ath9k: fix tx99 use after free
[linux/fpc-iii.git] / kernel / fork.c
blob59faac4de181f77c2d53e13020629f98e4d4f2bd
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
87 #include <trace/events/sched.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
93 * Minimum number of threads to boot the kernel
95 #define MIN_THREADS 20
98 * Maximum number of threads
100 #define MAX_THREADS FUTEX_TID_MASK
103 * Protected counters by write_lock_irq(&tasklist_lock)
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
108 int max_threads; /* tunable limit on nr_threads */
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
117 return lockdep_is_held(&tasklist_lock);
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
122 int nr_processes(void)
124 int cpu;
125 int total = 0;
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
130 return total;
133 void __weak arch_release_task_struct(struct task_struct *tsk)
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
140 static inline struct task_struct *alloc_task_struct_node(int node)
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
145 static inline void free_task_struct(struct task_struct *tsk)
147 kmem_cache_free(task_struct_cachep, tsk);
149 #endif
151 void __weak arch_release_thread_stack(unsigned long *stack)
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
163 #ifdef CONFIG_VMAP_STACK
165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166 * flush. Try to minimize the number of calls by caching stacks.
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
174 #ifdef CONFIG_VMAP_STACK
175 void *stack;
176 int i;
178 local_irq_disable();
179 for (i = 0; i < NR_CACHED_STACKS; i++) {
180 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
182 if (!s)
183 continue;
184 this_cpu_write(cached_stacks[i], NULL);
186 tsk->stack_vm_area = s;
187 local_irq_enable();
188 return s->addr;
190 local_irq_enable();
192 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 VMALLOC_START, VMALLOC_END,
194 THREADINFO_GFP | __GFP_HIGHMEM,
195 PAGE_KERNEL,
196 0, node, __builtin_return_address(0));
199 * We can't call find_vm_area() in interrupt context, and
200 * free_thread_stack() can be called in interrupt context,
201 * so cache the vm_struct.
203 if (stack)
204 tsk->stack_vm_area = find_vm_area(stack);
205 return stack;
206 #else
207 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 THREAD_SIZE_ORDER);
210 return page ? page_address(page) : NULL;
211 #endif
214 static inline void free_thread_stack(struct task_struct *tsk)
216 #ifdef CONFIG_VMAP_STACK
217 if (task_stack_vm_area(tsk)) {
218 unsigned long flags;
219 int i;
221 local_irq_save(flags);
222 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 if (this_cpu_read(cached_stacks[i]))
224 continue;
226 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 local_irq_restore(flags);
228 return;
230 local_irq_restore(flags);
232 vfree(tsk->stack);
233 return;
235 #endif
237 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
239 # else
240 static struct kmem_cache *thread_stack_cache;
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 int node)
245 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
248 static void free_thread_stack(struct task_struct *tsk)
250 kmem_cache_free(thread_stack_cache, tsk->stack);
253 void thread_stack_cache_init(void)
255 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 THREAD_SIZE, 0, NULL);
257 BUG_ON(thread_stack_cache == NULL);
259 # endif
260 #endif
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
280 static void account_kernel_stack(struct task_struct *tsk, int account)
282 void *stack = task_stack_page(tsk);
283 struct vm_struct *vm = task_stack_vm_area(tsk);
285 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
287 if (vm) {
288 int i;
290 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
292 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 mod_zone_page_state(page_zone(vm->pages[i]),
294 NR_KERNEL_STACK_KB,
295 PAGE_SIZE / 1024 * account);
298 /* All stack pages belong to the same memcg. */
299 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 account * (THREAD_SIZE / 1024));
301 } else {
303 * All stack pages are in the same zone and belong to the
304 * same memcg.
306 struct page *first_page = virt_to_page(stack);
308 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 THREAD_SIZE / 1024 * account);
311 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
316 static void release_task_stack(struct task_struct *tsk)
318 if (WARN_ON(tsk->state != TASK_DEAD))
319 return; /* Better to leak the stack than to free prematurely */
321 account_kernel_stack(tsk, -1);
322 arch_release_thread_stack(tsk->stack);
323 free_thread_stack(tsk);
324 tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 tsk->stack_vm_area = NULL;
327 #endif
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
333 if (atomic_dec_and_test(&tsk->stack_refcount))
334 release_task_stack(tsk);
336 #endif
338 void free_task(struct task_struct *tsk)
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
342 * The task is finally done with both the stack and thread_info,
343 * so free both.
345 release_task_stack(tsk);
346 #else
348 * If the task had a separate stack allocation, it should be gone
349 * by now.
351 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 rt_mutex_debug_task_free(tsk);
354 ftrace_graph_exit_task(tsk);
355 put_seccomp_filter(tsk);
356 arch_release_task_struct(tsk);
357 free_task_struct(tsk);
359 EXPORT_SYMBOL(free_task);
361 static inline void free_signal_struct(struct signal_struct *sig)
363 taskstats_tgid_free(sig);
364 sched_autogroup_exit(sig);
366 * __mmdrop is not safe to call from softirq context on x86 due to
367 * pgd_dtor so postpone it to the async context
369 if (sig->oom_mm)
370 mmdrop_async(sig->oom_mm);
371 kmem_cache_free(signal_cachep, sig);
374 static inline void put_signal_struct(struct signal_struct *sig)
376 if (atomic_dec_and_test(&sig->sigcnt))
377 free_signal_struct(sig);
380 void __put_task_struct(struct task_struct *tsk)
382 WARN_ON(!tsk->exit_state);
383 WARN_ON(atomic_read(&tsk->usage));
384 WARN_ON(tsk == current);
386 cgroup_free(tsk);
387 task_numa_free(tsk);
388 security_task_free(tsk);
389 exit_creds(tsk);
390 delayacct_tsk_free(tsk);
391 put_signal_struct(tsk->signal);
393 if (!profile_handoff_task(tsk))
394 free_task(tsk);
396 EXPORT_SYMBOL_GPL(__put_task_struct);
398 void __init __weak arch_task_cache_init(void) { }
401 * set_max_threads
403 static void set_max_threads(unsigned int max_threads_suggested)
405 u64 threads;
408 * The number of threads shall be limited such that the thread
409 * structures may only consume a small part of the available memory.
411 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
412 threads = MAX_THREADS;
413 else
414 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
415 (u64) THREAD_SIZE * 8UL);
417 if (threads > max_threads_suggested)
418 threads = max_threads_suggested;
420 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
423 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
424 /* Initialized by the architecture: */
425 int arch_task_struct_size __read_mostly;
426 #endif
428 void __init fork_init(void)
430 int i;
431 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
432 #ifndef ARCH_MIN_TASKALIGN
433 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
434 #endif
435 /* create a slab on which task_structs can be allocated */
436 task_struct_cachep = kmem_cache_create("task_struct",
437 arch_task_struct_size, ARCH_MIN_TASKALIGN,
438 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
439 #endif
441 /* do the arch specific task caches init */
442 arch_task_cache_init();
444 set_max_threads(MAX_THREADS);
446 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
447 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
448 init_task.signal->rlim[RLIMIT_SIGPENDING] =
449 init_task.signal->rlim[RLIMIT_NPROC];
451 for (i = 0; i < UCOUNT_COUNTS; i++) {
452 init_user_ns.ucount_max[i] = max_threads/2;
456 int __weak arch_dup_task_struct(struct task_struct *dst,
457 struct task_struct *src)
459 *dst = *src;
460 return 0;
463 void set_task_stack_end_magic(struct task_struct *tsk)
465 unsigned long *stackend;
467 stackend = end_of_stack(tsk);
468 *stackend = STACK_END_MAGIC; /* for overflow detection */
471 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
473 struct task_struct *tsk;
474 unsigned long *stack;
475 struct vm_struct *stack_vm_area;
476 int err;
478 if (node == NUMA_NO_NODE)
479 node = tsk_fork_get_node(orig);
480 tsk = alloc_task_struct_node(node);
481 if (!tsk)
482 return NULL;
484 stack = alloc_thread_stack_node(tsk, node);
485 if (!stack)
486 goto free_tsk;
488 stack_vm_area = task_stack_vm_area(tsk);
490 err = arch_dup_task_struct(tsk, orig);
493 * arch_dup_task_struct() clobbers the stack-related fields. Make
494 * sure they're properly initialized before using any stack-related
495 * functions again.
