1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/security.h>
77 #include <linux/syscalls.h>
78 #include <linux/compat.h>
79 #include <linux/kmod.h>
80 #include <linux/audit.h>
81 #include <linux/wireless.h>
82 #include <linux/nsproxy.h>
83 #include <linux/magic.h>
84 #include <linux/slab.h>
85 #include <linux/xattr.h>
86 #include <linux/nospec.h>
87 #include <linux/indirect_call_wrapper.h>
89 #include <linux/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
94 #include <net/cls_cgroup.h>
97 #include <linux/netfilter.h>
99 #include <linux/if_tun.h>
100 #include <linux/ipv6_route.h>
101 #include <linux/route.h>
102 #include <linux/sockios.h>
103 #include <net/busy_poll.h>
104 #include <linux/errqueue.h>
106 /* proto_ops for ipv4 and ipv6 use the same {recv,send}msg function */
107 #if IS_ENABLED(CONFIG_INET)
108 #define INDIRECT_CALL_INET4(f, f1, ...) INDIRECT_CALL_1(f, f1, __VA_ARGS__)
110 #define INDIRECT_CALL_INET4(f, f1, ...) f(__VA_ARGS__)
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly
;
115 unsigned int sysctl_net_busy_poll __read_mostly
;
118 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
119 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
120 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
122 static int sock_close(struct inode
*inode
, struct file
*file
);
123 static __poll_t
sock_poll(struct file
*file
,
124 struct poll_table_struct
*wait
);
125 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
127 static long compat_sock_ioctl(struct file
*file
,
128 unsigned int cmd
, unsigned long arg
);
130 static int sock_fasync(int fd
, struct file
*filp
, int on
);
131 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
132 int offset
, size_t size
, loff_t
*ppos
, int more
);
133 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
134 struct pipe_inode_info
*pipe
, size_t len
,
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
142 static const struct file_operations socket_file_ops
= {
143 .owner
= THIS_MODULE
,
145 .read_iter
= sock_read_iter
,
146 .write_iter
= sock_write_iter
,
148 .unlocked_ioctl
= sock_ioctl
,
150 .compat_ioctl
= compat_sock_ioctl
,
153 .release
= sock_close
,
154 .fasync
= sock_fasync
,
155 .sendpage
= sock_sendpage
,
156 .splice_write
= generic_splice_sendpage
,
157 .splice_read
= sock_splice_read
,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock
);
165 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
213 void __user
*uaddr
, int __user
*ulen
)
218 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
219 err
= get_user(len
, ulen
);
227 if (audit_sockaddr(klen
, kaddr
))
229 if (copy_to_user(uaddr
, kaddr
, len
))
233 * "fromlen shall refer to the value before truncation.."
236 return __put_user(klen
, ulen
);
239 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
241 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
243 struct socket_alloc
*ei
;
244 struct socket_wq
*wq
;
246 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
249 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
251 kmem_cache_free(sock_inode_cachep
, ei
);
254 init_waitqueue_head(&wq
->wait
);
255 wq
->fasync_list
= NULL
;
259 ei
->socket
.state
= SS_UNCONNECTED
;
260 ei
->socket
.flags
= 0;
261 ei
->socket
.ops
= NULL
;
262 ei
->socket
.sk
= NULL
;
263 ei
->socket
.file
= NULL
;
265 return &ei
->vfs_inode
;
268 static void sock_destroy_inode(struct inode
*inode
)
270 struct socket_alloc
*ei
;
272 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
273 kfree_rcu(ei
->socket
.wq
, rcu
);
274 kmem_cache_free(sock_inode_cachep
, ei
);
277 static void init_once(void *foo
)
279 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
281 inode_init_once(&ei
->vfs_inode
);
284 static void init_inodecache(void)
286 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc
),
289 (SLAB_HWCACHE_ALIGN
|
290 SLAB_RECLAIM_ACCOUNT
|
291 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
293 BUG_ON(sock_inode_cachep
== NULL
);
296 static const struct super_operations sockfs_ops
= {
297 .alloc_inode
= sock_alloc_inode
,
298 .destroy_inode
= sock_destroy_inode
,
299 .statfs
= simple_statfs
,
303 * sockfs_dname() is called from d_path().
305 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
307 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
308 d_inode(dentry
)->i_ino
);
311 static const struct dentry_operations sockfs_dentry_operations
= {
312 .d_dname
= sockfs_dname
,
315 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
316 struct dentry
*dentry
, struct inode
*inode
,
317 const char *suffix
, void *value
, size_t size
)
320 if (dentry
->d_name
.len
+ 1 > size
)
322 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
324 return dentry
->d_name
.len
+ 1;
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331 static const struct xattr_handler sockfs_xattr_handler
= {
332 .name
= XATTR_NAME_SOCKPROTONAME
,
333 .get
= sockfs_xattr_get
,
336 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
337 struct dentry
*dentry
, struct inode
*inode
,
338 const char *suffix
, const void *value
,
339 size_t size
, int flags
)
341 /* Handled by LSM. */
345 static const struct xattr_handler sockfs_security_xattr_handler
= {
346 .prefix
= XATTR_SECURITY_PREFIX
,
347 .set
= sockfs_security_xattr_set
,
350 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
351 &sockfs_xattr_handler
,
352 &sockfs_security_xattr_handler
,
356 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
357 int flags
, const char *dev_name
, void *data
)
359 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
360 sockfs_xattr_handlers
,
361 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
364 static struct vfsmount
*sock_mnt __read_mostly
;
366 static struct file_system_type sock_fs_type
= {
368 .mount
= sockfs_mount
,
369 .kill_sb
= kill_anon_super
,
373 * Obtains the first available file descriptor and sets it up for use.
375 * These functions create file structures and maps them to fd space
376 * of the current process. On success it returns file descriptor
377 * and file struct implicitly stored in sock->file.
378 * Note that another thread may close file descriptor before we return
379 * from this function. We use the fact that now we do not refer
380 * to socket after mapping. If one day we will need it, this
381 * function will increment ref. count on file by 1.
383 * In any case returned fd MAY BE not valid!
384 * This race condition is unavoidable
385 * with shared fd spaces, we cannot solve it inside kernel,
386 * but we take care of internal coherence yet.
390 * sock_alloc_file - Bind a &socket to a &file
392 * @flags: file status flags
393 * @dname: protocol name
395 * Returns the &file bound with @sock, implicitly storing it
396 * in sock->file. If dname is %NULL, sets to "".
397 * On failure the return is a ERR pointer (see linux/err.h).
398 * This function uses GFP_KERNEL internally.
401 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
406 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
408 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
409 O_RDWR
| (flags
& O_NONBLOCK
),
417 file
->private_data
= sock
;
420 EXPORT_SYMBOL(sock_alloc_file
);
422 static int sock_map_fd(struct socket
*sock
, int flags
)
424 struct file
*newfile
;
425 int fd
= get_unused_fd_flags(flags
);
426 if (unlikely(fd
< 0)) {
431 newfile
= sock_alloc_file(sock
, flags
, NULL
);
432 if (likely(!IS_ERR(newfile
))) {
433 fd_install(fd
, newfile
);
438 return PTR_ERR(newfile
);
442 * sock_from_file - Return the &socket bounded to @file.
444 * @err: pointer to an error code return
446 * On failure returns %NULL and assigns -ENOTSOCK to @err.
449 struct socket
*sock_from_file(struct file
*file
, int *err
)
451 if (file
->f_op
== &socket_file_ops
)
452 return file
->private_data
; /* set in sock_map_fd */
457 EXPORT_SYMBOL(sock_from_file
);
460 * sockfd_lookup - Go from a file number to its socket slot
462 * @err: pointer to an error code return
464 * The file handle passed in is locked and the socket it is bound
465 * to is returned. If an error occurs the err pointer is overwritten
466 * with a negative errno code and NULL is returned. The function checks
467 * for both invalid handles and passing a handle which is not a socket.
469 * On a success the socket object pointer is returned.
472 struct socket
*sockfd_lookup(int fd
, int *err
)
483 sock
= sock_from_file(file
, err
);
488 EXPORT_SYMBOL(sockfd_lookup
);
490 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
492 struct fd f
= fdget(fd
);
497 sock
= sock_from_file(f
.file
, err
);
499 *fput_needed
= f
.flags
;
507 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
513 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
523 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
528 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
535 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
537 int err
= simple_setattr(dentry
, iattr
);
539 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
540 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
543 sock
->sk
->sk_uid
= iattr
->ia_uid
;
551 static const struct inode_operations sockfs_inode_ops
= {
552 .listxattr
= sockfs_listxattr
,
553 .setattr
= sockfs_setattr
,
557 * sock_alloc - allocate a socket
559 * Allocate a new inode and socket object. The two are bound together
560 * and initialised. The socket is then returned. If we are out of inodes
561 * NULL is returned. This functions uses GFP_KERNEL internally.
