if (!pm_runtime_suspended(dev
))
1884 clk_disable_unprepare(ssp
->clk
);
1889 static int pxa2xx_spi_resume(struct device
*dev
)
1891 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1892 struct ssp_device
*ssp
= drv_data
->ssp
;
1895 /* Enable the SSP clock */
1896 if (!pm_runtime_suspended(dev
)) {
1897 status
= clk_prepare_enable(ssp
->clk
);
1902 /* Start the queue running */
1903 return spi_controller_resume(drv_data
->controller
);
1908 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1910 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1912 clk_disable_unprepare(drv_data
->ssp
->clk
);
1916 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1918 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1921 status
= clk_prepare_enable(drv_data
->ssp
->clk
);
1926 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1927 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1928 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1929 pxa2xx_spi_runtime_resume
, NULL
)
1932 static struct platform_driver driver
= {
1934 .name
= "pxa2xx-spi",
1935 .pm
= &pxa2xx_spi_pm_ops
,
1936 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1937 .of_match_table
= of_match_ptr(pxa2xx_spi_of_match
),
1939 .probe
= pxa2xx_spi_probe
,
1940 .remove
= pxa2xx_spi_remove
,
1943 static int __init
pxa2xx_spi_init(void)
1945 return platform_driver_register(&driver
);
1947 subsys_initcall(pxa2xx_spi_init
);
1949 static void __exit
pxa2xx_spi_exit(void)
1951 platform_driver_unregister(&driver
);
1953 module_exit(pxa2xx_spi_exit
);
1955 MODULE_SOFTDEP("pre: dw_dmac");