ARM: dts: imx51: Add M4IF support
[linux/fpc-iii.git] / net / tls / tls_sw.c
blobf127fac88acfe0046b0a7dd55bab4d6d486de105
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
8 * This software is available to you under a choice of one of two
9 * licenses. You may choose to be licensed under the terms of the GNU
10 * General Public License (GPL) Version 2, available from the file
11 * COPYING in the main directory of this source tree, or the
12 * OpenIB.org BSD license below:
14 * Redistribution and use in source and binary forms, with or
15 * without modification, are permitted provided that the following
16 * conditions are met:
18 * - Redistributions of source code must retain the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer.
22 * - Redistributions in binary form must reproduce the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer in the documentation and/or other materials
25 * provided with the distribution.
27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 * SOFTWARE.
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
41 #include <net/strparser.h>
42 #include <net/tls.h>
44 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
46 static int tls_do_decryption(struct sock *sk,
47 struct scatterlist *sgin,
48 struct scatterlist *sgout,
49 char *iv_recv,
50 size_t data_len,
51 struct sk_buff *skb,
52 gfp_t flags)
54 struct tls_context *tls_ctx = tls_get_ctx(sk);
55 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
56 struct strp_msg *rxm = strp_msg(skb);
57 struct aead_request *aead_req;
59 int ret;
60 unsigned int req_size = sizeof(struct aead_request) +
61 crypto_aead_reqsize(ctx->aead_recv);
63 aead_req = kzalloc(req_size, flags);
64 if (!aead_req)
65 return -ENOMEM;
67 aead_request_set_tfm(aead_req, ctx->aead_recv);
68 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
69 aead_request_set_crypt(aead_req, sgin, sgout,
70 data_len + tls_ctx->rx.tag_size,
71 (u8 *)iv_recv);
72 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
73 crypto_req_done, &ctx->async_wait);
75 ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
77 if (ret < 0)
78 goto out;
80 rxm->offset += tls_ctx->rx.prepend_size;
81 rxm->full_len -= tls_ctx->rx.overhead_size;
82 tls_advance_record_sn(sk, &tls_ctx->rx);
84 ctx->decrypted = true;
86 ctx->saved_data_ready(sk);
88 out:
89 kfree(aead_req);
90 return ret;
93 static void trim_sg(struct sock *sk, struct scatterlist *sg,
94 int *sg_num_elem, unsigned int *sg_size, int target_size)
96 int i = *sg_num_elem - 1;
97 int trim = *sg_size - target_size;
99 if (trim <= 0) {
100 WARN_ON(trim < 0);
101 return;
104 *sg_size = target_size;
105 while (trim >= sg[i].length) {
106 trim -= sg[i].length;
107 sk_mem_uncharge(sk, sg[i].length);
108 put_page(sg_page(&sg[i]));
109 i--;
111 if (i < 0)
112 goto out;
115 sg[i].length -= trim;
116 sk_mem_uncharge(sk, trim);
118 out:
119 *sg_num_elem = i + 1;
122 static void trim_both_sgl(struct sock *sk, int target_size)
124 struct tls_context *tls_ctx = tls_get_ctx(sk);
125 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
127 trim_sg(sk, ctx->sg_plaintext_data,
128 &ctx->sg_plaintext_num_elem,
129 &ctx->sg_plaintext_size,
130 target_size);
132 if (target_size > 0)
133 target_size += tls_ctx->tx.overhead_size;
135 trim_sg(sk, ctx->sg_encrypted_data,
136 &ctx->sg_encrypted_num_elem,
137 &ctx->sg_encrypted_size,
138 target_size);
141 static int alloc_encrypted_sg(struct sock *sk, int len)
143 struct tls_context *tls_ctx = tls_get_ctx(sk);
144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
145 int rc = 0;
147 rc = sk_alloc_sg(sk, len,
148 ctx->sg_encrypted_data, 0,
149 &ctx->sg_encrypted_num_elem,
150 &ctx->sg_encrypted_size, 0);
152 return rc;
155 static int alloc_plaintext_sg(struct sock *sk, int len)
