staging: erofs: integrate decompression inplace
[linux/fpc-iii.git] / drivers / spi / spi-stm32.c
blobb222ce8d083effcff4b6d0cc359e903922ca1d44
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/gpio.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
21 #define DRIVER_NAME "spi_stm32"
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1 0x00
25 #define STM32F4_SPI_CR2 0x04
26 #define STM32F4_SPI_SR 0x08
27 #define STM32F4_SPI_DR 0x0C
28 #define STM32F4_SPI_I2SCFGR 0x1C
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA BIT(0)
32 #define STM32F4_SPI_CR1_CPOL BIT(1)
33 #define STM32F4_SPI_CR1_MSTR BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT 3
35 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
38 #define STM32F4_SPI_CR1_SSI BIT(8)
39 #define STM32F4_SPI_CR1_SSM BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY BIT(10)
41 #define STM32F4_SPI_CR1_DFF BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN 0
47 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
52 #define STM32F4_SPI_CR2_SSOE BIT(2)
53 #define STM32F4_SPI_CR2_FRF BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE BIT(7)
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE BIT(0)
60 #define STM32F4_SPI_SR_TXE BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE BIT(2)
62 #define STM32F4_SPI_SR_UDR BIT(3)
63 #define STM32F4_SPI_SR_CRCERR BIT(4)
64 #define STM32F4_SPI_SR_MODF BIT(5)
65 #define STM32F4_SPI_SR_OVR BIT(6)
66 #define STM32F4_SPI_SR_BSY BIT(7)
67 #define STM32F4_SPI_SR_FRE BIT(8)
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1 0x00
78 #define STM32H7_SPI_CR2 0x04
79 #define STM32H7_SPI_CFG1 0x08
80 #define STM32H7_SPI_CFG2 0x0C
81 #define STM32H7_SPI_IER 0x10
82 #define STM32H7_SPI_SR 0x14
83 #define STM32H7_SPI_IFCR 0x18
84 #define STM32H7_SPI_TXDR 0x20
85 #define STM32H7_SPI_RXDR 0x30
86 #define STM32H7_SPI_I2SCFGR 0x50
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE BIT(0)
90 #define STM32H7_SPI_CR1_MASRX BIT(8)
91 #define STM32H7_SPI_CR1_CSTART BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR BIT(11)
94 #define STM32H7_SPI_CR1_SSI BIT(12)
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0
98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
108 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN 0
110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4
114 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT 17
116 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT 19
118 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL BIT(25)
123 #define STM32H7_SPI_CFG2_SSM BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE BIT(0)
128 #define STM32H7_SPI_IER_TXPIE BIT(1)
129 #define STM32H7_SPI_IER_DXPIE BIT(2)
130 #define STM32H7_SPI_IER_EOTIE BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE BIT(4)
132 #define STM32H7_SPI_IER_OVRIE BIT(6)
133 #define STM32H7_SPI_IER_MODFIE BIT(9)
134 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP BIT(0)
138 #define STM32H7_SPI_SR_TXP BIT(1)
139 #define STM32H7_SPI_SR_EOT BIT(3)
140 #define STM32H7_SPI_SR_OVR BIT(6)
141 #define STM32H7_SPI_SR_MODF BIT(9)
142 #define STM32H7_SPI_SR_SUSP BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13
144 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE BIT(15)
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX 0
159 #define STM32H7_SPI_SIMPLEX_TX 1
160 #define STM32H7_SPI_SIMPLEX_RX 2
161 #define STM32H7_SPI_HALF_DUPLEX 3
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX 0
165 #define SPI_SIMPLEX_TX 1
166 #define SPI_SIMPLEX_RX 2
167 #define SPI_3WIRE_TX 3
168 #define SPI_3WIRE_RX 4
170 #define SPI_1HZ_NS 1000000000
173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174 * without fifo buffers.
176 #define SPI_DMA_MIN_BYTES 16
179 * stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg: register offset
181 * @mask: bitfield mask
182 * @shift: left shift
184 struct stm32_spi_reg {
185 int reg;
186 int mask;
187 int shift;
191 * stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * en: enable register and SPI enable bit
193 * dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * cpol: clock polarity register and polarity bit
196 * cpha: clock phase register and phase bit
197 * lsb_first: LSB transmitted first register and bit
198 * br: baud rate register and bitfields
199 * rx: SPI RX data register
200 * tx: SPI TX data register
202 struct stm32_spi_regspec {
203 const struct stm32_spi_reg en;
204 const struct stm32_spi_reg dma_rx_en;
205 const struct stm32_spi_reg dma_tx_en;
206 const struct stm32_spi_reg cpol;
207 const struct stm32_spi_reg cpha;
208 const struct stm32_spi_reg lsb_first;
209 const struct stm32_spi_reg br;
210 const struct stm32_spi_reg rx;
211 const struct stm32_spi_reg tx;
214 struct stm32_spi;
217 * stm32_spi_cfg - stm32 compatible configuration data
218 * @regs: registers descriptions
219 * @get_fifo_size: routine to get fifo size
220 * @get_bpw_mask: routine to get bits per word mask
221 * @disable: routine to disable controller
222 * @config: routine to configure controller as SPI Master
223 * @set_bpw: routine to configure registers to for bits per word
224 * @set_mode: routine to configure registers to desired mode
225 * @set_data_idleness: optional routine to configure registers to desired idle
226 * time between frames (if driver has this functionality)
227 * set_number_of_data: optional routine to configure registers to desired
228 * number of data (if driver has this functionality)
229 * @can_dma: routine to determine if the transfer is eligible for DMA use
230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231 * using DMA
232 * @dma_rx cb: routine to call after DMA RX channel operation is complete
233 * @dma_tx cb: routine to call after DMA TX channel operation is complete
234 * @transfer_one_irq: routine to configure interrupts for driver
235 * @irq_handler_event: Interrupt handler for SPI controller events
236 * @irq_handler_thread: thread of interrupt handler for SPI controller
237 * @baud_rate_div_min: minimum baud rate divisor
238 * @baud_rate_div_max: maximum baud rate divisor
239 * @has_fifo: boolean to know if fifo is used for driver
240 * @has_startbit: boolean to know if start bit is used to start transfer
242 struct stm32_spi_cfg {
243 const struct stm32_spi_regspec *regs;
244 int (*get_fifo_size)(struct stm32_spi *spi);
245 int (*get_bpw_mask)(struct stm32_spi *spi);
246 void (*disable)(struct stm32_spi *spi);
247 int (*config)(struct stm32_spi *spi);
248 void (*set_bpw)(struct stm32_spi *spi);
249 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 void (*dma_rx_cb)(void *data);
254 void (*dma_tx_cb)(void *data);
255 int (*transfer_one_irq)(struct stm32_spi *spi);
256 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 unsigned int baud_rate_div_min;
259 unsigned int baud_rate_div_max;
260 bool has_fifo;
264 * struct stm32_spi - private data of the SPI controller
265 * @dev: driver model representation of the controller
266 * @master: controller master interface
267 * @cfg: compatible configuration data
268 * @base: virtual memory area
269 * @clk: hw kernel clock feeding the SPI clock generator
270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271 * @rst: SPI controller reset line
272 * @lock: prevent I/O concurrent access
273 * @irq: SPI controller interrupt line
274 * @fifo_size: size of the embedded fifo in bytes
