thp: change pmd_trans_huge_lock() interface to return ptl
[linux/fpc-iii.git] / fs / splice.c
blob82bc0d64fc38d538b6482adf7d5d279318405069
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
192 pipe_lock(pipe);
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
218 if (pipe->files)
219 do_wakeup = 1;
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
226 break;
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
254 pipe_unlock(pipe);
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
262 return ret;
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 if (spd->pages && spd->partial)
287 return 0;
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
299 kfree(spd->pages);
300 kfree(spd->partial);
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
334 * Lookup the (hopefully) full range of pages we need.
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
353 page = find_get_page(mapping, index);
354 if (!page) {
356 * page didn't exist, allocate one.
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
362 error = add_to_page_cache_lru(page, mapping, index,
363 mapping_gfp_constraint(mapping, GFP_KERNEL));
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
374 unlock_page(page);
377 spd.pages[spd.nr_pages++] = page;
378 index++;
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
391 if (!len)
392 break;
395 * this_len is the max we'll use from this page
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
405 * If the page isn't uptodate, we may need to start io on it
407 if (!PageUptodate(page)) {
408 lock_page(page);
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
416 if (!page->mapping) {
417 unlock_page(page);
418 retry_lookup:
419 page = find_or_create_page(mapping, index,
420 mapping_gfp_mask(mapping));
422 if (!page) {
423 error = -ENOMEM;
424 break;
426 page_cache_release(spd.pages[page_nr]);
427 spd.pages[page_nr] = page;
430 * page was already under io and is now done, great
432 if (PageUptodate(page)) {
433 unlock_page(page);
434 goto fill_it;
438 * need to read in the page
440 error = mapping->a_ops->readpage(in, page);
441 if (unlikely(error)) {
443 * Re-lookup the page
445 if (error == AOP_TRUNCATED_PAGE)
446 goto retry_lookup;
448 break;
451 fill_it:
453 * i_size must be checked after PageUptodate.
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
461 * if this is the last page, see if we need to shrink
462 * the length and stop
464 if (end_index == index) {
465 unsigned int plen;
468 * max good bytes in this page
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
475 * force quit after adding this page
477 this_len = min(this_len, plen - loff);
478 len = this_len;
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
500 splice_shrink_spd(&spd);
501 return error;
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
522 loff_t isize, left;
523 int ret;
525 if (IS_DAX(in->f_mapping->host))
526 return default_file_splice_read(in, ppos, pipe, len, flags);
528 isize = i_size_read(in->f_mapping->host);
529 if (unlikely(*ppos >= isize))
530 return 0;
532 left = isize - *ppos;
533 if (unlikely(left < len))
534 len = left;
536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 if (ret > 0) {
538 *ppos += ret;
539 file_accessed(in);
542 return ret;
544 EXPORT_SYMBOL(generic_file_splice_read);
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 .can_merge = 0,
548 .confirm = generic_pipe_buf_confirm,
549 .release = generic_pipe_buf_release,
550 .steal = generic_pipe_buf_steal,
551 .get = generic_pipe_buf_get,
554 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
555 struct pipe_buffer *buf)
557 return 1;
560 /* Pipe buffer operations for a socket and similar. */
561 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
562 .can_merge = 0,
563 .confirm = generic_pipe_buf_confirm,
564 .release = generic_pipe_buf_release,
565 .steal = generic_pipe_buf_nosteal,
566 .get = generic_pipe_buf_get,
568 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
570 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
571 unsigned long vlen, loff_t offset)
573 mm_segment_t old_fs;
574 loff_t pos = offset;
575 ssize_t res;
577 old_fs = get_fs();
578 set_fs(get_ds());
579 /* The cast to a user pointer is valid due to the set_fs() */
580 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
581 set_fs(old_fs);
583 return res;
586 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
587 loff_t pos)
589 mm_segment_t old_fs;
590 ssize_t res;
592 old_fs = get_fs();
593 set_fs(get_ds());
594 /* The cast to a user pointer is valid due to the set_fs() */
595 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
596 set_fs(old_fs);
598 return res;
600 EXPORT_SYMBOL(kernel_write);
602 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
603 struct pipe_inode_info *pipe, size_t len,
604 unsigned int flags)
606 unsigned int nr_pages;
607 unsigned int nr_freed;
608 size_t offset;
609 struct page *pages[PIPE_DEF_BUFFERS];
610 struct partial_page partial[PIPE_DEF_BUFFERS];
611 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
612 ssize_t res;
613 size_t this_len;
614 int error;
615 int i;
616 struct splice_pipe_desc spd = {
617 .pages = pages,
618 .partial = partial,
619 .nr_pages_max = PIPE_DEF_BUFFERS,
620 .flags = flags,
621 .ops = &default_pipe_buf_ops,
622 .spd_release = spd_release_page,
625 if (splice_grow_spd(pipe, &spd))
626 return -ENOMEM;
628 res = -ENOMEM;
629 vec = __vec;
630 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
631 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
632 if (!vec)
633 goto shrink_ret;
636 offset = *ppos & ~PAGE_CACHE_MASK;
637 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
639 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
640 struct page *page;
642 page = alloc_page(GFP_USER);
643 error = -ENOMEM;
644 if (!page)
645 goto err;
647 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
648 vec[i].iov_base = (void __user *) page_address(page);
649 vec[i].iov_len = this_len;
650 spd.pages[i] = page;
651 spd.nr_pages++;
652 len -= this_len;
653 offset = 0;
656 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
657 if (res < 0) {
658 error = res;
659 goto err;
662 error = 0;
663 if (!res)
664 goto err;
666 nr_freed = 0;
667 for (i = 0; i < spd.nr_pages; i++) {
668 this_len = min_t(size_t, vec[i].iov_len, res);
669 spd.partial[i].offset = 0;
670 spd.partial[i].len = this_len;
671 if (!this_len) {
672 __free_page(spd.pages[i]);
673 spd.pages[i] = NULL;
674 nr_freed++;
676 res -= this_len;
678 spd.nr_pages -= nr_freed;
680 res = splice_to_pipe(pipe, &spd);
681 if (res > 0)
682 *ppos += res;
684 shrink_ret:
685 if (vec != __vec)
686 kfree(vec);
687 splice_shrink_spd(&spd);
688 return res;
690 err:
691 for (i = 0; i < spd.nr_pages; i++)
692 __free_page(spd.pages[i]);
694 res = error;
695 goto shrink_ret;
697 EXPORT_SYMBOL(default_file_splice_read);
700 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
701 * using sendpage(). Return the number of bytes sent.
