1 // SPDX-License-Identifier: GPL-2.0
3 * Wireless utility functions
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
27 struct ieee80211_rate
*
28 ieee80211_get_response_rate(struct ieee80211_supported_band
*sband
,
29 u32 basic_rates
, int bitrate
)
31 struct ieee80211_rate
*result
= &sband
->bitrates
[0];
34 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
35 if (!(basic_rates
& BIT(i
)))
37 if (sband
->bitrates
[i
].bitrate
> bitrate
)
39 result
= &sband
->bitrates
[i
];
44 EXPORT_SYMBOL(ieee80211_get_response_rate
);
46 u32
ieee80211_mandatory_rates(struct ieee80211_supported_band
*sband
,
47 enum nl80211_bss_scan_width scan_width
)
49 struct ieee80211_rate
*bitrates
;
50 u32 mandatory_rates
= 0;
51 enum ieee80211_rate_flags mandatory_flag
;
57 if (sband
->band
== NL80211_BAND_2GHZ
) {
58 if (scan_width
== NL80211_BSS_CHAN_WIDTH_5
||
59 scan_width
== NL80211_BSS_CHAN_WIDTH_10
)
60 mandatory_flag
= IEEE80211_RATE_MANDATORY_G
;
62 mandatory_flag
= IEEE80211_RATE_MANDATORY_B
;
64 mandatory_flag
= IEEE80211_RATE_MANDATORY_A
;
67 bitrates
= sband
->bitrates
;
68 for (i
= 0; i
< sband
->n_bitrates
; i
++)
69 if (bitrates
[i
].flags
& mandatory_flag
)
70 mandatory_rates
|= BIT(i
);
71 return mandatory_rates
;
73 EXPORT_SYMBOL(ieee80211_mandatory_rates
);
75 int ieee80211_channel_to_frequency(int chan
, enum nl80211_band band
)
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
80 return 0; /* not supported */
82 case NL80211_BAND_2GHZ
:
86 return 2407 + chan
* 5;
88 case NL80211_BAND_5GHZ
:
89 if (chan
>= 182 && chan
<= 196)
90 return 4000 + chan
* 5;
92 return 5000 + chan
* 5;
94 case NL80211_BAND_60GHZ
:
96 return 56160 + chan
* 2160;
101 return 0; /* not supported */
103 EXPORT_SYMBOL(ieee80211_channel_to_frequency
);
105 int ieee80211_frequency_to_channel(int freq
)
107 /* see 802.11 17.3.8.3.2 and Annex J */
110 else if (freq
< 2484)
111 return (freq
- 2407) / 5;
112 else if (freq
>= 4910 && freq
<= 4980)
113 return (freq
- 4000) / 5;
114 else if (freq
<= 45000) /* DMG band lower limit */
115 return (freq
- 5000) / 5;
116 else if (freq
>= 58320 && freq
<= 70200)
117 return (freq
- 56160) / 2160;
121 EXPORT_SYMBOL(ieee80211_frequency_to_channel
);
123 struct ieee80211_channel
*ieee80211_get_channel(struct wiphy
*wiphy
, int freq
)
125 enum nl80211_band band
;
126 struct ieee80211_supported_band
*sband
;
129 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
130 sband
= wiphy
->bands
[band
];
135 for (i
= 0; i
< sband
->n_channels
; i
++) {
136 if (sband
->channels
[i
].center_freq
== freq
)
137 return &sband
->channels
[i
];
143 EXPORT_SYMBOL(ieee80211_get_channel
);
145 static void set_mandatory_flags_band(struct ieee80211_supported_band
*sband
)
149 switch (sband
->band
) {
150 case NL80211_BAND_5GHZ
:
152 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
153 if (sband
->bitrates
[i
].bitrate
== 60 ||
154 sband
->bitrates
[i
].bitrate
== 120 ||
155 sband
->bitrates
[i
].bitrate
== 240) {
156 sband
->bitrates
[i
].flags
|=
157 IEEE80211_RATE_MANDATORY_A
;
163 case NL80211_BAND_2GHZ
:
165 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
166 switch (sband
->bitrates
[i
].bitrate
) {
171 sband
->bitrates
[i
].flags
|=
172 IEEE80211_RATE_MANDATORY_B
|
173 IEEE80211_RATE_MANDATORY_G
;
179 sband
->bitrates
[i
].flags
|=
180 IEEE80211_RATE_MANDATORY_G
;
184 sband
->bitrates
[i
].flags
|=
185 IEEE80211_RATE_ERP_G
;
189 WARN_ON(want
!= 0 && want
!= 3);
191 case NL80211_BAND_60GHZ
:
192 /* check for mandatory HT MCS 1..4 */
193 WARN_ON(!sband
->ht_cap
.ht_supported
);
194 WARN_ON((sband
->ht_cap
.mcs
.rx_mask
[0] & 0x1e) != 0x1e);
196 case NUM_NL80211_BANDS
:
203 void ieee80211_set_bitrate_flags(struct wiphy
*wiphy
)
205 enum nl80211_band band
;
207 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
208 if (wiphy
->bands
[band
])
209 set_mandatory_flags_band(wiphy
->bands
[band
]);
212 bool cfg80211_supported_cipher_suite(struct wiphy
*wiphy
, u32 cipher
)
215 for (i
= 0; i
< wiphy
->n_cipher_suites
; i
++)
216 if (cipher
== wiphy
->cipher_suites
[i
])
221 int cfg80211_validate_key_settings(struct cfg80211_registered_device
*rdev
,
222 struct key_params
*params
, int key_idx
,
223 bool pairwise
, const u8
*mac_addr
)
225 if (key_idx
< 0 || key_idx
> 5)
228 if (!pairwise
&& mac_addr
&& !(rdev
->wiphy
.flags
& WIPHY_FLAG_IBSS_RSN
))
231 if (pairwise
&& !mac_addr
)
234 switch (params
->cipher
) {
235 case WLAN_CIPHER_SUITE_TKIP
:
236 case WLAN_CIPHER_SUITE_CCMP
:
237 case WLAN_CIPHER_SUITE_CCMP_256
:
238 case WLAN_CIPHER_SUITE_GCMP
:
239 case WLAN_CIPHER_SUITE_GCMP_256
:
240 /* IEEE802.11-2016 allows only 0 and - when using Extended Key
241 * ID - 1 as index for pairwise keys.
242 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
243 * the driver supports Extended Key ID.
