2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
8 * This software is available to you under a choice of one of two
9 * licenses. You may choose to be licensed under the terms of the GNU
10 * General Public License (GPL) Version 2, available from the file
11 * COPYING in the main directory of this source tree, or the
12 * OpenIB.org BSD license below:
14 * Redistribution and use in source and binary forms, with or
15 * without modification, are permitted provided that the following
18 * - Redistributions of source code must retain the above
19 * copyright notice, this list of conditions and the following
22 * - Redistributions in binary form must reproduce the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer in the documentation and/or other materials
25 * provided with the distribution.
27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
41 #include <net/strparser.h>
44 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
46 static int tls_do_decryption(struct sock
*sk
,
47 struct scatterlist
*sgin
,
48 struct scatterlist
*sgout
,
54 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
55 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
56 struct strp_msg
*rxm
= strp_msg(skb
);
57 struct aead_request
*aead_req
;
60 unsigned int req_size
= sizeof(struct aead_request
) +
61 crypto_aead_reqsize(ctx
->aead_recv
);
63 aead_req
= kzalloc(req_size
, flags
);
67 aead_request_set_tfm(aead_req
, ctx
->aead_recv
);
68 aead_request_set_ad(aead_req
, TLS_AAD_SPACE_SIZE
);
69 aead_request_set_crypt(aead_req
, sgin
, sgout
,
70 data_len
+ tls_ctx
->rx
.tag_size
,
72 aead_request_set_callback(aead_req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
73 crypto_req_done
, &ctx
->async_wait
);
75 ret
= crypto_wait_req(crypto_aead_decrypt(aead_req
), &ctx
->async_wait
);
80 rxm
->offset
+= tls_ctx
->rx
.prepend_size
;
81 rxm
->full_len
-= tls_ctx
->rx
.overhead_size
;
82 tls_advance_record_sn(sk
, &tls_ctx
->rx
);
84 ctx
->decrypted
= true;
86 ctx
->saved_data_ready(sk
);
93 static void trim_sg(struct sock
*sk
, struct scatterlist
*sg
,
94 int *sg_num_elem
, unsigned int *sg_size
, int target_size
)
96 int i
= *sg_num_elem
- 1;
97 int trim
= *sg_size
- target_size
;
104 *sg_size
= target_size
;
105 while (trim
>= sg
[i
].length
) {
106 trim
-= sg
[i
].length
;
107 sk_mem_uncharge(sk
, sg
[i
].length
);
108 put_page(sg_page(&sg
[i
]));
115 sg
[i
].length
-= trim
;
116 sk_mem_uncharge(sk
, trim
);
119 *sg_num_elem
= i
+ 1;
122 static void trim_both_sgl(struct sock
*sk
, int target_size
)
124 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
125 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
127 trim_sg(sk
, ctx
->sg_plaintext_data
,
128 &ctx
->sg_plaintext_num_elem
,
129 &ctx
->sg_plaintext_size
,
133 target_size
+= tls_ctx
->tx
.overhead_size
;
135 trim_sg(sk
, ctx
->sg_encrypted_data
,
136 &ctx
->sg_encrypted_num_elem
,
137 &ctx
->sg_encrypted_size
,
141 static int alloc_encrypted_sg(struct sock
*sk
, int len
)
143 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
144 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