703 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
704 struct pipe_buffer *buf, struct splice_desc *sd)
706 struct file *file = sd->u.file;
707 loff_t pos = sd->pos;
708 int more;
710 if (!likely(file->f_op->sendpage))
711 return -EINVAL;
713 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
715 if (sd->len < sd->total_len && pipe->nrbufs > 1)
716 more |= MSG_SENDPAGE_NOTLAST;
718 return file->f_op->sendpage(file, buf->page, buf->offset,
719 sd->len, &pos, more);
722 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
724 smp_mb();
725 if (waitqueue_active(&pipe->wait))
726 wake_up_interruptible(&pipe->wait);
727 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 * splice_from_pipe_feed - feed available data from a pipe to a file
732 * @pipe: pipe to splice from
733 * @sd: information to @actor
734 * @actor: handler that splices the data
736 * Description:
737 * This function loops over the pipe and calls @actor to do the
738 * actual moving of a single struct pipe_buffer to the desired
739 * destination. It returns when there's no more buffers left in
740 * the pipe or if the requested number of bytes (@sd->total_len)
741 * have been copied. It returns a positive number (one) if the
742 * pipe needs to be filled with more data, zero if the required
743 * number of bytes have been copied and -errno on error.
745 * This, together with splice_from_pipe_{begin,end,next}, may be
746 * used to implement the functionality of __splice_from_pipe() when
747 * locking is required around copying the pipe buffers to the
748 * destination.
750 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
751 splice_actor *actor)
753 int ret;
755 while (pipe->nrbufs) {
756 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
757 const struct pipe_buf_operations *ops = buf->ops;
759 sd->len = buf->len;
760 if (sd->len > sd->total_len)
761 sd->len = sd->total_len;
763 ret = buf->ops->confirm(pipe, buf);
764 if (unlikely(ret)) {
765 if (ret == -ENODATA)
766 ret = 0;
767 return ret;
770 ret = actor(pipe, buf, sd);
771 if (ret <= 0)
772 return ret;
774 buf->offset += ret;
775 buf->len -= ret;
777 sd->num_spliced += ret;
778 sd->len -= ret;
779 sd->pos += ret;
780 sd->total_len -= ret;
782 if (!buf->len) {
783 buf->ops = NULL;
784 ops->release(pipe, buf);
785 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
786 pipe->nrbufs--;
787 if (pipe->files)
788 sd->need_wakeup = true;
791 if (!sd->total_len)
792 return 0;
795 return 1;
799 * splice_from_pipe_next - wait for some data to splice from
800 * @pipe: pipe to splice from
801 * @sd: information about the splice operation
803 * Description:
804 * This function will wait for some data and return a positive
805 * value (one) if pipe buffers are available. It will return zero
806 * or -errno if no more data needs to be spliced.
808 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
811 * Check for signal early to make process killable when there are
812 * always buffers available
814 if (signal_pending(current))
815 return -ERESTARTSYS;
817 while (!pipe->nrbufs) {
818 if (!pipe->writers)
819 return 0;
821 if (!pipe->waiting_writers && sd->num_spliced)
822 return 0;
824 if (sd->flags & SPLICE_F_NONBLOCK)
825 return -EAGAIN;
827 if (signal_pending(current))
828 return -ERESTARTSYS;
830 if (sd->need_wakeup) {
831 wakeup_pipe_writers(pipe);
832 sd->need_wakeup = false;
835 pipe_wait(pipe);
838 return 1;
842 * splice_from_pipe_begin - start splicing from pipe
843 * @sd: information about the splice operation
845 * Description:
846 * This function should be called before a loop containing
847 * splice_from_pipe_next() and splice_from_pipe_feed() to
848 * initialize the necessary fields of @sd.