157 struct tls_context *tls_ctx = tls_get_ctx(sk);
158 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
159 int rc = 0;
161 rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
162 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
163 tls_ctx->pending_open_record_frags);
165 return rc;
168 static void free_sg(struct sock *sk, struct scatterlist *sg,
169 int *sg_num_elem, unsigned int *sg_size)
171 int i, n = *sg_num_elem;
173 for (i = 0; i < n; ++i) {
174 sk_mem_uncharge(sk, sg[i].length);
175 put_page(sg_page(&sg[i]));
177 *sg_num_elem = 0;
178 *sg_size = 0;
181 static void tls_free_both_sg(struct sock *sk)
183 struct tls_context *tls_ctx = tls_get_ctx(sk);
184 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
186 free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
187 &ctx->sg_encrypted_size);
189 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
190 &ctx->sg_plaintext_size);
193 static int tls_do_encryption(struct tls_context *tls_ctx,
194 struct tls_sw_context_tx *ctx,
195 struct aead_request *aead_req,
196 size_t data_len)
198 int rc;
200 ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
201 ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
203 aead_request_set_tfm(aead_req, ctx->aead_send);
204 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
205 aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
206 data_len, tls_ctx->tx.iv);
208 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
209 crypto_req_done, &ctx->async_wait);
211 rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
213 ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
214 ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
216 return rc;
219 static int tls_push_record(struct sock *sk, int flags,
220 unsigned char record_type)
222 struct tls_context *tls_ctx = tls_get_ctx(sk);
223 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
224 struct aead_request *req;
225 int rc;
227 req = kzalloc(sizeof(struct aead_request) +
228 crypto_aead_reqsize(ctx->aead_send), sk->sk_allocation);
229 if (!req)
230 return -ENOMEM;
232 sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
233 sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
235 tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
236 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
237 record_type);
239 tls_fill_prepend(tls_ctx,
240 page_address(sg_page(&ctx->sg_encrypted_data[0])) +
241 ctx->sg_encrypted_data[0].offset,
242 ctx->sg_plaintext_size, record_type);
244 tls_ctx->pending_open_record_frags = 0;
245 set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
247 rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size);
248 if (rc < 0) {
249 /* If we are called from write_space and
250 * we fail, we need to set this SOCK_NOSPACE
251 * to trigger another write_space in the future.
253 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
254 goto out_req;
257 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
258 &ctx->sg_plaintext_size);
260 ctx->sg_encrypted_num_elem = 0;
261 ctx->sg_encrypted_size = 0;
263 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
264 rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
265 if (rc < 0 && rc != -EAGAIN)
266 tls_err_abort(sk, EBADMSG);
268 tls_advance_record_sn(sk, &tls_ctx->tx);
269 out_req:
270 kfree(req);
271 return rc;
274 static int tls_sw_push_pending_record(struct sock *sk, int flags)
276 return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
279 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
280 int length, int *pages_used,
281 unsigned int *size_used,
282 struct scatterlist *to, int to_max_pages,
283 bool charge)
285 struct page *pages[MAX_SKB_FRAGS];
287 size_t offset;
288 ssize_t copied, use;
289 int i = 0;
290 unsigned int size = *size_used;
291 int num_elem = *pages_used;