275 * @cur_midi: master inter-data idleness in ns
276 * @cur_speed: speed configured in Hz
277 * @cur_bpw: number of bits in a single SPI data frame
278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279 * @cur_comm: SPI communication mode
280 * @cur_xferlen: current transfer length in bytes
281 * @cur_usedma: boolean to know if dma is used in current transfer
282 * @tx_buf: data to be written, or NULL
283 * @rx_buf: data to be read, or NULL
284 * @tx_len: number of data to be written in bytes
285 * @rx_len: number of data to be read in bytes
286 * @dma_tx: dma channel for TX transfer
287 * @dma_rx: dma channel for RX transfer
288 * @phys_addr: SPI registers physical base address
290 struct stm32_spi {
291 struct device *dev;
292 struct spi_master *master;
293 const struct stm32_spi_cfg *cfg;
294 void __iomem *base;
295 struct clk *clk;
296 u32 clk_rate;
297 struct reset_control *rst;
298 spinlock_t lock; /* prevent I/O concurrent access */
299 int irq;
300 unsigned int fifo_size;
302 unsigned int cur_midi;
303 unsigned int cur_speed;
304 unsigned int cur_bpw;
305 unsigned int cur_fthlv;
306 unsigned int cur_comm;
307 unsigned int cur_xferlen;
308 bool cur_usedma;
310 const void *tx_buf;
311 void *rx_buf;
312 int tx_len;
313 int rx_len;
314 struct dma_chan *dma_tx;
315 struct dma_chan *dma_rx;
316 dma_addr_t phys_addr;
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
322 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
325 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
330 .rx = { STM32F4_SPI_DR },
331 .tx = { STM32F4_SPI_DR },
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 /* SPI data transfer is enabled but spi_ker_ck is idle.
336 * CFG1 and CFG2 registers are write protected when SPE is enabled.
338 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
340 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
343 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 STM32H7_SPI_CFG1_MBR_SHIFT },
349 .rx = { STM32H7_SPI_RXDR },
350 .tx = { STM32H7_SPI_TXDR },
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 u32 offset, u32 bits)
356 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 spi->base + offset);
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 u32 offset, u32 bits)
363 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 spi->base + offset);
368 * stm32h7_spi_get_fifo_size - Return fifo size
369 * @spi: pointer to the spi controller data structure
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
373 unsigned long flags;
374 u32 count = 0;
376 spin_lock_irqsave(&spi->lock, flags);
378 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
380 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
383 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
385 spin_unlock_irqrestore(&spi->lock, flags);
387 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
389 return count;
393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
394 * @spi: pointer to the spi controller data structure
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
398 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 * @spi: pointer to the spi controller data structure
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
408 unsigned long flags;
409 u32 cfg1, max_bpw;
411 spin_lock_irqsave(&spi->lock, flags);
414 * The most significant bit at DSIZE bit field is reserved when the
415 * maximum data size of periperal instances is limited to 16-bit
417 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
419 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 max_bpw += 1;
424 spin_unlock_irqrestore(&spi->lock, flags);
426 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
428 return SPI_BPW_RANGE_MASK(4, max_bpw);
432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 * @spi: pointer to the spi controller data structure
434 * @speed_hz: requested speed
435 * @min_div: minimum baud rate divisor
436 * @max_div: maximum baud rate divisor
438 * Return baud rate divisor value in case of success or -EINVAL
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 u32 min_div, u32 max_div)
443 u32 div, mbrdiv;
445 div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
448 * SPI framework set xfer->speed_hz to master->max_speed_hz if
449 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
450 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
451 * no need to check it there.
452 * However, we need to ensure the following calculations.
454 if ((div < min_div) || (div > max_div))
455 return -EINVAL;
457 /* Determine the first power of 2 greater than or equal to div */
458 if (div & (div - 1))
459 mbrdiv = fls(div);
460 else
461 mbrdiv = fls(div) - 1;
463 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465 return mbrdiv - 1;
469 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
470 * @spi: pointer to the spi controller data structure
472 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
474 u32 fthlv, half_fifo;
476 /* data packet should not exceed 1/2 of fifo space */
477 half_fifo = (spi->fifo_size / 2);
479 if (spi->cur_bpw <= 8)
480 fthlv = half_fifo;
481 else if (spi->cur_bpw <= 16)
482 fthlv = half_fifo / 2;
483 else
484 fthlv = half_fifo / 4;
486 /* align packet size with data registers access */
487 if (spi->cur_bpw > 8)
488 fthlv -= (fthlv % 2); /* multiple of 2 */
489 else
490 fthlv -= (fthlv % 4); /* multiple of 4 */
492 return fthlv;
496 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
497 * @spi: pointer to the spi controller data structure
499 * Read from tx_buf depends on remaining bytes to avoid to read beyond
500 * tx_buf end.
502 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
504 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
505 STM32F4_SPI_SR_TXE)) {
506 u32 offs = spi->cur_xferlen - spi->tx_len;
508 if (spi->cur_bpw == 16) {
509 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
511 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
512 spi->tx_len -= sizeof(u16);
513 } else {
514 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
516 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
517 spi->tx_len -= sizeof(u8);
521 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
525 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
526 * @spi: pointer to the spi controller data structure
528 * Read from tx_buf depends on remaining bytes to avoid to read beyond
529 * tx_buf end.
531 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
533 while ((spi->tx_len > 0) &&
534 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
535 STM32H7_SPI_SR_TXP)) {
536 u32 offs = spi->cur_xferlen - spi->tx_len;
538 if (spi->tx_len >= sizeof(u32)) {
539 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
541 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
542 spi->tx_len -= sizeof(u32);
543 } else if (spi->tx_len >= sizeof(u16)) {
544 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
546 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
547 spi->tx_len -= sizeof(u16);
548 } else {
549 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
551 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
552 spi->tx_len -= sizeof(u8);
556 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
560 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
561 * @spi: pointer to the spi controller data structure
563 * Write in rx_buf depends on remaining bytes to avoid to write beyond
564 * rx_buf end.