850 static void splice_from_pipe_begin(struct splice_desc *sd)
852 sd->num_spliced = 0;
853 sd->need_wakeup = false;
857 * splice_from_pipe_end - finish splicing from pipe
858 * @pipe: pipe to splice from
859 * @sd: information about the splice operation
861 * Description:
862 * This function will wake up pipe writers if necessary. It should
863 * be called after a loop containing splice_from_pipe_next() and
864 * splice_from_pipe_feed().
866 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
868 if (sd->need_wakeup)
869 wakeup_pipe_writers(pipe);
873 * __splice_from_pipe - splice data from a pipe to given actor
874 * @pipe: pipe to splice from
875 * @sd: information to @actor
876 * @actor: handler that splices the data
878 * Description:
879 * This function does little more than loop over the pipe and call
880 * @actor to do the actual moving of a single struct pipe_buffer to
881 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
882 * pipe_to_user.
885 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
886 splice_actor *actor)
888 int ret;
890 splice_from_pipe_begin(sd);
891 do {
892 cond_resched();
893 ret = splice_from_pipe_next(pipe, sd);
894 if (ret > 0)
895 ret = splice_from_pipe_feed(pipe, sd, actor);
896 } while (ret > 0);
897 splice_from_pipe_end(pipe, sd);
899 return sd->num_spliced ? sd->num_spliced : ret;
901 EXPORT_SYMBOL(__splice_from_pipe);
904 * splice_from_pipe - splice data from a pipe to a file
905 * @pipe: pipe to splice from
906 * @out: file to splice to
907 * @ppos: position in @out
908 * @len: how many bytes to splice
909 * @flags: splice modifier flags
910 * @actor: handler that splices the data
912 * Description:
913 * See __splice_from_pipe. This function locks the pipe inode,
914 * otherwise it's identical to __splice_from_pipe().
917 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
918 loff_t *ppos, size_t len, unsigned int flags,
919 splice_actor *actor)
921 ssize_t ret;
922 struct splice_desc sd = {
923 .total_len = len,
924 .flags = flags,
925 .pos = *ppos,
926 .u.file = out,
929 pipe_lock(pipe);
930 ret = __splice_from_pipe(pipe, &sd, actor);
931 pipe_unlock(pipe);
933 return ret;
937 * iter_file_splice_write - splice data from a pipe to a file
938 * @pipe: pipe info
939 * @out: file to write to
940 * @ppos: position in @out
941 * @len: number of bytes to splice
942 * @flags: splice modifier flags
944 * Description:
945 * Will either move or copy pages (determined by @flags options) from
946 * the given pipe inode to the given file.
947 * This one is ->write_iter-based.
950 ssize_t
951 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
952 loff_t *ppos, size_t len, unsigned int flags)
954 struct splice_desc sd = {
955 .total_len = len,
956 .flags = flags,
957 .pos = *ppos,
958 .u.file = out,
960 int nbufs = pipe->buffers;
961 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
962 GFP_KERNEL);
963 ssize_t ret;
965 if (unlikely(!array))
966 return -ENOMEM;
968 pipe_lock(pipe);
970 splice_from_pipe_begin(&sd);
971 while (sd.total_len) {
972 struct iov_iter from;
973 size_t left;
974 int n, idx;
976 ret = splice_from_pipe_next(pipe, &sd);
977 if (ret <= 0)
978 break;
980 if (unlikely(nbufs < pipe->buffers)) {
981 kfree(array);
982 nbufs = pipe->buffers;
983 array = kcalloc(nbufs, sizeof(struct bio_vec),
984 GFP_KERNEL);
985 if (!array) {
986 ret = -ENOMEM;
987 break;
991 /* build the vector */
992 left = sd.total_len;
993 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
994 struct pipe_buffer *buf = pipe->bufs + idx;
995 size_t this_len = buf->len;
997 if (this_len > left)
998 this_len = left;
1000 if (idx == pipe->buffers - 1)
1001 idx = -1;
1003 ret = buf->ops->confirm(pipe, buf);
1004 if (unlikely(ret)) {
1005 if (ret == -ENODATA)
1006 ret = 0;
1007 goto done;
1010 array[n].bv_page = buf->page;
1011 array[n].bv_len = this_len;
1012 array[n].bv_offset = buf->offset;
1013 left -= this_len;
1016 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1017 sd.total_len - left);
1018 ret = vfs_iter_write(out, &from, &sd.pos);
1019 if (ret <= 0)
1020 break;
1022 sd.num_spliced += ret;
1023 sd.total_len -= ret;
1024 *ppos = sd.pos;
1026 /* dismiss the fully eaten buffers, adjust the partial one */
1027 while (ret) {
1028 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1029 if (ret >= buf->len) {
1030 const struct pipe_buf_operations *ops = buf->ops;
1031 ret -= buf->len;
1032 buf->len = 0;
1033 buf->ops = NULL;
1034 ops->release(pipe, buf);
1035 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1036 pipe->nrbufs--;
1037 if (pipe->files)
1038 sd.need_wakeup = true;
1039 } else {
1040 buf->offset += ret;
1041 buf->len -= ret;
1042 ret = 0;
1046 done:
1047 kfree(array);
1048 splice_from_pipe_end(pipe, &sd);
1050 pipe_unlock(pipe);
1052 if (sd.num_spliced)
1053 ret = sd.num_spliced;
1055 return ret;
1058 EXPORT_SYMBOL(iter_file_splice_write);
1060 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1061 struct splice_desc *sd)
1063 int ret;
1064 void *data;
1065 loff_t tmp = sd->pos;
1067 data = kmap(buf->page);
1068 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1069 kunmap(buf->page);
1071 return ret;
1074 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1075 struct file *out, loff_t *ppos,
1076 size_t len, unsigned int flags)
1078 ssize_t ret;
1080 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1081 if (ret > 0)
1082 *ppos += ret;
1084 return ret;
1088 * generic_splice_sendpage - splice data from a pipe to a socket
1089 * @pipe: pipe to splice from
1090 * @out: socket to write to
1091 * @ppos: position in @out
1092 * @len: number of bytes to splice
1093 * @flags: splice modifier flags
1095 * Description:
1096 * Will send @len bytes from the pipe to a network socket. No data copying
1097 * is involved.