292 int rc = 0;
293 int maxpages;
295 while (length > 0) {
296 i = 0;
297 maxpages = to_max_pages - num_elem;
298 if (maxpages == 0) {
299 rc = -EFAULT;
300 goto out;
302 copied = iov_iter_get_pages(from, pages,
303 length,
304 maxpages, &offset);
305 if (copied <= 0) {
306 rc = -EFAULT;
307 goto out;
310 iov_iter_advance(from, copied);
312 length -= copied;
313 size += copied;
314 while (copied) {
315 use = min_t(int, copied, PAGE_SIZE - offset);
317 sg_set_page(&to[num_elem],
318 pages[i], use, offset);
319 sg_unmark_end(&to[num_elem]);
320 if (charge)
321 sk_mem_charge(sk, use);
323 offset = 0;
324 copied -= use;
326 ++i;
327 ++num_elem;
331 out:
332 *size_used = size;
333 *pages_used = num_elem;
335 return rc;
338 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
339 int bytes)
341 struct tls_context *tls_ctx = tls_get_ctx(sk);
342 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
343 struct scatterlist *sg = ctx->sg_plaintext_data;
344 int copy, i, rc = 0;
346 for (i = tls_ctx->pending_open_record_frags;
347 i < ctx->sg_plaintext_num_elem; ++i) {
348 copy = sg[i].length;
349 if (copy_from_iter(
350 page_address(sg_page(&sg[i])) + sg[i].offset,
351 copy, from) != copy) {
352 rc = -EFAULT;
353 goto out;
355 bytes -= copy;
357 ++tls_ctx->pending_open_record_frags;
359 if (!bytes)
360 break;
363 out:
364 return rc;
367 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
369 struct tls_context *tls_ctx = tls_get_ctx(sk);
370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371 int ret = 0;
372 int required_size;
373 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
374 bool eor = !(msg->msg_flags & MSG_MORE);
375 size_t try_to_copy, copied = 0;
376 unsigned char record_type = TLS_RECORD_TYPE_DATA;
377 int record_room;
378 bool full_record;
379 int orig_size;
381 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
382 return -ENOTSUPP;
384 lock_sock(sk);
386 if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
387 goto send_end;
389 if (unlikely(msg->msg_controllen)) {
390 ret = tls_proccess_cmsg(sk, msg, &record_type);
391 if (ret)
392 goto send_end;
395 while (msg_data_left(msg)) {
396 if (sk->sk_err) {
397 ret = -sk->sk_err;
398 goto send_end;
401 orig_size = ctx->sg_plaintext_size;
402 full_record = false;
403 try_to_copy = msg_data_left(msg);
404 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
405 if (try_to_copy >= record_room) {
406 try_to_copy = record_room;
407 full_record = true;
410 required_size = ctx->sg_plaintext_size + try_to_copy +
411 tls_ctx->tx.overhead_size;
413 if (!sk_stream_memory_free(sk))
414 goto wait_for_sndbuf;
415 alloc_encrypted:
416 ret = alloc_encrypted_sg(sk, required_size);
417 if (ret) {
418 if (ret != -ENOSPC)
419 goto wait_for_memory;
421 /* Adjust try_to_copy according to the amount that was
422 * actually allocated. The difference is due
423 * to max sg elements limit
425 try_to_copy -= required_size - ctx->sg_encrypted_size;
426 full_record = true;
429 if (full_record || eor) {
430 ret = zerocopy_from_iter(sk, &msg->msg_iter,
431 try_to_copy, &ctx->sg_plaintext_num_elem,
432 &ctx->sg_plaintext_size,
433 ctx->sg_plaintext_data,
434 ARRAY_SIZE(ctx->sg_plaintext_data),
435 true);
436 if (ret)
437 goto fallback_to_reg_send;
439 copied += try_to_copy;
440 ret = tls_push_record(sk, msg->msg_flags, record_type);
441 if (!ret)
442 continue;
443 if (ret == -EAGAIN)
444 goto send_end;
446 copied -= try_to_copy;
447 fallback_to_reg_send:
448 iov_iter_revert(&msg->msg_iter,
449 ctx->sg_plaintext_size - orig_size);
450 trim_sg(sk, ctx->sg_plaintext_data,
451 &ctx->sg_plaintext_num_elem,
452 &ctx->sg_plaintext_size,
453 orig_size);
456 required_size = ctx->sg_plaintext_size + try_to_copy;
457 alloc_plaintext:
458 ret = alloc_plaintext_sg(sk, required_size);