566 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
568 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
569 STM32F4_SPI_SR_RXNE)) {
570 u32 offs = spi->cur_xferlen - spi->rx_len;
572 if (spi->cur_bpw == 16) {
573 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
575 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
576 spi->rx_len -= sizeof(u16);
577 } else {
578 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
580 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
581 spi->rx_len -= sizeof(u8);
585 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
589 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
590 * @spi: pointer to the spi controller data structure
592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
593 * rx_buf end.
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
597 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
599 STM32H7_SPI_SR_RXPLVL_SHIFT;
601 while ((spi->rx_len > 0) &&
602 ((sr & STM32H7_SPI_SR_RXP) ||
603 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604 u32 offs = spi->cur_xferlen - spi->rx_len;
606 if ((spi->rx_len >= sizeof(u32)) ||
607 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
608 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
610 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611 spi->rx_len -= sizeof(u32);
612 } else if ((spi->rx_len >= sizeof(u16)) ||
613 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
614 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
616 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
617 spi->rx_len -= sizeof(u16);
618 } else {
619 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
621 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
622 spi->rx_len -= sizeof(u8);
625 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
626 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
627 STM32H7_SPI_SR_RXPLVL_SHIFT;
630 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
631 flush ? "(flush)" : "", spi->rx_len);
635 * stm32_spi_enable - Enable SPI controller
636 * @spi: pointer to the spi controller data structure
638 static void stm32_spi_enable(struct stm32_spi *spi)
640 dev_dbg(spi->dev, "enable controller\n");
642 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643 spi->cfg->regs->en.mask);
647 * stm32f4_spi_disable - Disable SPI controller
648 * @spi: pointer to the spi controller data structure
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
652 unsigned long flags;
653 u32 sr;
655 dev_dbg(spi->dev, "disable controller\n");
657 spin_lock_irqsave(&spi->lock, flags);
659 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660 STM32F4_SPI_CR1_SPE)) {
661 spin_unlock_irqrestore(&spi->lock, flags);
662 return;
665 /* Disable interrupts */
666 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667 STM32F4_SPI_CR2_RXNEIE |
668 STM32F4_SPI_CR2_ERRIE);
670 /* Wait until BSY = 0 */
671 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672 sr, !(sr & STM32F4_SPI_SR_BSY),
673 10, 100000) < 0) {
674 dev_warn(spi->dev, "disabling condition timeout\n");
677 if (spi->cur_usedma && spi->dma_tx)
678 dmaengine_terminate_all(spi->dma_tx);
679 if (spi->cur_usedma && spi->dma_rx)
680 dmaengine_terminate_all(spi->dma_rx);
682 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
684 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685 STM32F4_SPI_CR2_RXDMAEN);
687 /* Sequence to clear OVR flag */
688 readl_relaxed(spi->base + STM32F4_SPI_DR);
689 readl_relaxed(spi->base + STM32F4_SPI_SR);
691 spin_unlock_irqrestore(&spi->lock, flags);
695 * stm32h7_spi_disable - Disable SPI controller
696 * @spi: pointer to the spi controller data structure
698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
700 * RX-Fifo.
701 * Normally, if TSIZE has been configured, we should relax the hardware at the
702 * reception of the EOT interrupt. But in case of error, EOT will not be
703 * raised. So the subsystem unprepare_message call allows us to properly
704 * complete the transfer from an hardware point of view.
706 static void stm32h7_spi_disable(struct stm32_spi *spi)
708 unsigned long flags;
709 u32 cr1, sr;
711 dev_dbg(spi->dev, "disable controller\n");
713 spin_lock_irqsave(&spi->lock, flags);
715 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
717 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
718 spin_unlock_irqrestore(&spi->lock, flags);
719 return;
722 /* Wait on EOT or suspend the flow */
723 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
724 sr, !(sr & STM32H7_SPI_SR_EOT),
725 10, 100000) < 0) {
726 if (cr1 & STM32H7_SPI_CR1_CSTART) {
727 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
728 spi->base + STM32H7_SPI_CR1);
729 if (readl_relaxed_poll_timeout_atomic(
730 spi->base + STM32H7_SPI_SR,
731 sr, !(sr & STM32H7_SPI_SR_SUSP),
732 10, 100000) < 0)
733 dev_warn(spi->dev,
734 "Suspend request timeout\n");
738 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
739 stm32h7_spi_read_rxfifo(spi, true);
741 if (spi->cur_usedma && spi->dma_tx)
742 dmaengine_terminate_all(spi->dma_tx);
743 if (spi->cur_usedma && spi->dma_rx)
744 dmaengine_terminate_all(spi->dma_rx);
746 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
748 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
749 STM32H7_SPI_CFG1_RXDMAEN);
751 /* Disable interrupts and clear status flags */
752 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
753 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
755 spin_unlock_irqrestore(&spi->lock, flags);
759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
761 * If driver has fifo and the current transfer size is greater than fifo size,
762 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
764 static bool stm32_spi_can_dma(struct spi_master *master,
765 struct spi_device *spi_dev,
766 struct spi_transfer *transfer)
768 unsigned int dma_size;
769 struct stm32_spi *spi = spi_master_get_devdata(master);
771 if (spi->cfg->has_fifo)
772 dma_size = spi->fifo_size;
773 else
774 dma_size = SPI_DMA_MIN_BYTES;
776 dev_dbg(spi->dev, "%s: %s\n", __func__,
777 (transfer->len > dma_size) ? "true" : "false");
779 return (transfer->len > dma_size);
783 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
784 * @irq: interrupt line
785 * @dev_id: SPI controller master interface
787 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
789 struct spi_master *master = dev_id;
790 struct stm32_spi *spi = spi_master_get_devdata(master);
791 u32 sr, mask = 0;
792 unsigned long flags;
793 bool end = false;
795 spin_lock_irqsave(&spi->lock, flags);
797 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
799 * BSY flag is not handled in interrupt but it is normal behavior when
800 * this flag is set.
802 sr &= ~STM32F4_SPI_SR_BSY;
804 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
805 spi->cur_comm == SPI_3WIRE_TX)) {
806 /* OVR flag shouldn't be handled for TX only mode */
807 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
808 mask |= STM32F4_SPI_SR_TXE;
811 if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
812 /* TXE flag is set and is handled when RXNE flag occurs */
813 sr &= ~STM32F4_SPI_SR_TXE;
814 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
817 if (!(sr & mask)) {
818 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
819 spin_unlock_irqrestore(&spi->lock, flags);
820 return IRQ_NONE;
823 if (sr & STM32F4_SPI_SR_OVR) {
824 dev_warn(spi->dev, "Overrun: received value discarded\n");
826 /* Sequence to clear OVR flag */
827 readl_relaxed(spi->base + STM32F4_SPI_DR);
828 readl_relaxed(spi->base + STM32F4_SPI_SR);
831 * If overrun is detected, it means that something went wrong,
832 * so stop the current transfer. Transfer can wait for next
833 * RXNE but DR is already read and end never happens.