1100 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1101 loff_t *ppos, size_t len, unsigned int flags)
1103 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1106 EXPORT_SYMBOL(generic_splice_sendpage);
1109 * Attempt to initiate a splice from pipe to file.
1111 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1112 loff_t *ppos, size_t len, unsigned int flags)
1114 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1115 loff_t *, size_t, unsigned int);
1117 if (out->f_op->splice_write)
1118 splice_write = out->f_op->splice_write;
1119 else
1120 splice_write = default_file_splice_write;
1122 return splice_write(pipe, out, ppos, len, flags);
1126 * Attempt to initiate a splice from a file to a pipe.
1128 static long do_splice_to(struct file *in, loff_t *ppos,
1129 struct pipe_inode_info *pipe, size_t len,
1130 unsigned int flags)
1132 ssize_t (*splice_read)(struct file *, loff_t *,
1133 struct pipe_inode_info *, size_t, unsigned int);
1134 int ret;
1136 if (unlikely(!(in->f_mode & FMODE_READ)))
1137 return -EBADF;
1139 ret = rw_verify_area(READ, in, ppos, len);
1140 if (unlikely(ret < 0))
1141 return ret;
1143 if (in->f_op->splice_read)
1144 splice_read = in->f_op->splice_read;
1145 else
1146 splice_read = default_file_splice_read;
1148 return splice_read(in, ppos, pipe, len, flags);
1152 * splice_direct_to_actor - splices data directly between two non-pipes
1153 * @in: file to splice from
1154 * @sd: actor information on where to splice to
1155 * @actor: handles the data splicing
1157 * Description:
1158 * This is a special case helper to splice directly between two
1159 * points, without requiring an explicit pipe. Internally an allocated
1160 * pipe is cached in the process, and reused during the lifetime of
1161 * that process.
1164 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1165 splice_direct_actor *actor)
1167 struct pipe_inode_info *pipe;
1168 long ret, bytes;
1169 umode_t i_mode;
1170 size_t len;
1171 int i, flags, more;
1174 * We require the input being a regular file, as we don't want to
1175 * randomly drop data for eg socket -> socket splicing. Use the
1176 * piped splicing for that!
1178 i_mode = file_inode(in)->i_mode;
1179 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1180 return -EINVAL;
1183 * neither in nor out is a pipe, setup an internal pipe attached to
1184 * 'out' and transfer the wanted data from 'in' to 'out' through that
1186 pipe = current->splice_pipe;
1187 if (unlikely(!pipe)) {
1188 pipe = alloc_pipe_info();
1189 if (!pipe)
1190 return -ENOMEM;
1193 * We don't have an immediate reader, but we'll read the stuff
1194 * out of the pipe right after the splice_to_pipe(). So set
1195 * PIPE_READERS appropriately.
1197 pipe->readers = 1;
1199 current->splice_pipe = pipe;
1203 * Do the splice.
1205 ret = 0;
1206 bytes = 0;
1207 len = sd->total_len;
1208 flags = sd->flags;
1211 * Don't block on output, we have to drain the direct pipe.
1213 sd->flags &= ~SPLICE_F_NONBLOCK;
1214 more = sd->flags & SPLICE_F_MORE;
1216 while (len) {
1217 size_t read_len;
1218 loff_t pos = sd->pos, prev_pos = pos;
1220 ret = do_splice_to(in, &pos, pipe, len, flags);
1221 if (unlikely(ret <= 0))
1222 goto out_release;
1224 read_len = ret;
1225 sd->total_len = read_len;
1228 * If more data is pending, set SPLICE_F_MORE
1229 * If this is the last data and SPLICE_F_MORE was not set
1230 * initially, clears it.