244 * @NL80211_KEY_SET_TX can't be set when installing and
247 if (params
->mode
== NL80211_KEY_NO_TX
) {
248 if (!wiphy_ext_feature_isset(&rdev
->wiphy
,
249 NL80211_EXT_FEATURE_EXT_KEY_ID
))
251 else if (!pairwise
|| key_idx
< 0 || key_idx
> 1)
253 } else if ((pairwise
&& key_idx
) ||
254 params
->mode
== NL80211_KEY_SET_TX
) {
258 case WLAN_CIPHER_SUITE_AES_CMAC
:
259 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
260 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
261 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
262 /* Disallow BIP (group-only) cipher as pairwise cipher */
268 case WLAN_CIPHER_SUITE_WEP40
:
269 case WLAN_CIPHER_SUITE_WEP104
:
276 switch (params
->cipher
) {
277 case WLAN_CIPHER_SUITE_WEP40
:
278 if (params
->key_len
!= WLAN_KEY_LEN_WEP40
)
281 case WLAN_CIPHER_SUITE_TKIP
:
282 if (params
->key_len
!= WLAN_KEY_LEN_TKIP
)
285 case WLAN_CIPHER_SUITE_CCMP
:
286 if (params
->key_len
!= WLAN_KEY_LEN_CCMP
)
289 case WLAN_CIPHER_SUITE_CCMP_256
:
290 if (params
->key_len
!= WLAN_KEY_LEN_CCMP_256
)
293 case WLAN_CIPHER_SUITE_GCMP
:
294 if (params
->key_len
!= WLAN_KEY_LEN_GCMP
)
297 case WLAN_CIPHER_SUITE_GCMP_256
:
298 if (params
->key_len
!= WLAN_KEY_LEN_GCMP_256
)
301 case WLAN_CIPHER_SUITE_WEP104
:
302 if (params
->key_len
!= WLAN_KEY_LEN_WEP104
)
305 case WLAN_CIPHER_SUITE_AES_CMAC
:
306 if (params
->key_len
!= WLAN_KEY_LEN_AES_CMAC
)
309 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
310 if (params
->key_len
!= WLAN_KEY_LEN_BIP_CMAC_256
)
313 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
314 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_128
)
317 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
318 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_256
)
323 * We don't know anything about this algorithm,
324 * allow using it -- but the driver must check
325 * all parameters! We still check below whether
326 * or not the driver supports this algorithm,
333 switch (params
->cipher
) {
334 case WLAN_CIPHER_SUITE_WEP40
:
335 case WLAN_CIPHER_SUITE_WEP104
:
336 /* These ciphers do not use key sequence */
338 case WLAN_CIPHER_SUITE_TKIP
:
339 case WLAN_CIPHER_SUITE_CCMP
:
340 case WLAN_CIPHER_SUITE_CCMP_256
:
341 case WLAN_CIPHER_SUITE_GCMP
:
342 case WLAN_CIPHER_SUITE_GCMP_256
:
343 case WLAN_CIPHER_SUITE_AES_CMAC
:
344 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
345 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
346 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
347 if (params
->seq_len
!= 6)
353 if (!cfg80211_supported_cipher_suite(&rdev
->wiphy
, params
->cipher
))
359 unsigned int __attribute_const__
ieee80211_hdrlen(__le16 fc
)
361 unsigned int hdrlen
= 24;
363 if (ieee80211_is_data(fc
)) {
364 if (ieee80211_has_a4(fc
))
366 if (ieee80211_is_data_qos(fc
)) {
367 hdrlen
+= IEEE80211_QOS_CTL_LEN
;
368 if (ieee80211_has_order(fc
))
369 hdrlen
+= IEEE80211_HT_CTL_LEN
;
374 if (ieee80211_is_mgmt(fc
)) {
375 if (ieee80211_has_order(fc
))
376 hdrlen
+= IEEE80211_HT_CTL_LEN
;
380 if (ieee80211_is_ctl(fc
)) {
382 * ACK and CTS are 10 bytes, all others 16. To see how
383 * to get this condition consider
384 * subtype mask: 0b0000000011110000 (0x00F0)
385 * ACK subtype: 0b0000000011010000 (0x00D0)
386 * CTS subtype: 0b0000000011000000 (0x00C0)
387 * bits that matter: ^^^ (0x00E0)
388 * value of those: 0b0000000011000000 (0x00C0)
390 if ((fc
& cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
398 EXPORT_SYMBOL(ieee80211_hdrlen
);
400 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff
*skb
)
402 const struct ieee80211_hdr
*hdr
=
403 (const struct ieee80211_hdr
*)skb
->data
;
406 if (unlikely(skb
->len
< 10))
408 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
409 if (unlikely(hdrlen
> skb
->len
))
413 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb
);
415 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags
)
417 int ae
= flags
& MESH_FLAGS_AE
;
418 /* 802.11-2012, 8.2.4.7.3 */
423 case MESH_FLAGS_AE_A4
:
425 case MESH_FLAGS_AE_A5_A6
:
430 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr
*meshhdr
)
432 return __ieee80211_get_mesh_hdrlen(meshhdr
->flags
);
434 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen
);
436 int ieee80211_data_to_8023_exthdr(struct sk_buff
*skb
, struct ethhdr
*ehdr
,
437 const u8
*addr
, enum nl80211_iftype iftype
,
440 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
442 u8 hdr
[ETH_ALEN
] __aligned(2);
449 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
452 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
) + data_offset
;
453 if (skb
->len
< hdrlen
+ 8)
456 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
458 * IEEE 802.11 address fields:
459 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
460 * 0 0 DA SA BSSID n/a
461 * 0 1 DA BSSID SA n/a
462 * 1 0 BSSID SA DA n/a
465 memcpy(tmp
.h_dest
, ieee80211_get_DA(hdr
), ETH_ALEN
);
466 memcpy(tmp
.h_source
, ieee80211_get_SA(hdr
), ETH_ALEN
);
468 if (iftype
== NL80211_IFTYPE_MESH_POINT
)
469 skb_copy_bits(skb
, hdrlen
, &mesh_flags
, 1);
471 mesh_flags
&= MESH_FLAGS_AE
;
473 switch (hdr
->frame_control
&
474 cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
)) {
475 case cpu_to_le16(IEEE80211_FCTL_TODS