835 end = true;
836 goto end_irq;
839 if (sr & STM32F4_SPI_SR_TXE) {
840 if (spi->tx_buf)
841 stm32f4_spi_write_tx(spi);
842 if (spi->tx_len == 0)
843 end = true;
846 if (sr & STM32F4_SPI_SR_RXNE) {
847 stm32f4_spi_read_rx(spi);
848 if (spi->rx_len == 0)
849 end = true;
850 else /* Load data for discontinuous mode */
851 stm32f4_spi_write_tx(spi);
854 end_irq:
855 if (end) {
856 /* Immediately disable interrupts to do not generate new one */
857 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
858 STM32F4_SPI_CR2_TXEIE |
859 STM32F4_SPI_CR2_RXNEIE |
860 STM32F4_SPI_CR2_ERRIE);
861 spin_unlock_irqrestore(&spi->lock, flags);
862 return IRQ_WAKE_THREAD;
865 spin_unlock_irqrestore(&spi->lock, flags);
866 return IRQ_HANDLED;
870 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
871 * @irq: interrupt line
872 * @dev_id: SPI controller master interface
874 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
876 struct spi_master *master = dev_id;
877 struct stm32_spi *spi = spi_master_get_devdata(master);
879 spi_finalize_current_transfer(master);
880 stm32f4_spi_disable(spi);
882 return IRQ_HANDLED;
886 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
887 * @irq: interrupt line
888 * @dev_id: SPI controller master interface
890 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
892 struct spi_master *master = dev_id;
893 struct stm32_spi *spi = spi_master_get_devdata(master);
894 u32 sr, ier, mask;
895 unsigned long flags;
896 bool end = false;
898 spin_lock_irqsave(&spi->lock, flags);
900 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
901 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
903 mask = ier;
904 /* EOTIE is triggered on EOT, SUSP and TXC events. */
905 mask |= STM32H7_SPI_SR_SUSP;
907 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
908 * Full-Duplex, need to poll RXP event to know if there are remaining
909 * data, before disabling SPI.
911 if (spi->rx_buf && !spi->cur_usedma)
912 mask |= STM32H7_SPI_SR_RXP;
914 if (!(sr & mask)) {
915 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
916 sr, ier);
917 spin_unlock_irqrestore(&spi->lock, flags);
918 return IRQ_NONE;
921 if (sr & STM32H7_SPI_SR_SUSP) {
922 dev_warn(spi->dev, "Communication suspended\n");
923 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
924 stm32h7_spi_read_rxfifo(spi, false);
926 * If communication is suspended while using DMA, it means
927 * that something went wrong, so stop the current transfer
929 if (spi->cur_usedma)
930 end = true;
933 if (sr & STM32H7_SPI_SR_MODF) {
934 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
935 end = true;
938 if (sr & STM32H7_SPI_SR_OVR) {
939 dev_warn(spi->dev, "Overrun: received value discarded\n");
940 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
941 stm32h7_spi_read_rxfifo(spi, false);
943 * If overrun is detected while using DMA, it means that
944 * something went wrong, so stop the current transfer
946 if (spi->cur_usedma)
947 end = true;
950 if (sr & STM32H7_SPI_SR_EOT) {
951 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
952 stm32h7_spi_read_rxfifo(spi, true);
953 end = true;
956 if (sr & STM32H7_SPI_SR_TXP)
957 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
958 stm32h7_spi_write_txfifo(spi);
960 if (sr & STM32H7_SPI_SR_RXP)
961 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
962 stm32h7_spi_read_rxfifo(spi, false);
964 writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
966 spin_unlock_irqrestore(&spi->lock, flags);
968 if (end) {
969 spi_finalize_current_transfer(master);
970 stm32h7_spi_disable(spi);
973 return IRQ_HANDLED;
977 * stm32_spi_setup - setup device chip select
979 static int stm32_spi_setup(struct spi_device *spi_dev)
981 int ret = 0;
983 if (!gpio_is_valid(spi_dev->cs_gpio)) {
984 dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
985 spi_dev->cs_gpio);
986 return -EINVAL;
989 dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
990 spi_dev->cs_gpio,
991 (spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");
993 ret = gpio_direction_output(spi_dev->cs_gpio,
994 !(spi_dev->mode & SPI_CS_HIGH));
996 return ret;
1000 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1002 static int stm32_spi_prepare_msg(struct spi_master *master,
1003 struct spi_message *msg)
1005 struct stm32_spi *spi = spi_master_get_devdata(master);
1006 struct spi_device *spi_dev = msg->spi;
1007 struct device_node *np = spi_dev->dev.of_node;
1008 unsigned long flags;
1009 u32 clrb = 0, setb = 0;
1011 /* SPI slave device may need time between data frames */
1012 spi->cur_midi = 0;
1013 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1014 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1016 if (spi_dev->mode & SPI_CPOL)
1017 setb |= spi->cfg->regs->cpol.mask;
1018 else
1019 clrb |= spi->cfg->regs->cpol.mask;
1021 if (spi_dev->mode & SPI_CPHA)
1022 setb |= spi->cfg->regs->cpha.mask;
1023 else
1024 clrb |= spi->cfg->regs->cpha.mask;
1026 if (spi_dev->mode & SPI_LSB_FIRST)
1027 setb |= spi->cfg->regs->lsb_first.mask;
1028 else
1029 clrb |= spi->cfg->regs->lsb_first.mask;
1031 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1032 spi_dev->mode & SPI_CPOL,
1033 spi_dev->mode & SPI_CPHA,
1034 spi_dev->mode & SPI_LSB_FIRST,
1035 spi_dev->mode & SPI_CS_HIGH);
1037 spin_lock_irqsave(&spi->lock, flags);
1039 /* CPOL, CPHA and LSB FIRST bits have common register */
1040 if (clrb || setb)
1041 writel_relaxed(
1042 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1043 ~clrb) | setb,
1044 spi->base + spi->cfg->regs->cpol.reg);
1046 spin_unlock_irqrestore(&spi->lock, flags);
1048 return 0;
1052 * stm32f4_spi_dma_tx_cb - dma callback
1054 * DMA callback is called when the transfer is complete for DMA TX channel.
1056 static void stm32f4_spi_dma_tx_cb(void *data)
1058 struct stm32_spi *spi = data;
1060 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061 spi_finalize_current_transfer(spi->master);
1062 stm32f4_spi_disable(spi);
1067 * stm32f4_spi_dma_rx_cb - dma callback
1069 * DMA callback is called when the transfer is complete for DMA RX channel.
