iwlwifi: replace d0i3_mode and wowlan_d0i3 with more generic variables
[linux/fpc-iii.git] / mm / ksm.c
blobb5cd647daa524935f73ae99f6e42743771768eaa
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
75 * KSM solves this problem by several techniques:
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
116 * There is only the one ksm_scan instance of this cursor structure.
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
250 static int __init ksm_slab_init(void)
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
264 return 0;
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
274 static void __init ksm_slab_free(void)
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
282 static inline struct rmap_item *alloc_rmap_item(void)
284 struct rmap_item *rmap_item;
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 if (rmap_item)
288 ksm_rmap_items++;
289 return rmap_item;
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 ksm_rmap_items--;
295 rmap_item->mm = NULL; /* debug safety */
296 kmem_cache_free(rmap_item_cache, rmap_item);
299 static inline struct stable_node *alloc_stable_node(void)
301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
304 static inline void free_stable_node(struct stable_node *stable_node)
306 kmem_cache_free(stable_node_cache, stable_node);
309 static inline struct mm_slot *alloc_mm_slot(void)
311 if (!mm_slot_cache) /* initialization failed */
312 return NULL;
313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 kmem_cache_free(mm_slot_cache, mm_slot);
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 struct mm_slot *slot;
325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 if (slot->mm == mm)
327 return slot;
329 return NULL;
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 struct mm_slot *mm_slot)
335 mm_slot->mm = mm;
336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
347 static inline bool ksm_test_exit(struct mm_struct *mm)
349 return atomic_read(&mm->mm_users) == 0;
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 * put_page(page);
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 struct page *page;
366 int ret = 0;
368 do {
369 cond_resched();
370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371 if (IS_ERR_OR_NULL(page))
372 break;
373 if (PageKsm(page))
374 ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 FAULT_FLAG_WRITE);
376 else
377 ret = VM_FAULT_WRITE;
378 put_page(page);
379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381 * We must loop because handle_mm_fault() may back out if there's
382 * any difficulty e.g. if pte accessed bit gets updated concurrently.
384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 * COW has been broken, even if the vma does not permit VM_WRITE;
386 * but note that a concurrent fault might break PageKsm for us.
388 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 * backing file, which also invalidates anonymous pages: that's
390 * okay, that truncation will have unmapped the PageKsm for us.
392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 * to user; and ksmd, having no mm, would never be chosen for that.
397 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 * even ksmd can fail in this way - though it's usually breaking ksm
400 * just to undo a merge it made a moment before, so unlikely to oom.
402 * That's a pity: we might therefore have more kernel pages allocated
403 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 * will retry to break_cow on each pass, so should recover the page
405 * in due course. The important thing is to not let VM_MERGEABLE
406 * be cleared while any such pages might remain in the area.
408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 unsigned long addr)
414 struct vm_area_struct *vma;
415 if (ksm_test_exit(mm))
416 return NULL;
417 vma = find_vma(mm, addr);
418 if (!vma || vma->vm_start > addr)
419 return NULL;
420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 return NULL;
422 return vma;
425 static void break_cow(struct rmap_item *rmap_item)
427 struct mm_struct *mm = rmap_item->mm;
428 unsigned long addr = rmap_item->address;
429 struct vm_area_struct *vma;
432 * It is not an accident that whenever we want to break COW
433 * to undo, we also need to drop a reference to the anon_vma.
435 put_anon_vma(rmap_item->anon_vma);
437 down_read(&mm->mmap_sem);
438 vma = find_mergeable_vma(mm, addr);
439 if (vma)
440 break_ksm(vma, addr);
441 up_read(&mm->mmap_sem);
444 static struct page *page_trans_compound_anon(struct page *page)
446 if (PageTransCompound(page)) {
447 struct page *head = compound_head(page);
449 * head may actually be splitted and freed from under
450 * us but it's ok here.
452 if (PageAnon(head))
453 return head;
455 return NULL;
458 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 struct mm_struct *mm = rmap_item->mm;
461 unsigned long addr = rmap_item->address;
462 struct vm_area_struct *vma;
463 struct page *page;
465 down_read(&mm->mmap_sem);
466 vma = find_mergeable_vma(mm, addr);
467 if (!vma)
468 goto out;
470 page = follow_page(vma, addr, FOLL_GET);
471 if (IS_ERR_OR_NULL(page))
472 goto out;
473 if (PageAnon(page) || page_trans_compound_anon(page)) {
474 flush_anon_page(vma, page, addr);
475 flush_dcache_page(page);
476 } else {
477 put_page(page);
478 out:
479 page = NULL;
481 up_read(&mm->mmap_sem);
482 return page;
486 * This helper is used for getting right index into array of tree roots.
487 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489 * every node has its own stable and unstable tree.
491 static inline int get_kpfn_nid(unsigned long kpfn)
493 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
496 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 struct rmap_item *rmap_item;
500 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
501 if (rmap_item->hlist.next)
502 ksm_pages_sharing--;
503 else
504 ksm_pages_shared--;
505 put_anon_vma(rmap_item->anon_vma);
506 rmap_item->address &= PAGE_MASK;
507 cond_resched();
510 if (stable_node->head == &migrate_nodes)
511 list_del(&stable_node->list);
512 else
513 rb_erase(&stable_node->node,
514 root_stable_tree + NUMA(stable_node->nid));
515 free_stable_node(stable_node);
519 * get_ksm_page: checks if the page indicated by the stable node
520 * is still its ksm page, despite having held no reference to it.
521 * In which case we can trust the content of the page, and it
522 * returns the gotten page; but if the page has now been zapped,
523 * remove the stale node from the stable tree and return NULL.
524 * But beware, the stable node's page might be being migrated.
526 * You would expect the stable_node to hold a reference to the ksm page.
527 * But if it increments the page's count, swapping out has to wait for
528 * ksmd to come around again before it can free the page, which may take
529 * seconds or even minutes: much too unresponsive. So instead we use a
530 * "keyhole reference": access to the ksm page from the stable node peeps
531 * out through its keyhole to see if that page still holds the right key,
532 * pointing back to this stable node. This relies on freeing a PageAnon
533 * page to reset its page->mapping to NULL, and relies on no other use of
534 * a page to put something that might look like our key in page->mapping.
535 * is on its way to being freed; but it is an anomaly to bear in mind.
537 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 struct page *page;
540 void *expected_mapping;
541 unsigned long kpfn;
543 expected_mapping = (void *)stable_node +
544 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
545 again:
546 kpfn = READ_ONCE(stable_node->kpfn);
547 page = pfn_to_page(kpfn);
550 * page is computed from kpfn, so on most architectures reading
551 * page->mapping is naturally ordered after reading node->kpfn,
552 * but on Alpha we need to be more careful.
554 smp_read_barrier_depends();
555 if (READ_ONCE(page->mapping) != expected_mapping)
556 goto stale;
559 * We cannot do anything with the page while its refcount is 0.
560 * Usually 0 means free, or tail of a higher-order page: in which
561 * case this node is no longer referenced, and should be freed;
562 * however, it might mean that the page is under page_freeze_refs().
563 * The __remove_mapping() case is easy, again the node is now stale;
564 * but if page is swapcache in migrate_page_move_mapping(), it might
565 * still be our page, in which case it's essential to keep the node.