1232 if (read_len < len)
1233 sd->flags |= SPLICE_F_MORE;
1234 else if (!more)
1235 sd->flags &= ~SPLICE_F_MORE;
1237 * NOTE: nonblocking mode only applies to the input. We
1238 * must not do the output in nonblocking mode as then we
1239 * could get stuck data in the internal pipe:
1241 ret = actor(pipe, sd);
1242 if (unlikely(ret <= 0)) {
1243 sd->pos = prev_pos;
1244 goto out_release;
1247 bytes += ret;
1248 len -= ret;
1249 sd->pos = pos;
1251 if (ret < read_len) {
1252 sd->pos = prev_pos + ret;
1253 goto out_release;
1257 done:
1258 pipe->nrbufs = pipe->curbuf = 0;
1259 file_accessed(in);
1260 return bytes;
1262 out_release:
1264 * If we did an incomplete transfer we must release
1265 * the pipe buffers in question:
1267 for (i = 0; i < pipe->buffers; i++) {
1268 struct pipe_buffer *buf = pipe->bufs + i;
1270 if (buf->ops) {
1271 buf->ops->release(pipe, buf);
1272 buf->ops = NULL;
1276 if (!bytes)
1277 bytes = ret;
1279 goto done;
1281 EXPORT_SYMBOL(splice_direct_to_actor);
1283 static int direct_splice_actor(struct pipe_inode_info *pipe,
1284 struct splice_desc *sd)
1286 struct file *file = sd->u.file;
1288 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1289 sd->flags);
1293 * do_splice_direct - splices data directly between two files
1294 * @in: file to splice from
1295 * @ppos: input file offset
1296 * @out: file to splice to
1297 * @opos: output file offset
1298 * @len: number of bytes to splice
1299 * @flags: splice modifier flags
1301 * Description:
1302 * For use by do_sendfile(). splice can easily emulate sendfile, but
1303 * doing it in the application would incur an extra system call
1304 * (splice in + splice out, as compared to just sendfile()). So this helper
1305 * can splice directly through a process-private pipe.
1308 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1309 loff_t *opos, size_t len, unsigned int flags)
1311 struct splice_desc sd = {
1312 .len = len,
1313 .total_len = len,
1314 .flags = flags,
1315 .pos = *ppos,
1316 .u.file = out,
1317 .opos = opos,
1319 long ret;
1321 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1322 return -EBADF;
1324 if (unlikely(out->f_flags & O_APPEND))
1325 return -EINVAL;
1327 ret = rw_verify_area(WRITE, out, opos, len);
1328 if (unlikely(ret < 0))
1329 return ret;
1331 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1332 if (ret > 0)
1333 *ppos = sd.pos;
1335 return ret;
1337 EXPORT_SYMBOL(do_splice_direct);
1339 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1340 struct pipe_inode_info *opipe,
1341 size_t len, unsigned int flags);
1344 * Determine where to splice to/from.
1346 static long do_splice(struct file *in, loff_t __user *off_in,
1347 struct file *out, loff_t __user *off_out,
1348 size_t len, unsigned int flags)
1350 struct pipe_inode_info *ipipe;
1351 struct pipe_inode_info *opipe;
1352 loff_t offset;
1353 long ret;
1355 ipipe = get_pipe_info(in);
1356 opipe = get_pipe_info(out);
1358 if (ipipe && opipe) {
1359 if (off_in || off_out)
1360 return -ESPIPE;
1362 if (!(in->f_mode & FMODE_READ))
1363 return -EBADF;
1365 if (!(out->f_mode & FMODE_WRITE))
1366 return -EBADF;
1368 /* Splicing to self would be fun, but... */
1369 if (ipipe == opipe)
1370 return -EINVAL;
1372 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1375 if (ipipe) {
1376 if (off_in)
1377 return -ESPIPE;
1378 if (off_out) {
1379 if (!(out->f_mode & FMODE_PWRITE))
1380 return -EINVAL;
1381 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1382 return -EFAULT;
1383 } else {
1384 offset = out->f_pos;
1387 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1388 return -EBADF;
1390 if (unlikely(out->f_flags & O_APPEND))
1391 return -EINVAL;
1393 ret = rw_verify_area(WRITE, out, &offset, len);
1394 if (unlikely(ret < 0))
1395 return ret;
1397 file_start_write(out);
1398 ret = do_splice_from(ipipe, out, &offset, len, flags);
1399 file_end_write(out);
1401 if (!off_out)
1402 out->f_pos = offset;
1403 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1404 ret = -EFAULT;
1406 return ret;
1409 if (opipe) {
1410 if (off_out)
1411 return -ESPIPE;
1412 if (off_in) {
1413 if (!(in->f_mode & FMODE_PREAD))
1414 return -EINVAL;
1415 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1416 return -EFAULT;
1417 } else {
1418 offset = in->f_pos;
1421 ret = do_splice_to(in, &offset, opipe, len, flags);
1423 if (!off_in)
1424 in->f_pos = offset;
1425 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1426 ret = -EFAULT;
1428 return ret;
1431 return -EINVAL;
1435 * Map an iov into an array of pages and offset/length tupples. With the
1436 * partial_page structure, we can map several non-contiguous ranges into
1437 * our ones pages[] map instead of splitting that operation into pieces.