147 rc
= sk_alloc_sg(sk
, len
,
148 ctx
->sg_encrypted_data
, 0,
149 &ctx
->sg_encrypted_num_elem
,
150 &ctx
->sg_encrypted_size
, 0);
155 static int alloc_plaintext_sg(struct sock
*sk
, int len
)
157 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
158 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
161 rc
= sk_alloc_sg(sk
, len
, ctx
->sg_plaintext_data
, 0,
162 &ctx
->sg_plaintext_num_elem
, &ctx
->sg_plaintext_size
,
163 tls_ctx
->pending_open_record_frags
);
168 static void free_sg(struct sock
*sk
, struct scatterlist
*sg
,
169 int *sg_num_elem
, unsigned int *sg_size
)
171 int i
, n
= *sg_num_elem
;
173 for (i
= 0; i
< n
; ++i
) {
174 sk_mem_uncharge(sk
, sg
[i
].length
);
175 put_page(sg_page(&sg
[i
]));
181 static void tls_free_both_sg(struct sock
*sk
)
183 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
184 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
186 free_sg(sk
, ctx
->sg_encrypted_data
, &ctx
->sg_encrypted_num_elem
,
187 &ctx
->sg_encrypted_size
);
189 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
190 &ctx
->sg_plaintext_size
);
193 static int tls_do_encryption(struct tls_context
*tls_ctx
,
194 struct tls_sw_context_tx
*ctx
,
195 struct aead_request
*aead_req
,
200 ctx
->sg_encrypted_data
[0].offset
+= tls_ctx
->tx
.prepend_size
;
201 ctx
->sg_encrypted_data
[0].length
-= tls_ctx
->tx
.prepend_size
;
203 aead_request_set_tfm(aead_req
, ctx
->aead_send
);
204 aead_request_set_ad(aead_req
, TLS_AAD_SPACE_SIZE
);
205 aead_request_set_crypt(aead_req
, ctx
->sg_aead_in
, ctx
->sg_aead_out
,
206 data_len
, tls_ctx
->tx
.iv
);
208 aead_request_set_callback(aead_req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
209 crypto_req_done
, &ctx
->async_wait
);
211 rc
= crypto_wait_req(crypto_aead_encrypt(aead_req
), &ctx
->async_wait
);
213 ctx
->sg_encrypted_data
[0].offset
-= tls_ctx
->tx
.prepend_size
;
214 ctx
->sg_encrypted_data
[0].length
+= tls_ctx
->tx
.prepend_size
;
219 static int tls_push_record(struct sock
*sk
, int flags
,
220 unsigned char record_type
)
222 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
223 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
224 struct aead_request
*req
;
227 req
= kzalloc(sizeof(struct aead_request
) +
228 crypto_aead_reqsize(ctx
->aead_send
), sk
->sk_allocation
);
232 sg_mark_end(ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
- 1);
233 sg_mark_end(ctx
->sg_encrypted_data
+ ctx
->sg_encrypted_num_elem
- 1);
235 tls_make_aad(ctx
->aad_space
, ctx
->sg_plaintext_size
,
236 tls_ctx
->tx
.rec_seq
, tls_ctx
->tx
.rec_seq_size
,
239 tls_fill_prepend(tls_ctx
,
240 page_address(sg_page(&ctx
->sg_encrypted_data
[0])) +
241 ctx
->sg_encrypted_data
[0].offset
,
242 ctx
->sg_plaintext_size
, record_type
);
244 tls_ctx
->pending_open_record_frags
= 0;
245 set_bit(TLS_PENDING_CLOSED_RECORD
, &tls_ctx
->flags
);
247 rc
= tls_do_encryption(tls_ctx
, ctx
, req
, ctx
->sg_plaintext_size
);
249 /* If we are called from write_space and
250 * we fail, we need to set this SOCK_NOSPACE
251 * to trigger another write_space in the future.