459 if (ret) {
460 if (ret != -ENOSPC)
461 goto wait_for_memory;
463 /* Adjust try_to_copy according to the amount that was
464 * actually allocated. The difference is due
465 * to max sg elements limit
467 try_to_copy -= required_size - ctx->sg_plaintext_size;
468 full_record = true;
470 trim_sg(sk, ctx->sg_encrypted_data,
471 &ctx->sg_encrypted_num_elem,
472 &ctx->sg_encrypted_size,
473 ctx->sg_plaintext_size +
474 tls_ctx->tx.overhead_size);
477 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
478 if (ret)
479 goto trim_sgl;
481 copied += try_to_copy;
482 if (full_record || eor) {
483 push_record:
484 ret = tls_push_record(sk, msg->msg_flags, record_type);
485 if (ret) {
486 if (ret == -ENOMEM)
487 goto wait_for_memory;
489 goto send_end;
493 continue;
495 wait_for_sndbuf:
496 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
497 wait_for_memory:
498 ret = sk_stream_wait_memory(sk, &timeo);
499 if (ret) {
500 trim_sgl:
501 trim_both_sgl(sk, orig_size);
502 goto send_end;
505 if (tls_is_pending_closed_record(tls_ctx))
506 goto push_record;
508 if (ctx->sg_encrypted_size < required_size)
509 goto alloc_encrypted;
511 goto alloc_plaintext;
514 send_end:
515 ret = sk_stream_error(sk, msg->msg_flags, ret);
517 release_sock(sk);
518 return copied ? copied : ret;
521 int tls_sw_sendpage(struct sock *sk, struct page *page,
522 int offset, size_t size, int flags)
524 struct tls_context *tls_ctx = tls_get_ctx(sk);
525 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
526 int ret = 0;
527 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
528 bool eor;
529 size_t orig_size = size;
530 unsigned char record_type = TLS_RECORD_TYPE_DATA;
531 struct scatterlist *sg;
532 bool full_record;
533 int record_room;
535 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
536 MSG_SENDPAGE_NOTLAST))
537 return -ENOTSUPP;
539 /* No MSG_EOR from splice, only look at MSG_MORE */
540 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
542 lock_sock(sk);
544 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
546 if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
547 goto sendpage_end;
549 /* Call the sk_stream functions to manage the sndbuf mem. */
550 while (size > 0) {
551 size_t copy, required_size;
553 if (sk->sk_err) {
554 ret = -sk->sk_err;
555 goto sendpage_end;
558 full_record = false;
559 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
560 copy = size;
561 if (copy >= record_room) {
562 copy = record_room;
563 full_record = true;
565 required_size = ctx->sg_plaintext_size + copy +
566 tls_ctx->tx.overhead_size;
568 if (!sk_stream_memory_free(sk))
569 goto wait_for_sndbuf;
570 alloc_payload:
571 ret = alloc_encrypted_sg(sk, required_size);
572 if (ret) {
573 if (ret != -ENOSPC)
574 goto wait_for_memory;
576 /* Adjust copy according to the amount that was
577 * actually allocated. The difference is due
578 * to max sg elements limit
580 copy -= required_size - ctx->sg_plaintext_size;
581 full_record = true;
584 get_page(page);
585 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
586 sg_set_page(sg, page, copy, offset);
587 sg_unmark_end(sg);
589 ctx->sg_plaintext_num_elem++;
591 sk_mem_charge(sk, copy);
592 offset += copy;
593 size -= copy;
594 ctx->sg_plaintext_size += copy;
595 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
597 if (full_record || eor ||
598 ctx->sg_plaintext_num_elem ==
599 ARRAY_SIZE(ctx->sg_plaintext_data)) {
600 push_record:
601 ret = tls_push_record(sk, flags, record_type);
602 if (ret) {
603 if (ret == -ENOMEM)
604 goto wait_for_memory;
606 goto sendpage_end;
609 continue;
610 wait_for_sndbuf:
611 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
612 wait_for_memory:
613 ret = sk_stream_wait_memory(sk, &timeo);
614 if (ret) {