564 struct socket
*sock_alloc(void)
569 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
573 sock
= SOCKET_I(inode
);
575 inode
->i_ino
= get_next_ino();
576 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
577 inode
->i_uid
= current_fsuid();
578 inode
->i_gid
= current_fsgid();
579 inode
->i_op
= &sockfs_inode_ops
;
583 EXPORT_SYMBOL(sock_alloc
);
586 * sock_release - close a socket
587 * @sock: socket to close
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
594 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
597 struct module
*owner
= sock
->ops
->owner
;
601 sock
->ops
->release(sock
);
609 if (sock
->wq
->fasync_list
)
610 pr_err("%s: fasync list not empty!\n", __func__
);
613 iput(SOCK_INODE(sock
));
619 void sock_release(struct socket
*sock
)
621 __sock_release(sock
, NULL
);
623 EXPORT_SYMBOL(sock_release
);
625 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
627 u8 flags
= *tx_flags
;
629 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
630 flags
|= SKBTX_HW_TSTAMP
;
632 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
633 flags
|= SKBTX_SW_TSTAMP
;
635 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
636 flags
|= SKBTX_SCHED_TSTAMP
;
640 EXPORT_SYMBOL(__sock_tx_timestamp
);
642 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
644 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
646 int ret
= INDIRECT_CALL_INET4(sock
->ops
->sendmsg
, inet_sendmsg
, sock
,
647 msg
, msg_data_left(msg
));
648 BUG_ON(ret
== -EIOCBQUEUED
);
653 * sock_sendmsg - send a message through @sock
655 * @msg: message to send
657 * Sends @msg through @sock, passing through LSM.
658 * Returns the number of bytes sent, or an error code.
660 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
662 int err
= security_socket_sendmsg(sock
, msg
,
665 return err
?: sock_sendmsg_nosec(sock
, msg
);
667 EXPORT_SYMBOL(sock_sendmsg
);
670 * kernel_sendmsg - send a message through @sock (kernel-space)
672 * @msg: message header
674 * @num: vec array length
675 * @size: total message data size
677 * Builds the message data with @vec and sends it through @sock.
678 * Returns the number of bytes sent, or an error code.
681 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
682 struct kvec
*vec
, size_t num
, size_t size
)
684 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
685 return sock_sendmsg(sock
, msg
);
687 EXPORT_SYMBOL(kernel_sendmsg
);
690 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
692 * @msg: message header
693 * @vec: output s/g array
694 * @num: output s/g array length
695 * @size: total message data size
697 * Builds the message data with @vec and sends it through @sock.
698 * Returns the number of bytes sent, or an error code.
699 * Caller must hold @sk.
702 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
703 struct kvec
*vec
, size_t num
, size_t size
)
705 struct socket
*sock
= sk
->sk_socket
;
707 if (!sock
->ops
->sendmsg_locked
)
708 return sock_no_sendmsg_locked(sk
, msg
, size
);
710 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
712 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
714 EXPORT_SYMBOL(kernel_sendmsg_locked
);
716 static bool skb_is_err_queue(const struct sk_buff
*skb
)
718 /* pkt_type of skbs enqueued on the error queue are set to
719 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
720 * in recvmsg, since skbs received on a local socket will never
721 * have a pkt_type of PACKET_OUTGOING.
723 return skb
->pkt_type
== PACKET_OUTGOING
;
726 /* On transmit, software and hardware timestamps are returned independently.
727 * As the two skb clones share the hardware timestamp, which may be updated
728 * before the software timestamp is received, a hardware TX timestamp may be
729 * returned only if there is no software TX timestamp. Ignore false software
730 * timestamps, which may be made in the __sock_recv_timestamp() call when the
731 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
732 * hardware timestamp.
734 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
736 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
739 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
741 struct scm_ts_pktinfo ts_pktinfo
;
742 struct net_device
*orig_dev
;
744 if (!skb_mac_header_was_set(skb
))
747 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
750 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
752 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
755 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
756 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
757 sizeof(ts_pktinfo
), &ts_pktinfo
);
761 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
763 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
766 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
767 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
768 struct scm_timestamping_internal tss
;
770 int empty
= 1, false_tstamp
= 0;
771 struct skb_shared_hwtstamps
*shhwtstamps
=
774 /* Race occurred between timestamp enabling and packet
775 receiving. Fill in the current time for now. */
776 if (need_software_tstamp
&& skb
->tstamp
== 0) {
777 __net_timestamp(skb
);
781 if (need_software_tstamp
) {
782 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
784 struct __kernel_sock_timeval tv
;
786 skb_get_new_timestamp(skb
, &tv
);
787 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
790 struct __kernel_old_timeval tv
;
792 skb_get_timestamp(skb
, &tv
);
793 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
798 struct __kernel_timespec ts
;
800 skb_get_new_timestampns(skb
, &ts
);
801 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
806 skb_get_timestampns(skb
, &ts
);
807 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
813 memset(&tss
, 0, sizeof(tss
));
814 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
815 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
818 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
819 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
820 ktime_to_timespec64_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
822 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
823 !skb_is_err_queue(skb
))
824 put_ts_pktinfo(msg
, skb
);
827 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
828 put_cmsg_scm_timestamping64(msg
, &tss
);
830 put_cmsg_scm_timestamping(msg
, &tss
);
832 if (skb_is_err_queue(skb
) && skb
->len
&&
833 SKB_EXT_ERR(skb
)->opt_stats
)
834 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
835 skb
->len
, skb
->data
);
838 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
840 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
845 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
847 if (!skb
->wifi_acked_valid
)
850 ack
= skb
->wifi_acked
;
852 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
854 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
856 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
859 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
860 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
861 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
864 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
867 sock_recv_timestamp(msg
, sk
, skb
);
868 sock_recv_drops(msg
, sk
, skb
);
870 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
872 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
874 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
877 return INDIRECT_CALL_INET4(sock
->ops
->recvmsg
, inet_recvmsg
, sock
, msg
,
878 msg_data_left(msg
), flags
);
882 * sock_recvmsg - receive a message from @sock
884 * @msg: message to receive
885 * @flags: message flags
887 * Receives @msg from @sock, passing through LSM. Returns the total number
888 * of bytes received, or an error.
890 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
892 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
894 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
896 EXPORT_SYMBOL(sock_recvmsg
);
899 * kernel_recvmsg - Receive a message from a socket (kernel space)
900 * @sock: The socket to receive the message from
901 * @msg: Received message
902 * @vec: Input s/g array for message data
903 * @num: Size of input s/g array
904 * @size: Number of bytes to read
905 * @flags: Message flags (MSG_DONTWAIT, etc...)
907 * On return the msg structure contains the scatter/gather array passed in the
908 * vec argument. The array is modified so that it consists of the unfilled
909 * portion of the original array.
911 * The returned value is the total number of bytes received, or an error.
914 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
915 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
917 mm_segment_t oldfs
= get_fs();
920 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
922 result
= sock_recvmsg(sock
, msg
, flags
);
926 EXPORT_SYMBOL(kernel_recvmsg
);
928 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
929 int offset
, size_t size
, loff_t
*ppos
, int more
)
934 sock
= file
->private_data
;
936 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
937 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
940 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
943 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
944 struct pipe_inode_info
*pipe
, size_t len
,
947 struct socket
*sock
= file
->private_data
;
949 if (unlikely(!sock
->ops
->splice_read
))
950 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
952 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
955 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
957 struct file
*file
= iocb
->ki_filp
;
958 struct socket
*sock
= file
->private_data
;
959 struct msghdr msg
= {.msg_iter
= *to
,
963 if (file
->f_flags
& O_NONBLOCK
)
964 msg
.msg_flags
= MSG_DONTWAIT
;
966 if (iocb
->ki_pos
!= 0)
969 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
972 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
977 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
979 struct file
*file
= iocb
->ki_filp
;
980 struct socket
*sock
= file
->private_data
;
981 struct msghdr msg
= {.msg_iter
= *from
,
985 if (iocb
->ki_pos
!= 0)
988 if (file
->f_flags
& O_NONBLOCK
)
989 msg
.msg_flags
= MSG_DONTWAIT
;
991 if (sock
->type
== SOCK_SEQPACKET
)
992 msg
.msg_flags
|= MSG_EOR
;
994 res
= sock_sendmsg(sock
, &msg
);
995 *from
= msg
.msg_iter
;
1000 * Atomic setting of ioctl hooks to avoid race
1001 * with module unload.