253 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
257 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
258 &ctx
->sg_plaintext_size
);
260 ctx
->sg_encrypted_num_elem
= 0;
261 ctx
->sg_encrypted_size
= 0;
263 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
264 rc
= tls_push_sg(sk
, tls_ctx
, ctx
->sg_encrypted_data
, 0, flags
);
265 if (rc
< 0 && rc
!= -EAGAIN
)
266 tls_err_abort(sk
, EBADMSG
);
268 tls_advance_record_sn(sk
, &tls_ctx
->tx
);
274 static int tls_sw_push_pending_record(struct sock
*sk
, int flags
)
276 return tls_push_record(sk
, flags
, TLS_RECORD_TYPE_DATA
);
279 static int zerocopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
280 int length
, int *pages_used
,
281 unsigned int *size_used
,
282 struct scatterlist
*to
, int to_max_pages
,
285 struct page
*pages
[MAX_SKB_FRAGS
];
290 unsigned int size
= *size_used
;
291 int num_elem
= *pages_used
;
297 maxpages
= to_max_pages
- num_elem
;
302 copied
= iov_iter_get_pages(from
, pages
,
310 iov_iter_advance(from
, copied
);
315 use
= min_t(int, copied
, PAGE_SIZE
- offset
);
317 sg_set_page(&to
[num_elem
],
318 pages
[i
], use
, offset
);
319 sg_unmark_end(&to
[num_elem
]);
321 sk_mem_charge(sk
, use
);
333 *pages_used
= num_elem
;
338 static int memcopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
341 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
342 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
343 struct scatterlist
*sg
= ctx
->sg_plaintext_data
;
346 for (i
= tls_ctx
->pending_open_record_frags
;
347 i
< ctx
->sg_plaintext_num_elem
; ++i
) {
350 page_address(sg_page(&sg
[i
])) + sg
[i
].offset
,
351 copy
, from
) != copy
) {
357 ++tls_ctx
->pending_open_record_frags
;
367 int tls_sw_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
369 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
370 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
373 long timeo
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
374 bool eor
= !(msg
->msg_flags
& MSG_MORE
);
375 size_t try_to_copy
, copied
= 0;
376 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
381 if (msg
->msg_flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
))
386 if (tls_complete_pending_work(sk
, tls_ctx
, msg
->msg_flags
, &timeo
))
389 if (unlikely(msg
->msg_controllen
)) {
390 ret
= tls_proccess_cmsg(sk
, msg
, &record_type
);
395 while (msg_data_left(msg
)) {
401 orig_size
= ctx
->sg_plaintext_size
;
403 try_to_copy
= msg_data_left(msg
);
404 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
405 if (try_to_copy
>= record_room
) {
406 try_to_copy
= record_room
;
410 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
+
411 tls_ctx
->tx
.overhead_size
;
413 if (!sk_stream_memory_free(sk
))
414 goto wait_for_sndbuf
;
416 ret
= alloc_encrypted_sg(sk
, required_size
);
419 goto wait_for_memory
;
421 /* Adjust try_to_copy according to the amount that was
422 * actually allocated. The difference is due
423 * to max sg elements limit
425 try_to_copy
-= required_size
- ctx
->sg_encrypted_size
;
429 if (full_record
|| eor
) {
430 ret
= zerocopy_from_iter(sk
, &msg
->msg_iter
,
431 try_to_copy
, &ctx
->sg_plaintext_num_elem
,
432 &ctx
->sg_plaintext_size
,
433 ctx
->sg_plaintext_data
,