):
476 if (unlikely(iftype
!= NL80211_IFTYPE_AP
&&
477 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
478 iftype
!= NL80211_IFTYPE_P2P_GO
))
481 case cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
):
482 if (unlikely(iftype
!= NL80211_IFTYPE_WDS
&&
483 iftype
!= NL80211_IFTYPE_MESH_POINT
&&
484 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
485 iftype
!= NL80211_IFTYPE_STATION
))
487 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
488 if (mesh_flags
== MESH_FLAGS_AE_A4
)
490 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
) {
491 skb_copy_bits(skb
, hdrlen
+
492 offsetof(struct ieee80211s_hdr
, eaddr1
),
493 tmp
.h_dest
, 2 * ETH_ALEN
);
495 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
498 case cpu_to_le16(IEEE80211_FCTL_FROMDS
):
499 if ((iftype
!= NL80211_IFTYPE_STATION
&&
500 iftype
!= NL80211_IFTYPE_P2P_CLIENT
&&
501 iftype
!= NL80211_IFTYPE_MESH_POINT
) ||
502 (is_multicast_ether_addr(tmp
.h_dest
) &&
503 ether_addr_equal(tmp
.h_source
, addr
)))
505 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
506 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
)
508 if (mesh_flags
== MESH_FLAGS_AE_A4
)
509 skb_copy_bits(skb
, hdrlen
+
510 offsetof(struct ieee80211s_hdr
, eaddr1
),
511 tmp
.h_source
, ETH_ALEN
);
512 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
516 if (iftype
!= NL80211_IFTYPE_ADHOC
&&
517 iftype
!= NL80211_IFTYPE_STATION
&&
518 iftype
!= NL80211_IFTYPE_OCB
)
523 skb_copy_bits(skb
, hdrlen
, &payload
, sizeof(payload
));
524 tmp
.h_proto
= payload
.proto
;
526 if (likely((ether_addr_equal(payload
.hdr
, rfc1042_header
) &&
527 tmp
.h_proto
!= htons(ETH_P_AARP
) &&
528 tmp
.h_proto
!= htons(ETH_P_IPX
)) ||
529 ether_addr_equal(payload
.hdr
, bridge_tunnel_header
)))
530 /* remove RFC1042 or Bridge-Tunnel encapsulation and
531 * replace EtherType */
532 hdrlen
+= ETH_ALEN
+ 2;
534 tmp
.h_proto
= htons(skb
->len
- hdrlen
);
536 pskb_pull(skb
, hdrlen
);
539 ehdr
= skb_push(skb
, sizeof(struct ethhdr
));
540 memcpy(ehdr
, &tmp
, sizeof(tmp
));
544 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr
);
547 __frame_add_frag(struct sk_buff
*skb
, struct page
*page
,
548 void *ptr
, int len
, int size
)
550 struct skb_shared_info
*sh
= skb_shinfo(skb
);
554 page_offset
= ptr
- page_address(page
);
555 skb_add_rx_frag(skb
, sh
->nr_frags
, page
, page_offset
, len
, size
);
559 __ieee80211_amsdu_copy_frag(struct sk_buff
*skb
, struct sk_buff
*frame
,
562 struct skb_shared_info
*sh
= skb_shinfo(skb
);
563 const skb_frag_t
*frag
= &sh
->frags
[0];
564 struct page
*frag_page
;
566 int frag_len
, frag_size
;
567 int head_size
= skb
->len
- skb
->data_len
;
570 frag_page
= virt_to_head_page(skb
->head
);
571 frag_ptr
= skb
->data
;
572 frag_size
= head_size
;
574 while (offset
>= frag_size
) {
576 frag_page
= skb_frag_page(frag
);
577 frag_ptr
= skb_frag_address(frag
);
578 frag_size
= skb_frag_size(frag
);
583 frag_len
= frag_size
- offset
;
585 cur_len
= min(len
, frag_len
);
587 __frame_add_frag(frame
, frag_page
, frag_ptr
, cur_len
, frag_size
);
591 frag_len
= skb_frag_size(frag
);
592 cur_len
= min(len
, frag_len
);
593 __frame_add_frag(frame
, skb_frag_page(frag
),
594 skb_frag_address(frag
), cur_len
, frag_len
);
600 static struct sk_buff
*
601 __ieee80211_amsdu_copy(struct sk_buff
*skb
, unsigned int hlen
,
602 int offset
, int len
, bool reuse_frag
)
604 struct sk_buff
*frame
;
607 if (skb
->len
- offset
< len
)
611 * When reusing framents, copy some data to the head to simplify
612 * ethernet header handling and speed up protocol header processing
613 * in the stack later.
616 cur_len
= min_t(int, len
, 32);
619 * Allocate and reserve two bytes more for payload
620 * alignment since sizeof(struct ethhdr) is 14.
622 frame
= dev_alloc_skb(hlen
+ sizeof(struct ethhdr
) + 2 + cur_len
);
626 skb_reserve(frame
, hlen
+ sizeof(struct ethhdr
) + 2);
627 skb_copy_bits(skb
, offset
, skb_put(frame
, cur_len
), cur_len
);
634 __ieee80211_amsdu_copy_frag(skb
, frame
, offset
, len
);
639 void ieee80211_amsdu_to_8023s(struct sk_buff
*skb
, struct sk_buff_head
*list
,
640 const u8
*addr
, enum nl80211_iftype iftype
,
641 const unsigned int extra_headroom
,
642 const u8
*check_da
, const u8
*check_sa
)
644 unsigned int hlen
= ALIGN(extra_headroom
, 4);
645 struct sk_buff
*frame
= NULL
;
648 int offset
= 0, remaining
;
650 bool reuse_frag
= skb
->head_frag
&& !skb_has_frag_list(skb
);
651 bool reuse_skb
= false;
655 unsigned int subframe_len
;
659 skb_copy_bits(skb
, offset
, ð
, sizeof(eth
));
660 len
= ntohs(eth
.h_proto
);
661 subframe_len
= sizeof(struct ethhdr
) + len
;
662 padding
= (4 - subframe_len
) & 0x3;
664 /* the last MSDU has no padding */
665 remaining
= skb
->len
- offset
;
666 if (subframe_len
> remaining
)
669 offset
+= sizeof(struct ethhdr
);
670 last
= remaining
<= subframe_len
+ padding
;
672 /* FIXME: should we really accept multicast DA? */
673 if ((check_da
&& !is_multicast_ether_addr(eth
.h_dest
) &&
674 !ether_addr_equal(check_da
, eth
.h_dest
)) ||
675 (check_sa
&& !ether_addr_equal(check_sa
, eth
.h_source
))) {
676 offset
+= len
+ padding
;
680 /* reuse skb for the last subframe */
681 if (!skb_is_nonlinear(skb
) && !reuse_frag