615 trim_both_sgl(sk, ctx->sg_plaintext_size);
616 goto sendpage_end;
619 if (tls_is_pending_closed_record(tls_ctx))
620 goto push_record;
622 goto alloc_payload;
625 sendpage_end:
626 if (orig_size > size)
627 ret = orig_size - size;
628 else
629 ret = sk_stream_error(sk, flags, ret);
631 release_sock(sk);
632 return ret;
635 static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
636 long timeo, int *err)
638 struct tls_context *tls_ctx = tls_get_ctx(sk);
639 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
640 struct sk_buff *skb;
641 DEFINE_WAIT_FUNC(wait, woken_wake_function);
643 while (!(skb = ctx->recv_pkt)) {
644 if (sk->sk_err) {
645 *err = sock_error(sk);
646 return NULL;
649 if (sock_flag(sk, SOCK_DONE))
650 return NULL;
652 if ((flags & MSG_DONTWAIT) || !timeo) {
653 *err = -EAGAIN;
654 return NULL;
657 add_wait_queue(sk_sleep(sk), &wait);
658 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
659 sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
660 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
661 remove_wait_queue(sk_sleep(sk), &wait);
663 /* Handle signals */
664 if (signal_pending(current)) {
665 *err = sock_intr_errno(timeo);
666 return NULL;
670 return skb;
673 static int decrypt_skb(struct sock *sk, struct sk_buff *skb,
674 struct scatterlist *sgout)
676 struct tls_context *tls_ctx = tls_get_ctx(sk);
677 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
678 char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE];
679 struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2];
680 struct scatterlist *sgin = &sgin_arr[0];
681 struct strp_msg *rxm = strp_msg(skb);
682 int ret, nsg = ARRAY_SIZE(sgin_arr);
683 struct sk_buff *unused;
685 ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
686 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
687 tls_ctx->rx.iv_size);
688 if (ret < 0)
689 return ret;
691 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
692 if (!sgout) {
693 nsg = skb_cow_data(skb, 0, &unused) + 1;
694 sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation);
695 sgout = sgin;
698 sg_init_table(sgin, nsg);
699 sg_set_buf(&sgin[0], ctx->rx_aad_ciphertext, TLS_AAD_SPACE_SIZE);
701 nsg = skb_to_sgvec(skb, &sgin[1],
702 rxm->offset + tls_ctx->rx.prepend_size,
703 rxm->full_len - tls_ctx->rx.prepend_size);
705 tls_make_aad(ctx->rx_aad_ciphertext,
706 rxm->full_len - tls_ctx->rx.overhead_size,
707 tls_ctx->rx.rec_seq,
708 tls_ctx->rx.rec_seq_size,
709 ctx->control);
711 ret = tls_do_decryption(sk, sgin, sgout, iv,
712 rxm->full_len - tls_ctx->rx.overhead_size,
713 skb, sk->sk_allocation);
715 if (sgin != &sgin_arr[0])
716 kfree(sgin);
718 return ret;
721 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
722 unsigned int len)
724 struct tls_context *tls_ctx = tls_get_ctx(sk);
725 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
726 struct strp_msg *rxm = strp_msg(skb);
728 if (len < rxm->full_len) {
729 rxm->offset += len;
730 rxm->full_len -= len;
732 return false;
735 /* Finished with message */
736 ctx->recv_pkt = NULL;
737 kfree_skb(skb);
738 __strp_unpause(&ctx->strp);
740 return true;
743 int tls_sw_recvmsg(struct sock *sk,
744 struct msghdr *msg,
745 size_t len,
746 int nonblock,
747 int flags,
748 int *addr_len)
750 struct tls_context *tls_ctx = tls_get_ctx(sk);
751 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
752 unsigned char control;
753 struct strp_msg *rxm;
754 struct sk_buff *skb;
755 ssize_t copied = 0;
756 bool cmsg = false;
757 int target, err = 0;
758 long timeo;
760 flags |= nonblock;
762 if (unlikely(flags & MSG_ERRQUEUE))
763 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
765 lock_sock(sk);
767 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
768 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
769 do {