567 while (!get_page_unless_zero(page)) {
569 * Another check for page->mapping != expected_mapping would
570 * work here too. We have chosen the !PageSwapCache test to
571 * optimize the common case, when the page is or is about to
572 * be freed: PageSwapCache is cleared (under spin_lock_irq)
573 * in the freeze_refs section of __remove_mapping(); but Anon
574 * page->mapping reset to NULL later, in free_pages_prepare().
576 if (!PageSwapCache(page))
577 goto stale;
578 cpu_relax();
581 if (READ_ONCE(page->mapping) != expected_mapping) {
582 put_page(page);
583 goto stale;
586 if (lock_it) {
587 lock_page(page);
588 if (READ_ONCE(page->mapping) != expected_mapping) {
589 unlock_page(page);
590 put_page(page);
591 goto stale;
594 return page;
596 stale:
598 * We come here from above when page->mapping or !PageSwapCache
599 * suggests that the node is stale; but it might be under migration.
600 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601 * before checking whether node->kpfn has been changed.
603 smp_rmb();
604 if (READ_ONCE(stable_node->kpfn) != kpfn)
605 goto again;
606 remove_node_from_stable_tree(stable_node);
607 return NULL;
611 * Removing rmap_item from stable or unstable tree.
612 * This function will clean the information from the stable/unstable tree.
614 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 if (rmap_item->address & STABLE_FLAG) {
617 struct stable_node *stable_node;
618 struct page *page;
620 stable_node = rmap_item->head;
621 page = get_ksm_page(stable_node, true);
622 if (!page)
623 goto out;
625 hlist_del(&rmap_item->hlist);
626 unlock_page(page);
627 put_page(page);
629 if (!hlist_empty(&stable_node->hlist))
630 ksm_pages_sharing--;
631 else
632 ksm_pages_shared--;
634 put_anon_vma(rmap_item->anon_vma);
635 rmap_item->address &= PAGE_MASK;
637 } else if (rmap_item->address & UNSTABLE_FLAG) {
638 unsigned char age;
640 * Usually ksmd can and must skip the rb_erase, because
641 * root_unstable_tree was already reset to RB_ROOT.
642 * But be careful when an mm is exiting: do the rb_erase
643 * if this rmap_item was inserted by this scan, rather
644 * than left over from before.
646 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
647 BUG_ON(age > 1);
648 if (!age)
649 rb_erase(&rmap_item->node,
650 root_unstable_tree + NUMA(rmap_item->nid));
651 ksm_pages_unshared--;
652 rmap_item->address &= PAGE_MASK;
654 out:
655 cond_resched(); /* we're called from many long loops */
658 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
659 struct rmap_item **rmap_list)
661 while (*rmap_list) {
662 struct rmap_item *rmap_item = *rmap_list;
663 *rmap_list = rmap_item->rmap_list;
664 remove_rmap_item_from_tree(rmap_item);
665 free_rmap_item(rmap_item);
670 * Though it's very tempting to unmerge rmap_items from stable tree rather
671 * than check every pte of a given vma, the locking doesn't quite work for
672 * that - an rmap_item is assigned to the stable tree after inserting ksm
673 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
674 * rmap_items from parent to child at fork time (so as not to waste time
675 * if exit comes before the next scan reaches it).
677 * Similarly, although we'd like to remove rmap_items (so updating counts
678 * and freeing memory) when unmerging an area, it's easier to leave that
679 * to the next pass of ksmd - consider, for example, how ksmd might be
680 * in cmp_and_merge_page on one of the rmap_items we would be removing.
682 static int unmerge_ksm_pages(struct vm_area_struct *vma,
683 unsigned long start, unsigned long end)
685 unsigned long addr;
686 int err = 0;
688 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
689 if (ksm_test_exit(vma->vm_mm))
690 break;
691 if (signal_pending(current))
692 err = -ERESTARTSYS;
693 else
694 err = break_ksm(vma, addr);
696 return err;
699 #ifdef CONFIG_SYSFS
701 * Only called through the sysfs control interface:
703 static int remove_stable_node(struct stable_node *stable_node)
705 struct page *page;
706 int err;
708 page = get_ksm_page(stable_node, true);
709 if (!page) {
711 * get_ksm_page did remove_node_from_stable_tree itself.
713 return 0;
716 if (WARN_ON_ONCE(page_mapped(page))) {
718 * This should not happen: but if it does, just refuse to let
719 * merge_across_nodes be switched - there is no need to panic.
721 err = -EBUSY;
722 } else {
724 * The stable node did not yet appear stale to get_ksm_page(),
725 * since that allows for an unmapped ksm page to be recognized
726 * right up until it is freed; but the node is safe to remove.
727 * This page might be in a pagevec waiting to be freed,
728 * or it might be PageSwapCache (perhaps under writeback),
729 * or it might have been removed from swapcache a moment ago.
731 set_page_stable_node(page, NULL);
732 remove_node_from_stable_tree(stable_node);
733 err = 0;
736 unlock_page(page);
737 put_page(page);
738 return err;
741 static int remove_all_stable_nodes(void)
743 struct stable_node *stable_node;
744 struct list_head *this, *next;
745 int nid;
746 int err = 0;
748 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
749 while (root_stable_tree[nid].rb_node) {
750 stable_node = rb_entry(root_stable_tree[nid].rb_node,
751 struct stable_node, node);
752 if (remove_stable_node(stable_node)) {
753 err = -EBUSY;
754 break; /* proceed to next nid */
756 cond_resched();
759 list_for_each_safe(this, next, &migrate_nodes) {
760 stable_node = list_entry(this, struct stable_node, list);
761 if (remove_stable_node(stable_node))
762 err = -EBUSY;
763 cond_resched();
765 return err;
768 static int unmerge_and_remove_all_rmap_items(void)
770 struct mm_slot *mm_slot;
771 struct mm_struct *mm;
772 struct vm_area_struct *vma;
773 int err = 0;
775 spin_lock(&ksm_mmlist_lock);
776 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
777 struct mm_slot, mm_list);
778 spin_unlock(&ksm_mmlist_lock);
780 for (mm_slot = ksm_scan.mm_slot;
781 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
782 mm = mm_slot->mm;
783 down_read(&mm->mmap_sem);
784 for (vma = mm->mmap; vma; vma = vma->vm_next) {
785 if (ksm_test_exit(mm))
786 break;
787 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
788 continue;
789 err = unmerge_ksm_pages(vma,
790 vma->vm_start, vma->vm_end);
791 if (err)
792 goto error;
795 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797 spin_lock(&ksm_mmlist_lock);
798 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
799 struct mm_slot, mm_list);
800 if (ksm_test_exit(mm)) {
801 hash_del(&mm_slot->link);
802 list_del(&mm_slot->mm_list);
803 spin_unlock(&ksm_mmlist_lock);
805 free_mm_slot(mm_slot);
806 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
807 up_read(&mm->mmap_sem);
808 mmdrop(mm);
809 } else {
810 spin_unlock(&ksm_mmlist_lock);
811 up_read(&mm->mmap_sem);
815 /* Clean up stable nodes, but don't worry if some are still busy */
816 remove_all_stable_nodes();
817 ksm_scan.seqnr = 0;
818 return 0;
820 error:
821 up_read(&mm->mmap_sem);
822 spin_lock(&ksm_mmlist_lock);
823 ksm_scan.mm_slot = &ksm_mm_head;
824 spin_unlock(&ksm_mmlist_lock);
825 return err;
827 #endif /* CONFIG_SYSFS */
829 static u32 calc_checksum(struct page *page)
831 u32 checksum;
832 void *addr = kmap_atomic(page);
833 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
834 kunmap_atomic(addr);
835 return checksum;
838 static int memcmp_pages(struct page *page1, struct page *page2)
840 char *addr1, *addr2;
841 int ret;
843 addr1 = kmap_atomic(page1);
844 addr2 = kmap_atomic(page2);
845 ret = memcmp(addr1, addr2, PAGE_SIZE);
846 kunmap_atomic(addr2);
847 kunmap_atomic(addr1);
848 return ret;
851 static inline int pages_identical(struct page *page1, struct page *page2)
853 return !memcmp_pages(page1, page2);
856 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
857 pte_t *orig_pte)
859 struct mm_struct *mm = vma->vm_mm;
860 unsigned long addr;
861 pte_t *ptep;
862 spinlock_t *ptl;
863 int swapped;
864 int err = -EFAULT;
865 unsigned long mmun_start; /* For mmu_notifiers */
866 unsigned long mmun_end; /* For mmu_notifiers */
868 addr = page_address_in_vma(page, vma);
869 if (addr == -EFAULT)
870 goto out;
872 BUG_ON(PageTransCompound(page));
874 mmun_start = addr;
875 mmun_end = addr + PAGE_SIZE;
876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
878 ptep = page_check_address(page, mm, addr, &ptl, 0);
879 if (!ptep)
880 goto out_mn;
882 if (pte_write(*ptep) || pte_dirty(*ptep)) {
883 pte_t entry;
885 swapped = PageSwapCache(page);
886 flush_cache_page(vma, addr, page_to_pfn(page));
888 * Ok this is tricky, when get_user_pages_fast() run it doesn't
889 * take any lock, therefore the check that we are going to make
890 * with the pagecount against the mapcount is racey and
891 * O_DIRECT can happen right after the check.