&& last
) {
682 skb_pull(skb
, offset
);
686 frame
= __ieee80211_amsdu_copy(skb
, hlen
, offset
, len
,
691 offset
+= len
+ padding
;
694 skb_reset_network_header(frame
);
695 frame
->dev
= skb
->dev
;
696 frame
->priority
= skb
->priority
;
698 payload
= frame
->data
;
699 ethertype
= (payload
[6] << 8) | payload
[7];
700 if (likely((ether_addr_equal(payload
, rfc1042_header
) &&
701 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
702 ether_addr_equal(payload
, bridge_tunnel_header
))) {
703 eth
.h_proto
= htons(ethertype
);
704 skb_pull(frame
, ETH_ALEN
+ 2);
707 memcpy(skb_push(frame
, sizeof(eth
)), ð
, sizeof(eth
));
708 __skb_queue_tail(list
, frame
);
717 __skb_queue_purge(list
);
720 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s
);
722 /* Given a data frame determine the 802.1p/1d tag to use. */
723 unsigned int cfg80211_classify8021d(struct sk_buff
*skb
,
724 struct cfg80211_qos_map
*qos_map
)
727 unsigned char vlan_priority
;
730 /* skb->priority values from 256->263 are magic values to
731 * directly indicate a specific 802.1d priority. This is used
732 * to allow 802.1d priority to be passed directly in from VLAN
735 if (skb
->priority
>= 256 && skb
->priority
<= 263) {
736 ret
= skb
->priority
- 256;
740 if (skb_vlan_tag_present(skb
)) {
741 vlan_priority
= (skb_vlan_tag_get(skb
) & VLAN_PRIO_MASK
)
743 if (vlan_priority
> 0) {
749 switch (skb
->protocol
) {
750 case htons(ETH_P_IP
):
751 dscp
= ipv4_get_dsfield(ip_hdr(skb
)) & 0xfc;
753 case htons(ETH_P_IPV6
):
754 dscp
= ipv6_get_dsfield(ipv6_hdr(skb
)) & 0xfc;
756 case htons(ETH_P_MPLS_UC
):
757 case htons(ETH_P_MPLS_MC
): {
758 struct mpls_label mpls_tmp
, *mpls
;
760 mpls
= skb_header_pointer(skb
, sizeof(struct ethhdr
),
761 sizeof(*mpls
), &mpls_tmp
);
765 ret
= (ntohl(mpls
->entry
) & MPLS_LS_TC_MASK
)
769 case htons(ETH_P_80221
):
770 /* 802.21 is always network control traffic */
777 unsigned int i
, tmp_dscp
= dscp
>> 2;
779 for (i
= 0; i
< qos_map
->num_des
; i
++) {
780 if (tmp_dscp
== qos_map
->dscp_exception
[i
].dscp
) {
781 ret
= qos_map
->dscp_exception
[i
].up
;
786 for (i
= 0; i
< 8; i
++) {
787 if (tmp_dscp
>= qos_map
->up
[i
].low
&&
788 tmp_dscp
<= qos_map
->up
[i
].high
) {
797 return array_index_nospec(ret
, IEEE80211_NUM_TIDS
);
799 EXPORT_SYMBOL(cfg80211_classify8021d
);
801 const struct element
*ieee80211_bss_get_elem(struct cfg80211_bss
*bss
, u8 id
)
803 const struct cfg80211_bss_ies
*ies
;
805 ies
= rcu_dereference(bss
->ies
);
809 return cfg80211_find_elem(id
, ies
->data
, ies
->len
);
811 EXPORT_SYMBOL(ieee80211_bss_get_elem
);
813 void cfg80211_upload_connect_keys(struct wireless_dev
*wdev
)
815 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wdev
->wiphy
);
816 struct net_device
*dev
= wdev
->netdev
;
819 if (!wdev
->connect_keys
)
822 for (i
= 0; i
< CFG80211_MAX_WEP_KEYS
; i
++) {
823 if (!wdev
->connect_keys
->params
[i
].cipher
)
825 if (rdev_add_key(rdev
, dev
, i
, false, NULL
,
826 &wdev
->connect_keys
->params
[i
])) {
827 netdev_err(dev
, "failed to set key %d\n", i
);
830 if (wdev
->connect_keys
->def
== i
&&
831 rdev_set_default_key(rdev
, dev
, i
, true, true)) {
832 netdev_err(dev
, "failed to set defkey %d\n", i
);
837 kzfree(wdev
->connect_keys
);
838 wdev
->connect_keys
= NULL
;
841 void cfg80211_process_wdev_events(struct wireless_dev
*wdev
)
843 struct cfg80211_event
*ev
;
846 spin_lock_irqsave(&wdev
->event_lock
, flags
);
847 while (!list_empty(&wdev
->event_list
)) {
848 ev
= list_first_entry(&wdev
->event_list
,
849 struct cfg80211_event
, list
);
851 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
855 case EVENT_CONNECT_RESULT
:
856 __cfg80211_connect_result(
859 ev
->cr
.status
== WLAN_STATUS_SUCCESS
);
862 __cfg80211_roamed(wdev
, &ev
->rm
);
864 case EVENT_DISCONNECTED
:
865 __cfg80211_disconnected(wdev
->netdev
,
866 ev
->dc
.ie
, ev
->dc
.ie_len
,
868 !ev
->dc
.locally_generated
);
870 case EVENT_IBSS_JOINED
:
871 __cfg80211_ibss_joined(wdev
->netdev
, ev
->ij
.bssid
,
875 __cfg80211_leave(wiphy_to_rdev(wdev
->wiphy
), wdev
);
877 case EVENT_PORT_AUTHORIZED
:
878 __cfg80211_port_authorized(wdev
, ev
->pa
.bssid
);
885 spin_lock_irqsave(&wdev
->event_lock
, flags
);
887 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
890 void cfg80211_process_rdev_events(struct cfg80211_registered_device
*rdev
)
892 struct wireless_dev
*wdev
;
896 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
897 cfg80211_process_wdev_events(wdev
);
900 int cfg80211_change_iface(struct cfg80211_registered_device
*rdev
,
901 struct net_device
*dev
, enum nl80211_iftype ntype
,
902 struct vif_params
*params
)
905 enum nl80211_iftype otype
= dev
->ieee80211_ptr
->iftype
;
909 /* don't support changing VLANs, you just re-create them */
910 if (otype
== NL80211_IFTYPE_AP_VLAN
)
913 /* cannot change into P2P device or NAN */
914 if (ntype
== NL80211_IFTYPE_P2P_DEVICE
||
915 ntype
== NL80211_IFTYPE_NAN
)
918 if (!rdev
->ops
->change_virtual_intf
||
919 !(rdev
->wiphy
.interface_modes
& (1 << ntype
)))
922 /* if it's part of a bridge, reject changing type to station/ibss */
923 if ((dev
->priv_flags
& IFF_BRIDGE_PORT
) &&
924 (ntype
== NL80211_IFTYPE_ADHOC
||
925 ntype
== NL80211_IFTYPE_STATION
||