434 ARRAY_SIZE(ctx
->sg_plaintext_data
),
437 goto fallback_to_reg_send
;
439 copied
+= try_to_copy
;
440 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
446 copied
-= try_to_copy
;
447 fallback_to_reg_send
:
448 iov_iter_revert(&msg
->msg_iter
,
449 ctx
->sg_plaintext_size
- orig_size
);
450 trim_sg(sk
, ctx
->sg_plaintext_data
,
451 &ctx
->sg_plaintext_num_elem
,
452 &ctx
->sg_plaintext_size
,
456 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
;
458 ret
= alloc_plaintext_sg(sk
, required_size
);
461 goto wait_for_memory
;
463 /* Adjust try_to_copy according to the amount that was
464 * actually allocated. The difference is due
465 * to max sg elements limit
467 try_to_copy
-= required_size
- ctx
->sg_plaintext_size
;
470 trim_sg(sk
, ctx
->sg_encrypted_data
,
471 &ctx
->sg_encrypted_num_elem
,
472 &ctx
->sg_encrypted_size
,
473 ctx
->sg_plaintext_size
+
474 tls_ctx
->tx
.overhead_size
);
477 ret
= memcopy_from_iter(sk
, &msg
->msg_iter
, try_to_copy
);
481 copied
+= try_to_copy
;
482 if (full_record
|| eor
) {
484 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
487 goto wait_for_memory
;
496 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
498 ret
= sk_stream_wait_memory(sk
, &timeo
);
501 trim_both_sgl(sk
, orig_size
);
505 if (tls_is_pending_closed_record(tls_ctx
))
508 if (ctx
->sg_encrypted_size
< required_size
)
509 goto alloc_encrypted
;
511 goto alloc_plaintext
;
515 ret
= sk_stream_error(sk
, msg
->msg_flags
, ret
);
518 return copied
? copied
: ret
;
521 int tls_sw_sendpage(struct sock
*sk
, struct page
*page
,
522 int offset
, size_t size
, int flags
)
524 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
525 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
527 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
529 size_t orig_size
= size
;
530 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
531 struct scatterlist
*sg
;
535 if (flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
|
536 MSG_SENDPAGE_NOTLAST
))
539 /* No MSG_EOR from splice, only look at MSG_MORE */
540 eor
= !(flags
& (MSG_MORE
| MSG_SENDPAGE_NOTLAST
));
544 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
546 if (tls_complete_pending_work(sk
, tls_ctx
, flags
, &timeo
))
549 /* Call the sk_stream functions to manage the sndbuf mem. */
551 size_t copy
, required_size
;
559 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
561 if (copy
>= record_room
) {
565 required_size
= ctx
->sg_plaintext_size
+ copy
+
566 tls_ctx
->tx
.overhead_size
;
568 if (!sk_stream_memory_free(sk
))
569 goto wait_for_sndbuf
;
571 ret
= alloc_encrypted_sg(sk
, required_size
);
574 goto wait_for_memory
;
576 /* Adjust copy according to the amount that was
577 * actually allocated. The difference is due
578 * to max sg elements limit
580 copy
-= required_size
- ctx
->sg_plaintext_size
;
585 sg
= ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
;
586 sg_set_page(sg
, page
, copy
, offset
);
589 ctx
->sg_plaintext_num_elem
++;
591 sk_mem_charge(sk
, copy
);
594 ctx
->sg_plaintext_size
+= copy
;
595 tls_ctx
->pending_open_record_frags
= ctx
->sg_plaintext_num_elem
;
597 if (full_record
|| eor
||
598 ctx
->sg_plaintext_num_elem
==
599 ARRAY_SIZE(ctx
->sg_plaintext_data
)) {