892 * So we clear the pte and flush the tlb before the check
893 * this assure us that no O_DIRECT can happen after the check
894 * or in the middle of the check.
896 entry = ptep_clear_flush_notify(vma, addr, ptep);
898 * Check that no O_DIRECT or similar I/O is in progress on the
899 * page
901 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
902 set_pte_at(mm, addr, ptep, entry);
903 goto out_unlock;
905 if (pte_dirty(entry))
906 set_page_dirty(page);
907 entry = pte_mkclean(pte_wrprotect(entry));
908 set_pte_at_notify(mm, addr, ptep, entry);
910 *orig_pte = *ptep;
911 err = 0;
913 out_unlock:
914 pte_unmap_unlock(ptep, ptl);
915 out_mn:
916 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
917 out:
918 return err;
922 * replace_page - replace page in vma by new ksm page
923 * @vma: vma that holds the pte pointing to page
924 * @page: the page we are replacing by kpage
925 * @kpage: the ksm page we replace page by
926 * @orig_pte: the original value of the pte
928 * Returns 0 on success, -EFAULT on failure.
930 static int replace_page(struct vm_area_struct *vma, struct page *page,
931 struct page *kpage, pte_t orig_pte)
933 struct mm_struct *mm = vma->vm_mm;
934 pmd_t *pmd;
935 pte_t *ptep;
936 spinlock_t *ptl;
937 unsigned long addr;
938 int err = -EFAULT;
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
942 addr = page_address_in_vma(page, vma);
943 if (addr == -EFAULT)
944 goto out;
946 pmd = mm_find_pmd(mm, addr);
947 if (!pmd)
948 goto out;
950 mmun_start = addr;
951 mmun_end = addr + PAGE_SIZE;
952 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
954 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
955 if (!pte_same(*ptep, orig_pte)) {
956 pte_unmap_unlock(ptep, ptl);
957 goto out_mn;
960 get_page(kpage);
961 page_add_anon_rmap(kpage, vma, addr);
963 flush_cache_page(vma, addr, pte_pfn(*ptep));
964 ptep_clear_flush_notify(vma, addr, ptep);
965 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
967 page_remove_rmap(page);
968 if (!page_mapped(page))
969 try_to_free_swap(page);
970 put_page(page);
972 pte_unmap_unlock(ptep, ptl);
973 err = 0;
974 out_mn:
975 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
976 out:
977 return err;
980 static int page_trans_compound_anon_split(struct page *page)
982 int ret = 0;
983 struct page *transhuge_head = page_trans_compound_anon(page);
984 if (transhuge_head) {
985 /* Get the reference on the head to split it. */
986 if (get_page_unless_zero(transhuge_head)) {
988 * Recheck we got the reference while the head
989 * was still anonymous.
991 if (PageAnon(transhuge_head))
992 ret = split_huge_page(transhuge_head);
993 else
995 * Retry later if split_huge_page run
996 * from under us.
998 ret = 1;
999 put_page(transhuge_head);
1000 } else
1001 /* Retry later if split_huge_page run from under us. */
1002 ret = 1;
1004 return ret;
1008 * try_to_merge_one_page - take two pages and merge them into one
1009 * @vma: the vma that holds the pte pointing to page
1010 * @page: the PageAnon page that we want to replace with kpage
1011 * @kpage: the PageKsm page that we want to map instead of page,
1012 * or NULL the first time when we want to use page as kpage.
1014 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1016 static int try_to_merge_one_page(struct vm_area_struct *vma,
1017 struct page *page, struct page *kpage)
1019 pte_t orig_pte = __pte(0);
1020 int err = -EFAULT;
1022 if (page == kpage) /* ksm page forked */
1023 return 0;
1025 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1026 goto out;
1027 BUG_ON(PageTransCompound(page));
1028 if (!PageAnon(page))
1029 goto out;
1032 * We need the page lock to read a stable PageSwapCache in
1033 * write_protect_page(). We use trylock_page() instead of
1034 * lock_page() because we don't want to wait here - we
1035 * prefer to continue scanning and merging different pages,
1036 * then come back to this page when it is unlocked.
1038 if (!trylock_page(page))
1039 goto out;
1041 * If this anonymous page is mapped only here, its pte may need
1042 * to be write-protected. If it's mapped elsewhere, all of its
1043 * ptes are necessarily already write-protected. But in either
1044 * case, we need to lock and check page_count is not raised.
1046 if (write_protect_page(vma, page, &orig_pte) == 0) {
1047 if (!kpage) {
1049 * While we hold page lock, upgrade page from
1050 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1051 * stable_tree_insert() will update stable_node.
1053 set_page_stable_node(page, NULL);
1054 mark_page_accessed(page);
1055 err = 0;
1056 } else if (pages_identical(page, kpage))
1057 err = replace_page(vma, page, kpage, orig_pte);
1060 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061 munlock_vma_page(page);
1062 if (!PageMlocked(kpage)) {
1063 unlock_page(page);
1064 lock_page(kpage);
1065 mlock_vma_page(kpage);
1066 page = kpage; /* for final unlock */
1070 unlock_page(page);
1071 out:
1072 return err;
1076 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1077 * but no new kernel page is allocated: kpage must already be a ksm page.
1079 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1082 struct page *page, struct page *kpage)
1084 struct mm_struct *mm = rmap_item->mm;
1085 struct vm_area_struct *vma;
1086 int err = -EFAULT;
1088 down_read(&mm->mmap_sem);
1089 vma = find_mergeable_vma(mm, rmap_item->address);
1090 if (!vma)
1091 goto out;
1093 err = try_to_merge_one_page(vma, page, kpage);
1094 if (err)
1095 goto out;
1097 /* Unstable nid is in union with stable anon_vma: remove first */
1098 remove_rmap_item_from_tree(rmap_item);
1100 /* Must get reference to anon_vma while still holding mmap_sem */
1101 rmap_item->anon_vma = vma->anon_vma;
1102 get_anon_vma(vma->anon_vma);
1103 out:
1104 up_read(&mm->mmap_sem);
1105 return err;
1109 * try_to_merge_two_pages - take two identical pages and prepare them
1110 * to be merged into one page.