926 ntype
== NL80211_IFTYPE_P2P_CLIENT
))
929 if (ntype
!= otype
) {
930 dev
->ieee80211_ptr
->use_4addr
= false;
931 dev
->ieee80211_ptr
->mesh_id_up_len
= 0;
932 wdev_lock(dev
->ieee80211_ptr
);
933 rdev_set_qos_map(rdev
, dev
, NULL
);
934 wdev_unlock(dev
->ieee80211_ptr
);
937 case NL80211_IFTYPE_AP
:
938 cfg80211_stop_ap(rdev
, dev
, true);
940 case NL80211_IFTYPE_ADHOC
:
941 cfg80211_leave_ibss(rdev
, dev
, false);
943 case NL80211_IFTYPE_STATION
:
944 case NL80211_IFTYPE_P2P_CLIENT
:
945 wdev_lock(dev
->ieee80211_ptr
);
946 cfg80211_disconnect(rdev
, dev
,
947 WLAN_REASON_DEAUTH_LEAVING
, true);
948 wdev_unlock(dev
->ieee80211_ptr
);
950 case NL80211_IFTYPE_MESH_POINT
:
951 /* mesh should be handled? */
957 cfg80211_process_rdev_events(rdev
);
960 err
= rdev_change_virtual_intf(rdev
, dev
, ntype
, params
);
962 WARN_ON(!err
&& dev
->ieee80211_ptr
->iftype
!= ntype
);
964 if (!err
&& params
&& params
->use_4addr
!= -1)
965 dev
->ieee80211_ptr
->use_4addr
= params
->use_4addr
;
968 dev
->priv_flags
&= ~IFF_DONT_BRIDGE
;
970 case NL80211_IFTYPE_STATION
:
971 if (dev
->ieee80211_ptr
->use_4addr
)
974 case NL80211_IFTYPE_OCB
:
975 case NL80211_IFTYPE_P2P_CLIENT
:
976 case NL80211_IFTYPE_ADHOC
:
977 dev
->priv_flags
|= IFF_DONT_BRIDGE
;
979 case NL80211_IFTYPE_P2P_GO
:
980 case NL80211_IFTYPE_AP
:
981 case NL80211_IFTYPE_AP_VLAN
:
982 case NL80211_IFTYPE_WDS
:
983 case NL80211_IFTYPE_MESH_POINT
:
986 case NL80211_IFTYPE_MONITOR
:
987 /* monitor can't bridge anyway */
989 case NL80211_IFTYPE_UNSPECIFIED
:
990 case NUM_NL80211_IFTYPES
:
993 case NL80211_IFTYPE_P2P_DEVICE
:
994 case NL80211_IFTYPE_NAN
:
1000 if (!err
&& ntype
!= otype
&& netif_running(dev
)) {
1001 cfg80211_update_iface_num(rdev
, ntype
, 1);
1002 cfg80211_update_iface_num(rdev
, otype
, -1);
1008 static u32
cfg80211_calculate_bitrate_ht(struct rate_info
*rate
)
1010 int modulation
, streams
, bitrate
;
1012 /* the formula below does only work for MCS values smaller than 32 */
1013 if (WARN_ON_ONCE(rate
->mcs
>= 32))
1016 modulation
= rate
->mcs
& 7;
1017 streams
= (rate
->mcs
>> 3) + 1;
1019 bitrate
= (rate
->bw
== RATE_INFO_BW_40
) ? 13500000 : 6500000;
1022 bitrate
*= (modulation
+ 1);
1023 else if (modulation
== 4)
1024 bitrate
*= (modulation
+ 2);
1026 bitrate
*= (modulation
+ 3);
1030 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1031 bitrate
= (bitrate
/ 9) * 10;
1033 /* do NOT round down here */
1034 return (bitrate
+ 50000) / 100000;
1037 static u32
cfg80211_calculate_bitrate_60g(struct rate_info
*rate
)
1039 static const u32 __mcs2bitrate
[] = {
1047 [5] = 12512, /* 1251.25 mbps */
1057 [14] = 8662, /* 866.25 mbps */
1067 [24] = 67568, /* 6756.75 mbps */
1078 if (WARN_ON_ONCE(rate
->mcs
>= ARRAY_SIZE(__mcs2bitrate
)))
1081 return __mcs2bitrate
[rate
->mcs
];
1084 static u32
cfg80211_calculate_bitrate_vht(struct rate_info
*rate
)
1086 static const u32 base
[4][10] = {
1096 /* not in the spec, but some devices use this: */
1140 case RATE_INFO_BW_160
:
1143 case RATE_INFO_BW_80
:
1146 case RATE_INFO_BW_40
:
1149 case RATE_INFO_BW_5
:
1150 case RATE_INFO_BW_10
:
1153 case RATE_INFO_BW_20
:
1157 bitrate
= base
[idx
][rate
->mcs
];
1158 bitrate
*= rate
->nss
;
1160 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1161 bitrate
= (bitrate
/ 9) * 10;
1163 /* do NOT round down here */
1164 return (bitrate
+ 50000) / 100000;
1166 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1167 rate
->bw
, rate
->mcs
, rate
->nss
);
1171 static u32
cfg80211_calculate_bitrate_he(struct rate_info
*rate
)
1174 u16 mcs_divisors
[12] = {
1175 34133, /* 16.666666... */
1176 17067, /* 8.333333... */
1177 11378, /* 5.555555... */
1178 8533, /* 4.166666... */
1179 5689, /* 2.777777... */
1180 4267, /* 2.083333... */
1181 3923, /* 1.851851... */
1182 3413, /* 1.666666... */
1183 2844, /* 1.388888... */
1184 2560, /* 1.250000... */
1185 2276, /* 1.111111... */
1186 2048, /* 1.000000... */
1188 u32 rates_160M
[3] = { 960777777, 907400000, 816666666 };
1189 u32 rates_969
[3] = { 480388888, 453700000, 408333333 };
1190 u32 rates_484
[3] = { 229411111, 216666666, 195000000 };
1191 u32 rates_242
[3] = { 114711111, 108333333, 97500000 };
1192 u32 rates_106
[3] = { 40000000, 37777777, 34000000 };
1193 u32 rates_52
[3] = { 18820000, 17777777, 16000000 };
1194 u32 rates_26
[3] = { 9411111, 8888888, 8000000 };
1198 if (WARN_ON_ONCE(rate
->mcs
> 11))
1201 if (WARN_ON_ONCE(rate
->he_gi
> NL80211_RATE_INFO_HE_GI_3_2
))
1203 if (WARN_ON_ONCE(rate
->he_ru_alloc
>
1204 NL80211_RATE_INFO_HE_RU_ALLOC_2x996
))
1206 if (WARN_ON_ONCE(rate
->nss
< 1 || rate
->nss
> 8))
1209 if (rate
->bw
== RATE_INFO_BW_160
)
1210 result
= rates_160M
[rate
->he_gi
];
1211 else if (rate
->bw
== RATE_INFO_BW_80
||
1212 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1213 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_996
))
1214 result
= rates_969
[rate
->he_gi
];
1215 else if (rate
->bw
== RATE_INFO_BW_40
||
1216 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1217 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_484
))
1218 result
= rates_484
[rate
->he_gi
];
1219 else if (rate
->bw
== RATE_INFO_BW_20
||
1220 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1221 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_242