1071 static void stm32f4_spi_dma_rx_cb(void *data)
1073 struct stm32_spi *spi = data;
1075 spi_finalize_current_transfer(spi->master);
1076 stm32f4_spi_disable(spi);
1080 * stm32h7_spi_dma_cb - dma callback
1082 * DMA callback is called when the transfer is complete or when an error
1083 * occurs. If the transfer is complete, EOT flag is raised.
1085 static void stm32h7_spi_dma_cb(void *data)
1087 struct stm32_spi *spi = data;
1088 unsigned long flags;
1089 u32 sr;
1091 spin_lock_irqsave(&spi->lock, flags);
1093 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1095 spin_unlock_irqrestore(&spi->lock, flags);
1097 if (!(sr & STM32H7_SPI_SR_EOT))
1098 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1100 /* Now wait for EOT, or SUSP or OVR in case of error */
1104 * stm32_spi_dma_config - configure dma slave channel depending on current
1105 * transfer bits_per_word.
1107 static void stm32_spi_dma_config(struct stm32_spi *spi,
1108 struct dma_slave_config *dma_conf,
1109 enum dma_transfer_direction dir)
1111 enum dma_slave_buswidth buswidth;
1112 u32 maxburst;
1114 if (spi->cur_bpw <= 8)
1115 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1116 else if (spi->cur_bpw <= 16)
1117 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1118 else
1119 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1121 if (spi->cfg->has_fifo) {
1122 /* Valid for DMA Half or Full Fifo threshold */
1123 if (spi->cur_fthlv == 2)
1124 maxburst = 1;
1125 else
1126 maxburst = spi->cur_fthlv;
1127 } else {
1128 maxburst = 1;
1131 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1132 dma_conf->direction = dir;
1133 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1134 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1135 dma_conf->src_addr_width = buswidth;
1136 dma_conf->src_maxburst = maxburst;
1138 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1139 buswidth, maxburst);
1140 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1141 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1142 dma_conf->dst_addr_width = buswidth;
1143 dma_conf->dst_maxburst = maxburst;
1145 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1146 buswidth, maxburst);
1151 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1152 * interrupts
1154 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1155 * in progress.
1157 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1159 unsigned long flags;
1160 u32 cr2 = 0;
1162 /* Enable the interrupts relative to the current communication mode */
1163 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1164 cr2 |= STM32F4_SPI_CR2_TXEIE;
1165 } else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1166 /* In transmit-only mode, the OVR flag is set in the SR register
1167 * since the received data are never read. Therefore set OVR
1168 * interrupt only when rx buffer is available.
1170 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1171 } else {
1172 return -EINVAL;
1175 spin_lock_irqsave(&spi->lock, flags);
1177 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1179 stm32_spi_enable(spi);
1181 /* starting data transfer when buffer is loaded */
1182 if (spi->tx_buf)
1183 stm32f4_spi_write_tx(spi);
1185 spin_unlock_irqrestore(&spi->lock, flags);
1187 return 1;
1191 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1192 * interrupts
1194 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1195 * in progress.
1197 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1199 unsigned long flags;
1200 u32 ier = 0;
1202 /* Enable the interrupts relative to the current communication mode */
1203 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1204 ier |= STM32H7_SPI_IER_DXPIE;
1205 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1206 ier |= STM32H7_SPI_IER_TXPIE;
1207 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1208 ier |= STM32H7_SPI_IER_RXPIE;
1210 /* Enable the interrupts relative to the end of transfer */
1211 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1212 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1214 spin_lock_irqsave(&spi->lock, flags);
1216 stm32_spi_enable(spi);
1218 /* Be sure to have data in fifo before starting data transfer */
1219 if (spi->tx_buf)
1220 stm32h7_spi_write_txfifo(spi);
1222 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1224 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1226 spin_unlock_irqrestore(&spi->lock, flags);
1228 return 1;
1232 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1233 * transfer using DMA
1235 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1237 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1238 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1239 spi->cur_comm == SPI_FULL_DUPLEX) {
1241 * In transmit-only mode, the OVR flag is set in the SR register
1242 * since the received data are never read. Therefore set OVR
1243 * interrupt only when rx buffer is available.
1245 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1248 stm32_spi_enable(spi);
1252 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1253 * transfer using DMA
1255 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1257 /* Enable the interrupts relative to the end of transfer */
1258 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1259 STM32H7_SPI_IER_TXTFIE |
1260 STM32H7_SPI_IER_OVRIE |
1261 STM32H7_SPI_IER_MODFIE);
1263 stm32_spi_enable(spi);
1265 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1269 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1271 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1272 * in progress.