1112 * This function returns the kpage if we successfully merged two identical
1113 * pages into one ksm page, NULL otherwise.
1115 * Note that this function upgrades page to ksm page: if one of the pages
1116 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1119 struct page *page,
1120 struct rmap_item *tree_rmap_item,
1121 struct page *tree_page)
1123 int err;
1125 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1126 if (!err) {
1127 err = try_to_merge_with_ksm_page(tree_rmap_item,
1128 tree_page, page);
1130 * If that fails, we have a ksm page with only one pte
1131 * pointing to it: so break it.
1133 if (err)
1134 break_cow(rmap_item);
1136 return err ? NULL : page;
1140 * stable_tree_search - search for page inside the stable tree
1142 * This function checks if there is a page inside the stable tree
1143 * with identical content to the page that we are scanning right now.
1145 * This function returns the stable tree node of identical content if found,
1146 * NULL otherwise.
1148 static struct page *stable_tree_search(struct page *page)
1150 int nid;
1151 struct rb_root *root;
1152 struct rb_node **new;
1153 struct rb_node *parent;
1154 struct stable_node *stable_node;
1155 struct stable_node *page_node;
1157 page_node = page_stable_node(page);
1158 if (page_node && page_node->head != &migrate_nodes) {
1159 /* ksm page forked */
1160 get_page(page);
1161 return page;
1164 nid = get_kpfn_nid(page_to_pfn(page));
1165 root = root_stable_tree + nid;
1166 again:
1167 new = &root->rb_node;
1168 parent = NULL;
1170 while (*new) {
1171 struct page *tree_page;
1172 int ret;
1174 cond_resched();
1175 stable_node = rb_entry(*new, struct stable_node, node);
1176 tree_page = get_ksm_page(stable_node, false);
1177 if (!tree_page) {
1179 * If we walked over a stale stable_node,
1180 * get_ksm_page() will call rb_erase() and it
1181 * may rebalance the tree from under us. So
1182 * restart the search from scratch. Returning
1183 * NULL would be safe too, but we'd generate
1184 * false negative insertions just because some
1185 * stable_node was stale.
1187 goto again;
1190 ret = memcmp_pages(page, tree_page);
1191 put_page(tree_page);
1193 parent = *new;
1194 if (ret < 0)
1195 new = &parent->rb_left;
1196 else if (ret > 0)
1197 new = &parent->rb_right;
1198 else {
1200 * Lock and unlock the stable_node's page (which
1201 * might already have been migrated) so that page
1202 * migration is sure to notice its raised count.
1203 * It would be more elegant to return stable_node
1204 * than kpage, but that involves more changes.
1206 tree_page = get_ksm_page(stable_node, true);
1207 if (tree_page) {
1208 unlock_page(tree_page);
1209 if (get_kpfn_nid(stable_node->kpfn) !=
1210 NUMA(stable_node->nid)) {
1211 put_page(tree_page);
1212 goto replace;
1214 return tree_page;
1217 * There is now a place for page_node, but the tree may
1218 * have been rebalanced, so re-evaluate parent and new.
1220 if (page_node)
1221 goto again;
1222 return NULL;
1226 if (!page_node)
1227 return NULL;
1229 list_del(&page_node->list);
1230 DO_NUMA(page_node->nid = nid);
1231 rb_link_node(&page_node->node, parent, new);
1232 rb_insert_color(&page_node->node, root);
1233 get_page(page);
1234 return page;
1236 replace:
1237 if (page_node) {
1238 list_del(&page_node->list);
1239 DO_NUMA(page_node->nid = nid);
1240 rb_replace_node(&stable_node->node, &page_node->node, root);
1241 get_page(page);
1242 } else {
1243 rb_erase(&stable_node->node, root);
1244 page = NULL;
1246 stable_node->head = &migrate_nodes;
1247 list_add(&stable_node->list, stable_node->head);
1248 return page;
1252 * stable_tree_insert - insert stable tree node pointing to new ksm page
1253 * into the stable tree.
1255 * This function returns the stable tree node just allocated on success,
1256 * NULL otherwise.
1258 static struct stable_node *stable_tree_insert(struct page *kpage)
1260 int nid;
1261 unsigned long kpfn;
1262 struct rb_root *root;
1263 struct rb_node **new;
1264 struct rb_node *parent;
1265 struct stable_node *stable_node;
1267 kpfn = page_to_pfn(kpage);
1268 nid = get_kpfn_nid(kpfn);
1269 root = root_stable_tree + nid;
1270 again:
1271 parent = NULL;
1272 new = &root->rb_node;
1274 while (*new) {
1275 struct page *tree_page;
1276 int ret;
1278 cond_resched();
1279 stable_node = rb_entry(*new, struct stable_node, node);
1280 tree_page = get_ksm_page(stable_node, false);
1281 if (!tree_page) {
1283 * If we walked over a stale stable_node,
1284 * get_ksm_page() will call rb_erase() and it
1285 * may rebalance the tree from under us. So
1286 * restart the search from scratch. Returning
1287 * NULL would be safe too, but we'd generate
1288 * false negative insertions just because some
1289 * stable_node was stale.
1291 goto again;
1294 ret = memcmp_pages(kpage, tree_page);
1295 put_page(tree_page);
1297 parent = *new;
1298 if (ret < 0)
1299 new = &parent->rb_left;
1300 else if (ret > 0)
1301 new = &parent->rb_right;
1302 else {
1304 * It is not a bug that stable_tree_search() didn't
1305 * find this node: because at that time our page was
1306 * not yet write-protected, so may have changed since.
1308 return NULL;
1312 stable_node = alloc_stable_node();
1313 if (!stable_node)
1314 return NULL;
1316 INIT_HLIST_HEAD(&stable_node->hlist);
1317 stable_node->kpfn = kpfn;
1318 set_page_stable_node(kpage, stable_node);
1319 DO_NUMA(stable_node->nid = nid);
1320 rb_link_node(&stable_node->node, parent, new);
1321 rb_insert_color(&stable_node->node, root);
1323 return stable_node;
1327 * unstable_tree_search_insert - search for identical page,
1328 * else insert rmap_item into the unstable tree.
1330 * This function searches for a page in the unstable tree identical to the
1331 * page currently being scanned; and if no identical page is found in the
1332 * tree, we insert rmap_item as a new object into the unstable tree.
1334 * This function returns pointer to rmap_item found to be identical
1335 * to the currently scanned page, NULL otherwise.
1337 * This function does both searching and inserting, because they share
1338 * the same walking algorithm in an rbtree.
1340 static
1341 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1342 struct page *page,
1343 struct page **tree_pagep)
1345 struct rb_node **new;
1346 struct rb_root *root;
1347 struct rb_node *parent = NULL;
1348 int nid;
1350 nid = get_kpfn_nid(page_to_pfn(page));
1351 root = root_unstable_tree + nid;
1352 new = &root->rb_node;
1354 while (*new) {
1355 struct rmap_item *tree_rmap_item;
1356 struct page *tree_page;
1357 int ret;
1359 cond_resched();
1360 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1361 tree_page = get_mergeable_page(tree_rmap_item);
1362 if (!tree_page)
1363 return NULL;
1366 * Don't substitute a ksm page for a forked page.