))
1222 result
= rates_242
[rate
->he_gi
];
1223 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1224 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_106
)
1225 result
= rates_106
[rate
->he_gi
];
1226 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1227 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_52
)
1228 result
= rates_52
[rate
->he_gi
];
1229 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1230 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_26
)
1231 result
= rates_26
[rate
->he_gi
];
1233 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1234 rate
->bw
, rate
->he_ru_alloc
);
1238 /* now scale to the appropriate MCS */
1241 do_div(tmp
, mcs_divisors
[rate
->mcs
]);
1244 /* and take NSS, DCM into account */
1245 result
= (result
* rate
->nss
) / 8;
1249 return result
/ 10000;
1252 u32
cfg80211_calculate_bitrate(struct rate_info
*rate
)
1254 if (rate
->flags
& RATE_INFO_FLAGS_MCS
)
1255 return cfg80211_calculate_bitrate_ht(rate
);
1256 if (rate
->flags
& RATE_INFO_FLAGS_60G
)
1257 return cfg80211_calculate_bitrate_60g(rate
);
1258 if (rate
->flags
& RATE_INFO_FLAGS_VHT_MCS
)
1259 return cfg80211_calculate_bitrate_vht(rate
);
1260 if (rate
->flags
& RATE_INFO_FLAGS_HE_MCS
)
1261 return cfg80211_calculate_bitrate_he(rate
);
1263 return rate
->legacy
;
1265 EXPORT_SYMBOL(cfg80211_calculate_bitrate
);
1267 int cfg80211_get_p2p_attr(const u8
*ies
, unsigned int len
,
1268 enum ieee80211_p2p_attr_id attr
,
1269 u8
*buf
, unsigned int bufsize
)
1272 u16 attr_remaining
= 0;
1273 bool desired_attr
= false;
1274 u16 desired_len
= 0;
1277 unsigned int iedatalen
;
1284 if (iedatalen
+ 2 > len
)
1287 if (ies
[0] != WLAN_EID_VENDOR_SPECIFIC
)
1295 /* check WFA OUI, P2P subtype */
1296 if (iedata
[0] != 0x50 || iedata
[1] != 0x6f ||
1297 iedata
[2] != 0x9a || iedata
[3] != 0x09)
1303 /* check attribute continuation into this IE */
1304 copy
= min_t(unsigned int, attr_remaining
, iedatalen
);
1305 if (copy
&& desired_attr
) {
1306 desired_len
+= copy
;
1308 memcpy(out
, iedata
, min(bufsize
, copy
));
1309 out
+= min(bufsize
, copy
);
1310 bufsize
-= min(bufsize
, copy
);
1314 if (copy
== attr_remaining
)
1318 attr_remaining
-= copy
;
1325 while (iedatalen
> 0) {
1328 /* P2P attribute ID & size must fit */
1331 desired_attr
= iedata
[0] == attr
;
1332 attr_len
= get_unaligned_le16(iedata
+ 1);
1336 copy
= min_t(unsigned int, attr_len
, iedatalen
);
1339 desired_len
+= copy
;
1341 memcpy(out
, iedata
, min(bufsize
, copy
));
1342 out
+= min(bufsize
, copy
);
1343 bufsize
-= min(bufsize
, copy
);
1346 if (copy
== attr_len
)
1352 attr_remaining
= attr_len
- copy
;
1360 if (attr_remaining
&& desired_attr
)
1365 EXPORT_SYMBOL(cfg80211_get_p2p_attr
);
1367 static bool ieee80211_id_in_list(const u8
*ids
, int n_ids
, u8 id
, bool id_ext
)
1371 /* Make sure array values are legal */
1372 if (WARN_ON(ids
[n_ids
- 1] == WLAN_EID_EXTENSION
))
1377 if (ids
[i
] == WLAN_EID_EXTENSION
) {
1378 if (id_ext
&& (ids
[i
+ 1] == id
))
1385 if (ids
[i
] == id
&& !id_ext
)
1393 static size_t skip_ie(const u8
*ies
, size_t ielen
, size_t pos
)
1395 /* we assume a validly formed IEs buffer */
1396 u8 len
= ies
[pos
+ 1];
1400 /* the IE itself must have 255 bytes for fragments to follow */
1404 while (pos
< ielen
&& ies
[pos
] == WLAN_EID_FRAGMENT
) {
1412 size_t ieee80211_ie_split_ric(const u8
*ies
, size_t ielen
,
1413 const u8
*ids
, int n_ids
,
1414 const u8
*after_ric
, int n_after_ric
,
1417 size_t pos
= offset
;
1419 while (pos
< ielen
) {
1422 if (ies
[pos
] == WLAN_EID_EXTENSION
)
1424 if ((pos
+ ext
) >= ielen
)
1427 if (!ieee80211_id_in_list(ids
, n_ids
, ies
[pos
+ ext
],
1428 ies
[pos
] == WLAN_EID_EXTENSION
))
1431 if (ies
[pos
] == WLAN_EID_RIC_DATA
&& n_after_ric
) {
1432 pos
= skip_ie(ies
, ielen
, pos
);
1434 while (pos
< ielen
) {
1435 if (ies
[pos
] == WLAN_EID_EXTENSION
)
1440 if ((pos
+ ext
) >= ielen
)
1443 if (!ieee80211_id_in_list(after_ric
,
1447 pos
= skip_ie(ies
, ielen
, pos
);
1452 pos
= skip_ie(ies
, ielen
, pos
);
1458 EXPORT_SYMBOL(ieee80211_ie_split_ric
);
1460 bool ieee80211_operating_class_to_band(u8 operating_class
,
1461 enum nl80211_band
*band
)
1463 switch (operating_class
) {
1467 *band
= NL80211_BAND_5GHZ
;
1473 *band
= NL80211_BAND_2GHZ
;
1476 *band
= NL80211_BAND_60GHZ
;
1482 EXPORT_SYMBOL(ieee80211_operating_class_to_band
);
1484 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def
*chandef
,
1488 u32 freq
= chandef
->center_freq1
;
1490 if (freq
>= 2412 && freq
<= 2472) {
1491 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1494 /* 2.407 GHz, channels 1..13 */
1495 if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1496 if (freq
> chandef
->chan
->center_freq
)
1497 *op_class
= 83; /* HT40+ */
1499 *op_class
= 84; /* HT40- */
1508 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1511 *op_class
= 82; /* channel 14 */
1515 switch (chandef
->width
) {
1516 case NL80211_CHAN_WIDTH_80
:
1519 case NL80211_CHAN_WIDTH_160
:
1522 case NL80211_CHAN_WIDTH_80P80
:
1525 case NL80211_CHAN_WIDTH_10
:
1526 case NL80211_CHAN_WIDTH_5
:
1527 return false; /* unsupported for now */
1533 /* 5 GHz, channels 36..48 */
1534 if (freq