601 ret
= tls_push_record(sk
, flags
, record_type
);
604 goto wait_for_memory
;
611 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
613 ret
= sk_stream_wait_memory(sk
, &timeo
);
615 trim_both_sgl(sk
, ctx
->sg_plaintext_size
);
619 if (tls_is_pending_closed_record(tls_ctx
))
626 if (orig_size
> size
)
627 ret
= orig_size
- size
;
629 ret
= sk_stream_error(sk
, flags
, ret
);
635 static struct sk_buff
*tls_wait_data(struct sock
*sk
, int flags
,
636 long timeo
, int *err
)
638 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
639 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
641 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
643 while (!(skb
= ctx
->recv_pkt
)) {
645 *err
= sock_error(sk
);
649 if (sock_flag(sk
, SOCK_DONE
))
652 if ((flags
& MSG_DONTWAIT
) || !timeo
) {
657 add_wait_queue(sk_sleep(sk
), &wait
);
658 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
659 sk_wait_event(sk
, &timeo
, ctx
->recv_pkt
!= skb
, &wait
);
660 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
661 remove_wait_queue(sk_sleep(sk
), &wait
);
664 if (signal_pending(current
)) {
665 *err
= sock_intr_errno(timeo
);
673 static int decrypt_skb(struct sock
*sk
, struct sk_buff
*skb
,
674 struct scatterlist
*sgout
)
676 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
677 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
678 char iv
[TLS_CIPHER_AES_GCM_128_SALT_SIZE
+ MAX_IV_SIZE
];
679 struct scatterlist sgin_arr
[MAX_SKB_FRAGS
+ 2];
680 struct scatterlist
*sgin
= &sgin_arr
[0];
681 struct strp_msg
*rxm
= strp_msg(skb
);
682 int ret
, nsg
= ARRAY_SIZE(sgin_arr
);
683 struct sk_buff
*unused
;
685 ret
= skb_copy_bits(skb
, rxm
->offset
+ TLS_HEADER_SIZE
,
686 iv
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
,
687 tls_ctx
->rx
.iv_size
);
691 memcpy(iv
, tls_ctx
->rx
.iv
, TLS_CIPHER_AES_GCM_128_SALT_SIZE
);
693 nsg
= skb_cow_data(skb
, 0, &unused
) + 1;
694 sgin
= kmalloc_array(nsg
, sizeof(*sgin
), sk
->sk_allocation
);
698 sg_init_table(sgin
, nsg
);
699 sg_set_buf(&sgin
[0], ctx
->rx_aad_ciphertext
, TLS_AAD_SPACE_SIZE
);
701 nsg
= skb_to_sgvec(skb
, &sgin
[1],
702 rxm
->offset
+ tls_ctx
->rx
.prepend_size
,
703 rxm
->full_len
- tls_ctx
->rx
.prepend_size
);
705 tls_make_aad(ctx
->rx_aad_ciphertext
,
706 rxm
->full_len
- tls_ctx
->rx
.overhead_size
,
708 tls_ctx
->rx
.rec_seq_size
,
711 ret
= tls_do_decryption(sk
, sgin
, sgout
, iv
,
712 rxm
->full_len
- tls_ctx
->rx
.overhead_size
,
713 skb
, sk
->sk_allocation
);
715 if (sgin
!= &sgin_arr
[0])
721 static bool tls_sw_advance_skb(struct sock
*sk
, struct sk_buff
*skb
,
724 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
725 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
726 struct strp_msg
*rxm
= strp_msg(skb
);
728 if (len
< rxm
->full_len
) {
730 rxm
->full_len
-= len
;
735 /* Finished with message */
736 ctx
->recv_pkt
= NULL
;
738 __strp_unpause(&ctx
->strp
);
743 int tls_sw_recvmsg(struct sock
*sk
,
750 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
751 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
752 unsigned char control
;
753 struct strp_msg
*rxm
;
762 if (unlikely(flags
& MSG_ERRQUEUE
))
763 return sock_recv_errqueue(sk
, msg
, len
, SOL_IP
, IP_RECVERR
);