1368 if (page == tree_page) {
1369 put_page(tree_page);
1370 return NULL;
1373 ret = memcmp_pages(page, tree_page);
1375 parent = *new;
1376 if (ret < 0) {
1377 put_page(tree_page);
1378 new = &parent->rb_left;
1379 } else if (ret > 0) {
1380 put_page(tree_page);
1381 new = &parent->rb_right;
1382 } else if (!ksm_merge_across_nodes &&
1383 page_to_nid(tree_page) != nid) {
1385 * If tree_page has been migrated to another NUMA node,
1386 * it will be flushed out and put in the right unstable
1387 * tree next time: only merge with it when across_nodes.
1389 put_page(tree_page);
1390 return NULL;
1391 } else {
1392 *tree_pagep = tree_page;
1393 return tree_rmap_item;
1397 rmap_item->address |= UNSTABLE_FLAG;
1398 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1399 DO_NUMA(rmap_item->nid = nid);
1400 rb_link_node(&rmap_item->node, parent, new);
1401 rb_insert_color(&rmap_item->node, root);
1403 ksm_pages_unshared++;
1404 return NULL;
1408 * stable_tree_append - add another rmap_item to the linked list of
1409 * rmap_items hanging off a given node of the stable tree, all sharing
1410 * the same ksm page.
1412 static void stable_tree_append(struct rmap_item *rmap_item,
1413 struct stable_node *stable_node)
1415 rmap_item->head = stable_node;
1416 rmap_item->address |= STABLE_FLAG;
1417 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1419 if (rmap_item->hlist.next)
1420 ksm_pages_sharing++;
1421 else
1422 ksm_pages_shared++;
1426 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1427 * if not, compare checksum to previous and if it's the same, see if page can
1428 * be inserted into the unstable tree, or merged with a page already there and
1429 * both transferred to the stable tree.
1431 * @page: the page that we are searching identical page to.
1432 * @rmap_item: the reverse mapping into the virtual address of this page
1434 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436 struct rmap_item *tree_rmap_item;
1437 struct page *tree_page = NULL;
1438 struct stable_node *stable_node;
1439 struct page *kpage;
1440 unsigned int checksum;
1441 int err;
1443 stable_node = page_stable_node(page);
1444 if (stable_node) {
1445 if (stable_node->head != &migrate_nodes &&
1446 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1447 rb_erase(&stable_node->node,
1448 root_stable_tree + NUMA(stable_node->nid));
1449 stable_node->head = &migrate_nodes;
1450 list_add(&stable_node->list, stable_node->head);
1452 if (stable_node->head != &migrate_nodes &&
1453 rmap_item->head == stable_node)
1454 return;
1457 /* We first start with searching the page inside the stable tree */
1458 kpage = stable_tree_search(page);
1459 if (kpage == page && rmap_item->head == stable_node) {
1460 put_page(kpage);
1461 return;
1464 remove_rmap_item_from_tree(rmap_item);
1466 if (kpage) {
1467 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1468 if (!err) {
1470 * The page was successfully merged:
1471 * add its rmap_item to the stable tree.
1473 lock_page(kpage);
1474 stable_tree_append(rmap_item, page_stable_node(kpage));
1475 unlock_page(kpage);
1477 put_page(kpage);
1478 return;
1482 * If the hash value of the page has changed from the last time
1483 * we calculated it, this page is changing frequently: therefore we
1484 * don't want to insert it in the unstable tree, and we don't want
1485 * to waste our time searching for something identical to it there.
1487 checksum = calc_checksum(page);
1488 if (rmap_item->oldchecksum != checksum) {
1489 rmap_item->oldchecksum = checksum;
1490 return;
1493 tree_rmap_item =
1494 unstable_tree_search_insert(rmap_item, page, &tree_page);
1495 if (tree_rmap_item) {
1496 kpage = try_to_merge_two_pages(rmap_item, page,
1497 tree_rmap_item, tree_page);
1498 put_page(tree_page);
1499 if (kpage) {
1501 * The pages were successfully merged: insert new
1502 * node in the stable tree and add both rmap_items.
1504 lock_page(kpage);
1505 stable_node = stable_tree_insert(kpage);
1506 if (stable_node) {
1507 stable_tree_append(tree_rmap_item, stable_node);
1508 stable_tree_append(rmap_item, stable_node);
1510 unlock_page(kpage);
1513 * If we fail to insert the page into the stable tree,
1514 * we will have 2 virtual addresses that are pointing
1515 * to a ksm page left outside the stable tree,
1516 * in which case we need to break_cow on both.
1518 if (!stable_node) {
1519 break_cow(tree_rmap_item);
1520 break_cow(rmap_item);
1526 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1527 struct rmap_item **rmap_list,
1528 unsigned long addr)
1530 struct rmap_item *rmap_item;
1532 while (*rmap_list) {
1533 rmap_item = *rmap_list;
1534 if ((rmap_item->address & PAGE_MASK) == addr)
1535 return rmap_item;
1536 if (rmap_item->address > addr)
1537 break;
1538 *rmap_list = rmap_item->rmap_list;
1539 remove_rmap_item_from_tree(rmap_item);
1540 free_rmap_item(rmap_item);
1543 rmap_item = alloc_rmap_item();
1544 if (rmap_item) {
1545 /* It has already been zeroed */
1546 rmap_item->mm = mm_slot->mm;
1547 rmap_item->address = addr;
1548 rmap_item->rmap_list = *rmap_list;
1549 *rmap_list = rmap_item;
1551 return rmap_item;
1554 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1556 struct mm_struct *mm;
1557 struct mm_slot *slot;
1558 struct vm_area_struct *vma;
1559 struct rmap_item *rmap_item;
1560 int nid;
1562 if (list_empty(&ksm_mm_head.mm_list))
1563 return NULL;
1565 slot = ksm_scan.mm_slot;
1566 if (slot == &ksm_mm_head) {
1568 * A number of pages can hang around indefinitely on per-cpu
1569 * pagevecs, raised page count preventing write_protect_page
1570 * from merging them. Though it doesn't really matter much,
1571 * it is puzzling to see some stuck in pages_volatile until
1572 * other activity jostles them out, and they also prevented
1573 * LTP's KSM test from succeeding deterministically; so drain
1574 * them here (here rather than on entry to ksm_do_scan(),
1575 * so we don't IPI too often when pages_to_scan is set low).
1577 lru_add_drain_all();
1580 * Whereas stale stable_nodes on the stable_tree itself
1581 * get pruned in the regular course of stable_tree_search(),
1582 * those moved out to the migrate_nodes list can accumulate:
1583 * so prune them once before each full scan.
1585 if (!ksm_merge_across_nodes) {
1586 struct stable_node *stable_node;
1587 struct list_head *this, *next;
1588 struct page *page;
1590 list_for_each_safe(this, next, &migrate_nodes) {
1591 stable_node = list_entry(this,
1592 struct stable_node, list);
1593 page = get_ksm_page(stable_node, false);
1594 if (page)
1595 put_page(page);
1596 cond_resched();
1600 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1601 root_unstable_tree[nid] = RB_ROOT;
1603 spin_lock(&ksm_mmlist_lock);
1604 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1605 ksm_scan.mm_slot = slot;
1606 spin_unlock(&ksm_mmlist_lock);
1608 * Although we tested list_empty() above, a racing __ksm_exit
1609 * of the last mm on the list may have removed it since then.