>= 5180 && freq
<= 5240) {
1536 *op_class
= vht_opclass
;
1537 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1538 if (freq
> chandef
->chan
->center_freq
)
1549 /* 5 GHz, channels 52..64 */
1550 if (freq
>= 5260 && freq
<= 5320) {
1552 *op_class
= vht_opclass
;
1553 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1554 if (freq
> chandef
->chan
->center_freq
)
1565 /* 5 GHz, channels 100..144 */
1566 if (freq
>= 5500 && freq
<= 5720) {
1568 *op_class
= vht_opclass
;
1569 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1570 if (freq
> chandef
->chan
->center_freq
)
1581 /* 5 GHz, channels 149..169 */
1582 if (freq
>= 5745 && freq
<= 5845) {
1584 *op_class
= vht_opclass
;
1585 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1586 if (freq
> chandef
->chan
->center_freq
)
1590 } else if (freq
<= 5805) {
1599 /* 56.16 GHz, channel 1..4 */
1600 if (freq
>= 56160 + 2160 * 1 && freq
<= 56160 + 2160 * 6) {
1601 if (chandef
->width
>= NL80211_CHAN_WIDTH_40
)
1608 /* not supported yet */
1611 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class
);
1613 static void cfg80211_calculate_bi_data(struct wiphy
*wiphy
, u32 new_beacon_int
,
1614 u32
*beacon_int_gcd
,
1615 bool *beacon_int_different
)
1617 struct wireless_dev
*wdev
;
1619 *beacon_int_gcd
= 0;
1620 *beacon_int_different
= false;
1622 list_for_each_entry(wdev
, &wiphy
->wdev_list
, list
) {
1623 if (!wdev
->beacon_interval
)
1626 if (!*beacon_int_gcd
) {
1627 *beacon_int_gcd
= wdev
->beacon_interval
;
1631 if (wdev
->beacon_interval
== *beacon_int_gcd
)
1634 *beacon_int_different
= true;
1635 *beacon_int_gcd
= gcd(*beacon_int_gcd
, wdev
->beacon_interval
);
1638 if (new_beacon_int
&& *beacon_int_gcd
!= new_beacon_int
) {
1639 if (*beacon_int_gcd
)
1640 *beacon_int_different
= true;
1641 *beacon_int_gcd
= gcd(*beacon_int_gcd
, new_beacon_int
);
1645 int cfg80211_validate_beacon_int(struct cfg80211_registered_device
*rdev
,
1646 enum nl80211_iftype iftype
, u32 beacon_int
)
1649 * This is just a basic pre-condition check; if interface combinations
1650 * are possible the driver must already be checking those with a call
1651 * to cfg80211_check_combinations(), in which case we'll validate more
1652 * through the cfg80211_calculate_bi_data() call and code in
1653 * cfg80211_iter_combinations().
1656 if (beacon_int
< 10 || beacon_int
> 10000)
1662 int cfg80211_iter_combinations(struct wiphy
*wiphy
,
1663 struct iface_combination_params
*params
,
1664 void (*iter
)(const struct ieee80211_iface_combination
*c
,
1668 const struct ieee80211_regdomain
*regdom
;
1669 enum nl80211_dfs_regions region
= 0;
1671 int num_interfaces
= 0;
1672 u32 used_iftypes
= 0;
1674 bool beacon_int_different
;
1677 * This is a bit strange, since the iteration used to rely only on
1678 * the data given by the driver, but here it now relies on context,
1679 * in form of the currently operating interfaces.
1680 * This is OK for all current users, and saves us from having to
1681 * push the GCD calculations into all the drivers.
1682 * In the future, this should probably rely more on data that's in
1683 * cfg80211 already - the only thing not would appear to be any new
1684 * interfaces (while being brought up) and channel/radar data.
1686 cfg80211_calculate_bi_data(wiphy
, params
->new_beacon_int
,
1687 &beacon_int_gcd
, &beacon_int_different
);
1689 if (params
->radar_detect
) {
1691 regdom
= rcu_dereference(cfg80211_regdomain
);
1693 region
= regdom
->dfs_region
;
1697 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1698 num_interfaces
+= params
->iftype_num
[iftype
];
1699 if (params
->iftype_num
[iftype
] > 0 &&
1700 !(wiphy
->software_iftypes
& BIT(iftype
)))
1701 used_iftypes
|= BIT(iftype
);
1704 for (i
= 0; i
< wiphy
->n_iface_combinations
; i
++) {
1705 const struct ieee80211_iface_combination
*c
;
1706 struct ieee80211_iface_limit
*limits
;
1707 u32 all_iftypes
= 0;
1709 c
= &wiphy
->iface_combinations
[i
];
1711 if (num_interfaces
> c
->max_interfaces
)
1713 if (params
->num_different_channels
> c
->num_different_channels
)
1716 limits
= kmemdup(c
->limits
, sizeof(limits
[0]) * c
->n_limits
,
1721 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1722 if (wiphy
->software_iftypes
& BIT(iftype
))
1724 for (j
= 0; j
< c
->n_limits
; j
++) {
1725 all_iftypes
|= limits
[j
].types
;
1726 if (!(limits
[j
].types
& BIT(iftype
)))
1728 if (limits
[j
].max
< params
->iftype_num
[iftype
])
1730 limits
[j
].max
-= params
->iftype_num
[iftype
];
1734 if (params
->radar_detect
!=
1735 (c
->radar_detect_widths
& params
->radar_detect
))
1738 if (params
->radar_detect
&& c
->radar_detect_regions
&&
1739 !(c
->radar_detect_regions
& BIT(region
)))
1742 /* Finally check that all iftypes that we're currently
1743 * using are actually part of this combination. If they
1744 * aren't then we can't use this combination and have
1745 * to continue to the next.
1747 if ((all_iftypes
& used_iftypes
) != used_iftypes
)
1750 if (beacon_int_gcd
) {
1751 if (c
->beacon_int_min_gcd
&&
1752 beacon_int_gcd
< c
->beacon_int_min_gcd
)
1754 if (!c
->beacon_int_min_gcd
&& beacon_int_different
)
1758 /* This combination covered all interface types and
1759 * supported the requested numbers, so we're good.