497 tsk->stack = stack;
498 #ifdef CONFIG_VMAP_STACK
499 tsk->stack_vm_area = stack_vm_area;
500 #endif
501 #ifdef CONFIG_THREAD_INFO_IN_TASK
502 atomic_set(&tsk->stack_refcount, 1);
503 #endif
505 if (err)
506 goto free_stack;
508 #ifdef CONFIG_SECCOMP
510 * We must handle setting up seccomp filters once we're under
511 * the sighand lock in case orig has changed between now and
512 * then. Until then, filter must be NULL to avoid messing up
513 * the usage counts on the error path calling free_task.
515 tsk->seccomp.filter = NULL;
516 #endif
518 setup_thread_stack(tsk, orig);
519 clear_user_return_notifier(tsk);
520 clear_tsk_need_resched(tsk);
521 set_task_stack_end_magic(tsk);
523 #ifdef CONFIG_CC_STACKPROTECTOR
524 tsk->stack_canary = get_random_long();
525 #endif
528 * One for us, one for whoever does the "release_task()" (usually
529 * parent)
531 atomic_set(&tsk->usage, 2);
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 tsk->btrace_seq = 0;
534 #endif
535 tsk->splice_pipe = NULL;
536 tsk->task_frag.page = NULL;
537 tsk->wake_q.next = NULL;
539 account_kernel_stack(tsk, 1);
541 kcov_task_init(tsk);
543 return tsk;
545 free_stack:
546 free_thread_stack(tsk);
547 free_tsk:
548 free_task_struct(tsk);
549 return NULL;
552 #ifdef CONFIG_MMU
553 static __latent_entropy int dup_mmap(struct mm_struct *mm,
554 struct mm_struct *oldmm)
556 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
557 struct rb_node **rb_link, *rb_parent;
558 int retval;
559 unsigned long charge;
561 uprobe_start_dup_mmap();
562 if (down_write_killable(&oldmm->mmap_sem)) {
563 retval = -EINTR;
564 goto fail_uprobe_end;
566 flush_cache_dup_mm(oldmm);
567 uprobe_dup_mmap(oldmm, mm);
569 * Not linked in yet - no deadlock potential:
571 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
573 /* No ordering required: file already has been exposed. */
574 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
576 mm->total_vm = oldmm->total_vm;
577 mm->data_vm = oldmm->data_vm;
578 mm->exec_vm = oldmm->exec_vm;
579 mm->stack_vm = oldmm->stack_vm;
581 rb_link = &mm->mm_rb.rb_node;
582 rb_parent = NULL;
583 pprev = &mm->mmap;
584 retval = ksm_fork(mm, oldmm);
585 if (retval)
586 goto out;
587 retval = khugepaged_fork(mm, oldmm);
588 if (retval)
589 goto out;
591 prev = NULL;
592 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
593 struct file *file;
595 if (mpnt->vm_flags & VM_DONTCOPY) {
596 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
597 continue;
599 charge = 0;
600 if (mpnt->vm_flags & VM_ACCOUNT) {
601 unsigned long len = vma_pages(mpnt);
603 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
604 goto fail_nomem;
605 charge = len;
607 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
608 if (!tmp)
609 goto fail_nomem;
610 *tmp = *mpnt;
611 INIT_LIST_HEAD(&tmp->anon_vma_chain);
612 retval = vma_dup_policy(mpnt, tmp);
613 if (retval)
614 goto fail_nomem_policy;
615 tmp->vm_mm = mm;
616 if (anon_vma_fork(tmp, mpnt))
617 goto fail_nomem_anon_vma_fork;
618 tmp->vm_flags &=
619 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
620 tmp->vm_next = tmp->vm_prev = NULL;
621 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
622 file = tmp->vm_file;
623 if (file) {
624 struct inode *inode = file_inode(file);
625 struct address_space *mapping = file->f_mapping;
627 get_file(file);
628 if (tmp->vm_flags & VM_DENYWRITE)
629 atomic_dec(&inode->i_writecount);
630 i_mmap_lock_write(mapping);
631 if (tmp->vm_flags & VM_SHARED)
632 atomic_inc(&mapping->i_mmap_writable);
633 flush_dcache_mmap_lock(mapping);
634 /* insert tmp into the share list, just after mpnt */
635 vma_interval_tree_insert_after(tmp, mpnt,
636 &mapping->i_mmap);
637 flush_dcache_mmap_unlock(mapping);
638 i_mmap_unlock_write(mapping);
642 * Clear hugetlb-related page reserves for children. This only
643 * affects MAP_PRIVATE mappings. Faults generated by the child
644 * are not guaranteed to succeed, even if read-only
646 if (is_vm_hugetlb_page(tmp))
647 reset_vma_resv_huge_pages(tmp);
650 * Link in the new vma and copy the page table entries.