1611 if (slot == &ksm_mm_head)
1612 return NULL;
1613 next_mm:
1614 ksm_scan.address = 0;
1615 ksm_scan.rmap_list = &slot->rmap_list;
1618 mm = slot->mm;
1619 down_read(&mm->mmap_sem);
1620 if (ksm_test_exit(mm))
1621 vma = NULL;
1622 else
1623 vma = find_vma(mm, ksm_scan.address);
1625 for (; vma; vma = vma->vm_next) {
1626 if (!(vma->vm_flags & VM_MERGEABLE))
1627 continue;
1628 if (ksm_scan.address < vma->vm_start)
1629 ksm_scan.address = vma->vm_start;
1630 if (!vma->anon_vma)
1631 ksm_scan.address = vma->vm_end;
1633 while (ksm_scan.address < vma->vm_end) {
1634 if (ksm_test_exit(mm))
1635 break;
1636 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1637 if (IS_ERR_OR_NULL(*page)) {
1638 ksm_scan.address += PAGE_SIZE;
1639 cond_resched();
1640 continue;
1642 if (PageAnon(*page) ||
1643 page_trans_compound_anon(*page)) {
1644 flush_anon_page(vma, *page, ksm_scan.address);
1645 flush_dcache_page(*page);
1646 rmap_item = get_next_rmap_item(slot,
1647 ksm_scan.rmap_list, ksm_scan.address);
1648 if (rmap_item) {
1649 ksm_scan.rmap_list =
1650 &rmap_item->rmap_list;
1651 ksm_scan.address += PAGE_SIZE;
1652 } else
1653 put_page(*page);
1654 up_read(&mm->mmap_sem);
1655 return rmap_item;
1657 put_page(*page);
1658 ksm_scan.address += PAGE_SIZE;
1659 cond_resched();
1663 if (ksm_test_exit(mm)) {
1664 ksm_scan.address = 0;
1665 ksm_scan.rmap_list = &slot->rmap_list;
1668 * Nuke all the rmap_items that are above this current rmap:
1669 * because there were no VM_MERGEABLE vmas with such addresses.
1671 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1673 spin_lock(&ksm_mmlist_lock);
1674 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1675 struct mm_slot, mm_list);
1676 if (ksm_scan.address == 0) {
1678 * We've completed a full scan of all vmas, holding mmap_sem
1679 * throughout, and found no VM_MERGEABLE: so do the same as
1680 * __ksm_exit does to remove this mm from all our lists now.
1681 * This applies either when cleaning up after __ksm_exit
1682 * (but beware: we can reach here even before __ksm_exit),
1683 * or when all VM_MERGEABLE areas have been unmapped (and
1684 * mmap_sem then protects against race with MADV_MERGEABLE).
1686 hash_del(&slot->link);
1687 list_del(&slot->mm_list);
1688 spin_unlock(&ksm_mmlist_lock);
1690 free_mm_slot(slot);
1691 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1692 up_read(&mm->mmap_sem);
1693 mmdrop(mm);
1694 } else {
1695 spin_unlock(&ksm_mmlist_lock);
1696 up_read(&mm->mmap_sem);
1699 /* Repeat until we've completed scanning the whole list */
1700 slot = ksm_scan.mm_slot;
1701 if (slot != &ksm_mm_head)
1702 goto next_mm;
1704 ksm_scan.seqnr++;
1705 return NULL;
1709 * ksm_do_scan - the ksm scanner main worker function.
1710 * @scan_npages - number of pages we want to scan before we return.
1712 static void ksm_do_scan(unsigned int scan_npages)
1714 struct rmap_item *rmap_item;
1715 struct page *uninitialized_var(page);
1717 while (scan_npages-- && likely(!freezing(current))) {
1718 cond_resched();
1719 rmap_item = scan_get_next_rmap_item(&page);
1720 if (!rmap_item)
1721 return;
1722 cmp_and_merge_page(page, rmap_item);
1723 put_page(page);
1727 static int ksmd_should_run(void)
1729 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1732 static int ksm_scan_thread(void *nothing)
1734 set_freezable();
1735 set_user_nice(current, 5);
1737 while (!kthread_should_stop()) {
1738 mutex_lock(&ksm_thread_mutex);
1739 wait_while_offlining();
1740 if (ksmd_should_run())
1741 ksm_do_scan(ksm_thread_pages_to_scan);
1742 mutex_unlock(&ksm_thread_mutex);
1744 try_to_freeze();
1746 if (ksmd_should_run()) {
1747 schedule_timeout_interruptible(
1748 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1749 } else {
1750 wait_event_freezable(ksm_thread_wait,
1751 ksmd_should_run() || kthread_should_stop());
1754 return 0;
1757 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1758 unsigned long end, int advice, unsigned long *vm_flags)
1760 struct mm_struct *mm = vma->vm_mm;
1761 int err;
1763 switch (advice) {
1764 case MADV_MERGEABLE:
1766 * Be somewhat over-protective for now!
1768 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1769 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1770 VM_HUGETLB | VM_MIXEDMAP))
1771 return 0; /* just ignore the advice */
1773 #ifdef VM_SAO
1774 if (*vm_flags & VM_SAO)
1775 return 0;
1776 #endif
1778 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1779 err = __ksm_enter(mm);
1780 if (err)
1781 return err;
1784 *vm_flags |= VM_MERGEABLE;
1785 break;
1787 case MADV_UNMERGEABLE:
1788 if (!(*vm_flags & VM_MERGEABLE))
1789 return 0; /* just ignore the advice */
1791 if (vma->anon_vma) {
1792 err = unmerge_ksm_pages(vma, start, end);
1793 if (err)
1794 return err;
1797 *vm_flags &= ~VM_MERGEABLE;
1798 break;
1801 return 0;
1804 int __ksm_enter(struct mm_struct *mm)
1806 struct mm_slot *mm_slot;
1807 int needs_wakeup;
1809 mm_slot = alloc_mm_slot();
1810 if (!mm_slot)
1811 return -ENOMEM;
1813 /* Check ksm_run too? Would need tighter locking */
1814 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1816 spin_lock(&ksm_mmlist_lock);
1817 insert_to_mm_slots_hash(mm, mm_slot);
1819 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1820 * insert just behind the scanning cursor, to let the area settle
1821 * down a little; when fork is followed by immediate exec, we don't
1822 * want ksmd to waste time setting up and tearing down an rmap_list.
1824 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1825 * scanning cursor, otherwise KSM pages in newly forked mms will be
1826 * missed: then we might as well insert at the end of the list.
1828 if (ksm_run & KSM_RUN_UNMERGE)
1829 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1830 else
1831 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1832 spin_unlock(&ksm_mmlist_lock);
1834 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1835 atomic_inc(&mm->mm_count);
1837 if (needs_wakeup)
1838 wake_up_interruptible(&ksm_thread_wait);
1840 return 0;
1843 void __ksm_exit(struct mm_struct *mm)
1845 struct mm_slot *mm_slot;
1846 int easy_to_free = 0;
1849 * This process is exiting: if it's straightforward (as is the
1850 * case when ksmd was never running), free mm_slot immediately.
1851 * But if it's at the cursor or has rmap_items linked to it, use
1852 * mmap_sem to synchronize with any break_cows before pagetables
1853 * are freed, and leave the mm_slot on the list for ksmd to free.