1769 EXPORT_SYMBOL(cfg80211_iter_combinations
);
1772 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination
*c
,
1779 int cfg80211_check_combinations(struct wiphy
*wiphy
,
1780 struct iface_combination_params
*params
)
1784 err
= cfg80211_iter_combinations(wiphy
, params
,
1785 cfg80211_iter_sum_ifcombs
, &num
);
1793 EXPORT_SYMBOL(cfg80211_check_combinations
);
1795 int ieee80211_get_ratemask(struct ieee80211_supported_band
*sband
,
1796 const u8
*rates
, unsigned int n_rates
,
1804 if (n_rates
== 0 || n_rates
> NL80211_MAX_SUPP_RATES
)
1809 for (i
= 0; i
< n_rates
; i
++) {
1810 int rate
= (rates
[i
] & 0x7f) * 5;
1813 for (j
= 0; j
< sband
->n_bitrates
; j
++) {
1814 if (sband
->bitrates
[j
].bitrate
== rate
) {
1825 * mask must have at least one bit set here since we
1826 * didn't accept a 0-length rates array nor allowed
1827 * entries in the array that didn't exist
1833 unsigned int ieee80211_get_num_supported_channels(struct wiphy
*wiphy
)
1835 enum nl80211_band band
;
1836 unsigned int n_channels
= 0;
1838 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1839 if (wiphy
->bands
[band
])
1840 n_channels
+= wiphy
->bands
[band
]->n_channels
;
1844 EXPORT_SYMBOL(ieee80211_get_num_supported_channels
);
1846 int cfg80211_get_station(struct net_device
*dev
, const u8
*mac_addr
,
1847 struct station_info
*sinfo
)
1849 struct cfg80211_registered_device
*rdev
;
1850 struct wireless_dev
*wdev
;
1852 wdev
= dev
->ieee80211_ptr
;
1856 rdev
= wiphy_to_rdev(wdev
->wiphy
);
1857 if (!rdev
->ops
->get_station
)
1860 memset(sinfo
, 0, sizeof(*sinfo
));
1862 return rdev_get_station(rdev
, dev
, mac_addr
, sinfo
);
1864 EXPORT_SYMBOL(cfg80211_get_station
);
1866 void cfg80211_free_nan_func(struct cfg80211_nan_func
*f
)
1873 kfree(f
->serv_spec_info
);
1876 for (i
= 0; i
< f
->num_rx_filters
; i
++)
1877 kfree(f
->rx_filters
[i
].filter
);
1879 for (i
= 0; i
< f
->num_tx_filters
; i
++)
1880 kfree(f
->tx_filters
[i
].filter
);
1882 kfree(f
->rx_filters
);
1883 kfree(f
->tx_filters
);
1886 EXPORT_SYMBOL(cfg80211_free_nan_func
);
1888 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range
*freq_range
,
1889 u32 center_freq_khz
, u32 bw_khz
)
1891 u32 start_freq_khz
, end_freq_khz
;
1893 start_freq_khz
= center_freq_khz
- (bw_khz
/ 2);
1894 end_freq_khz
= center_freq_khz
+ (bw_khz
/ 2);
1896 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
1897 end_freq_khz
<= freq_range
->end_freq_khz
)
1903 int cfg80211_sinfo_alloc_tid_stats(struct station_info
*sinfo
, gfp_t gfp
)
1905 sinfo
->pertid
= kcalloc(IEEE80211_NUM_TIDS
+ 1,
1906 sizeof(*(sinfo
->pertid
)),
1913 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats
);
1915 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1916 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1917 const unsigned char rfc1042_header
[] __aligned(2) =
1918 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1919 EXPORT_SYMBOL(rfc1042_header
);
1921 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1922 const unsigned char bridge_tunnel_header
[] __aligned(2) =
1923 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1924 EXPORT_SYMBOL(bridge_tunnel_header
);
1926 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1927 struct iapp_layer2_update
{
1928 u8 da
[ETH_ALEN
]; /* broadcast */
1929 u8 sa
[ETH_ALEN
]; /* STA addr */
1937 void cfg80211_send_layer2_update(struct net_device
*dev
, const u8
*addr
)
1939 struct iapp_layer2_update
*msg
;
1940 struct sk_buff
*skb
;
1942 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1945 skb
= dev_alloc_skb(sizeof(*msg
));
1948 msg
= skb_put(skb
, sizeof(*msg
));
1950 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1951 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1953 eth_broadcast_addr(msg
->da
);
1954 ether_addr_copy(msg
->sa
, addr
);
1955 msg
->len
= htons(6);
1957 msg
->ssap
= 0x01; /* NULL LSAP, CR Bit: Response */
1958 msg
->control
= 0xaf; /* XID response lsb.1111F101.
1959 * F=0 (no poll command; unsolicited frame) */
1960 msg
->xid_info
[0] = 0x81; /* XID format identifier */
1961 msg
->xid_info
[1] = 1; /* LLC types/classes: Type 1 LLC */
1962 msg
->xid_info
[2] = 0; /* XID sender's receive window size (RW) */
1965 skb
->protocol
= eth_type_trans(skb
, dev
);
1966 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1969 EXPORT_SYMBOL(cfg80211_send_layer2_update
);
1971 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap
*cap
,
1972 enum ieee80211_vht_chanwidth bw
,
1973 int mcs
, bool ext_nss_bw_capable
)
1975 u16 map
= le16_to_cpu(cap
->supp_mcs
.rx_mcs_map
);
1976 int max_vht_nss
= 0;
1979 int i
, mcs_encoding
;
1984 if (WARN_ON(mcs
> 9))
1993 /* find max_vht_nss for the given MCS */
1994 for (i
= 7; i
>= 0; i
--) {
1995 int supp
= (map
>> (2 * i
)) & 3;
2000 if (supp
>= mcs_encoding
) {
2001 max_vht_nss
= i
+ 1;
2006 if (!(cap
->supp_mcs
.tx_mcs_map
&
2007 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE
)))
2010 ext_nss_bw
= le32_get_bits(cap
->vht_cap_info
,
2011 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK
);
2012 supp_width
= le32_get_bits(cap
->vht_cap_info
,
2013 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK
);
2015 /* if not capable, treat ext_nss_bw as 0 */
2016 if (!ext_nss_bw_capable
)
2019 /* This is invalid */
2020 if (supp_width
== 3)
2023 /* This is an invalid combination so pretend nothing is supported */
2024 if (supp_width
== 2 && (ext_nss_bw
== 1 || ext_nss_bw
== 2))
2028 * Cover all the special cases according to IEEE 802.11-2016
2029 * Table 9-250. All other cases are either factor of 1 or not
2033 case IEEE80211_VHT_CHANWIDTH_USE_HT
:
2034 case IEEE80211_VHT_CHANWIDTH_80MHZ
:
2035 if ((supp_width
== 1 || supp_width
== 2) &&
2037 return 2 * max_vht_nss
;
2039 case IEEE80211_VHT_CHANWIDTH_160MHZ
:
2040 if (supp_width
== 0 &&
2041 (ext_nss_bw
== 1 || ext_nss_bw
== 2))
2042 return max_vht_nss
/ 2;
2043 if (supp_width
== 0 &&
2045 return (3 * max_vht_nss
) / 4;
2046 if (supp_width
== 1 &&
2048 return 2 * max_vht_nss
;
2050 case IEEE80211_VHT_CHANWIDTH_80P80MHZ
:
2051 if (supp_width
== 0 && ext_nss_bw
== 1)
2052 return 0; /* not possible */
2053 if (supp_width
== 0 &&
2055 return max_vht_nss
/ 2;
2056 if (supp_width
== 0 &&
2058 return (3 * max_vht_nss
) / 4;
2059 if (supp_width
== 1 &&
2061 return 0; /* not possible */
2062 if (supp_width
== 1 &&
2064 return max_vht_nss
/ 2;
2065 if (supp_width
== 1 &&
2067 return (3 * max_vht_nss
) / 4;
2071 /* not covered or invalid combination received */
2074 EXPORT_SYMBOL(ieee80211_get_vht_max_nss
);