767 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
768 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
773 skb
= tls_wait_data(sk
, flags
, timeo
, &err
);
781 cerr
= put_cmsg(msg
, SOL_TLS
, TLS_GET_RECORD_TYPE
,
782 sizeof(ctx
->control
), &ctx
->control
);
784 control
= ctx
->control
;
785 if (ctx
->control
!= TLS_RECORD_TYPE_DATA
) {
786 if (cerr
|| msg
->msg_flags
& MSG_CTRUNC
) {
791 } else if (control
!= ctx
->control
) {
795 if (!ctx
->decrypted
) {
799 page_count
= iov_iter_npages(&msg
->msg_iter
,
801 to_copy
= rxm
->full_len
- tls_ctx
->rx
.overhead_size
;
802 if (to_copy
<= len
&& page_count
< MAX_SKB_FRAGS
&&
803 likely(!(flags
& MSG_PEEK
))) {
804 struct scatterlist sgin
[MAX_SKB_FRAGS
+ 1];
808 sg_init_table(sgin
, MAX_SKB_FRAGS
+ 1);
809 sg_set_buf(&sgin
[0], ctx
->rx_aad_plaintext
,
812 err
= zerocopy_from_iter(sk
, &msg
->msg_iter
,
815 MAX_SKB_FRAGS
, false);
817 goto fallback_to_reg_recv
;
819 err
= decrypt_skb(sk
, skb
, sgin
);
820 for (; pages
> 0; pages
--)
821 put_page(sg_page(&sgin
[pages
]));
823 tls_err_abort(sk
, EBADMSG
);
827 fallback_to_reg_recv
:
828 err
= decrypt_skb(sk
, skb
, NULL
);
830 tls_err_abort(sk
, EBADMSG
);
834 ctx
->decrypted
= true;
838 chunk
= min_t(unsigned int, rxm
->full_len
, len
);
839 err
= skb_copy_datagram_msg(skb
, rxm
->offset
, msg
,
847 if (likely(!(flags
& MSG_PEEK
))) {
848 u8 control
= ctx
->control
;
850 if (tls_sw_advance_skb(sk
, skb
, chunk
)) {
851 /* Return full control message to
852 * userspace before trying to parse
853 * another message type
855 msg
->msg_flags
|= MSG_EOR
;
856 if (control
!= TLS_RECORD_TYPE_DATA
)
860 /* If we have a new message from strparser, continue now. */
861 if (copied
>= target
&& !ctx
->recv_pkt
)
867 return copied
? : err
;
870 ssize_t
tls_sw_splice_read(struct socket
*sock
, loff_t
*ppos
,
871 struct pipe_inode_info
*pipe
,
872 size_t len
, unsigned int flags
)
874 struct tls_context
*tls_ctx
= tls_get_ctx(sock
->sk
);
875 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
876 struct strp_msg
*rxm
= NULL
;
877 struct sock
*sk
= sock
->sk
;
886 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
888 skb
= tls_wait_data(sk
, flags
, timeo
, &err
);
890 goto splice_read_end
;
892 /* splice does not support reading control messages */
893 if (ctx
->control
!= TLS_RECORD_TYPE_DATA
) {
895 goto splice_read_end
;
898 if (!ctx
->decrypted
) {
899 err
= decrypt_skb(sk
, skb
, NULL
);
902 tls_err_abort(sk
, EBADMSG
);
903 goto splice_read_end
;
905 ctx
->decrypted
= true;
909 chunk
= min_t(unsigned int, rxm
->full_len
, len
);
910 copied
= skb_splice_bits(skb
, sk
, rxm
->offset
, pipe
, chunk
, flags
);
912 goto splice_read_end
;
914 if (likely(!(flags
& MSG_PEEK
)))
915 tls_sw_advance_skb(sk
, skb
, copied
);
919 return copied
? : err
;
922 __poll_t
tls_sw_poll_mask(struct socket
*sock
, __poll_t events
)
924 struct sock
*sk
= sock
->sk
;
925 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
926 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
929 /* Grab EPOLLOUT and EPOLLHUP from the underlying socket */
930 mask
= ctx
->sk_poll_mask(sock
, events
);
932 /* Clear EPOLLIN bits, and set based on recv_pkt */
933 mask
&= ~(EPOLLIN
| EPOLLRDNORM
);
935 mask