1854 * Beware: ksm may already have noticed it exiting and freed the slot.
1857 spin_lock(&ksm_mmlist_lock);
1858 mm_slot = get_mm_slot(mm);
1859 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1860 if (!mm_slot->rmap_list) {
1861 hash_del(&mm_slot->link);
1862 list_del(&mm_slot->mm_list);
1863 easy_to_free = 1;
1864 } else {
1865 list_move(&mm_slot->mm_list,
1866 &ksm_scan.mm_slot->mm_list);
1869 spin_unlock(&ksm_mmlist_lock);
1871 if (easy_to_free) {
1872 free_mm_slot(mm_slot);
1873 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1874 mmdrop(mm);
1875 } else if (mm_slot) {
1876 down_write(&mm->mmap_sem);
1877 up_write(&mm->mmap_sem);
1881 struct page *ksm_might_need_to_copy(struct page *page,
1882 struct vm_area_struct *vma, unsigned long address)
1884 struct anon_vma *anon_vma = page_anon_vma(page);
1885 struct page *new_page;
1887 if (PageKsm(page)) {
1888 if (page_stable_node(page) &&
1889 !(ksm_run & KSM_RUN_UNMERGE))
1890 return page; /* no need to copy it */
1891 } else if (!anon_vma) {
1892 return page; /* no need to copy it */
1893 } else if (anon_vma->root == vma->anon_vma->root &&
1894 page->index == linear_page_index(vma, address)) {
1895 return page; /* still no need to copy it */
1897 if (!PageUptodate(page))
1898 return page; /* let do_swap_page report the error */
1900 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1901 if (new_page) {
1902 copy_user_highpage(new_page, page, address, vma);
1904 SetPageDirty(new_page);
1905 __SetPageUptodate(new_page);
1906 __set_page_locked(new_page);
1909 return new_page;
1912 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1914 struct stable_node *stable_node;
1915 struct rmap_item *rmap_item;
1916 int ret = SWAP_AGAIN;
1917 int search_new_forks = 0;
1919 VM_BUG_ON_PAGE(!PageKsm(page), page);
1922 * Rely on the page lock to protect against concurrent modifications
1923 * to that page's node of the stable tree.
1925 VM_BUG_ON_PAGE(!PageLocked(page), page);
1927 stable_node = page_stable_node(page);
1928 if (!stable_node)
1929 return ret;
1930 again:
1931 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1932 struct anon_vma *anon_vma = rmap_item->anon_vma;
1933 struct anon_vma_chain *vmac;
1934 struct vm_area_struct *vma;
1936 cond_resched();
1937 anon_vma_lock_read(anon_vma);
1938 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1939 0, ULONG_MAX) {
1940 cond_resched();
1941 vma = vmac->vma;
1942 if (rmap_item->address < vma->vm_start ||
1943 rmap_item->address >= vma->vm_end)
1944 continue;
1946 * Initially we examine only the vma which covers this
1947 * rmap_item; but later, if there is still work to do,
1948 * we examine covering vmas in other mms: in case they
1949 * were forked from the original since ksmd passed.
1951 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1952 continue;
1954 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1955 continue;
1957 ret = rwc->rmap_one(page, vma,
1958 rmap_item->address, rwc->arg);
1959 if (ret != SWAP_AGAIN) {
1960 anon_vma_unlock_read(anon_vma);
1961 goto out;
1963 if (rwc->done && rwc->done(page)) {
1964 anon_vma_unlock_read(anon_vma);
1965 goto out;
1968 anon_vma_unlock_read(anon_vma);
1970 if (!search_new_forks++)
1971 goto again;
1972 out:
1973 return ret;
1976 #ifdef CONFIG_MIGRATION
1977 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1979 struct stable_node *stable_node;
1981 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1982 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1983 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1985 stable_node = page_stable_node(newpage);
1986 if (stable_node) {
1987 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1988 stable_node->kpfn = page_to_pfn(newpage);
1990 * newpage->mapping was set in advance; now we need smp_wmb()
1991 * to make sure that the new stable_node->kpfn is visible
1992 * to get_ksm_page() before it can see that oldpage->mapping
1993 * has gone stale (or that PageSwapCache has been cleared).
1995 smp_wmb();
1996 set_page_stable_node(oldpage, NULL);
1999 #endif /* CONFIG_MIGRATION */
2001 #ifdef CONFIG_MEMORY_HOTREMOVE
2002 static void wait_while_offlining(void)
2004 while (ksm_run & KSM_RUN_OFFLINE) {
2005 mutex_unlock(&ksm_thread_mutex);
2006 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2007 TASK_UNINTERRUPTIBLE);
2008 mutex_lock(&ksm_thread_mutex);
2012 static void ksm_check_stable_tree(unsigned long start_pfn,
2013 unsigned long end_pfn)
2015 struct stable_node *stable_node;
2016 struct list_head *this, *next;
2017 struct rb_node *node;
2018 int nid;
2020 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2021 node = rb_first(root_stable_tree + nid);
2022 while (node) {
2023 stable_node = rb_entry(node, struct stable_node, node);
2024 if (stable_node->kpfn >= start_pfn &&
2025 stable_node->kpfn < end_pfn) {
2027 * Don't get_ksm_page, page has already gone:
2028 * which is why we keep kpfn instead of page*
2030 remove_node_from_stable_tree(stable_node);
2031 node = rb_first(root_stable_tree + nid);
2032 } else
2033 node = rb_next(node);
2034 cond_resched();
2037 list_for_each_safe(this, next, &migrate_nodes) {
2038 stable_node = list_entry(this, struct stable_node, list);
2039 if (stable_node->kpfn >= start_pfn &&
2040 stable_node->kpfn < end_pfn)
2041 remove_node_from_stable_tree(stable_node);
2042 cond_resched();
2046 static int ksm_memory_callback(struct notifier_block *self,
2047 unsigned long action, void *arg)
2049 struct memory_notify *mn = arg;
2051 switch (action) {
2052 case MEM_GOING_OFFLINE:
2054 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2055 * and remove_all_stable_nodes() while memory is going offline:
2056 * it is unsafe for them to touch the stable tree at this time.
2057 * But unmerge_ksm_pages(), rmap lookups and other entry points
2058 * which do not need the ksm_thread_mutex are all safe.
2060 mutex_lock(&ksm_thread_mutex);
2061 ksm_run |= KSM_RUN_OFFLINE;
2062 mutex_unlock(&ksm_thread_mutex);
2063 break;
2065 case MEM_OFFLINE:
2067 * Most of the work is done by page migration; but there might
2068 * be a few stable_nodes left over, still pointing to struct
2069 * pages which have been offlined: prune those from the tree,
2070 * otherwise get_ksm_page() might later try to access a
2071 * non-existent struct page.