1004 static DEFINE_MUTEX(br_ioctl_mutex
);
1005 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1007 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1009 mutex_lock(&br_ioctl_mutex
);
1010 br_ioctl_hook
= hook
;
1011 mutex_unlock(&br_ioctl_mutex
);
1013 EXPORT_SYMBOL(brioctl_set
);
1015 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1016 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1018 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1020 mutex_lock(&vlan_ioctl_mutex
);
1021 vlan_ioctl_hook
= hook
;
1022 mutex_unlock(&vlan_ioctl_mutex
);
1024 EXPORT_SYMBOL(vlan_ioctl_set
);
1026 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1027 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1029 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1031 mutex_lock(&dlci_ioctl_mutex
);
1032 dlci_ioctl_hook
= hook
;
1033 mutex_unlock(&dlci_ioctl_mutex
);
1035 EXPORT_SYMBOL(dlci_ioctl_set
);
1037 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1038 unsigned int cmd
, unsigned long arg
)
1041 void __user
*argp
= (void __user
*)arg
;
1043 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1046 * If this ioctl is unknown try to hand it down
1047 * to the NIC driver.
1049 if (err
!= -ENOIOCTLCMD
)
1052 if (cmd
== SIOCGIFCONF
) {
1054 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
1057 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
1059 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
1064 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1066 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1067 if (!err
&& need_copyout
)
1068 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1075 * With an ioctl, arg may well be a user mode pointer, but we don't know
1076 * what to do with it - that's up to the protocol still.
1080 * get_net_ns - increment the refcount of the network namespace
1081 * @ns: common namespace (net)
1083 * Returns the net's common namespace.
1086 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1088 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1090 EXPORT_SYMBOL_GPL(get_net_ns
);
1092 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1094 struct socket
*sock
;
1096 void __user
*argp
= (void __user
*)arg
;
1100 sock
= file
->private_data
;
1103 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1106 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1108 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1109 if (!err
&& need_copyout
)
1110 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1113 #ifdef CONFIG_WEXT_CORE
1114 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1115 err
= wext_handle_ioctl(net
, cmd
, argp
);
1122 if (get_user(pid
, (int __user
*)argp
))
1124 err
= f_setown(sock
->file
, pid
, 1);
1128 err
= put_user(f_getown(sock
->file
),
1129 (int __user
*)argp
);
1137 request_module("bridge");
1139 mutex_lock(&br_ioctl_mutex
);
1141 err
= br_ioctl_hook(net
, cmd
, argp
);
1142 mutex_unlock(&br_ioctl_mutex
);
1147 if (!vlan_ioctl_hook
)
1148 request_module("8021q");
1150 mutex_lock(&vlan_ioctl_mutex
);
1151 if (vlan_ioctl_hook
)
1152 err
= vlan_ioctl_hook(net
, argp
);
1153 mutex_unlock(&vlan_ioctl_mutex
);
1158 if (!dlci_ioctl_hook
)
1159 request_module("dlci");
1161 mutex_lock(&dlci_ioctl_mutex
);
1162 if (dlci_ioctl_hook
)
1163 err
= dlci_ioctl_hook(cmd
, argp
);
1164 mutex_unlock(&dlci_ioctl_mutex
);
1168 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1171 err
= open_related_ns(&net
->ns
, get_net_ns
);
1173 case SIOCGSTAMP_OLD
:
1174 case SIOCGSTAMPNS_OLD
:
1175 if (!sock
->ops
->gettstamp
) {
1179 err
= sock
->ops
->gettstamp(sock
, argp
,
1180 cmd
== SIOCGSTAMP_OLD
,
1181 !IS_ENABLED(CONFIG_64BIT
));
1183 case SIOCGSTAMP_NEW
:
1184 case SIOCGSTAMPNS_NEW
:
1185 if (!sock
->ops
->gettstamp
) {
1189 err
= sock
->ops
->gettstamp(sock
, argp
,
1190 cmd
== SIOCGSTAMP_NEW
,
1194 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1201 * sock_create_lite - creates a socket
1202 * @family: protocol family (AF_INET, ...)
1203 * @type: communication type (SOCK_STREAM, ...)
1204 * @protocol: protocol (0, ...)
1207 * Creates a new socket and assigns it to @res, passing through LSM.
1208 * The new socket initialization is not complete, see kernel_accept().
1209 * Returns 0 or an error. On failure @res is set to %NULL.
1210 * This function internally uses GFP_KERNEL.
1213 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1216 struct socket
*sock
= NULL
;
1218 err
= security_socket_create(family
, type
, protocol
, 1);
1222 sock
= sock_alloc();
1229 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1241 EXPORT_SYMBOL(sock_create_lite
);
1243 /* No kernel lock held - perfect */
1244 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1246 struct socket
*sock
= file
->private_data
;
1247 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1249 if (!sock
->ops
->poll
)
1252 if (sk_can_busy_loop(sock
->sk
)) {
1253 /* poll once if requested by the syscall */
1254 if (events
& POLL_BUSY_LOOP
)
1255 sk_busy_loop(sock
->sk
, 1);
1257 /* if this socket can poll_ll, tell the system call */
1258 flag
= POLL_BUSY_LOOP
;
1261 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1264 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1266 struct socket
*sock
= file
->private_data
;
1268 return sock
->ops
->mmap(file
, sock
, vma
);
1271 static int sock_close(struct inode
*inode
, struct file
*filp
)
1273 __sock_release(SOCKET_I(inode
), inode
);
1278 * Update the socket async list
1280 * Fasync_list locking strategy.
1282 * 1. fasync_list is modified only under process context socket lock
1283 * i.e. under semaphore.
1284 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1285 * or under socket lock
1288 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1290 struct socket
*sock
= filp
->private_data
;
1291 struct sock
*sk
= sock
->sk
;
1292 struct socket_wq
*wq
;
1299 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1301 if (!wq
->fasync_list
)
1302 sock_reset_flag(sk
, SOCK_FASYNC
);
1304 sock_set_flag(sk
, SOCK_FASYNC
);
1310 /* This function may be called only under rcu_lock */
1312 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1314 if (!wq
|| !wq
->fasync_list
)
1318 case SOCK_WAKE_WAITD
:
1319 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1322 case SOCK_WAKE_SPACE
:
1323 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1328 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1331 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1336 EXPORT_SYMBOL(sock_wake_async
);
1339 * __sock_create - creates a socket
1340 * @net: net namespace
1341 * @family: protocol family (AF_INET, ...)
1342 * @type: communication type (SOCK_STREAM, ...)
1343 * @protocol: protocol (0, ...)
1345 * @kern: boolean for kernel space sockets
1347 * Creates a new socket and assigns it to @res, passing through LSM.
1348 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1349 * be set to true if the socket resides in kernel space.
1350 * This function internally uses GFP_KERNEL.
1353 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1354 struct socket
**res
, int kern
)
1357 struct socket
*sock
;
1358 const struct net_proto_family
*pf
;
1361 * Check protocol is in range
1363 if (family
< 0 || family
>= NPROTO
)
1364 return -EAFNOSUPPORT
;
1365 if (type
< 0 || type
>= SOCK_MAX
)
1370 This uglymoron is moved from INET layer to here to avoid
1371 deadlock in module load.
1373 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1374 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1379 err
= security_socket_create(family
, type
, protocol
, kern
);
1384 * Allocate the socket and allow the family to set things up. if
1385 * the protocol is 0, the family is instructed to select an appropriate
1388 sock
= sock_alloc();
1390 net_warn_ratelimited("socket: no more sockets\n");
1391 return -ENFILE
; /* Not exactly a match, but its the
1392 closest posix thing */
1397 #ifdef CONFIG_MODULES
1398 /* Attempt to load a protocol module if the find failed.
1400 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1401 * requested real, full-featured networking support upon configuration.
1402 * Otherwise module support will break!
1404 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1405 request_module("net-pf-%d", family
);
1409 pf
= rcu_dereference(net_families
[family
]);
1410 err
= -EAFNOSUPPORT
;
1415 * We will call the ->create function, that possibly is in a loadable
1416 * module, so we have to bump that loadable module refcnt first.