1274 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1275 struct spi_transfer *xfer)
1277 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1278 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1279 unsigned long flags;
1281 spin_lock_irqsave(&spi->lock, flags);
1283 rx_dma_desc = NULL;
1284 if (spi->rx_buf && spi->dma_rx) {
1285 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1286 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1288 /* Enable Rx DMA request */
1289 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1290 spi->cfg->regs->dma_rx_en.mask);
1292 rx_dma_desc = dmaengine_prep_slave_sg(
1293 spi->dma_rx, xfer->rx_sg.sgl,
1294 xfer->rx_sg.nents,
1295 rx_dma_conf.direction,
1296 DMA_PREP_INTERRUPT);
1299 tx_dma_desc = NULL;
1300 if (spi->tx_buf && spi->dma_tx) {
1301 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1302 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1304 tx_dma_desc = dmaengine_prep_slave_sg(
1305 spi->dma_tx, xfer->tx_sg.sgl,
1306 xfer->tx_sg.nents,
1307 tx_dma_conf.direction,
1308 DMA_PREP_INTERRUPT);
1311 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1312 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1313 goto dma_desc_error;
1315 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1316 goto dma_desc_error;
1318 if (rx_dma_desc) {
1319 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1320 rx_dma_desc->callback_param = spi;
1322 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1323 dev_err(spi->dev, "Rx DMA submit failed\n");
1324 goto dma_desc_error;
1326 /* Enable Rx DMA channel */
1327 dma_async_issue_pending(spi->dma_rx);
1330 if (tx_dma_desc) {
1331 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1332 spi->cur_comm == SPI_3WIRE_TX) {
1333 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1334 tx_dma_desc->callback_param = spi;
1337 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1338 dev_err(spi->dev, "Tx DMA submit failed\n");
1339 goto dma_submit_error;
1341 /* Enable Tx DMA channel */
1342 dma_async_issue_pending(spi->dma_tx);
1344 /* Enable Tx DMA request */
1345 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1346 spi->cfg->regs->dma_tx_en.mask);
1349 spi->cfg->transfer_one_dma_start(spi);
1351 spin_unlock_irqrestore(&spi->lock, flags);
1353 return 1;
1355 dma_submit_error:
1356 if (spi->dma_rx)
1357 dmaengine_terminate_all(spi->dma_rx);
1359 dma_desc_error:
1360 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1361 spi->cfg->regs->dma_rx_en.mask);
1363 spin_unlock_irqrestore(&spi->lock, flags);
1365 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1367 spi->cur_usedma = false;
1368 return spi->cfg->transfer_one_irq(spi);
1372 * stm32f4_spi_set_bpw - Configure bits per word
1373 * @spi: pointer to the spi controller data structure
1375 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1377 if (spi->cur_bpw == 16)
1378 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1379 else
1380 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1384 * stm32h7_spi_set_bpw - configure bits per word
1385 * @spi: pointer to the spi controller data structure
1387 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1389 u32 bpw, fthlv;
1390 u32 cfg1_clrb = 0, cfg1_setb = 0;
1392 bpw = spi->cur_bpw - 1;
1394 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1395 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1396 STM32H7_SPI_CFG1_DSIZE;
1398 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1399 fthlv = spi->cur_fthlv - 1;
1401 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1402 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1403 STM32H7_SPI_CFG1_FTHLV;
1405 writel_relaxed(
1406 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1407 ~cfg1_clrb) | cfg1_setb,
1408 spi->base + STM32H7_SPI_CFG1);
1412 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1413 * @spi: pointer to the spi controller data structure
1414 * @mbrdiv: baud rate divisor value
1416 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1418 u32 clrb = 0, setb = 0;
1420 clrb |= spi->cfg->regs->br.mask;
1421 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1422 spi->cfg->regs->br.mask;
1424 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1425 ~clrb) | setb,
1426 spi->base + spi->cfg->regs->br.reg);
1430 * stm32_spi_communication_type - return transfer communication type
1431 * @spi_dev: pointer to the spi device
1432 * transfer: pointer to spi transfer
1434 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1435 struct spi_transfer *transfer)
1437 unsigned int type = SPI_FULL_DUPLEX;
1439 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1441 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1442 * is forbidden and unvalidated by SPI subsystem so depending
1443 * on the valid buffer, we can determine the direction of the
1444 * transfer.
1446 if (!transfer->tx_buf)
1447 type = SPI_3WIRE_RX;
1448 else
1449 type = SPI_3WIRE_TX;
1450 } else {
1451 if (!transfer->tx_buf)
1452 type = SPI_SIMPLEX_RX;
1453 else if (!transfer->rx_buf)
1454 type = SPI_SIMPLEX_TX;
1457 return type;
1461 * stm32f4_spi_set_mode - configure communication mode
1462 * @spi: pointer to the spi controller data structure
1463 * @comm_type: type of communication to configure
1465 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1467 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1468 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1469 STM32F4_SPI_CR1_BIDIMODE |
1470 STM32F4_SPI_CR1_BIDIOE);
1471 } else if (comm_type == SPI_FULL_DUPLEX) {
1472 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1473 STM32F4_SPI_CR1_BIDIMODE |
1474 STM32F4_SPI_CR1_BIDIOE);
1475 } else {
1476 return -EINVAL;
1479 return 0;
1483 * stm32h7_spi_set_mode - configure communication mode
1484 * @spi: pointer to the spi controller data structure
1485 * @comm_type: type of communication to configure
1487 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1489 u32 mode;
1490 u32 cfg2_clrb = 0, cfg2_setb = 0;
1492 if (comm_type == SPI_3WIRE_RX) {
1493 mode = STM32H7_SPI_HALF_DUPLEX;
1494 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1495 } else if (comm_type == SPI_3WIRE_TX) {
1496 mode = STM32H7_SPI_HALF_DUPLEX;
1497 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1498 } else if (comm_type == SPI_SIMPLEX_RX) {
1499 mode = STM32H7_SPI_SIMPLEX_RX;
1500 } else if (comm_type == SPI_SIMPLEX_TX) {
1501 mode = STM32H7_SPI_SIMPLEX_TX;
1502 } else {
1503 mode = STM32H7_SPI_FULL_DUPLEX;
1506 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1507 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1508 STM32H7_SPI_CFG2_COMM;
1510 writel_relaxed(
1511 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1512 ~cfg2_clrb) | cfg2_setb,
1513 spi->base + STM32H7_SPI_CFG2);
1515 return 0;
1519 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1520 * consecutive data frames in master mode
1521 * @spi: pointer to the spi controller data structure
1522 * @len: transfer len
1524 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1526 u32 cfg2_clrb = 0, cfg2_setb = 0;
1528 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1529 if ((len > 1) && (spi->cur_midi > 0)) {
1530 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1531 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1532 (u32)STM32H7_SPI_CFG2_MIDI >>
1533 STM32H7_SPI_CFG2_MIDI_SHIFT);
1535 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1536 sck_period_ns, midi, midi * sck_period_ns);
1537 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1538 STM32H7_SPI_CFG2_MIDI;
1541 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1542 ~cfg2_clrb) | cfg2_setb,
1543 spi->base + STM32H7_SPI_CFG2);
1547 * stm32h7_spi_number_of_data - configure number of data at current transfer
1548 * @spi: pointer to the spi controller data structure
1549 * @len: transfer length
1551 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1553 u32 cr2_clrb = 0, cr2_setb = 0;
1555 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1556 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1557 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1558 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1559 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1560 ~cr2_clrb) | cr2_setb,
1561 spi->base + STM32H7_SPI_CR2);
1562 } else {
1563 return -EMSGSIZE;
1566 return 0;
1570 * stm32_spi_transfer_one_setup - common setup to transfer a single
1571 * spi_transfer either using DMA or
1572 * interrupts.