652 *pprev = tmp;
653 pprev = &tmp->vm_next;
654 tmp->vm_prev = prev;
655 prev = tmp;
657 __vma_link_rb(mm, tmp, rb_link, rb_parent);
658 rb_link = &tmp->vm_rb.rb_right;
659 rb_parent = &tmp->vm_rb;
661 mm->map_count++;
662 retval = copy_page_range(mm, oldmm, mpnt);
664 if (tmp->vm_ops && tmp->vm_ops->open)
665 tmp->vm_ops->open(tmp);
667 if (retval)
668 goto out;
670 /* a new mm has just been created */
671 arch_dup_mmap(oldmm, mm);
672 retval = 0;
673 out:
674 up_write(&mm->mmap_sem);
675 flush_tlb_mm(oldmm);
676 up_write(&oldmm->mmap_sem);
677 fail_uprobe_end:
678 uprobe_end_dup_mmap();
679 return retval;
680 fail_nomem_anon_vma_fork:
681 mpol_put(vma_policy(tmp));
682 fail_nomem_policy:
683 kmem_cache_free(vm_area_cachep, tmp);
684 fail_nomem:
685 retval = -ENOMEM;
686 vm_unacct_memory(charge);
687 goto out;
690 static inline int mm_alloc_pgd(struct mm_struct *mm)
692 mm->pgd = pgd_alloc(mm);
693 if (unlikely(!mm->pgd))
694 return -ENOMEM;
695 return 0;
698 static inline void mm_free_pgd(struct mm_struct *mm)
700 pgd_free(mm, mm->pgd);
702 #else
703 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
705 down_write(&oldmm->mmap_sem);
706 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
707 up_write(&oldmm->mmap_sem);
708 return 0;
710 #define mm_alloc_pgd(mm) (0)
711 #define mm_free_pgd(mm)
712 #endif /* CONFIG_MMU */
714 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
716 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
717 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
719 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
721 static int __init coredump_filter_setup(char *s)
723 default_dump_filter =
724 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
725 MMF_DUMP_FILTER_MASK;
726 return 1;
729 __setup("coredump_filter=", coredump_filter_setup);
731 #include <linux/init_task.h>
733 static void mm_init_aio(struct mm_struct *mm)
735 #ifdef CONFIG_AIO
736 spin_lock_init(&mm->ioctx_lock);
737 mm->ioctx_table = NULL;
738 #endif
741 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
743 #ifdef CONFIG_MEMCG
744 mm->owner = p;
745 #endif
748 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
749 struct user_namespace *user_ns)
751 mm->mmap = NULL;
752 mm->mm_rb = RB_ROOT;
753 mm->vmacache_seqnum = 0;
754 atomic_set(&mm->mm_users, 1);
755 atomic_set(&mm->mm_count, 1);
756 init_rwsem(&mm->mmap_sem);
757 INIT_LIST_HEAD(&mm->mmlist);
758 mm->core_state = NULL;
759 atomic_long_set(&mm->nr_ptes, 0);
760 mm_nr_pmds_init(mm);
761 mm->map_count = 0;
762 mm->locked_vm = 0;
763 mm->pinned_vm = 0;
764 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
765 spin_lock_init(&mm->page_table_lock);
766 mm_init_cpumask(mm);
767 mm_init_aio(mm);
768 mm_init_owner(mm, p);
769 mmu_notifier_mm_init(mm);
770 clear_tlb_flush_pending(mm);
771 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
772 mm->pmd_huge_pte = NULL;
773 #endif
775 if (current->mm) {
776 mm->flags = current->mm->flags & MMF_INIT_MASK;
777 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
778 } else {
779 mm->flags = default_dump_filter;
780 mm->def_flags = 0;
783 if (mm_alloc_pgd(mm))
784 goto fail_nopgd;
786 if (init_new_context(p, mm))
787 goto fail_nocontext;
789 mm->user_ns = get_user_ns(user_ns);
790 return mm;
792 fail_nocontext:
793 mm_free_pgd(mm);
794 fail_nopgd:
795 free_mm(mm);
796 return NULL;
799 static void check_mm(struct mm_struct *mm)
801 int i;
803 for (i = 0; i < NR_MM_COUNTERS; i++) {
804 long x = atomic_long_read(&mm->rss_stat.count[i]);
806 if (unlikely(x))
807 printk(KERN_ALERT "BUG: Bad rss-counter state "
808 "mm:%p idx:%d val:%ld\n", mm, i, x);
811 if (atomic_long_read(&mm->nr_ptes))
812 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
813 atomic_long_read(&mm->nr_ptes));
814 if (mm_nr_pmds(mm))
815 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
816 mm_nr_pmds(mm));
818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
819 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
820 #endif
824 * Allocate and initialize an mm_struct.
826 struct mm_struct *mm_alloc(void)
828 struct mm_struct *mm;
830 mm = allocate_mm();
831 if (!mm)
832 return NULL;
834 memset(mm, 0, sizeof(*mm));
835 return mm_init(mm, current, current_user_ns());
839 * Called when the last reference to the mm
840 * is dropped: either by a lazy thread or by
841 * mmput. Free the page directory and the mm.
843 void __mmdrop(struct mm_struct *mm)
845 BUG_ON(mm == &init_mm);
846 mm_free_pgd(mm);
847 destroy_context(mm);
848 mmu_notifier_mm_destroy(mm);
849 check_mm(mm);
850 put_user_ns(mm->user_ns);
851 free_mm(mm);
853 EXPORT_SYMBOL_GPL(__mmdrop);
855 static inline void __mmput(struct mm_struct *mm)
857 VM_BUG_ON(atomic_read(&mm->mm_users));
859 uprobe_clear_state(mm);
860 exit_aio(mm);
861 ksm_exit(mm);
862 khugepaged_exit(mm); /* must run before exit_mmap */
863 exit_mmap(mm);
864 mm_put_huge_zero_page(mm);
865 set_mm_exe_file(mm, NULL);
866 if (!list_empty(&mm->mmlist)) {
867 spin_lock(&mmlist_lock);
868 list_del(&mm->mmlist);
869 spin_unlock(&mmlist_lock);
871 if (mm->binfmt)
872 module_put(mm->binfmt->module);
873 set_bit(MMF_OOM_SKIP, &mm->flags);
874 mmdrop(mm);
878 * Decrement the use count and release all resources for an mm.
880 void mmput(struct mm_struct *mm)
882 might_sleep();
884 if (atomic_dec_and_test(&mm->mm_users))
885 __mmput(mm);
887 EXPORT_SYMBOL_GPL(mmput);
889 #ifdef CONFIG_MMU
890 static void mmput_async_fn(struct work_struct *work)
892 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
893 __mmput(mm);
896 void mmput_async(struct mm_struct *mm)
898 if (atomic_dec_and_test(&mm->mm_users)) {
899 INIT_WORK(&mm->async_put_work, mmput_async_fn);
900 schedule_work(&mm->async_put_work);
903 #endif
906 * set_mm_exe_file - change a reference to the mm's executable file
908 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
910 * Main users are mmput() and sys_execve(). Callers prevent concurrent
911 * invocations: in mmput() nobody alive left, in execve task is single
912 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
913 * mm->exe_file, but does so without using set_mm_exe_file() in order
914 * to do avoid the need for any locks.
916 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
918 struct file *old_exe_file;
921 * It is safe to dereference the exe_file without RCU as
922 * this function is only called if nobody else can access
923 * this mm -- see comment above for justification.
925 old_exe_file = rcu_dereference_raw(mm->exe_file);
927 if (new_exe_file)
928 get_file(new_exe_file);
929 rcu_assign_pointer(mm->exe_file, new_exe_file);
930 if (old_exe_file)
931 fput(old_exe_file);
935 * get_mm_exe_file - acquire a reference to the mm's executable file
937 * Returns %NULL if mm has no associated executable file.
938 * User must release file via fput().
940 struct file *get_mm_exe_file(struct mm_struct *mm)
942 struct file *exe_file;
944 rcu_read_lock();
945 exe_file = rcu_dereference(mm->exe_file);
946 if (exe_file && !get_file_rcu(exe_file))
947 exe_file = NULL;
948 rcu_read_unlock();
949 return exe_file;
951 EXPORT_SYMBOL(get_mm_exe_file);
954 * get_task_exe_file - acquire a reference to the task's executable file
956 * Returns %NULL if task's mm (if any) has no associated executable file or
957 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
958 * User must release file via fput().
960 struct file *get_task_exe_file(struct task_struct *task)
962 struct file *exe_file = NULL;
963 struct mm_struct *mm;
965 task_lock(task);
966 mm = task->mm;
967 if (mm) {
968 if (!(task->flags & PF_KTHREAD))
969 exe_file = get_mm_exe_file(mm);
971 task_unlock(task);
972 return exe_file;
974 EXPORT_SYMBOL(get_task_exe_file);
977 * get_task_mm - acquire a reference to the task's mm
979 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
980 * this kernel workthread has transiently adopted a user mm with use_mm,
981 * to do its AIO) is not set and if so returns a reference to it, after
982 * bumping up the use count. User must release the mm via mmput()
983 * after use. Typically used by /proc and ptrace.