1418 if (!try_module_get(pf
->owner
))
1421 /* Now protected by module ref count */
1424 err
= pf
->create(net
, sock
, protocol
, kern
);
1426 goto out_module_put
;
1429 * Now to bump the refcnt of the [loadable] module that owns this
1430 * socket at sock_release time we decrement its refcnt.
1432 if (!try_module_get(sock
->ops
->owner
))
1433 goto out_module_busy
;
1436 * Now that we're done with the ->create function, the [loadable]
1437 * module can have its refcnt decremented
1439 module_put(pf
->owner
);
1440 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1442 goto out_sock_release
;
1448 err
= -EAFNOSUPPORT
;
1451 module_put(pf
->owner
);
1458 goto out_sock_release
;
1460 EXPORT_SYMBOL(__sock_create
);
1463 * sock_create - creates a socket
1464 * @family: protocol family (AF_INET, ...)
1465 * @type: communication type (SOCK_STREAM, ...)
1466 * @protocol: protocol (0, ...)
1469 * A wrapper around __sock_create().
1470 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1473 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1475 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1477 EXPORT_SYMBOL(sock_create
);
1480 * sock_create_kern - creates a socket (kernel space)
1481 * @net: net namespace
1482 * @family: protocol family (AF_INET, ...)
1483 * @type: communication type (SOCK_STREAM, ...)
1484 * @protocol: protocol (0, ...)
1487 * A wrapper around __sock_create().
1488 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1491 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1493 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1495 EXPORT_SYMBOL(sock_create_kern
);
1497 int __sys_socket(int family
, int type
, int protocol
)
1500 struct socket
*sock
;
1503 /* Check the SOCK_* constants for consistency. */
1504 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1505 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1506 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1507 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1509 flags
= type
& ~SOCK_TYPE_MASK
;
1510 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1512 type
&= SOCK_TYPE_MASK
;
1514 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1515 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1517 retval
= sock_create(family
, type
, protocol
, &sock
);
1521 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1524 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1526 return __sys_socket(family
, type
, protocol
);
1530 * Create a pair of connected sockets.
1533 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1535 struct socket
*sock1
, *sock2
;
1537 struct file
*newfile1
, *newfile2
;
1540 flags
= type
& ~SOCK_TYPE_MASK
;
1541 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1543 type
&= SOCK_TYPE_MASK
;
1545 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1546 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1549 * reserve descriptors and make sure we won't fail
1550 * to return them to userland.
1552 fd1
= get_unused_fd_flags(flags
);
1553 if (unlikely(fd1
< 0))
1556 fd2
= get_unused_fd_flags(flags
);
1557 if (unlikely(fd2
< 0)) {
1562 err
= put_user(fd1
, &usockvec
[0]);
1566 err
= put_user(fd2
, &usockvec
[1]);
1571 * Obtain the first socket and check if the underlying protocol
1572 * supports the socketpair call.
1575 err
= sock_create(family
, type
, protocol
, &sock1
);
1576 if (unlikely(err
< 0))
1579 err
= sock_create(family
, type
, protocol
, &sock2
);
1580 if (unlikely(err
< 0)) {
1581 sock_release(sock1
);
1585 err
= security_socket_socketpair(sock1
, sock2
);
1586 if (unlikely(err
)) {
1587 sock_release(sock2
);
1588 sock_release(sock1
);
1592 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1593 if (unlikely(err
< 0)) {
1594 sock_release(sock2
);
1595 sock_release(sock1
);
1599 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1600 if (IS_ERR(newfile1
)) {
1601 err
= PTR_ERR(newfile1
);
1602 sock_release(sock2
);
1606 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1607 if (IS_ERR(newfile2
)) {
1608 err
= PTR_ERR(newfile2
);
1613 audit_fd_pair(fd1
, fd2
);
1615 fd_install(fd1
, newfile1
);
1616 fd_install(fd2
, newfile2
);
1625 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1626 int __user
*, usockvec
)
1628 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1632 * Bind a name to a socket. Nothing much to do here since it's
1633 * the protocol's responsibility to handle the local address.
1635 * We move the socket address to kernel space before we call
1636 * the protocol layer (having also checked the address is ok).
1639 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1641 struct socket
*sock
;
1642 struct sockaddr_storage address
;
1643 int err
, fput_needed
;
1645 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1647 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1649 err
= security_socket_bind(sock
,
1650 (struct sockaddr
*)&address
,
1653 err
= sock
->ops
->bind(sock
,
1657 fput_light(sock
->file
, fput_needed
);
1662 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1664 return __sys_bind(fd
, umyaddr
, addrlen
);
1668 * Perform a listen. Basically, we allow the protocol to do anything
1669 * necessary for a listen, and if that works, we mark the socket as
1670 * ready for listening.
1673 int __sys_listen(int fd
, int backlog
)
1675 struct socket
*sock
;
1676 int err
, fput_needed
;
1679 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1681 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1682 if ((unsigned int)backlog
> somaxconn
)
1683 backlog
= somaxconn
;
1685 err
= security_socket_listen(sock
, backlog
);
1687 err
= sock
->ops
->listen(sock
, backlog
);
1689 fput_light(sock
->file
, fput_needed
);
1694 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1696 return __sys_listen(fd
, backlog
);
1700 * For accept, we attempt to create a new socket, set up the link
1701 * with the client, wake up the client, then return the new
1702 * connected fd. We collect the address of the connector in kernel
1703 * space and move it to user at the very end. This is unclean because
1704 * we open the socket then return an error.
1706 * 1003.1g adds the ability to recvmsg() to query connection pending
1707 * status to recvmsg. We need to add that support in a way thats
1708 * clean when we restructure accept also.
1711 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1712 int __user
*upeer_addrlen
, int flags
)
1714 struct socket
*sock
, *newsock
;
1715 struct file
*newfile
;
1716 int err
, len
, newfd
, fput_needed
;
1717 struct sockaddr_storage address
;
1719 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1722 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1723 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1725 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1730 newsock
= sock_alloc();
1734 newsock
->type
= sock
->type
;
1735 newsock
->ops
= sock
->ops
;
1738 * We don't need try_module_get here, as the listening socket (sock)
1739 * has the protocol module (sock->ops->owner) held.
1741 __module_get(newsock
->ops
->owner
);
1743 newfd
= get_unused_fd_flags(flags
);
1744 if (unlikely(newfd
< 0)) {
1746 sock_release(newsock
);
1749 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1750 if (IS_ERR(newfile
)) {
1751 err
= PTR_ERR(newfile
);
1752 put_unused_fd(newfd
);
1756 err
= security_socket_accept(sock
, newsock
);
1760 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1764 if (upeer_sockaddr
) {
1765 len
= newsock
->ops
->getname(newsock
,
1766 (struct sockaddr
*)&address
, 2);
1768 err
= -ECONNABORTED
;
1771 err
= move_addr_to_user(&address
,
1772 len
, upeer_sockaddr
, upeer_addrlen
);
1777 /* File flags are not inherited via accept() unlike another OSes. */
1779 fd_install(newfd
, newfile
);
1783 fput_light(sock
->file
, fput_needed
);
1788 put_unused_fd(newfd
);
1792 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1793 int __user
*, upeer_addrlen
, int, flags
)
1795 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1798 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1799 int __user
*, upeer_addrlen
)
1801 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1805 * Attempt to connect to a socket with the server address. The address
1806 * is in user space so we verify it is OK and move it to kernel space.
1808 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1811 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1812 * other SEQPACKET protocols that take time to connect() as it doesn't
1813 * include the -EINPROGRESS status for such sockets.
1816 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1818 struct socket
*sock
;
1819 struct sockaddr_storage address
;
1820 int err
, fput_needed
;
1822 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1825 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1830 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1834 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1835 sock
->file
->f_flags
);
1837 fput_light(sock
->file
, fput_needed
);
1842 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1845 return __sys_connect(fd
, uservaddr
, addrlen
);
1849 * Get the local address ('name') of a socket object. Move the obtained
1850 * name to user space.
1853 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1854 int __user
*usockaddr_len
)
1856 struct socket
*sock
;
1857 struct sockaddr_storage address
;
1858 int err
, fput_needed
;
1860 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1864 err
= security_socket_getsockname(sock
);
1868 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1871 /* "err" is actually length in this case */
1872 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1875 fput_light(sock
->file
, fput_needed
);
1880 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1881 int __user
*, usockaddr_len
)
1883 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1887 * Get the remote address ('name') of a socket object. Move the obtained
1888 * name to user space.