1574 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1575 struct spi_device *spi_dev,
1576 struct spi_transfer *transfer)
1578 unsigned long flags;
1579 unsigned int comm_type;
1580 int nb_words, ret = 0;
1582 spin_lock_irqsave(&spi->lock, flags);
1584 if (spi->cur_bpw != transfer->bits_per_word) {
1585 spi->cur_bpw = transfer->bits_per_word;
1586 spi->cfg->set_bpw(spi);
1589 if (spi->cur_speed != transfer->speed_hz) {
1590 int mbr;
1592 /* Update spi->cur_speed with real clock speed */
1593 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1594 spi->cfg->baud_rate_div_min,
1595 spi->cfg->baud_rate_div_max);
1596 if (mbr < 0) {
1597 ret = mbr;
1598 goto out;
1601 transfer->speed_hz = spi->cur_speed;
1602 stm32_spi_set_mbr(spi, mbr);
1605 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1606 if (spi->cur_comm != comm_type) {
1607 ret = spi->cfg->set_mode(spi, comm_type);
1609 if (ret < 0)
1610 goto out;
1612 spi->cur_comm = comm_type;
1615 if (spi->cfg->set_data_idleness)
1616 spi->cfg->set_data_idleness(spi, transfer->len);
1618 if (spi->cur_bpw <= 8)
1619 nb_words = transfer->len;
1620 else if (spi->cur_bpw <= 16)
1621 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1622 else
1623 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1625 if (spi->cfg->set_number_of_data) {
1626 ret = spi->cfg->set_number_of_data(spi, nb_words);
1627 if (ret < 0)
1628 goto out;
1631 spi->cur_xferlen = transfer->len;
1633 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1634 spi->cur_comm);
1635 dev_dbg(spi->dev,
1636 "data frame of %d-bit, data packet of %d data frames\n",
1637 spi->cur_bpw, spi->cur_fthlv);
1638 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1639 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1640 spi->cur_xferlen, nb_words);
1641 dev_dbg(spi->dev, "dma %s\n",
1642 (spi->cur_usedma) ? "enabled" : "disabled");
1644 out:
1645 spin_unlock_irqrestore(&spi->lock, flags);
1647 return ret;
1651 * stm32_spi_transfer_one - transfer a single spi_transfer
1653 * It must return 0 if the transfer is finished or 1 if the transfer is still
1654 * in progress.
1656 static int stm32_spi_transfer_one(struct spi_master *master,
1657 struct spi_device *spi_dev,
1658 struct spi_transfer *transfer)
1660 struct stm32_spi *spi = spi_master_get_devdata(master);
1661 int ret;
1663 spi->tx_buf = transfer->tx_buf;
1664 spi->rx_buf = transfer->rx_buf;
1665 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1666 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1668 spi->cur_usedma = (master->can_dma &&
1669 master->can_dma(master, spi_dev, transfer));
1671 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1672 if (ret) {
1673 dev_err(spi->dev, "SPI transfer setup failed\n");
1674 return ret;
1677 if (spi->cur_usedma)
1678 return stm32_spi_transfer_one_dma(spi, transfer);
1679 else
1680 return spi->cfg->transfer_one_irq(spi);
1684 * stm32_spi_unprepare_msg - relax the hardware
1686 static int stm32_spi_unprepare_msg(struct spi_master *master,
1687 struct spi_message *msg)
1689 struct stm32_spi *spi = spi_master_get_devdata(master);
1691 spi->cfg->disable(spi);
1693 return 0;
1697 * stm32f4_spi_config - Configure SPI controller as SPI master
1699 static int stm32f4_spi_config(struct stm32_spi *spi)
1701 unsigned long flags;
1703 spin_lock_irqsave(&spi->lock, flags);
1705 /* Ensure I2SMOD bit is kept cleared */
1706 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1707 STM32F4_SPI_I2SCFGR_I2SMOD);
1710 * - SS input value high
1711 * - transmitter half duplex direction
1712 * - Set the master mode (default Motorola mode)
1713 * - Consider 1 master/n slaves configuration and
1714 * SS input value is determined by the SSI bit
1716 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1717 STM32F4_SPI_CR1_BIDIOE |
1718 STM32F4_SPI_CR1_MSTR |
1719 STM32F4_SPI_CR1_SSM);
1721 spin_unlock_irqrestore(&spi->lock, flags);
1723 return 0;
1727 * stm32h7_spi_config - Configure SPI controller as SPI master
1729 static int stm32h7_spi_config(struct stm32_spi *spi)
1731 unsigned long flags;
1733 spin_lock_irqsave(&spi->lock, flags);
1735 /* Ensure I2SMOD bit is kept cleared */
1736 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1737 STM32H7_SPI_I2SCFGR_I2SMOD);
1740 * - SS input value high
1741 * - transmitter half duplex direction
1742 * - automatic communication suspend when RX-Fifo is full
1744 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1745 STM32H7_SPI_CR1_HDDIR |
1746 STM32H7_SPI_CR1_MASRX);
1749 * - Set the master mode (default Motorola mode)
1750 * - Consider 1 master/n slaves configuration and
1751 * SS input value is determined by the SSI bit
1752 * - keep control of all associated GPIOs
1754 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1755 STM32H7_SPI_CFG2_SSM |
1756 STM32H7_SPI_CFG2_AFCNTR);
1758 spin_unlock_irqrestore(&spi->lock, flags);
1760 return 0;
1763 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1764 .regs = &stm32f4_spi_regspec,
1765 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1766 .disable = stm32f4_spi_disable,
1767 .config = stm32f4_spi_config,
1768 .set_bpw = stm32f4_spi_set_bpw,
1769 .set_mode = stm32f4_spi_set_mode,
1770 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1771 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1772 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1773 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1774 .irq_handler_event = stm32f4_spi_irq_event,
1775 .irq_handler_thread = stm32f4_spi_irq_thread,
1776 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1777 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1778 .has_fifo = false,
1781 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1782 .regs = &stm32h7_spi_regspec,
1783 .get_fifo_size = stm32h7_spi_get_fifo_size,
1784 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1785 .disable = stm32h7_spi_disable,
1786 .config = stm32h7_spi_config,
1787 .set_bpw = stm32h7_spi_set_bpw,
1788 .set_mode = stm32h7_spi_set_mode,
1789 .set_data_idleness = stm32h7_spi_data_idleness,
1790 .set_number_of_data = stm32h7_spi_number_of_data,
1791 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1792 .dma_rx_cb = stm32h7_spi_dma_cb,
1793 .dma_tx_cb = stm32h7_spi_dma_cb,
1794 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1795 .irq_handler_thread = stm32h7_spi_irq_thread,
1796 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1797 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1798 .has_fifo = true,
1801 static const struct of_device_id stm32_spi_of_match[] = {
1802 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1803 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1806 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1808 static int stm32_spi_probe(struct platform_device *pdev)