985 struct mm_struct *get_task_mm(struct task_struct *task)
987 struct mm_struct *mm;
989 task_lock(task);
990 mm = task->mm;
991 if (mm) {
992 if (task->flags & PF_KTHREAD)
993 mm = NULL;
994 else
995 atomic_inc(&mm->mm_users);
997 task_unlock(task);
998 return mm;
1000 EXPORT_SYMBOL_GPL(get_task_mm);
1002 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1004 struct mm_struct *mm;
1005 int err;
1007 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1008 if (err)
1009 return ERR_PTR(err);
1011 mm = get_task_mm(task);
1012 if (mm && mm != current->mm &&
1013 !ptrace_may_access(task, mode)) {
1014 mmput(mm);
1015 mm = ERR_PTR(-EACCES);
1017 mutex_unlock(&task->signal->cred_guard_mutex);
1019 return mm;
1022 static void complete_vfork_done(struct task_struct *tsk)
1024 struct completion *vfork;
1026 task_lock(tsk);
1027 vfork = tsk->vfork_done;
1028 if (likely(vfork)) {
1029 tsk->vfork_done = NULL;
1030 complete(vfork);
1032 task_unlock(tsk);
1035 static int wait_for_vfork_done(struct task_struct *child,
1036 struct completion *vfork)
1038 int killed;
1040 freezer_do_not_count();
1041 killed = wait_for_completion_killable(vfork);
1042 freezer_count();
1044 if (killed) {
1045 task_lock(child);
1046 child->vfork_done = NULL;
1047 task_unlock(child);
1050 put_task_struct(child);
1051 return killed;
1054 /* Please note the differences between mmput and mm_release.
1055 * mmput is called whenever we stop holding onto a mm_struct,
1056 * error success whatever.
1058 * mm_release is called after a mm_struct has been removed
1059 * from the current process.
1061 * This difference is important for error handling, when we
1062 * only half set up a mm_struct for a new process and need to restore
1063 * the old one. Because we mmput the new mm_struct before
1064 * restoring the old one. . .
1065 * Eric Biederman 10 January 1998
1067 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1069 /* Get rid of any futexes when releasing the mm */
1070 #ifdef CONFIG_FUTEX
1071 if (unlikely(tsk->robust_list)) {
1072 exit_robust_list(tsk);
1073 tsk->robust_list = NULL;
1075 #ifdef CONFIG_COMPAT
1076 if (unlikely(tsk->compat_robust_list)) {
1077 compat_exit_robust_list(tsk);
1078 tsk->compat_robust_list = NULL;
1080 #endif
1081 if (unlikely(!list_empty(&tsk->pi_state_list)))
1082 exit_pi_state_list(tsk);
1083 #endif
1085 uprobe_free_utask(tsk);
1087 /* Get rid of any cached register state */
1088 deactivate_mm(tsk, mm);
1091 * Signal userspace if we're not exiting with a core dump
1092 * because we want to leave the value intact for debugging
1093 * purposes.
1095 if (tsk->clear_child_tid) {
1096 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1097 atomic_read(&mm->mm_users) > 1) {
1099 * We don't check the error code - if userspace has
1100 * not set up a proper pointer then tough luck.
1102 put_user(0, tsk->clear_child_tid);
1103 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1104 1, NULL, NULL, 0);
1106 tsk->clear_child_tid = NULL;
1110 * All done, finally we can wake up parent and return this mm to him.
1111 * Also kthread_stop() uses this completion for synchronization.
1113 if (tsk->vfork_done)
1114 complete_vfork_done(tsk);
1118 * Allocate a new mm structure and copy contents from the
1119 * mm structure of the passed in task structure.
1121 static struct mm_struct *dup_mm(struct task_struct *tsk)
1123 struct mm_struct *mm, *oldmm = current->mm;
1124 int err;
1126 mm = allocate_mm();
1127 if (!mm)
1128 goto fail_nomem;
1130 memcpy(mm, oldmm, sizeof(*mm));
1132 if (!mm_init(mm, tsk, mm->user_ns))
1133 goto fail_nomem;
1135 err = dup_mmap(mm, oldmm);
1136 if (err)
1137 goto free_pt;
1139 mm->hiwater_rss = get_mm_rss(mm);
1140 mm->hiwater_vm = mm->total_vm;
1142 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1143 goto free_pt;
1145 return mm;
1147 free_pt:
1148 /* don't put binfmt in mmput, we haven't got module yet */
1149 mm->binfmt = NULL;
1150 mmput(mm);
1152 fail_nomem:
1153 return NULL;
1156 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1158 struct mm_struct *mm, *oldmm;
1159 int retval;
1161 tsk->min_flt = tsk->maj_flt = 0;
1162 tsk->nvcsw = tsk->nivcsw = 0;
1163 #ifdef CONFIG_DETECT_HUNG_TASK
1164 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1165 #endif
1167 tsk->mm = NULL;
1168 tsk->active_mm = NULL;
1171 * Are we cloning a kernel thread?
1173 * We need to steal a active VM for that..
1175 oldmm = current->mm;
1176 if (!oldmm)
1177 return 0;
1179 /* initialize the new vmacache entries */
1180 vmacache_flush(tsk);
1182 if (clone_flags & CLONE_VM) {
1183 atomic_inc(&oldmm->mm_users);
1184 mm = oldmm;
1185 goto good_mm;
1188 retval = -ENOMEM;
1189 mm = dup_mm(tsk);
1190 if (!mm)
1191 goto fail_nomem;
1193 good_mm:
1194 tsk->mm = mm;
1195 tsk->active_mm = mm;
1196 return 0;
1198 fail_nomem:
1199 return retval;
1202 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1204 struct fs_struct *fs = current->fs;
1205 if (clone_flags & CLONE_FS) {
1206 /* tsk->fs is already what we want */
1207 spin_lock(&fs->lock);
1208 if (fs->in_exec) {
1209 spin_unlock(&fs->lock);
1210 return -EAGAIN;
1212 fs->users++;
1213 spin_unlock(&fs->lock);
1214 return 0;
1216 tsk->fs = copy_fs_struct(fs);
1217 if (!tsk->fs)
1218 return -ENOMEM;
1219 return 0;
1222 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1224 struct files_struct *oldf, *newf;
1225 int error = 0;
1228 * A background process may not have any files ...