|= EPOLLIN
| EPOLLRDNORM
;
940 static int tls_read_size(struct strparser
*strp
, struct sk_buff
*skb
)
942 struct tls_context
*tls_ctx
= tls_get_ctx(strp
->sk
);
943 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
944 char header
[tls_ctx
->rx
.prepend_size
];
945 struct strp_msg
*rxm
= strp_msg(skb
);
946 size_t cipher_overhead
;
950 /* Verify that we have a full TLS header, or wait for more data */
951 if (rxm
->offset
+ tls_ctx
->rx
.prepend_size
> skb
->len
)
954 /* Linearize header to local buffer */
955 ret
= skb_copy_bits(skb
, rxm
->offset
, header
, tls_ctx
->rx
.prepend_size
);
960 ctx
->control
= header
[0];
962 data_len
= ((header
[4] & 0xFF) | (header
[3] << 8));
964 cipher_overhead
= tls_ctx
->rx
.tag_size
+ tls_ctx
->rx
.iv_size
;
966 if (data_len
> TLS_MAX_PAYLOAD_SIZE
+ cipher_overhead
) {
970 if (data_len
< cipher_overhead
) {
975 if (header
[1] != TLS_VERSION_MINOR(tls_ctx
->crypto_recv
.version
) ||
976 header
[2] != TLS_VERSION_MAJOR(tls_ctx
->crypto_recv
.version
)) {
981 return data_len
+ TLS_HEADER_SIZE
;
984 tls_err_abort(strp
->sk
, ret
);
989 static void tls_queue(struct strparser
*strp
, struct sk_buff
*skb
)
991 struct tls_context
*tls_ctx
= tls_get_ctx(strp
->sk
);
992 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
993 struct strp_msg
*rxm
;
997 ctx
->decrypted
= false;
1002 strp
->sk
->sk_state_change(strp
->sk
);
1005 static void tls_data_ready(struct sock
*sk
)
1007 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
1008 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
1010 strp_data_ready(&ctx
->strp
);
1013 void tls_sw_free_resources_tx(struct sock
*sk
)
1015 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
1016 struct tls_sw_context_tx
*ctx
= tls_sw_ctx_tx(tls_ctx
);
1019 crypto_free_aead(ctx
->aead_send
);
1020 tls_free_both_sg(sk
);
1025 void tls_sw_free_resources_rx(struct sock
*sk
)
1027 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
1028 struct tls_sw_context_rx
*ctx
= tls_sw_ctx_rx(tls_ctx
);
1030 if (ctx
->aead_recv
) {
1031 if (ctx
->recv_pkt
) {
1032 kfree_skb(ctx
->recv_pkt
);
1033 ctx
->recv_pkt
= NULL
;
1035 crypto_free_aead(ctx
->aead_recv
);
1036 strp_stop(&ctx
->strp
);
1037 write_lock_bh(&sk
->sk_callback_lock
);
1038 sk
->sk_data_ready
= ctx
->saved_data_ready
;
1039 write_unlock_bh(&sk
->sk_callback_lock
);
1041 strp_done(&ctx
->strp
);
1048 int tls_set_sw_offload(struct sock
*sk
, struct tls_context
*ctx
, int tx
)
1050 char keyval
[TLS_CIPHER_AES_GCM_128_KEY_SIZE
];
1051 struct tls_crypto_info
*crypto_info
;
1052 struct tls12_crypto_info_aes_gcm_128
*gcm_128_info
;
1053 struct tls_sw_context_tx
*sw_ctx_tx
= NULL
;
1054 struct tls_sw_context_rx
*sw_ctx_rx
= NULL
;
1055 struct cipher_context
*cctx
;
1056 struct crypto_aead
**aead
;
1057 struct strp_callbacks cb
;
1058 u16 nonce_size
, tag_size
, iv_size
, rec_seq_size
;
1068 sw_ctx_tx
= kzalloc(sizeof(*sw_ctx_tx
), GFP_KERNEL
);
1073 crypto_init_wait(&sw_ctx_tx
->async_wait
);
1074 ctx
->priv_ctx_tx
= sw_ctx_tx
;
1076 sw_ctx_rx
= kzalloc(sizeof(*sw_ctx_rx
), GFP_KERNEL
);
1081 crypto_init_wait(&sw_ctx_rx
->async_wait
);
1082 ctx
->priv_ctx_rx
= sw_ctx_rx
;
1086 crypto_info
= &ctx
->crypto_send
;
1088 aead
= &sw_ctx_tx
->aead_send
;
1090 crypto_info