1438 * Could easily be exported as a generic helper for other users, in which
1439 * case one would probably want to add a 'max_nr_pages' parameter as well.
1441 static int get_iovec_page_array(const struct iovec __user *iov,
1442 unsigned int nr_vecs, struct page **pages,
1443 struct partial_page *partial, bool aligned,
1444 unsigned int pipe_buffers)
1446 int buffers = 0, error = 0;
1448 while (nr_vecs) {
1449 unsigned long off, npages;
1450 struct iovec entry;
1451 void __user *base;
1452 size_t len;
1453 int i;
1455 error = -EFAULT;
1456 if (copy_from_user(&entry, iov, sizeof(entry)))
1457 break;
1459 base = entry.iov_base;
1460 len = entry.iov_len;
1463 * Sanity check this iovec. 0 read succeeds.
1465 error = 0;
1466 if (unlikely(!len))
1467 break;
1468 error = -EFAULT;
1469 if (!access_ok(VERIFY_READ, base, len))
1470 break;
1473 * Get this base offset and number of pages, then map
1474 * in the user pages.
1476 off = (unsigned long) base & ~PAGE_MASK;
1479 * If asked for alignment, the offset must be zero and the
1480 * length a multiple of the PAGE_SIZE.
1482 error = -EINVAL;
1483 if (aligned && (off || len & ~PAGE_MASK))
1484 break;
1486 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1487 if (npages > pipe_buffers - buffers)
1488 npages = pipe_buffers - buffers;
1490 error = get_user_pages_fast((unsigned long)base, npages,
1491 0, &pages[buffers]);
1493 if (unlikely(error <= 0))
1494 break;
1497 * Fill this contiguous range into the partial page map.
1499 for (i = 0; i < error; i++) {
1500 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1502 partial[buffers].offset = off;
1503 partial[buffers].len = plen;
1505 off = 0;
1506 len -= plen;
1507 buffers++;
1511 * We didn't complete this iov, stop here since it probably
1512 * means we have to move some of this into a pipe to
1513 * be able to continue.
1515 if (len)
1516 break;
1519 * Don't continue if we mapped fewer pages than we asked for,
1520 * or if we mapped the max number of pages that we have
1521 * room for.
1523 if (error < npages || buffers == pipe_buffers)
1524 break;
1526 nr_vecs--;
1527 iov++;
1530 if (buffers)
1531 return buffers;
1533 return error;
1536 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1537 struct splice_desc *sd)
1539 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1540 return n == sd->len ? n : -EFAULT;
1544 * For lack of a better implementation, implement vmsplice() to userspace
1545 * as a simple copy of the pipes pages to the user iov.
1547 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1548 unsigned long nr_segs, unsigned int flags)
1550 struct pipe_inode_info *pipe;
1551 struct splice_desc sd;
1552 long ret;
1553 struct iovec iovstack[UIO_FASTIOV];
1554 struct iovec *iov = iovstack;
1555 struct iov_iter iter;
1557 pipe = get_pipe_info(file);
1558 if (!pipe)
1559 return -EBADF;
1561 ret = import_iovec(READ, uiov, nr_segs,
1562 ARRAY_SIZE(iovstack), &iov, &iter);
1563 if (ret < 0)
1564 return ret;
1566 sd.total_len = iov_iter_count(&iter);
1567 sd.len = 0;
1568 sd.flags = flags;
1569 sd.u.data = &iter;
1570 sd.pos = 0;
1572 if (sd.total_len) {
1573 pipe_lock(pipe);
1574 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1575 pipe_unlock(pipe);
1578 kfree(iov);
1579 return ret;
1583 * vmsplice splices a user address range into a pipe. It can be thought of
1584 * as splice-from-memory, where the regular splice is splice-from-file (or
1585 * to file). In both cases the output is a pipe, naturally.
1587 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1588 unsigned long nr_segs, unsigned int flags)
1590 struct pipe_inode_info *pipe;
1591 struct page *pages[PIPE_DEF_BUFFERS];
1592 struct partial_page partial[PIPE_DEF_BUFFERS];
1593 struct splice_pipe_desc spd = {
1594 .pages = pages,
1595 .partial = partial,
1596 .nr_pages_max = PIPE_DEF_BUFFERS,
1597 .flags = flags,
1598 .ops = &user_page_pipe_buf_ops,
1599 .spd_release = spd_release_page,
1601 long ret;
1603 pipe = get_pipe_info(file);
1604 if (!pipe)
1605 return -EBADF;
1607 if (splice_grow_spd(pipe, &spd))
1608 return -ENOMEM;
1610 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1611 spd.partial, false,
1612 spd.nr_pages_max);
1613 if (spd.nr_pages <= 0)
1614 ret = spd.nr_pages;
1615 else
1616 ret = splice_to_pipe(pipe, &spd);
1618 splice_shrink_spd(&spd);
1619 return ret;
1623 * Note that vmsplice only really supports true splicing _from_ user memory
1624 * to a pipe, not the other way around. Splicing from user memory is a simple
1625 * operation that can be supported without any funky alignment restrictions
1626 * or nasty vm tricks. We simply map in the user memory and fill them into
1627 * a pipe. The reverse isn't quite as easy, though. There are two possible
1628 * solutions for that:
1630 * - memcpy() the data internally, at which point we might as well just
1631 * do a regular read() on the buffer anyway.