1891 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1892 int __user
*usockaddr_len
)
1894 struct socket
*sock
;
1895 struct sockaddr_storage address
;
1896 int err
, fput_needed
;
1898 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1900 err
= security_socket_getpeername(sock
);
1902 fput_light(sock
->file
, fput_needed
);
1906 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1908 /* "err" is actually length in this case */
1909 err
= move_addr_to_user(&address
, err
, usockaddr
,
1911 fput_light(sock
->file
, fput_needed
);
1916 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1917 int __user
*, usockaddr_len
)
1919 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1923 * Send a datagram to a given address. We move the address into kernel
1924 * space and check the user space data area is readable before invoking
1927 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1928 struct sockaddr __user
*addr
, int addr_len
)
1930 struct socket
*sock
;
1931 struct sockaddr_storage address
;
1937 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1940 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1944 msg
.msg_name
= NULL
;
1945 msg
.msg_control
= NULL
;
1946 msg
.msg_controllen
= 0;
1947 msg
.msg_namelen
= 0;
1949 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1952 msg
.msg_name
= (struct sockaddr
*)&address
;
1953 msg
.msg_namelen
= addr_len
;
1955 if (sock
->file
->f_flags
& O_NONBLOCK
)
1956 flags
|= MSG_DONTWAIT
;
1957 msg
.msg_flags
= flags
;
1958 err
= sock_sendmsg(sock
, &msg
);
1961 fput_light(sock
->file
, fput_needed
);
1966 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1967 unsigned int, flags
, struct sockaddr __user
*, addr
,
1970 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1974 * Send a datagram down a socket.
1977 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1978 unsigned int, flags
)
1980 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1984 * Receive a frame from the socket and optionally record the address of the
1985 * sender. We verify the buffers are writable and if needed move the
1986 * sender address from kernel to user space.
1988 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1989 struct sockaddr __user
*addr
, int __user
*addr_len
)
1991 struct socket
*sock
;
1994 struct sockaddr_storage address
;
1998 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
2001 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2005 msg
.msg_control
= NULL
;
2006 msg
.msg_controllen
= 0;
2007 /* Save some cycles and don't copy the address if not needed */
2008 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
2009 /* We assume all kernel code knows the size of sockaddr_storage */
2010 msg
.msg_namelen
= 0;
2011 msg
.msg_iocb
= NULL
;
2013 if (sock
->file
->f_flags
& O_NONBLOCK
)
2014 flags
|= MSG_DONTWAIT
;
2015 err
= sock_recvmsg(sock
, &msg
, flags
);
2017 if (err
>= 0 && addr
!= NULL
) {
2018 err2
= move_addr_to_user(&address
,
2019 msg
.msg_namelen
, addr
, addr_len
);
2024 fput_light(sock
->file
, fput_needed
);
2029 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2030 unsigned int, flags
, struct sockaddr __user
*, addr
,
2031 int __user
*, addr_len
)
2033 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2037 * Receive a datagram from a socket.
2040 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2041 unsigned int, flags
)
2043 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2047 * Set a socket option. Because we don't know the option lengths we have
2048 * to pass the user mode parameter for the protocols to sort out.
2051 static int __sys_setsockopt(int fd
, int level
, int optname
,
2052 char __user
*optval
, int optlen
)
2054 int err
, fput_needed
;
2055 struct socket
*sock
;
2060 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2062 err
= security_socket_setsockopt(sock
, level
, optname
);
2066 if (level
== SOL_SOCKET
)
2068 sock_setsockopt(sock
, level
, optname
, optval
,
2072 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2075 fput_light(sock
->file
, fput_needed
);
2080 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2081 char __user
*, optval
, int, optlen
)
2083 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2087 * Get a socket option. Because we don't know the option lengths we have
2088 * to pass a user mode parameter for the protocols to sort out.
2091 static int __sys_getsockopt(int fd
, int level
, int optname
,
2092 char __user
*optval
, int __user
*optlen
)
2094 int err
, fput_needed
;
2095 struct socket
*sock
;
2097 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2099 err
= security_socket_getsockopt(sock
, level
, optname
);
2103 if (level
== SOL_SOCKET
)
2105 sock_getsockopt(sock
, level
, optname
, optval
,
2109 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2112 fput_light(sock
->file
, fput_needed
);
2117 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2118 char __user
*, optval
, int __user
*, optlen
)
2120 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2124 * Shutdown a socket.
2127 int __sys_shutdown(int fd
, int how
)
2129 int err
, fput_needed
;
2130 struct socket
*sock
;
2132 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2134 err
= security_socket_shutdown(sock
, how
);
2136 err
= sock
->ops
->shutdown(sock
, how
);
2137 fput_light(sock
->file
, fput_needed
);
2142 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2144 return __sys_shutdown(fd
, how
);
2147 /* A couple of helpful macros for getting the address of the 32/64 bit
2148 * fields which are the same type (int / unsigned) on our platforms.
2150 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2151 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2152 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2154 struct used_address
{
2155 struct sockaddr_storage name
;
2156 unsigned int name_len
;
2159 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2160 struct user_msghdr __user
*umsg
,
2161 struct sockaddr __user
**save_addr
,
2164 struct user_msghdr msg
;
2167 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2170 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2171 kmsg
->msg_controllen
= msg
.msg_controllen
;
2172 kmsg
->msg_flags
= msg
.msg_flags
;
2174 kmsg
->msg_namelen
= msg
.msg_namelen
;
2176 kmsg
->msg_namelen
= 0;
2178 if (kmsg
->msg_namelen
< 0)
2181 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2182 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2185 *save_addr
= msg
.msg_name
;
2187 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2189 err
= move_addr_to_kernel(msg
.msg_name
,
2196 kmsg
->msg_name
= NULL
;
2197 kmsg
->msg_namelen
= 0;
2200 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2203 kmsg
->msg_iocb
= NULL
;
2205 return import_iovec(save_addr
? READ
: WRITE
,
2206 msg
.msg_iov
, msg
.msg_iovlen
,
2207 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2210 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2211 struct msghdr
*msg_sys
, unsigned int flags
,
2212 struct used_address
*used_address
,
2213 unsigned int allowed_msghdr_flags
)
2215 struct compat_msghdr __user
*msg_compat
=
2216 (struct compat_msghdr __user
*)msg
;
2217 struct sockaddr_storage address
;
2218 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2219 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2220 __aligned(sizeof(__kernel_size_t
));
2221 /* 20 is size of ipv6_pktinfo */
2222 unsigned char *ctl_buf
= ctl
;
2226 msg_sys
->msg_name
= &address
;
2228 if (MSG_CMSG_COMPAT
& flags
)
2229 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2231 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2237 if (msg_sys
->msg_controllen
> INT_MAX
)
2239 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2240 ctl_len
= msg_sys
->msg_controllen
;
2241 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2243 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2247 ctl_buf
= msg_sys
->msg_control
;
2248 ctl_len
= msg_sys
->msg_controllen
;
2249 } else if (ctl_len
) {
2250 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2251 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2252 if (ctl_len
> sizeof(ctl
)) {
2253 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2254 if (ctl_buf
== NULL
)
2259 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2260 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2261 * checking falls down on this.
2263 if (copy_from_user(ctl_buf
,
2264 (void __user __force
*)msg_sys
->msg_control
,
2267 msg_sys
->msg_control
= ctl_buf
;
2269 msg_sys
->msg_flags
= flags
;
2271 if (sock
->file
->f_flags
& O_NONBLOCK
)
2272 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2274 * If this is sendmmsg() and current destination address is same as
2275 * previously succeeded address, omit asking LSM's decision.
2276 * used_address->name_len is initialized to UINT_MAX so that the first
2277 * destination address never matches.
2279 if (used_address
&& msg_sys
->msg_name
&&
2280 used_address
->name_len
== msg_sys
->msg_namelen
&&
2281 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2282 used_address
->name_len
)) {
2283 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2286 err
= sock_sendmsg(sock
, msg_sys
);
2288 * If this is sendmmsg() and sending to current destination address was
2289 * successful, remember it.