1230 oldf = current->files;
1231 if (!oldf)
1232 goto out;
1234 if (clone_flags & CLONE_FILES) {
1235 atomic_inc(&oldf->count);
1236 goto out;
1239 newf = dup_fd(oldf, &error);
1240 if (!newf)
1241 goto out;
1243 tsk->files = newf;
1244 error = 0;
1245 out:
1246 return error;
1249 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1251 #ifdef CONFIG_BLOCK
1252 struct io_context *ioc = current->io_context;
1253 struct io_context *new_ioc;
1255 if (!ioc)
1256 return 0;
1258 * Share io context with parent, if CLONE_IO is set
1260 if (clone_flags & CLONE_IO) {
1261 ioc_task_link(ioc);
1262 tsk->io_context = ioc;
1263 } else if (ioprio_valid(ioc->ioprio)) {
1264 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1265 if (unlikely(!new_ioc))
1266 return -ENOMEM;
1268 new_ioc->ioprio = ioc->ioprio;
1269 put_io_context(new_ioc);
1271 #endif
1272 return 0;
1275 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1277 struct sighand_struct *sig;
1279 if (clone_flags & CLONE_SIGHAND) {
1280 atomic_inc(&current->sighand->count);
1281 return 0;
1283 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1284 rcu_assign_pointer(tsk->sighand, sig);
1285 if (!sig)
1286 return -ENOMEM;
1288 atomic_set(&sig->count, 1);
1289 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1290 return 0;
1293 void __cleanup_sighand(struct sighand_struct *sighand)
1295 if (atomic_dec_and_test(&sighand->count)) {
1296 signalfd_cleanup(sighand);
1298 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1299 * without an RCU grace period, see __lock_task_sighand().
1301 kmem_cache_free(sighand_cachep, sighand);
1306 * Initialize POSIX timer handling for a thread group.
1308 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1310 unsigned long cpu_limit;
1312 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1313 if (cpu_limit != RLIM_INFINITY) {
1314 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1315 sig->cputimer.running = true;
1318 /* The timer lists. */
1319 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1320 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1321 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1324 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1326 struct signal_struct *sig;
1328 if (clone_flags & CLONE_THREAD)
1329 return 0;
1331 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1332 tsk->signal = sig;
1333 if (!sig)
1334 return -ENOMEM;
1336 sig->nr_threads = 1;
1337 atomic_set(&sig->live, 1);
1338 atomic_set(&sig->sigcnt, 1);
1340 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1341 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1342 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1344 init_waitqueue_head(&sig->wait_chldexit);
1345 sig->curr_target = tsk;
1346 init_sigpending(&sig->shared_pending);
1347 INIT_LIST_HEAD(&sig->posix_timers);
1348 seqlock_init(&sig->stats_lock);
1349 prev_cputime_init(&sig->prev_cputime);
1351 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1352 sig->real_timer.function = it_real_fn;
1354 task_lock(current->group_leader);
1355 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1356 task_unlock(current->group_leader);
1358 posix_cpu_timers_init_group(sig);
1360 tty_audit_fork(sig);
1361 sched_autogroup_fork(sig);
1363 sig->oom_score_adj = current->signal->oom_score_adj;
1364 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1366 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1367 current->signal->is_child_subreaper;
1369 mutex_init(&sig->cred_guard_mutex);
1371 return 0;
1374 static void copy_seccomp(struct task_struct *p)
1376 #ifdef CONFIG_SECCOMP
1378 * Must be called with sighand->lock held, which is common to
1379 * all threads in the group. Holding cred_guard_mutex is not
1380 * needed because this new task is not yet running and cannot
1381 * be racing exec.
1383 assert_spin_locked(&current->sighand->siglock);
1385 /* Ref-count the new filter user, and assign it. */
1386 get_seccomp_filter(current);
1387 p->seccomp = current->seccomp;
1390 * Explicitly enable no_new_privs here in case it got set
1391 * between the task_struct being duplicated and holding the
1392 * sighand lock. The seccomp state and nnp must be in sync.
1394 if (task_no_new_privs(current))
1395 task_set_no_new_privs(p);
1398 * If the parent gained a seccomp mode after copying thread
1399 * flags and between before we held the sighand lock, we have
1400 * to manually enable the seccomp thread flag here.
1402 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1403 set_tsk_thread_flag(p, TIF_SECCOMP);
1404 #endif
1407 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1409 current->clear_child_tid = tidptr;
1411 return task_pid_vnr(current);
1414 static void rt_mutex_init_task(struct task_struct *p)
1416 raw_spin_lock_init(&p->pi_lock);
1417 #ifdef CONFIG_RT_MUTEXES
1418 p->pi_waiters = RB_ROOT;
1419 p->pi_waiters_leftmost = NULL;
1420 p->pi_blocked_on = NULL;
1421 #endif
1425 * Initialize POSIX timer handling for a single task.
1427 static void posix_cpu_timers_init(struct task_struct *tsk)
1429 tsk->cputime_expires.prof_exp = 0;
1430 tsk->cputime_expires.virt_exp = 0;
1431 tsk->cputime_expires.sched_exp = 0;
1432 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1433 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1434 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1437 static inline void
1438 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1440 task->pids[type].pid = pid;
1444 * This creates a new process as a copy of the old one,
1445 * but does not actually start it yet.
1447 * It copies the registers, and all the appropriate
1448 * parts of the process environment (as per the clone
1449 * flags). The actual kick-off is left to the caller.
1451 static __latent_entropy struct task_struct *copy_process(
1452 unsigned long clone_flags,
1453 unsigned long stack_start,
1454 unsigned long stack_size,
1455 int __user *child_tidptr,
1456 struct pid *pid,
1457 int trace,
1458 unsigned long tls,
1459 int node)
1461 int retval;
1462 struct task_struct *p;
1464 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1465 return ERR_PTR(-EINVAL);
1467 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1468 return ERR_PTR(-EINVAL);
1471 * Thread groups must share signals as well, and detached threads
1472 * can only be started up within the thread group.
1474 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1475 return ERR_PTR(-EINVAL);
1478 * Shared signal handlers imply shared VM. By way of the above,
1479 * thread groups also imply shared VM. Blocking this case allows
1480 * for various simplifications in other code.
1482 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1483 return ERR_PTR(-EINVAL);
1486 * Siblings of global init remain as zombies on exit since they are
1487 * not reaped by their parent (swapper). To solve this and to avoid
1488 * multi-rooted process trees, prevent global and container-inits
1489 * from creating siblings.
1491 if ((clone_flags & CLONE_PARENT) &&
1492 current->signal->flags & SIGNAL_UNKILLABLE)
1493 return ERR_PTR(-EINVAL);
1496 * If the new process will be in a different pid or user namespace
1497 * do not allow it to share a thread group with the forking task.
1499 if (clone_flags & CLONE_THREAD) {
1500 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1501 (task_active_pid_ns(current) !=
1502 current->nsproxy->pid_ns_for_children))
1503 return ERR_PTR(-EINVAL);
1506 retval = security_task_create(clone_flags);
1507 if (retval)
1508 goto fork_out;
1510 retval = -ENOMEM;
1511 p = dup_task_struct(current, node);
1512 if (!p)
1513 goto fork_out;
1515 ftrace_graph_init_task(p);
1517 rt_mutex_init_task(p);
1519 #ifdef CONFIG_PROVE_LOCKING
1520 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1521 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1522 #endif
1523 retval = -EAGAIN;
1524 if (atomic_read(&p->real_cred->user->processes) >=
1525 task_rlimit(p, RLIMIT_NPROC)) {
1526 if (p->real_cred->user != INIT_USER &&
1527 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1528 goto bad_fork_free;
1530 current->flags &= ~PF_NPROC_EXCEEDED;
1532 retval = copy_creds(p, clone_flags);
1533 if (retval < 0)
1534 goto bad_fork_free;
1537 * If multiple threads are within copy_process(), then this check
1538 * triggers too late. This doesn't hurt, the check is only there
1539 * to stop root fork bombs.