1632 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1633 * has restriction limitations on both ends of the pipe).
1635 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1638 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1639 unsigned long, nr_segs, unsigned int, flags)
1641 struct fd f;
1642 long error;
1644 if (unlikely(nr_segs > UIO_MAXIOV))
1645 return -EINVAL;
1646 else if (unlikely(!nr_segs))
1647 return 0;
1649 error = -EBADF;
1650 f = fdget(fd);
1651 if (f.file) {
1652 if (f.file->f_mode & FMODE_WRITE)
1653 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1654 else if (f.file->f_mode & FMODE_READ)
1655 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1657 fdput(f);
1660 return error;
1663 #ifdef CONFIG_COMPAT
1664 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1665 unsigned int, nr_segs, unsigned int, flags)
1667 unsigned i;
1668 struct iovec __user *iov;
1669 if (nr_segs > UIO_MAXIOV)
1670 return -EINVAL;
1671 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1672 for (i = 0; i < nr_segs; i++) {
1673 struct compat_iovec v;
1674 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1675 get_user(v.iov_len, &iov32[i].iov_len) ||
1676 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1677 put_user(v.iov_len, &iov[i].iov_len))
1678 return -EFAULT;
1680 return sys_vmsplice(fd, iov, nr_segs, flags);
1682 #endif
1684 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1685 int, fd_out, loff_t __user *, off_out,
1686 size_t, len, unsigned int, flags)
1688 struct fd in, out;
1689 long error;
1691 if (unlikely(!len))
1692 return 0;
1694 error = -EBADF;
1695 in = fdget(fd_in);
1696 if (in.file) {
1697 if (in.file->f_mode & FMODE_READ) {
1698 out = fdget(fd_out);
1699 if (out.file) {
1700 if (out.file->f_mode & FMODE_WRITE)
1701 error = do_splice(in.file, off_in,
1702 out.file, off_out,
1703 len, flags);
1704 fdput(out);
1707 fdput(in);
1709 return error;
1713 * Make sure there's data to read. Wait for input if we can, otherwise
1714 * return an appropriate error.
1716 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1718 int ret;
1721 * Check ->nrbufs without the inode lock first. This function
1722 * is speculative anyways, so missing one is ok.
1724 if (pipe->nrbufs)
1725 return 0;
1727 ret = 0;
1728 pipe_lock(pipe);
1730 while (!pipe->nrbufs) {
1731 if (signal_pending(current)) {
1732 ret = -ERESTARTSYS;
1733 break;
1735 if (!pipe->writers)
1736 break;
1737 if (!pipe->waiting_writers) {
1738 if (flags & SPLICE_F_NONBLOCK) {
1739 ret = -EAGAIN;
1740 break;
1743 pipe_wait(pipe);
1746 pipe_unlock(pipe);
1747 return ret;
1751 * Make sure there's writeable room. Wait for room if we can, otherwise
1752 * return an appropriate error.
1754 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1756 int ret;
1759 * Check ->nrbufs without the inode lock first. This function
1760 * is speculative anyways, so missing one is ok.
1762 if (pipe->nrbufs < pipe->buffers)
1763 return 0;
1765 ret = 0;
1766 pipe_lock(pipe);
1768 while (pipe->nrbufs >= pipe->buffers) {
1769 if (!pipe->readers) {
1770 send_sig(SIGPIPE, current, 0);
1771 ret = -EPIPE;
1772 break;
1774 if (flags & SPLICE_F_NONBLOCK) {
1775 ret = -EAGAIN;
1776 break;
1778 if (signal_pending(current)) {
1779 ret = -ERESTARTSYS;
1780 break;
1782 pipe->waiting_writers++;
1783 pipe_wait(pipe);
1784 pipe->waiting_writers--;
1787 pipe_unlock(pipe);
1788 return ret;
1792 * Splice contents of ipipe to opipe.
1794 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1795 struct pipe_inode_info *opipe,
1796 size_t len, unsigned int flags)
1798 struct pipe_buffer *ibuf, *obuf;
1799 int ret = 0, nbuf;
1800 bool input_wakeup = false;
1803 retry:
1804 ret = ipipe_prep(ipipe, flags);
1805 if (ret)
1806 return ret;
1808 ret = opipe_prep(opipe, flags);
1809 if (ret)
1810 return ret;
1813 * Potential ABBA deadlock, work around it by ordering lock
1814 * grabbing by pipe info address. Otherwise two different processes
1815 * could deadlock (one doing tee from A -> B, the other from B -> A).
1817 pipe_double_lock(ipipe, opipe);
1819 do {
1820 if (!opipe->readers) {
1821 send_sig(SIGPIPE, current, 0);
1822 if (!ret)
1823 ret = -EPIPE;
1824 break;
1827 if (!ipipe->nrbufs && !ipipe->writers)
1828 break;
1831 * Cannot make any progress, because either the input
1832 * pipe is empty or the output pipe is full.