= &ctx
->crypto_recv
;
1092 aead
= &sw_ctx_rx
->aead_recv
;
1095 switch (crypto_info
->cipher_type
) {
1096 case TLS_CIPHER_AES_GCM_128
: {
1097 nonce_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
1098 tag_size
= TLS_CIPHER_AES_GCM_128_TAG_SIZE
;
1099 iv_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
1100 iv
= ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->iv
;
1101 rec_seq_size
= TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE
;
1103 ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->rec_seq
;
1105 (struct tls12_crypto_info_aes_gcm_128
*)crypto_info
;
1113 /* Sanity-check the IV size for stack allocations. */
1114 if (iv_size
> MAX_IV_SIZE
) {
1119 cctx
->prepend_size
= TLS_HEADER_SIZE
+ nonce_size
;
1120 cctx
->tag_size
= tag_size
;
1121 cctx
->overhead_size
= cctx
->prepend_size
+ cctx
->tag_size
;
1122 cctx
->iv_size
= iv_size
;
1123 cctx
->iv
= kmalloc(iv_size
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
,
1129 memcpy(cctx
->iv
, gcm_128_info
->salt
, TLS_CIPHER_AES_GCM_128_SALT_SIZE
);
1130 memcpy(cctx
->iv
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
, iv
, iv_size
);
1131 cctx
->rec_seq_size
= rec_seq_size
;
1132 cctx
->rec_seq
= kmalloc(rec_seq_size
, GFP_KERNEL
);
1133 if (!cctx
->rec_seq
) {
1137 memcpy(cctx
->rec_seq
, rec_seq
, rec_seq_size
);
1140 sg_init_table(sw_ctx_tx
->sg_encrypted_data
,
1141 ARRAY_SIZE(sw_ctx_tx
->sg_encrypted_data
));
1142 sg_init_table(sw_ctx_tx
->sg_plaintext_data
,
1143 ARRAY_SIZE(sw_ctx_tx
->sg_plaintext_data
));
1145 sg_init_table(sw_ctx_tx
->sg_aead_in
, 2);
1146 sg_set_buf(&sw_ctx_tx
->sg_aead_in
[0], sw_ctx_tx
->aad_space
,
1147 sizeof(sw_ctx_tx
->aad_space
));
1148 sg_unmark_end(&sw_ctx_tx
->sg_aead_in
[1]);
1149 sg_chain(sw_ctx_tx
->sg_aead_in
, 2,
1150 sw_ctx_tx
->sg_plaintext_data
);
1151 sg_init_table(sw_ctx_tx
->sg_aead_out
, 2);
1152 sg_set_buf(&sw_ctx_tx
->sg_aead_out
[0], sw_ctx_tx
->aad_space
,
1153 sizeof(sw_ctx_tx
->aad_space
));
1154 sg_unmark_end(&sw_ctx_tx
->sg_aead_out
[1]);
1155 sg_chain(sw_ctx_tx
->sg_aead_out
, 2,
1156 sw_ctx_tx
->sg_encrypted_data
);
1160 *aead
= crypto_alloc_aead("gcm(aes)", 0, 0);
1161 if (IS_ERR(*aead
)) {
1162 rc
= PTR_ERR(*aead
);
1168 ctx
->push_pending_record
= tls_sw_push_pending_record
;
1170 memcpy(keyval
, gcm_128_info
->key
, TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
1172 rc
= crypto_aead_setkey(*aead
, keyval
,
1173 TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
1177 rc
= crypto_aead_setauthsize(*aead
, cctx
->tag_size
);
1182 /* Set up strparser */
1183 memset(&cb
, 0, sizeof(cb
));
1184 cb
.rcv_msg
= tls_queue
;
1185 cb
.parse_msg
= tls_read_size
;
1187 strp_init(&sw_ctx_rx
->strp
, sk
, &cb
);
1189 write_lock_bh(&sk
->sk_callback_lock
);
1190 sw_ctx_rx
->saved_data_ready
= sk
->sk_data_ready
;
1191 sk
->sk_data_ready
= tls_data_ready
;
1192 write_unlock_bh(&sk
->sk_callback_lock
);
1194 sw_ctx_rx
->sk_poll_mask
= sk
->sk_socket
->ops
->poll_mask
;
1196 strp_check_rcv(&sw_ctx_rx
->strp
);
1202 crypto_free_aead(*aead
);
1205 kfree(cctx
->rec_seq
);
1206 cctx
->rec_seq
= NULL
;
1212 kfree(ctx
->priv_ctx_tx
);
1213 ctx
->priv_ctx_tx
= NULL
;
1215 kfree(ctx
->priv_ctx_rx
);
1216 ctx
->priv_ctx_rx
= NULL
;