1541 retval = -EAGAIN;
1542 if (nr_threads >= max_threads)
1543 goto bad_fork_cleanup_count;
1545 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1546 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1547 p->flags |= PF_FORKNOEXEC;
1548 INIT_LIST_HEAD(&p->children);
1549 INIT_LIST_HEAD(&p->sibling);
1550 rcu_copy_process(p);
1551 p->vfork_done = NULL;
1552 spin_lock_init(&p->alloc_lock);
1554 init_sigpending(&p->pending);
1556 p->utime = p->stime = p->gtime = 0;
1557 p->utimescaled = p->stimescaled = 0;
1558 prev_cputime_init(&p->prev_cputime);
1560 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1561 seqcount_init(&p->vtime_seqcount);
1562 p->vtime_snap = 0;
1563 p->vtime_snap_whence = VTIME_INACTIVE;
1564 #endif
1566 #if defined(SPLIT_RSS_COUNTING)
1567 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1568 #endif
1570 p->default_timer_slack_ns = current->timer_slack_ns;
1572 task_io_accounting_init(&p->ioac);
1573 acct_clear_integrals(p);
1575 posix_cpu_timers_init(p);
1577 p->start_time = ktime_get_ns();
1578 p->real_start_time = ktime_get_boot_ns();
1579 p->io_context = NULL;
1580 p->audit_context = NULL;
1581 cgroup_fork(p);
1582 #ifdef CONFIG_NUMA
1583 p->mempolicy = mpol_dup(p->mempolicy);
1584 if (IS_ERR(p->mempolicy)) {
1585 retval = PTR_ERR(p->mempolicy);
1586 p->mempolicy = NULL;
1587 goto bad_fork_cleanup_threadgroup_lock;
1589 #endif
1590 #ifdef CONFIG_CPUSETS
1591 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1592 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1593 seqcount_init(&p->mems_allowed_seq);
1594 #endif
1595 #ifdef CONFIG_TRACE_IRQFLAGS
1596 p->irq_events = 0;
1597 p->hardirqs_enabled = 0;
1598 p->hardirq_enable_ip = 0;
1599 p->hardirq_enable_event = 0;
1600 p->hardirq_disable_ip = _THIS_IP_;
1601 p->hardirq_disable_event = 0;
1602 p->softirqs_enabled = 1;
1603 p->softirq_enable_ip = _THIS_IP_;
1604 p->softirq_enable_event = 0;
1605 p->softirq_disable_ip = 0;
1606 p->softirq_disable_event = 0;
1607 p->hardirq_context = 0;
1608 p->softirq_context = 0;
1609 #endif
1611 p->pagefault_disabled = 0;
1613 #ifdef CONFIG_LOCKDEP
1614 p->lockdep_depth = 0; /* no locks held yet */
1615 p->curr_chain_key = 0;
1616 p->lockdep_recursion = 0;
1617 #endif
1619 #ifdef CONFIG_DEBUG_MUTEXES
1620 p->blocked_on = NULL; /* not blocked yet */
1621 #endif
1622 #ifdef CONFIG_BCACHE
1623 p->sequential_io = 0;
1624 p->sequential_io_avg = 0;
1625 #endif
1627 /* Perform scheduler related setup. Assign this task to a CPU. */
1628 retval = sched_fork(clone_flags, p);
1629 if (retval)
1630 goto bad_fork_cleanup_policy;
1632 retval = perf_event_init_task(p);
1633 if (retval)
1634 goto bad_fork_cleanup_policy;
1635 retval = audit_alloc(p);
1636 if (retval)
1637 goto bad_fork_cleanup_perf;
1638 /* copy all the process information */
1639 shm_init_task(p);
1640 retval = copy_semundo(clone_flags, p);
1641 if (retval)
1642 goto bad_fork_cleanup_audit;
1643 retval = copy_files(clone_flags, p);
1644 if (retval)
1645 goto bad_fork_cleanup_semundo;
1646 retval = copy_fs(clone_flags, p);
1647 if (retval)
1648 goto bad_fork_cleanup_files;
1649 retval = copy_sighand(clone_flags, p);
1650 if (retval)
1651 goto bad_fork_cleanup_fs;
1652 retval = copy_signal(clone_flags, p);
1653 if (retval)
1654 goto bad_fork_cleanup_sighand;
1655 retval = copy_mm(clone_flags, p);
1656 if (retval)
1657 goto bad_fork_cleanup_signal;
1658 retval = copy_namespaces(clone_flags, p);
1659 if (retval)
1660 goto bad_fork_cleanup_mm;
1661 retval = copy_io(clone_flags, p);
1662 if (retval)
1663 goto bad_fork_cleanup_namespaces;
1664 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1665 if (retval)
1666 goto bad_fork_cleanup_io;
1668 if (pid != &init_struct_pid) {
1669 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1670 if (IS_ERR(pid)) {
1671 retval = PTR_ERR(pid);
1672 goto bad_fork_cleanup_thread;
1676 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1678 * Clear TID on mm_release()?
1680 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1681 #ifdef CONFIG_BLOCK
1682 p->plug = NULL;
1683 #endif
1684 #ifdef CONFIG_FUTEX
1685 p->robust_list = NULL;
1686 #ifdef CONFIG_COMPAT
1687 p->compat_robust_list = NULL;
1688 #endif
1689 INIT_LIST_HEAD(&p->pi_state_list);
1690 p->pi_state_cache = NULL;
1691 #endif
1693 * sigaltstack should be cleared when sharing the same VM
1695 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1696 sas_ss_reset(p);
1699 * Syscall tracing and stepping should be turned off in the
1700 * child regardless of CLONE_PTRACE.
1702 user_disable_single_step(p);
1703 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1704 #ifdef TIF_SYSCALL_EMU
1705 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1706 #endif
1707 clear_all_latency_tracing(p);
1709 /* ok, now we should be set up.. */
1710 p->pid = pid_nr(pid);
1711 if (clone_flags & CLONE_THREAD) {
1712 p->exit_signal = -1;
1713 p->group_leader = current->group_leader;
1714 p->tgid = current->tgid;
1715 } else {
1716 if (clone_flags & CLONE_PARENT)
1717 p->exit_signal = current->group_leader->exit_signal;
1718 else
1719 p->exit_signal = (clone_flags & CSIGNAL);
1720 p->group_leader = p;
1721 p->tgid = p->pid;
1724 p->nr_dirtied = 0;
1725 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1726 p->dirty_paused_when = 0;
1728 p->pdeath_signal = 0;
1729 INIT_LIST_HEAD(&p->thread_group);
1730 p->task_works = NULL;
1732 threadgroup_change_begin(current);
1734 * Ensure that the cgroup subsystem policies allow the new process to be
1735 * forked. It should be noted the the new process's css_set can be changed
1736 * between here and cgroup_post_fork() if an organisation operation is in
1737 * progress.
1739 retval = cgroup_can_fork(p);
1740 if (retval)
1741 goto bad_fork_free_pid;
1744 * Make it visible to the rest of the system, but dont wake it up yet.
1745 * Need tasklist lock for parent etc handling!
1747 write_lock_irq(&tasklist_lock);
1749 /* CLONE_PARENT re-uses the old parent */
1750 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1751 p->real_parent = current->real_parent;
1752 p->parent_exec_id = current->parent_exec_id;
1753 } else {
1754 p->real_parent = current;
1755 p->parent_exec_id = current->self_exec_id;
1758 spin_lock(&current->sighand->siglock);
1761 * Copy seccomp details explicitly here, in case they were changed
1762 * before holding sighand lock.