2291 if (used_address
&& err
>= 0) {
2292 used_address
->name_len
= msg_sys
->msg_namelen
;
2293 if (msg_sys
->msg_name
)
2294 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2295 used_address
->name_len
);
2300 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2307 * BSD sendmsg interface
2310 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2311 bool forbid_cmsg_compat
)
2313 int fput_needed
, err
;
2314 struct msghdr msg_sys
;
2315 struct socket
*sock
;
2317 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2320 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2324 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2326 fput_light(sock
->file
, fput_needed
);
2331 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2333 return __sys_sendmsg(fd
, msg
, flags
, true);
2337 * Linux sendmmsg interface
2340 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2341 unsigned int flags
, bool forbid_cmsg_compat
)
2343 int fput_needed
, err
, datagrams
;
2344 struct socket
*sock
;
2345 struct mmsghdr __user
*entry
;
2346 struct compat_mmsghdr __user
*compat_entry
;
2347 struct msghdr msg_sys
;
2348 struct used_address used_address
;
2349 unsigned int oflags
= flags
;
2351 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2354 if (vlen
> UIO_MAXIOV
)
2359 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2363 used_address
.name_len
= UINT_MAX
;
2365 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2369 while (datagrams
< vlen
) {
2370 if (datagrams
== vlen
- 1)
2373 if (MSG_CMSG_COMPAT
& flags
) {
2374 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2375 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2378 err
= __put_user(err
, &compat_entry
->msg_len
);
2381 err
= ___sys_sendmsg(sock
,
2382 (struct user_msghdr __user
*)entry
,
2383 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2386 err
= put_user(err
, &entry
->msg_len
);
2393 if (msg_data_left(&msg_sys
))
2398 fput_light(sock
->file
, fput_needed
);
2400 /* We only return an error if no datagrams were able to be sent */
2407 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2408 unsigned int, vlen
, unsigned int, flags
)
2410 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2413 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2414 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2416 struct compat_msghdr __user
*msg_compat
=
2417 (struct compat_msghdr __user
*)msg
;
2418 struct iovec iovstack
[UIO_FASTIOV
];
2419 struct iovec
*iov
= iovstack
;
2420 unsigned long cmsg_ptr
;
2424 /* kernel mode address */
2425 struct sockaddr_storage addr
;
2427 /* user mode address pointers */
2428 struct sockaddr __user
*uaddr
;
2429 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2431 msg_sys
->msg_name
= &addr
;
2433 if (MSG_CMSG_COMPAT
& flags
)
2434 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2436 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2440 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2441 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2443 /* We assume all kernel code knows the size of sockaddr_storage */
2444 msg_sys
->msg_namelen
= 0;
2446 if (sock
->file
->f_flags
& O_NONBLOCK
)
2447 flags
|= MSG_DONTWAIT
;
2448 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2453 if (uaddr
!= NULL
) {
2454 err
= move_addr_to_user(&addr
,
2455 msg_sys
->msg_namelen
, uaddr
,
2460 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2464 if (MSG_CMSG_COMPAT
& flags
)
2465 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2466 &msg_compat
->msg_controllen
);
2468 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2469 &msg
->msg_controllen
);
2480 * BSD recvmsg interface
2483 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2484 bool forbid_cmsg_compat
)
2486 int fput_needed
, err
;
2487 struct msghdr msg_sys
;
2488 struct socket
*sock
;
2490 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2493 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2497 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2499 fput_light(sock
->file
, fput_needed
);
2504 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2505 unsigned int, flags
)
2507 return __sys_recvmsg(fd
, msg
, flags
, true);
2511 * Linux recvmmsg interface
2514 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2515 unsigned int vlen
, unsigned int flags
,
2516 struct timespec64
*timeout
)
2518 int fput_needed
, err
, datagrams
;
2519 struct socket
*sock
;
2520 struct mmsghdr __user
*entry
;
2521 struct compat_mmsghdr __user
*compat_entry
;
2522 struct msghdr msg_sys
;
2523 struct timespec64 end_time
;
2524 struct timespec64 timeout64
;
2527 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2533 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2537 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2538 err
= sock_error(sock
->sk
);
2546 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2548 while (datagrams
< vlen
) {
2550 * No need to ask LSM for more than the first datagram.
2552 if (MSG_CMSG_COMPAT
& flags
) {
2553 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2554 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2558 err
= __put_user(err
, &compat_entry
->msg_len
);
2561 err
= ___sys_recvmsg(sock
,
2562 (struct user_msghdr __user
*)entry
,
2563 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2567 err
= put_user(err
, &entry
->msg_len
);
2575 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2576 if (flags
& MSG_WAITFORONE
)
2577 flags
|= MSG_DONTWAIT
;
2580 ktime_get_ts64(&timeout64
);
2581 *timeout
= timespec64_sub(end_time
, timeout64
);
2582 if (timeout
->tv_sec
< 0) {
2583 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2587 /* Timeout, return less than vlen datagrams */
2588 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2592 /* Out of band data, return right away */
2593 if (msg_sys
.msg_flags
& MSG_OOB
)
2601 if (datagrams
== 0) {
2607 * We may return less entries than requested (vlen) if the
2608 * sock is non block and there aren't enough datagrams...
2610 if (err
!= -EAGAIN
) {
2612 * ... or if recvmsg returns an error after we
2613 * received some datagrams, where we record the
2614 * error to return on the next call or if the
2615 * app asks about it using getsockopt(SO_ERROR).
2617 sock
->sk
->sk_err
= -err
;
2620 fput_light(sock
->file
, fput_needed
);
2625 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2626 unsigned int vlen
, unsigned int flags
,
2627 struct __kernel_timespec __user
*timeout
,
2628 struct old_timespec32 __user
*timeout32
)
2631 struct timespec64 timeout_sys
;
2633 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
2636 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
2639 if (!timeout
&& !timeout32
)
2640 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2642 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2647 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
2648 datagrams
= -EFAULT
;
2650 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
2651 datagrams
= -EFAULT
;
2656 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2657 unsigned int, vlen
, unsigned int, flags
,
2658 struct __kernel_timespec __user
*, timeout
)
2660 if (flags
& MSG_CMSG_COMPAT
)
2663 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
2666 #ifdef CONFIG_COMPAT_32BIT_TIME
2667 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
2668 unsigned int, vlen
, unsigned int, flags
,
2669 struct old_timespec32 __user
*, timeout
)
2671 if (flags
& MSG_CMSG_COMPAT
)
2674 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
2678 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2679 /* Argument list sizes for sys_socketcall */
2680 #define AL(x) ((x) * sizeof(unsigned long))
2681 static const unsigned char nargs
[21] = {
2682 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2683 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2684 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2691 * System call vectors.
2693 * Argument checking cleaned up. Saved 20% in size.
2694 * This function doesn't need to set the kernel lock because
2695 * it is set by the callees.
2698 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2700 unsigned long a
[AUDITSC_ARGS
];
2701 unsigned long a0
, a1
;
2705 if (call
< 1 || call
> SYS_SENDMMSG
)
2707 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2710 if (len
> sizeof(a
))
2713 /* copy_from_user should be SMP safe. */
2714 if (copy_from_user(a
, args
, len
))
2717 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2726 err
= __sys_socket(a0
, a1
, a
[2]);
2729 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2732 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2735 err
= __sys_listen(a0
, a1
);
2738 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2739 (int __user
*)a
[2], 0);
2741 case SYS_GETSOCKNAME
:
2743 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2744 (int __user
*)a
[2]);
2746 case SYS_GETPEERNAME
:
2748 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2749 (int __user
*)a
[2]);
2751 case SYS_SOCKETPAIR
:
2752 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2755 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2759 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2760 (struct sockaddr __user
*)a
[4], a
[5]);
2763 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2767 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2768 (struct sockaddr __user
*)a
[4],
2769 (int __user
*)a
[5]);
2772 err
= __sys_shutdown(a0
, a1
);
2774 case SYS_SETSOCKOPT
:
2775 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2778 case SYS_GETSOCKOPT
:
2780 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2781 (int __user
*)a
[4]);
2784 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2788 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2792 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2796 if (IS_ENABLED(CONFIG_64BIT
) || !IS_ENABLED(CONFIG_64BIT_TIME
))
2797 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2799 (struct __kernel_timespec __user
*)a
[4],
2802 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2804 (struct old_timespec32 __user
*)a
[4]);
2807 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2808 (int __user
*)a
[2], a
[3]);
2817 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2820 * sock_register - add a socket protocol handler
2821 * @ops: description of protocol
2823 * This function is called by a protocol handler that wants to
2824 * advertise its address family, and have it linked into the
2825 * socket interface. The value ops->family corresponds to the
2826 * socket system call protocol family.