1834 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1835 /* Already processed some buffers, break */
1836 if (ret)
1837 break;
1839 if (flags & SPLICE_F_NONBLOCK) {
1840 ret = -EAGAIN;
1841 break;
1845 * We raced with another reader/writer and haven't
1846 * managed to process any buffers. A zero return
1847 * value means EOF, so retry instead.
1849 pipe_unlock(ipipe);
1850 pipe_unlock(opipe);
1851 goto retry;
1854 ibuf = ipipe->bufs + ipipe->curbuf;
1855 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1856 obuf = opipe->bufs + nbuf;
1858 if (len >= ibuf->len) {
1860 * Simply move the whole buffer from ipipe to opipe
1862 *obuf = *ibuf;
1863 ibuf->ops = NULL;
1864 opipe->nrbufs++;
1865 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1866 ipipe->nrbufs--;
1867 input_wakeup = true;
1868 } else {
1870 * Get a reference to this pipe buffer,
1871 * so we can copy the contents over.
1873 ibuf->ops->get(ipipe, ibuf);
1874 *obuf = *ibuf;
1877 * Don't inherit the gift flag, we need to
1878 * prevent multiple steals of this page.
1880 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1882 obuf->len = len;
1883 opipe->nrbufs++;
1884 ibuf->offset += obuf->len;
1885 ibuf->len -= obuf->len;
1887 ret += obuf->len;
1888 len -= obuf->len;
1889 } while (len);
1891 pipe_unlock(ipipe);
1892 pipe_unlock(opipe);
1895 * If we put data in the output pipe, wakeup any potential readers.
1897 if (ret > 0)
1898 wakeup_pipe_readers(opipe);
1900 if (input_wakeup)
1901 wakeup_pipe_writers(ipipe);
1903 return ret;
1907 * Link contents of ipipe to opipe.
1909 static int link_pipe(struct pipe_inode_info *ipipe,
1910 struct pipe_inode_info *opipe,
1911 size_t len, unsigned int flags)
1913 struct pipe_buffer *ibuf, *obuf;
1914 int ret = 0, i = 0, nbuf;
1917 * Potential ABBA deadlock, work around it by ordering lock
1918 * grabbing by pipe info address. Otherwise two different processes
1919 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 pipe_double_lock(ipipe, opipe);
1923 do {
1924 if (!opipe->readers) {
1925 send_sig(SIGPIPE, current, 0);
1926 if (!ret)
1927 ret = -EPIPE;
1928 break;
1932 * If we have iterated all input buffers or ran out of
1933 * output room, break.
1935 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1936 break;
1938 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1939 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942 * Get a reference to this pipe buffer,
1943 * so we can copy the contents over.
1945 ibuf->ops->get(ipipe, ibuf);
1947 obuf = opipe->bufs + nbuf;
1948 *obuf = *ibuf;
1951 * Don't inherit the gift flag, we need to
1952 * prevent multiple steals of this page.
1954 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956 if (obuf->len > len)
1957 obuf->len = len;
1959 opipe->nrbufs++;
1960 ret += obuf->len;
1961 len -= obuf->len;
1962 i++;
1963 } while (len);
1966 * return EAGAIN if we have the potential of some data in the
1967 * future, otherwise just return 0
1969 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1970 ret = -EAGAIN;
1972 pipe_unlock(ipipe);
1973 pipe_unlock(opipe);
1976 * If we put data in the output pipe, wakeup any potential readers.
1978 if (ret > 0)
1979 wakeup_pipe_readers(opipe);
1981 return ret;
1985 * This is a tee(1) implementation that works on pipes. It doesn't copy
1986 * any data, it simply references the 'in' pages on the 'out' pipe.
1987 * The 'flags' used are the SPLICE_F_* variants, currently the only
1988 * applicable one is SPLICE_F_NONBLOCK.
1990 static long do_tee(struct file *in, struct file *out, size_t len,
1991 unsigned int flags)
1993 struct pipe_inode_info *ipipe = get_pipe_info(in);
1994 struct pipe_inode_info *opipe = get_pipe_info(out);
1995 int ret = -EINVAL;
1998 * Duplicate the contents of ipipe to opipe without actually
1999 * copying the data.
2001 if (ipipe && opipe && ipipe != opipe) {
2003 * Keep going, unless we encounter an error. The ipipe/opipe
2004 * ordering doesn't really matter.
2006 ret = ipipe_prep(ipipe, flags);
2007 if (!ret) {
2008 ret = opipe_prep(opipe, flags);
2009 if (!ret)
2010 ret = link_pipe(ipipe, opipe, len, flags);
2014 return ret;
2017 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2019 struct fd in;
2020 int error;
2022 if (unlikely(!len))
2023 return 0;
2025 error = -EBADF;
2026 in = fdget(fdin);
2027 if (in.file) {
2028 if (in.file->f_mode & FMODE_READ) {
2029 struct fd out = fdget(fdout);
2030 if (out.file) {
2031 if (out.file->f_mode & FMODE_WRITE)
2032 error = do_tee(in.file, out.file,
2033 len, flags);
2034 fdput(out);
2037 fdput(in);
2040 return error;