1764 copy_seccomp(p);
1767 * Process group and session signals need to be delivered to just the
1768 * parent before the fork or both the parent and the child after the
1769 * fork. Restart if a signal comes in before we add the new process to
1770 * it's process group.
1771 * A fatal signal pending means that current will exit, so the new
1772 * thread can't slip out of an OOM kill (or normal SIGKILL).
1774 recalc_sigpending();
1775 if (signal_pending(current)) {
1776 retval = -ERESTARTNOINTR;
1777 goto bad_fork_cancel_cgroup;
1779 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1780 retval = -ENOMEM;
1781 goto bad_fork_cancel_cgroup;
1784 if (likely(p->pid)) {
1785 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1787 init_task_pid(p, PIDTYPE_PID, pid);
1788 if (thread_group_leader(p)) {
1789 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1790 init_task_pid(p, PIDTYPE_SID, task_session(current));
1792 if (is_child_reaper(pid)) {
1793 ns_of_pid(pid)->child_reaper = p;
1794 p->signal->flags |= SIGNAL_UNKILLABLE;
1797 p->signal->leader_pid = pid;
1798 p->signal->tty = tty_kref_get(current->signal->tty);
1799 list_add_tail(&p->sibling, &p->real_parent->children);
1800 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1801 attach_pid(p, PIDTYPE_PGID);
1802 attach_pid(p, PIDTYPE_SID);
1803 __this_cpu_inc(process_counts);
1804 } else {
1805 current->signal->nr_threads++;
1806 atomic_inc(&current->signal->live);
1807 atomic_inc(&current->signal->sigcnt);
1808 list_add_tail_rcu(&p->thread_group,
1809 &p->group_leader->thread_group);
1810 list_add_tail_rcu(&p->thread_node,
1811 &p->signal->thread_head);
1813 attach_pid(p, PIDTYPE_PID);
1814 nr_threads++;
1817 total_forks++;
1818 spin_unlock(&current->sighand->siglock);
1819 syscall_tracepoint_update(p);
1820 write_unlock_irq(&tasklist_lock);
1822 proc_fork_connector(p);
1823 cgroup_post_fork(p);
1824 threadgroup_change_end(current);
1825 perf_event_fork(p);
1827 trace_task_newtask(p, clone_flags);
1828 uprobe_copy_process(p, clone_flags);
1830 return p;
1832 bad_fork_cancel_cgroup:
1833 spin_unlock(&current->sighand->siglock);
1834 write_unlock_irq(&tasklist_lock);
1835 cgroup_cancel_fork(p);
1836 bad_fork_free_pid:
1837 threadgroup_change_end(current);
1838 if (pid != &init_struct_pid)
1839 free_pid(pid);
1840 bad_fork_cleanup_thread:
1841 exit_thread(p);
1842 bad_fork_cleanup_io:
1843 if (p->io_context)
1844 exit_io_context(p);
1845 bad_fork_cleanup_namespaces:
1846 exit_task_namespaces(p);
1847 bad_fork_cleanup_mm:
1848 if (p->mm)
1849 mmput(p->mm);
1850 bad_fork_cleanup_signal:
1851 if (!(clone_flags & CLONE_THREAD))
1852 free_signal_struct(p->signal);
1853 bad_fork_cleanup_sighand:
1854 __cleanup_sighand(p->sighand);
1855 bad_fork_cleanup_fs:
1856 exit_fs(p); /* blocking */
1857 bad_fork_cleanup_files:
1858 exit_files(p); /* blocking */
1859 bad_fork_cleanup_semundo:
1860 exit_sem(p);
1861 bad_fork_cleanup_audit:
1862 audit_free(p);
1863 bad_fork_cleanup_perf:
1864 perf_event_free_task(p);
1865 bad_fork_cleanup_policy:
1866 #ifdef CONFIG_NUMA
1867 mpol_put(p->mempolicy);
1868 bad_fork_cleanup_threadgroup_lock:
1869 #endif
1870 delayacct_tsk_free(p);
1871 bad_fork_cleanup_count:
1872 atomic_dec(&p->cred->user->processes);
1873 exit_creds(p);
1874 bad_fork_free:
1875 p->state = TASK_DEAD;
1876 put_task_stack(p);
1877 free_task(p);
1878 fork_out:
1879 return ERR_PTR(retval);
1882 static inline void init_idle_pids(struct pid_link *links)
1884 enum pid_type type;
1886 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1887 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1888 links[type].pid = &init_struct_pid;
1892 struct task_struct *fork_idle(int cpu)
1894 struct task_struct *task;
1895 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1896 cpu_to_node(cpu));
1897 if (!IS_ERR(task)) {
1898 init_idle_pids(task->pids);
1899 init_idle(task, cpu);
1902 return task;
1906 * Ok, this is the main fork-routine.
1908 * It copies the process, and if successful kick-starts
1909 * it and waits for it to finish using the VM if required.
1911 long _do_fork(unsigned long clone_flags,
1912 unsigned long stack_start,
1913 unsigned long stack_size,
1914 int __user *parent_tidptr,
1915 int __user *child_tidptr,
1916 unsigned long tls)
1918 struct task_struct *p;
1919 int trace = 0;
1920 long nr;
1923 * Determine whether and which event to report to ptracer. When
1924 * called from kernel_thread or CLONE_UNTRACED is explicitly
1925 * requested, no event is reported; otherwise, report if the event
1926 * for the type of forking is enabled.
1928 if (!(clone_flags & CLONE_UNTRACED)) {
1929 if (clone_flags & CLONE_VFORK)
1930 trace = PTRACE_EVENT_VFORK;
1931 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1932 trace = PTRACE_EVENT_CLONE;
1933 else
1934 trace = PTRACE_EVENT_FORK;
1936 if (likely(!ptrace_event_enabled(current, trace)))
1937 trace = 0;
1940 p = copy_process(clone_flags, stack_start, stack_size,
1941 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1942 add_latent_entropy();
1944 * Do this prior waking up the new thread - the thread pointer
1945 * might get invalid after that point, if the thread exits quickly.
1947 if (!IS_ERR(p)) {
1948 struct completion vfork;
1949 struct pid *pid;
1951 trace_sched_process_fork(current, p);
1953 pid = get_task_pid(p, PIDTYPE_PID);
1954 nr = pid_vnr(pid);
1956 if (clone_flags & CLONE_PARENT_SETTID)
1957 put_user(nr, parent_tidptr);
1959 if (clone_flags & CLONE_VFORK) {
1960 p->vfork_done = &vfork;
1961 init_completion(&vfork);
1962 get_task_struct(p);
1965 wake_up_new_task(p);
1967 /* forking complete and child started to run, tell ptracer */
1968 if (unlikely(trace))
1969 ptrace_event_pid(trace, pid);
1971 if (clone_flags & CLONE_VFORK) {
1972 if (!wait_for_vfork_done(p, &vfork))
1973 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1976 put_pid(pid);
1977 } else {
1978 nr = PTR_ERR(p);
1980 return nr;
1983 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1984 /* For compatibility with architectures that call do_fork directly rather than
1985 * using the syscall entry points below. */
1986 long do_fork(unsigned long clone_flags,
1987 unsigned long stack_start,
1988 unsigned long stack_size,
1989 int __user *parent_tidptr,
1990 int __user *child_tidptr)
1992 return _do_fork(clone_flags, stack_start, stack_size,
1993 parent_tidptr, child_tidptr, 0);
1995 #endif
1998 * Create a kernel thread.