2073 ksm_check_stable_tree(mn->start_pfn,
2074 mn->start_pfn + mn->nr_pages);
2075 /* fallthrough */
2077 case MEM_CANCEL_OFFLINE:
2078 mutex_lock(&ksm_thread_mutex);
2079 ksm_run &= ~KSM_RUN_OFFLINE;
2080 mutex_unlock(&ksm_thread_mutex);
2082 smp_mb(); /* wake_up_bit advises this */
2083 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2084 break;
2086 return NOTIFY_OK;
2088 #else
2089 static void wait_while_offlining(void)
2092 #endif /* CONFIG_MEMORY_HOTREMOVE */
2094 #ifdef CONFIG_SYSFS
2096 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2099 #define KSM_ATTR_RO(_name) \
2100 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2101 #define KSM_ATTR(_name) \
2102 static struct kobj_attribute _name##_attr = \
2103 __ATTR(_name, 0644, _name##_show, _name##_store)
2105 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2106 struct kobj_attribute *attr, char *buf)
2108 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2111 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2112 struct kobj_attribute *attr,
2113 const char *buf, size_t count)
2115 unsigned long msecs;
2116 int err;
2118 err = kstrtoul(buf, 10, &msecs);
2119 if (err || msecs > UINT_MAX)
2120 return -EINVAL;
2122 ksm_thread_sleep_millisecs = msecs;
2124 return count;
2126 KSM_ATTR(sleep_millisecs);
2128 static ssize_t pages_to_scan_show(struct kobject *kobj,
2129 struct kobj_attribute *attr, char *buf)
2131 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2134 static ssize_t pages_to_scan_store(struct kobject *kobj,
2135 struct kobj_attribute *attr,
2136 const char *buf, size_t count)
2138 int err;
2139 unsigned long nr_pages;
2141 err = kstrtoul(buf, 10, &nr_pages);
2142 if (err || nr_pages > UINT_MAX)
2143 return -EINVAL;
2145 ksm_thread_pages_to_scan = nr_pages;
2147 return count;
2149 KSM_ATTR(pages_to_scan);
2151 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2152 char *buf)
2154 return sprintf(buf, "%lu\n", ksm_run);
2157 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2158 const char *buf, size_t count)
2160 int err;
2161 unsigned long flags;
2163 err = kstrtoul(buf, 10, &flags);
2164 if (err || flags > UINT_MAX)
2165 return -EINVAL;
2166 if (flags > KSM_RUN_UNMERGE)
2167 return -EINVAL;
2170 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2171 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2172 * breaking COW to free the pages_shared (but leaves mm_slots
2173 * on the list for when ksmd may be set running again).
2176 mutex_lock(&ksm_thread_mutex);
2177 wait_while_offlining();
2178 if (ksm_run != flags) {
2179 ksm_run = flags;
2180 if (flags & KSM_RUN_UNMERGE) {
2181 set_current_oom_origin();
2182 err = unmerge_and_remove_all_rmap_items();
2183 clear_current_oom_origin();
2184 if (err) {
2185 ksm_run = KSM_RUN_STOP;
2186 count = err;
2190 mutex_unlock(&ksm_thread_mutex);
2192 if (flags & KSM_RUN_MERGE)
2193 wake_up_interruptible(&ksm_thread_wait);
2195 return count;
2197 KSM_ATTR(run);
2199 #ifdef CONFIG_NUMA
2200 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2201 struct kobj_attribute *attr, char *buf)
2203 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2206 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2207 struct kobj_attribute *attr,
2208 const char *buf, size_t count)
2210 int err;
2211 unsigned long knob;
2213 err = kstrtoul(buf, 10, &knob);
2214 if (err)
2215 return err;
2216 if (knob > 1)
2217 return -EINVAL;
2219 mutex_lock(&ksm_thread_mutex);
2220 wait_while_offlining();
2221 if (ksm_merge_across_nodes != knob) {
2222 if (ksm_pages_shared || remove_all_stable_nodes())
2223 err = -EBUSY;
2224 else if (root_stable_tree == one_stable_tree) {
2225 struct rb_root *buf;
2227 * This is the first time that we switch away from the
2228 * default of merging across nodes: must now allocate
2229 * a buffer to hold as many roots as may be needed.
2230 * Allocate stable and unstable together:
2231 * MAXSMP NODES_SHIFT 10 will use 16kB.
2233 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2234 GFP_KERNEL);
2235 /* Let us assume that RB_ROOT is NULL is zero */
2236 if (!buf)
2237 err = -ENOMEM;
2238 else {
2239 root_stable_tree = buf;
2240 root_unstable_tree = buf + nr_node_ids;
2241 /* Stable tree is empty but not the unstable */
2242 root_unstable_tree[0] = one_unstable_tree[0];
2245 if (!err) {
2246 ksm_merge_across_nodes = knob;
2247 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2250 mutex_unlock(&ksm_thread_mutex);
2252 return err ? err : count;
2254 KSM_ATTR(merge_across_nodes);
2255 #endif
2257 static ssize_t pages_shared_show(struct kobject *kobj,
2258 struct kobj_attribute *attr, char *buf)
2260 return sprintf(buf, "%lu\n", ksm_pages_shared);
2262 KSM_ATTR_RO(pages_shared);
2264 static ssize_t pages_sharing_show(struct kobject *kobj,
2265 struct kobj_attribute *attr, char *buf)
2267 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2269 KSM_ATTR_RO(pages_sharing);
2271 static ssize_t pages_unshared_show(struct kobject *kobj,
2272 struct kobj_attribute *attr, char *buf)
2274 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2276 KSM_ATTR_RO(pages_unshared);
2278 static ssize_t pages_volatile_show(struct kobject *kobj,
2279 struct kobj_attribute *attr, char *buf)
2281 long ksm_pages_volatile;
2283 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2284 - ksm_pages_sharing - ksm_pages_unshared;
2286 * It was not worth any locking to calculate that statistic,
2287 * but it might therefore sometimes be negative: conceal that.
2289 if (ksm_pages_volatile < 0)
2290 ksm_pages_volatile = 0;
2291 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2293 KSM_ATTR_RO(pages_volatile);
2295 static ssize_t full_scans_show(struct kobject *kobj,
2296 struct kobj_attribute *attr, char *buf)
2298 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2300 KSM_ATTR_RO(full_scans);
2302 static struct attribute *ksm_attrs[] = {
2303 &sleep_millisecs_attr.attr,
2304 &pages_to_scan_attr.attr,
2305 &run_attr.attr,
2306 &pages_shared_attr.attr,
2307 &pages_sharing_attr.attr,
2308 &pages_unshared_attr.attr,
2309 &pages_volatile_attr.attr,
2310 &full_scans_attr.attr,
2311 #ifdef CONFIG_NUMA
2312 &merge_across_nodes_attr.attr,
2313 #endif
2314 NULL,
2317 static struct attribute_group ksm_attr_group = {
2318 .attrs = ksm_attrs,
2319 .name = "ksm",
2321 #endif /* CONFIG_SYSFS */
2323 static int __init ksm_init(void)
2325 struct task_struct *ksm_thread;
2326 int err;
2328 err = ksm_slab_init();
2329 if (err)
2330 goto out;
2332 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2333 if (IS_ERR(ksm_thread)) {
2334 pr_err("ksm: creating kthread failed\n");
2335 err = PTR_ERR(ksm_thread);
2336 goto out_free;
2339 #ifdef CONFIG_SYSFS
2340 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2341 if (err) {
2342 pr_err("ksm: register sysfs failed\n");
2343 kthread_stop(ksm_thread);
2344 goto out_free;
2346 #else
2347 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2349 #endif /* CONFIG_SYSFS */
2351 #ifdef CONFIG_MEMORY_HOTREMOVE
2352 /* There is no significance to this priority 100 */
2353 hotplug_memory_notifier(ksm_memory_callback, 100);
2354 #endif
2355 return 0;
2357 out_free:
2358 ksm_slab_free();
2359 out:
2360 return err;
2362 subsys_initcall(ksm_init);