2828 int sock_register(const struct net_proto_family
*ops
)
2832 if (ops
->family
>= NPROTO
) {
2833 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2837 spin_lock(&net_family_lock
);
2838 if (rcu_dereference_protected(net_families
[ops
->family
],
2839 lockdep_is_held(&net_family_lock
)))
2842 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2845 spin_unlock(&net_family_lock
);
2847 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2850 EXPORT_SYMBOL(sock_register
);
2853 * sock_unregister - remove a protocol handler
2854 * @family: protocol family to remove
2856 * This function is called by a protocol handler that wants to
2857 * remove its address family, and have it unlinked from the
2858 * new socket creation.
2860 * If protocol handler is a module, then it can use module reference
2861 * counts to protect against new references. If protocol handler is not
2862 * a module then it needs to provide its own protection in
2863 * the ops->create routine.
2865 void sock_unregister(int family
)
2867 BUG_ON(family
< 0 || family
>= NPROTO
);
2869 spin_lock(&net_family_lock
);
2870 RCU_INIT_POINTER(net_families
[family
], NULL
);
2871 spin_unlock(&net_family_lock
);
2875 pr_info("NET: Unregistered protocol family %d\n", family
);
2877 EXPORT_SYMBOL(sock_unregister
);
2879 bool sock_is_registered(int family
)
2881 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
2884 static int __init
sock_init(void)
2888 * Initialize the network sysctl infrastructure.
2890 err
= net_sysctl_init();
2895 * Initialize skbuff SLAB cache
2900 * Initialize the protocols module.
2905 err
= register_filesystem(&sock_fs_type
);
2908 sock_mnt
= kern_mount(&sock_fs_type
);
2909 if (IS_ERR(sock_mnt
)) {
2910 err
= PTR_ERR(sock_mnt
);
2914 /* The real protocol initialization is performed in later initcalls.
2917 #ifdef CONFIG_NETFILTER
2918 err
= netfilter_init();
2923 ptp_classifier_init();
2929 unregister_filesystem(&sock_fs_type
);
2934 core_initcall(sock_init
); /* early initcall */
2936 #ifdef CONFIG_PROC_FS
2937 void socket_seq_show(struct seq_file
*seq
)
2939 seq_printf(seq
, "sockets: used %d\n",
2940 sock_inuse_get(seq
->private));
2942 #endif /* CONFIG_PROC_FS */
2944 #ifdef CONFIG_COMPAT
2945 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2947 struct compat_ifconf ifc32
;
2951 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2954 ifc
.ifc_len
= ifc32
.ifc_len
;
2955 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2958 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
2963 ifc32
.ifc_len
= ifc
.ifc_len
;
2964 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2970 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2972 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2973 bool convert_in
= false, convert_out
= false;
2974 size_t buf_size
= 0;
2975 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
2977 u32 rule_cnt
= 0, actual_rule_cnt
;
2982 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2985 compat_rxnfc
= compat_ptr(data
);
2987 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2990 /* Most ethtool structures are defined without padding.
2991 * Unfortunately struct ethtool_rxnfc is an exception.
2996 case ETHTOOL_GRXCLSRLALL
:
2997 /* Buffer size is variable */
2998 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
3000 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
3002 buf_size
+= rule_cnt
* sizeof(u32
);
3004 case ETHTOOL_GRXRINGS
:
3005 case ETHTOOL_GRXCLSRLCNT
:
3006 case ETHTOOL_GRXCLSRULE
:
3007 case ETHTOOL_SRXCLSRLINS
:
3010 case ETHTOOL_SRXCLSRLDEL
:
3011 buf_size
+= sizeof(struct ethtool_rxnfc
);
3013 rxnfc
= compat_alloc_user_space(buf_size
);
3017 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
3020 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
3023 /* We expect there to be holes between fs.m_ext and
3024 * fs.ring_cookie and at the end of fs, but nowhere else.
3026 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
3027 sizeof(compat_rxnfc
->fs
.m_ext
) !=
3028 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
3029 sizeof(rxnfc
->fs
.m_ext
));
3031 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
3032 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
3033 offsetof(struct ethtool_rxnfc
, fs
.location
) -
3034 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
3036 if (copy_in_user(rxnfc
, compat_rxnfc
,
3037 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3038 (void __user
*)rxnfc
) ||
3039 copy_in_user(&rxnfc
->fs
.ring_cookie
,
3040 &compat_rxnfc
->fs
.ring_cookie
,
3041 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
3042 (void __user
*)&rxnfc
->fs
.ring_cookie
))
3044 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3045 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
3047 } else if (copy_in_user(&rxnfc
->rule_cnt
,
3048 &compat_rxnfc
->rule_cnt
,
3049 sizeof(rxnfc
->rule_cnt
)))
3053 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
3058 if (copy_in_user(compat_rxnfc
, rxnfc
,
3059 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3060 (const void __user
*)rxnfc
) ||
3061 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
3062 &rxnfc
->fs
.ring_cookie
,
3063 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
3064 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
3065 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
3066 sizeof(rxnfc
->rule_cnt
)))
3069 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3070 /* As an optimisation, we only copy the actual
3071 * number of rules that the underlying
3072 * function returned. Since Mallory might
3073 * change the rule count in user memory, we
3074 * check that it is less than the rule count
3075 * originally given (as the user buffer size),
3076 * which has been range-checked.
3078 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
3080 if (actual_rule_cnt
< rule_cnt
)
3081 rule_cnt
= actual_rule_cnt
;
3082 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
3083 &rxnfc
->rule_locs
[0],
3084 rule_cnt
* sizeof(u32
)))
3092 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3094 compat_uptr_t uptr32
;
3099 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
3102 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3105 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3106 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3108 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
3110 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3111 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
3117 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3118 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3119 struct compat_ifreq __user
*u_ifreq32
)
3124 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
3126 if (get_user(data32
, &u_ifreq32
->ifr_data
))
3128 ifreq
.ifr_data
= compat_ptr(data32
);
3130 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
3133 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
3135 struct compat_ifreq __user
*uifr32
)
3137 struct ifreq __user
*uifr
;
3140 /* Handle the fact that while struct ifreq has the same *layout* on
3141 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3142 * which are handled elsewhere, it still has different *size* due to
3143 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3144 * resulting in struct ifreq being 32 and 40 bytes respectively).
3145 * As a result, if the struct happens to be at the end of a page and
3146 * the next page isn't readable/writable, we get a fault. To prevent
3147 * that, copy back and forth to the full size.