1810 struct spi_master *master;
1811 struct stm32_spi *spi;
1812 struct resource *res;
1813 int i, ret;
1815 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1816 if (!master) {
1817 dev_err(&pdev->dev, "spi master allocation failed\n");
1818 return -ENOMEM;
1820 platform_set_drvdata(pdev, master);
1822 spi = spi_master_get_devdata(master);
1823 spi->dev = &pdev->dev;
1824 spi->master = master;
1825 spin_lock_init(&spi->lock);
1827 spi->cfg = (const struct stm32_spi_cfg *)
1828 of_match_device(pdev->dev.driver->of_match_table,
1829 &pdev->dev)->data;
1831 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1832 spi->base = devm_ioremap_resource(&pdev->dev, res);
1833 if (IS_ERR(spi->base)) {
1834 ret = PTR_ERR(spi->base);
1835 goto err_master_put;
1838 spi->phys_addr = (dma_addr_t)res->start;
1840 spi->irq = platform_get_irq(pdev, 0);
1841 if (spi->irq <= 0) {
1842 ret = spi->irq;
1843 if (ret != -EPROBE_DEFER)
1844 dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1845 goto err_master_put;
1847 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1848 spi->cfg->irq_handler_event,
1849 spi->cfg->irq_handler_thread,
1850 IRQF_ONESHOT, pdev->name, master);
1851 if (ret) {
1852 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1853 ret);
1854 goto err_master_put;
1857 spi->clk = devm_clk_get(&pdev->dev, NULL);
1858 if (IS_ERR(spi->clk)) {
1859 ret = PTR_ERR(spi->clk);
1860 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1861 goto err_master_put;
1864 ret = clk_prepare_enable(spi->clk);
1865 if (ret) {
1866 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1867 goto err_master_put;
1869 spi->clk_rate = clk_get_rate(spi->clk);
1870 if (!spi->clk_rate) {
1871 dev_err(&pdev->dev, "clk rate = 0\n");
1872 ret = -EINVAL;
1873 goto err_clk_disable;
1876 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1877 if (!IS_ERR(spi->rst)) {
1878 reset_control_assert(spi->rst);
1879 udelay(2);
1880 reset_control_deassert(spi->rst);
1883 if (spi->cfg->has_fifo)
1884 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1886 ret = spi->cfg->config(spi);
1887 if (ret) {
1888 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1889 ret);
1890 goto err_clk_disable;
1893 master->dev.of_node = pdev->dev.of_node;
1894 master->auto_runtime_pm = true;
1895 master->bus_num = pdev->id;
1896 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1897 SPI_3WIRE;
1898 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1899 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1900 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1901 master->setup = stm32_spi_setup;
1902 master->prepare_message = stm32_spi_prepare_msg;
1903 master->transfer_one = stm32_spi_transfer_one;
1904 master->unprepare_message = stm32_spi_unprepare_msg;
1906 spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
1907 if (!spi->dma_tx)
1908 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1909 else
1910 master->dma_tx = spi->dma_tx;
1912 spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
1913 if (!spi->dma_rx)
1914 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1915 else
1916 master->dma_rx = spi->dma_rx;
1918 if (spi->dma_tx || spi->dma_rx)
1919 master->can_dma = stm32_spi_can_dma;
1921 pm_runtime_set_active(&pdev->dev);
1922 pm_runtime_enable(&pdev->dev);
1924 ret = devm_spi_register_master(&pdev->dev, master);
1925 if (ret) {
1926 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1927 ret);
1928 goto err_dma_release;
1931 if (!master->cs_gpios) {
1932 dev_err(&pdev->dev, "no CS gpios available\n");
1933 ret = -EINVAL;
1934 goto err_dma_release;
1937 for (i = 0; i < master->num_chipselect; i++) {
1938 if (!gpio_is_valid(master->cs_gpios[i])) {
1939 dev_err(&pdev->dev, "%i is not a valid gpio\n",
1940 master->cs_gpios[i]);
1941 ret = -EINVAL;
1942 goto err_dma_release;
1945 ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
1946 DRIVER_NAME);
1947 if (ret) {
1948 dev_err(&pdev->dev, "can't get CS gpio %i\n",
1949 master->cs_gpios[i]);
1950 goto err_dma_release;
1954 dev_info(&pdev->dev, "driver initialized\n");
1956 return 0;
1958 err_dma_release:
1959 if (spi->dma_tx)
1960 dma_release_channel(spi->dma_tx);
1961 if (spi->dma_rx)
1962 dma_release_channel(spi->dma_rx);
1964 pm_runtime_disable(&pdev->dev);
1965 err_clk_disable:
1966 clk_disable_unprepare(spi->clk);
1967 err_master_put:
1968 spi_master_put(master);
1970 return ret;
1973 static int stm32_spi_remove(struct platform_device *pdev)
1975 struct spi_master *master = platform_get_drvdata(pdev);
1976 struct stm32_spi *spi = spi_master_get_devdata(master);
1978 spi->cfg->disable(spi);
1980 if (master->dma_tx)
1981 dma_release_channel(master->dma_tx);
1982 if (master->dma_rx)
1983 dma_release_channel(master->dma_rx);
1985 clk_disable_unprepare(spi->clk);
1987 pm_runtime_disable(&pdev->dev);
1989 return 0;
1992 #ifdef CONFIG_PM
1993 static int stm32_spi_runtime_suspend(struct device *dev)
1995 struct spi_master *master = dev_get_drvdata(dev);
1996 struct stm32_spi *spi = spi_master_get_devdata(master);
1998 clk_disable_unprepare(spi->clk);
2000 return 0;
2003 static int stm32_spi_runtime_resume(struct device *dev)
2005 struct spi_master *master = dev_get_drvdata(dev);
2006 struct stm32_spi *spi = spi_master_get_devdata(master);
2008 return clk_prepare_enable(spi->clk);
2010 #endif
2012 #ifdef CONFIG_PM_SLEEP
2013 static int stm32_spi_suspend(struct device *dev)
2015 struct spi_master *master = dev_get_drvdata(dev);
2016 int ret;
2018 ret = spi_master_suspend(master);
2019 if (ret)
2020 return ret;
2022 return pm_runtime_force_suspend(dev);
2025 static int stm32_spi_resume(struct device *dev)
2027 struct spi_master *master = dev_get_drvdata(dev);
2028 struct stm32_spi *spi = spi_master_get_devdata(master);
2029 int ret;
2031 ret = pm_runtime_force_resume(dev);
2032 if (ret)
2033 return ret;
2035 ret = spi_master_resume(master);
2036 if (ret)
2037 clk_disable_unprepare(spi->clk);
2039 return ret;
2041 #endif
2043 static const struct dev_pm_ops stm32_spi_pm_ops = {
2044 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2045 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2046 stm32_spi_runtime_resume, NULL)
2049 static struct platform_driver stm32_spi_driver = {
2050 .probe = stm32_spi_probe,
2051 .remove = stm32_spi_remove,
2052 .driver = {
2053 .name = DRIVER_NAME,
2054 .pm = &stm32_spi_pm_ops,
2055 .of_match_table = stm32_spi_of_match,
2059 module_platform_driver(stm32_spi_driver);
2061 MODULE_ALIAS("platform:" DRIVER_NAME);
2062 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2063 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2064 MODULE_LICENSE("GPL v2");