770 bool zc = false;
771 int chunk = 0;
773 skb = tls_wait_data(sk, flags, timeo, &err);
774 if (!skb)
775 goto recv_end;
777 rxm = strp_msg(skb);
778 if (!cmsg) {
779 int cerr;
781 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
782 sizeof(ctx->control), &ctx->control);
783 cmsg = true;
784 control = ctx->control;
785 if (ctx->control != TLS_RECORD_TYPE_DATA) {
786 if (cerr || msg->msg_flags & MSG_CTRUNC) {
787 err = -EIO;
788 goto recv_end;
791 } else if (control != ctx->control) {
792 goto recv_end;
795 if (!ctx->decrypted) {
796 int page_count;
797 int to_copy;
799 page_count = iov_iter_npages(&msg->msg_iter,
800 MAX_SKB_FRAGS);
801 to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
802 if (to_copy <= len && page_count < MAX_SKB_FRAGS &&
803 likely(!(flags & MSG_PEEK))) {
804 struct scatterlist sgin[MAX_SKB_FRAGS + 1];
805 int pages = 0;
807 zc = true;
808 sg_init_table(sgin, MAX_SKB_FRAGS + 1);
809 sg_set_buf(&sgin[0], ctx->rx_aad_plaintext,
810 TLS_AAD_SPACE_SIZE);
812 err = zerocopy_from_iter(sk, &msg->msg_iter,
813 to_copy, &pages,
814 &chunk, &sgin[1],
815 MAX_SKB_FRAGS, false);
816 if (err < 0)
817 goto fallback_to_reg_recv;
819 err = decrypt_skb(sk, skb, sgin);
820 for (; pages > 0; pages--)
821 put_page(sg_page(&sgin[pages]));
822 if (err < 0) {
823 tls_err_abort(sk, EBADMSG);
824 goto recv_end;
826 } else {
827 fallback_to_reg_recv:
828 err = decrypt_skb(sk, skb, NULL);
829 if (err < 0) {
830 tls_err_abort(sk, EBADMSG);
831 goto recv_end;
834 ctx->decrypted = true;
837 if (!zc) {
838 chunk = min_t(unsigned int, rxm->full_len, len);
839 err = skb_copy_datagram_msg(skb, rxm->offset, msg,
840 chunk);
841 if (err < 0)
842 goto recv_end;
845 copied += chunk;
846 len -= chunk;
847 if (likely(!(flags & MSG_PEEK))) {
848 u8 control = ctx->control;
850 if (tls_sw_advance_skb(sk, skb, chunk)) {
851 /* Return full control message to
852 * userspace before trying to parse
853 * another message type
855 msg->msg_flags |= MSG_EOR;
856 if (control != TLS_RECORD_TYPE_DATA)
857 goto recv_end;
860 /* If we have a new message from strparser, continue now. */
861 if (copied >= target && !ctx->recv_pkt)
862 break;
863 } while (len);
865 recv_end:
866 release_sock(sk);
867 return copied ? : err;
870 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
871 struct pipe_inode_info *pipe,
872 size_t len, unsigned int flags)
874 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
875 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
876 struct strp_msg *rxm = NULL;
877 struct sock *sk = sock->sk;
878 struct sk_buff *skb;
879 ssize_t copied = 0;
880 int err = 0;
881 long timeo;
882 int chunk;
884 lock_sock(sk);
886 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
888 skb = tls_wait_data(sk, flags, timeo, &err);
889 if (!skb)
890 goto splice_read_end;
892 /* splice does not support reading control messages */
893 if (ctx->control != TLS_RECORD_TYPE_DATA) {
894 err = -ENOTSUPP;
895 goto splice_read_end;
898 if (!ctx->decrypted) {
899 err = decrypt_skb(sk, skb, NULL);
901 if (err < 0) {
902 tls_err_abort(sk, EBADMSG);
903 goto splice_read_end;
905 ctx->decrypted = true;
907 rxm = strp_msg(skb);
909 chunk = min_t(unsigned int, rxm->full_len, len);
910 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
911 if (copied < 0)
912 goto splice_read_end;
914 if (likely(!(flags & MSG_PEEK)))
915 tls_sw_advance_skb(sk, skb, copied);
917 splice_read_end:
918 release_sock(sk);
919 return copied ? : err;
922 __poll_t tls_sw_poll_mask(struct socket *sock, __poll_t events)
924 struct sock *sk = sock->sk;
925 struct tls_context *tls_ctx = tls_get_ctx(sk);
926 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
927 __poll_t mask;
929 /* Grab EPOLLOUT and EPOLLHUP from the underlying socket */
930 mask = ctx->sk_poll_mask(sock, events);