3150 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3151 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3154 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3165 case SIOCGIFBRDADDR
:
3166 case SIOCGIFDSTADDR
:
3167 case SIOCGIFNETMASK
:
3173 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3181 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3182 struct compat_ifreq __user
*uifr32
)
3185 struct compat_ifmap __user
*uifmap32
;
3188 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3189 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3190 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3191 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3192 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3193 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3194 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3195 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3199 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3201 if (cmd
== SIOCGIFMAP
&& !err
) {
3202 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3203 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3204 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3205 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3206 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3207 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3208 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3217 struct sockaddr rt_dst
; /* target address */
3218 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3219 struct sockaddr rt_genmask
; /* target network mask (IP) */
3220 unsigned short rt_flags
;
3223 unsigned char rt_tos
;
3224 unsigned char rt_class
;
3226 short rt_metric
; /* +1 for binary compatibility! */
3227 /* char * */ u32 rt_dev
; /* forcing the device at add */
3228 u32 rt_mtu
; /* per route MTU/Window */
3229 u32 rt_window
; /* Window clamping */
3230 unsigned short rt_irtt
; /* Initial RTT */
3233 struct in6_rtmsg32
{
3234 struct in6_addr rtmsg_dst
;
3235 struct in6_addr rtmsg_src
;
3236 struct in6_addr rtmsg_gateway
;
3246 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3247 unsigned int cmd
, void __user
*argp
)
3251 struct in6_rtmsg r6
;
3255 mm_segment_t old_fs
= get_fs();
3257 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3258 struct in6_rtmsg32 __user
*ur6
= argp
;
3259 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3260 3 * sizeof(struct in6_addr
));
3261 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3262 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3263 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3264 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3265 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3266 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3267 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3271 struct rtentry32 __user
*ur4
= argp
;
3272 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3273 3 * sizeof(struct sockaddr
));
3274 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3275 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3276 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3277 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3278 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3279 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3281 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3282 r4
.rt_dev
= (char __user __force
*)devname
;
3296 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3303 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3304 * for some operations; this forces use of the newer bridge-utils that
3305 * use compatible ioctls
3307 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3311 if (get_user(tmp
, argp
))
3313 if (tmp
== BRCTL_GET_VERSION
)
3314 return BRCTL_VERSION
+ 1;
3318 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3319 unsigned int cmd
, unsigned long arg
)
3321 void __user
*argp
= compat_ptr(arg
);
3322 struct sock
*sk
= sock
->sk
;
3323 struct net
*net
= sock_net(sk
);
3325 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3326 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3331 return old_bridge_ioctl(argp
);
3333 return compat_dev_ifconf(net
, argp
);
3335 return ethtool_ioctl(net
, argp
);
3337 return compat_siocwandev(net
, argp
);
3340 return compat_sioc_ifmap(net
, cmd
, argp
);
3343 return routing_ioctl(net
, sock
, cmd
, argp
);
3344 case SIOCGSTAMP_OLD
:
3345 case SIOCGSTAMPNS_OLD
:
3346 if (!sock
->ops
->gettstamp
)
3347 return -ENOIOCTLCMD
;
3348 return sock
->ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3349 !COMPAT_USE_64BIT_TIME
);
3351 case SIOCBONDSLAVEINFOQUERY
:
3352 case SIOCBONDINFOQUERY
:
3355 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3368 case SIOCGSTAMP_NEW
:
3369 case SIOCGSTAMPNS_NEW
:
3370 return sock_ioctl(file
, cmd
, arg
);
3387 case SIOCSIFHWBROADCAST
:
3389 case SIOCGIFBRDADDR
:
3390 case SIOCSIFBRDADDR
:
3391 case SIOCGIFDSTADDR
:
3392 case SIOCSIFDSTADDR
:
3393 case SIOCGIFNETMASK
:
3394 case SIOCSIFNETMASK
:
3406 case SIOCBONDENSLAVE
:
3407 case SIOCBONDRELEASE
:
3408 case SIOCBONDSETHWADDR
:
3409 case SIOCBONDCHANGEACTIVE
:
3410 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3416 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3419 return -ENOIOCTLCMD
;
3422 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3425 struct socket
*sock
= file
->private_data
;
3426 int ret
= -ENOIOCTLCMD
;
3433 if (sock
->ops
->compat_ioctl
)
3434 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3436 if (ret
== -ENOIOCTLCMD
&&
3437 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3438 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3440 if (ret
== -ENOIOCTLCMD
)
3441 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3448 * kernel_bind - bind an address to a socket (kernel space)
3451 * @addrlen: length of address
3453 * Returns 0 or an error.
3456 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3458 return sock
->ops
->bind(sock
, addr
, addrlen
);
3460 EXPORT_SYMBOL(kernel_bind
);
3463 * kernel_listen - move socket to listening state (kernel space)
3465 * @backlog: pending connections queue size
3467 * Returns 0 or an error.
3470 int kernel_listen(struct socket
*sock
, int backlog
)
3472 return sock
->ops
->listen(sock
, backlog
);
3474 EXPORT_SYMBOL(kernel_listen
);
3477 * kernel_accept - accept a connection (kernel space)
3478 * @sock: listening socket
3479 * @newsock: new connected socket
3482 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3483 * If it fails, @newsock is guaranteed to be %NULL.
3484 * Returns 0 or an error.
3487 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3489 struct sock
*sk
= sock
->sk
;
3492 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3497 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3499 sock_release(*newsock
);
3504 (*newsock
)->ops
= sock
->ops
;
3505 __module_get((*newsock
)->ops
->owner
);
3510 EXPORT_SYMBOL(kernel_accept
);
3513 * kernel_connect - connect a socket (kernel space)
3516 * @addrlen: address length
3517 * @flags: flags (O_NONBLOCK, ...)
3519 * For datagram sockets, @addr is the addres to which datagrams are sent
3520 * by default, and the only address from which datagrams are received.
3521 * For stream sockets, attempts to connect to @addr.
3522 * Returns 0 or an error code.
3525 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3528 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3530 EXPORT_SYMBOL(kernel_connect
);
3533 * kernel_getsockname - get the address which the socket is bound (kernel space)
3535 * @addr: address holder
3537 * Fills the @addr pointer with the address which the socket is bound.
3538 * Returns 0 or an error code.
3541 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3543 return sock
->ops
->getname(sock
, addr
, 0);
3545 EXPORT_SYMBOL(kernel_getsockname
);
3548 * kernel_peername - get the address which the socket is connected (kernel space)
3550 * @addr: address holder
3552 * Fills the @addr pointer with the address which the socket is connected.
3553 * Returns 0 or an error code.
3556 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3558 return sock
->ops
->getname(sock
, addr
, 1);
3560 EXPORT_SYMBOL(kernel_getpeername
);
3563 * kernel_getsockopt - get a socket option (kernel space)
3565 * @level: API level (SOL_SOCKET, ...)
3566 * @optname: option tag
3567 * @optval: option value
3568 * @optlen: option length
3570 * Assigns the option length to @optlen.
3571 * Returns 0 or an error.
3574 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3575 char *optval
, int *optlen
)
3577 mm_segment_t oldfs
= get_fs();
3578 char __user
*uoptval
;
3579 int __user
*uoptlen
;
3582 uoptval
= (char __user __force
*) optval
;
3583 uoptlen
= (int __user __force
*) optlen
;
3586 if (level
== SOL_SOCKET
)
3587 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3589 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3594 EXPORT_SYMBOL(kernel_getsockopt
);
3597 * kernel_setsockopt - set a socket option (kernel space)
3599 * @level: API level (SOL_SOCKET, ...)
3600 * @optname: option tag
3601 * @optval: option value
3602 * @optlen: option length
3604 * Returns 0 or an error.
3607 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3608 char *optval
, unsigned int optlen
)
3610 mm_segment_t oldfs
= get_fs();
3611 char __user
*uoptval
;
3614 uoptval
= (char __user __force
*) optval
;
3617 if (level
== SOL_SOCKET
)
3618 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3620 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3625 EXPORT_SYMBOL(kernel_setsockopt
);
3628 * kernel_sendpage - send a &page through a socket (kernel space)
3631 * @offset: page offset
3632 * @size: total size in bytes
3633 * @flags: flags (MSG_DONTWAIT, ...)
3635 * Returns the total amount sent in bytes or an error.
3638 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3639 size_t size
, int flags
)
3641 if (sock
->ops
->sendpage
)
3642 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3644 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3646 EXPORT_SYMBOL(kernel_sendpage
);
3649 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3652 * @offset: page offset
3653 * @size: total size in bytes
3654 * @flags: flags (MSG_DONTWAIT, ...)
3656 * Returns the total amount sent in bytes or an error.
3657 * Caller must hold @sk.
3660 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3661 size_t size
, int flags
)
3663 struct socket
*sock
= sk
->sk_socket
;
3665 if (sock
->ops
->sendpage_locked
)
3666 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3669 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3671 EXPORT_SYMBOL(kernel_sendpage_locked
);
3674 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3676 * @how: connection part
3678 * Returns 0 or an error.
3681 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3683 return sock
->ops
->shutdown(sock
, how
);
3685 EXPORT_SYMBOL(kernel_sock_shutdown
);
3688 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3691 * This routine returns the IP overhead imposed by a socket i.e.
3692 * the length of the underlying IP header, depending on whether
3693 * this is an IPv4 or IPv6 socket and the length from IP options turned
3694 * on at the socket. Assumes that the caller has a lock on the socket.
3697 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3699 struct inet_sock
*inet
;
3700 struct ip_options_rcu
*opt
;
3702 #if IS_ENABLED(CONFIG_IPV6)
3703 struct ipv6_pinfo
*np
;
3704 struct ipv6_txoptions
*optv6
= NULL
;
3705 #endif /* IS_ENABLED(CONFIG_IPV6) */
3710 switch (sk
->sk_family
) {
3713 overhead
+= sizeof(struct iphdr
);
3714 opt
= rcu_dereference_protected(inet
->inet_opt
,
3715 sock_owned_by_user(sk
));
3717 overhead
+= opt
->opt
.optlen
;
3719 #if IS_ENABLED(CONFIG_IPV6)
3722 overhead
+= sizeof(struct ipv6hdr
);
3724 optv6
= rcu_dereference_protected(np
->opt
,
3725 sock_owned_by_user(sk
));
3727 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3729 #endif /* IS_ENABLED(CONFIG_IPV6) */
3730 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3734 EXPORT_SYMBOL(kernel_sock_ip_overhead
);