932 /* Clear EPOLLIN bits, and set based on recv_pkt */
933 mask &= ~(EPOLLIN | EPOLLRDNORM);
934 if (ctx->recv_pkt)
935 mask |= EPOLLIN | EPOLLRDNORM;
937 return mask;
940 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
942 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
943 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
944 char header[tls_ctx->rx.prepend_size];
945 struct strp_msg *rxm = strp_msg(skb);
946 size_t cipher_overhead;
947 size_t data_len = 0;
948 int ret;
950 /* Verify that we have a full TLS header, or wait for more data */
951 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
952 return 0;
954 /* Linearize header to local buffer */
955 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
957 if (ret < 0)
958 goto read_failure;
960 ctx->control = header[0];
962 data_len = ((header[4] & 0xFF) | (header[3] << 8));
964 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
966 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
967 ret = -EMSGSIZE;
968 goto read_failure;
970 if (data_len < cipher_overhead) {
971 ret = -EBADMSG;
972 goto read_failure;
975 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
976 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
977 ret = -EINVAL;
978 goto read_failure;
981 return data_len + TLS_HEADER_SIZE;
983 read_failure:
984 tls_err_abort(strp->sk, ret);
986 return ret;
989 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
991 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
992 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
993 struct strp_msg *rxm;
995 rxm = strp_msg(skb);
997 ctx->decrypted = false;
999 ctx->recv_pkt = skb;
1000 strp_pause(strp);
1002 strp->sk->sk_state_change(strp->sk);
1005 static void tls_data_ready(struct sock *sk)
1007 struct tls_context *tls_ctx = tls_get_ctx(sk);
1008 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1010 strp_data_ready(&ctx->strp);
1013 void tls_sw_free_resources_tx(struct sock *sk)
1015 struct tls_context *tls_ctx = tls_get_ctx(sk);
1016 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1018 if (ctx->aead_send)
1019 crypto_free_aead(ctx->aead_send);
1020 tls_free_both_sg(sk);
1022 kfree(ctx);
1025 void tls_sw_free_resources_rx(struct sock *sk)
1027 struct tls_context *tls_ctx = tls_get_ctx(sk);
1028 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1030 if (ctx->aead_recv) {
1031 if (ctx->recv_pkt) {
1032 kfree_skb(ctx->recv_pkt);
1033 ctx->recv_pkt = NULL;
1035 crypto_free_aead(ctx->aead_recv);
1036 strp_stop(&ctx->strp);
1037 write_lock_bh(&sk->sk_callback_lock);
1038 sk->sk_data_ready = ctx->saved_data_ready;
1039 write_unlock_bh(&sk->sk_callback_lock);
1040 release_sock(sk);
1041 strp_done(&ctx->strp);
1042 lock_sock(sk);
1045 kfree(ctx);
1048 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1050 char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
1051 struct tls_crypto_info *crypto_info;
1052 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1053 struct tls_sw_context_tx *sw_ctx_tx = NULL;
1054 struct tls_sw_context_rx *sw_ctx_rx = NULL;
1055 struct cipher_context *cctx;
1056 struct crypto_aead **aead;
1057 struct strp_callbacks cb;
1058 u16 nonce_size, tag_size, iv_size, rec_seq_size;
1059 char *iv, *rec_seq;
1060 int rc = 0;
1062 if (!ctx) {
1063 rc = -EINVAL;
1064 goto out;
1067 if (tx) {
1068 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1069 if (!sw_ctx_tx) {
1070 rc = -ENOMEM;
1071 goto out;
1073 crypto_init_wait(&sw_ctx_tx->async_wait);
1074 ctx->priv_ctx_tx = sw_ctx_tx;
1075 } else {
1076 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1077 if (!sw_ctx_rx) {
1078 rc = -ENOMEM;
1079 goto out;
1081 crypto_init_wait(&sw_ctx_rx->async_wait);
1082 ctx->priv_ctx_rx = sw_ctx_rx;
1085 if (tx) {
1086 crypto_info = &ctx->crypto_send;
1087 cctx = &ctx->tx;
1088 aead = &sw_ctx_tx->aead_send;
1089 } else {
1090 crypto_info = &ctx->crypto_recv;
1091 cctx = &ctx->rx;
1092 aead = &sw_ctx_rx->aead_recv;
1095 switch (crypto_info->cipher_type) {
1096 case TLS_CIPHER_AES_GCM_128: {
1097 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1098 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1099 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1100 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1101 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1102 rec_seq =
1103 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1104 gcm_128_info =
1105 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1106 break;
1108 default:
1109 rc = -EINVAL;
1110 goto free_priv;
1113 /* Sanity-check the IV size for stack allocations. */
1114 if (iv_size > MAX_IV_SIZE) {
1115 rc = -EINVAL;
1116 goto free_priv;
1119 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1120 cctx->tag_size = tag_size;
1121 cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1122 cctx->iv_size = iv_size;
1123 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1124 GFP_KERNEL);
1125 if (!cctx->iv) {
1126 rc = -ENOMEM;
1127 goto free_priv;
1129 memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1130 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1131 cctx->rec_seq_size = rec_seq_size;
1132 cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
1133 if (!cctx->rec_seq) {
1134 rc = -ENOMEM;
1135 goto free_iv;
1137 memcpy(cctx->rec_seq, rec_seq, rec_seq_size);
1139 if (sw_ctx_tx) {
1140 sg_init_table(sw_ctx_tx->sg_encrypted_data,
1141 ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data));
1142 sg_init_table(sw_ctx_tx->sg_plaintext_data,
1143 ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data));
1145 sg_init_table(sw_ctx_tx->sg_aead_in, 2);
1146 sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space,
1147 sizeof(sw_ctx_tx->aad_space));
1148 sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]);
1149 sg_chain(sw_ctx_tx->sg_aead_in, 2,
1150 sw_ctx_tx->sg_plaintext_data);
1151 sg_init_table(sw_ctx_tx->sg_aead_out, 2);
1152 sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space,
1153 sizeof(sw_ctx_tx->aad_space));
1154 sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]);
1155 sg_chain(sw_ctx_tx->sg_aead_out, 2,
1156 sw_ctx_tx->sg_encrypted_data);
1159 if (!*aead) {
1160 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1161 if (IS_ERR(*aead)) {
1162 rc = PTR_ERR(*aead);
1163 *aead = NULL;
1164 goto free_rec_seq;
1168 ctx->push_pending_record = tls_sw_push_pending_record;
1170 memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1172 rc = crypto_aead_setkey(*aead, keyval,
1173 TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1174 if (rc)
1175 goto free_aead;
1177 rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1178 if (rc)
1179 goto free_aead;
1181 if (sw_ctx_rx) {
1182 /* Set up strparser */
1183 memset(&cb, 0, sizeof(cb));
1184 cb.rcv_msg = tls_queue;
1185 cb.parse_msg = tls_read_size;
1187 strp_init(&sw_ctx_rx->strp, sk, &cb);
1189 write_lock_bh(&sk->sk_callback_lock);
1190 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1191 sk->sk_data_ready = tls_data_ready;
1192 write_unlock_bh(&sk->sk_callback_lock);
1194 sw_ctx_rx->sk_poll_mask = sk->sk_socket->ops->poll_mask;
1196 strp_check_rcv(&sw_ctx_rx->strp);
1199 goto out;
1201 free_aead:
1202 crypto_free_aead(*aead);
1203 *aead = NULL;
1204 free_rec_seq:
1205 kfree(cctx->rec_seq);
1206 cctx->rec_seq = NULL;
1207 free_iv:
1208 kfree(cctx->iv);
1209 cctx->iv = NULL;
1210 free_priv:
1211 if (tx) {
1212 kfree(ctx->priv_ctx_tx);
1213 ctx->priv_ctx_tx = NULL;
1214 } else {
1215 kfree(ctx->priv_ctx_rx);
1216 ctx->priv_ctx_rx = NULL;
1218 out:
1219 return rc;