2000 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2002 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2003 (unsigned long)arg, NULL, NULL, 0);
2006 #ifdef __ARCH_WANT_SYS_FORK
2007 SYSCALL_DEFINE0(fork)
2009 #ifdef CONFIG_MMU
2010 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2011 #else
2012 /* can not support in nommu mode */
2013 return -EINVAL;
2014 #endif
2016 #endif
2018 #ifdef __ARCH_WANT_SYS_VFORK
2019 SYSCALL_DEFINE0(vfork)
2021 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2022 0, NULL, NULL, 0);
2024 #endif
2026 #ifdef __ARCH_WANT_SYS_CLONE
2027 #ifdef CONFIG_CLONE_BACKWARDS
2028 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2029 int __user *, parent_tidptr,
2030 unsigned long, tls,
2031 int __user *, child_tidptr)
2032 #elif defined(CONFIG_CLONE_BACKWARDS2)
2033 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2034 int __user *, parent_tidptr,
2035 int __user *, child_tidptr,
2036 unsigned long, tls)
2037 #elif defined(CONFIG_CLONE_BACKWARDS3)
2038 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2039 int, stack_size,
2040 int __user *, parent_tidptr,
2041 int __user *, child_tidptr,
2042 unsigned long, tls)
2043 #else
2044 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2045 int __user *, parent_tidptr,
2046 int __user *, child_tidptr,
2047 unsigned long, tls)
2048 #endif
2050 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2052 #endif
2054 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2055 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2056 #endif
2058 static void sighand_ctor(void *data)
2060 struct sighand_struct *sighand = data;
2062 spin_lock_init(&sighand->siglock);
2063 init_waitqueue_head(&sighand->signalfd_wqh);
2066 void __init proc_caches_init(void)
2068 sighand_cachep = kmem_cache_create("sighand_cache",
2069 sizeof(struct sighand_struct), 0,
2070 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2071 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2072 signal_cachep = kmem_cache_create("signal_cache",
2073 sizeof(struct signal_struct), 0,
2074 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2075 NULL);
2076 files_cachep = kmem_cache_create("files_cache",
2077 sizeof(struct files_struct), 0,
2078 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2079 NULL);
2080 fs_cachep = kmem_cache_create("fs_cache",
2081 sizeof(struct fs_struct), 0,
2082 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2083 NULL);
2085 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2086 * whole struct cpumask for the OFFSTACK case. We could change
2087 * this to *only* allocate as much of it as required by the
2088 * maximum number of CPU's we can ever have. The cpumask_allocation
2089 * is at the end of the structure, exactly for that reason.
2091 mm_cachep = kmem_cache_create("mm_struct",
2092 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2093 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2094 NULL);
2095 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2096 mmap_init();
2097 nsproxy_cache_init();
2101 * Check constraints on flags passed to the unshare system call.
2103 static int check_unshare_flags(unsigned long unshare_flags)
2105 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2106 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2107 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2108 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2109 return -EINVAL;
2111 * Not implemented, but pretend it works if there is nothing
2112 * to unshare. Note that unsharing the address space or the
2113 * signal handlers also need to unshare the signal queues (aka
2114 * CLONE_THREAD).
2116 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2117 if (!thread_group_empty(current))
2118 return -EINVAL;
2120 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2121 if (atomic_read(&current->sighand->count) > 1)
2122 return -EINVAL;
2124 if (unshare_flags & CLONE_VM) {
2125 if (!current_is_single_threaded())
2126 return -EINVAL;
2129 return 0;
2133 * Unshare the filesystem structure if it is being shared
2135 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2137 struct fs_struct *fs = current->fs;
2139 if (!(unshare_flags & CLONE_FS) || !fs)
2140 return 0;
2142 /* don't need lock here; in the worst case we'll do useless copy */
2143 if (fs->users == 1)
2144 return 0;
2146 *new_fsp = copy_fs_struct(fs);
2147 if (!*new_fsp)
2148 return -ENOMEM;
2150 return 0;
2154 * Unshare file descriptor table if it is being shared
2156 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2158 struct files_struct *fd = current->files;
2159 int error = 0;
2161 if ((unshare_flags & CLONE_FILES) &&
2162 (fd && atomic_read(&fd->count) > 1)) {
2163 *new_fdp = dup_fd(fd, &error);
2164 if (!*new_fdp)
2165 return error;
2168 return 0;
2172 * unshare allows a process to 'unshare' part of the process
2173 * context which was originally shared using clone. copy_*
2174 * functions used by do_fork() cannot be used here directly
2175 * because they modify an inactive task_struct that is being
2176 * constructed. Here we are modifying the current, active,
2177 * task_struct.
2179 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2181 struct fs_struct *fs, *new_fs = NULL;
2182 struct files_struct *fd, *new_fd = NULL;
2183 struct cred *new_cred = NULL;
2184 struct nsproxy *new_nsproxy = NULL;
2185 int do_sysvsem = 0;
2186 int err;
2189 * If unsharing a user namespace must also unshare the thread group
2190 * and unshare the filesystem root and working directories.
2192 if (unshare_flags & CLONE_NEWUSER)
2193 unshare_flags |= CLONE_THREAD | CLONE_FS;
2195 * If unsharing vm, must also unshare signal handlers.
2197 if (unshare_flags & CLONE_VM)
2198 unshare_flags |= CLONE_SIGHAND;
2200 * If unsharing a signal handlers, must also unshare the signal queues.
2202 if (unshare_flags & CLONE_SIGHAND)
2203 unshare_flags |= CLONE_THREAD;
2205 * If unsharing namespace, must also unshare filesystem information.
2207 if (unshare_flags & CLONE_NEWNS)
2208 unshare_flags |= CLONE_FS;
2210 err = check_unshare_flags(unshare_flags);
2211 if (err)
2212 goto bad_unshare_out;
2214 * CLONE_NEWIPC must also detach from the undolist: after switching
2215 * to a new ipc namespace, the semaphore arrays from the old
2216 * namespace are unreachable.
2218 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2219 do_sysvsem = 1;
2220 err = unshare_fs(unshare_flags, &new_fs);
2221 if (err)
2222 goto bad_unshare_out;
2223 err = unshare_fd(unshare_flags, &new_fd);
2224 if (err)
2225 goto bad_unshare_cleanup_fs;
2226 err = unshare_userns(unshare_flags, &new_cred);
2227 if (err)
2228 goto bad_unshare_cleanup_fd;
2229 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2230 new_cred, new_fs);
2231 if (err)
2232 goto bad_unshare_cleanup_cred;
2234 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2235 if (do_sysvsem) {
2237 * CLONE_SYSVSEM is equivalent to sys_exit().
2239 exit_sem(current);
2241 if (unshare_flags & CLONE_NEWIPC) {
2242 /* Orphan segments in old ns (see sem above). */
2243 exit_shm(current);
2244 shm_init_task(current);
2247 if (new_nsproxy)
2248 switch_task_namespaces(current, new_nsproxy);
2250 task_lock(current);
2252 if (new_fs) {
2253 fs = current->fs;
2254 spin_lock(&fs->lock);
2255 current->fs = new_fs;
2256 if (--fs->users)
2257 new_fs = NULL;
2258 else
2259 new_fs = fs;
2260 spin_unlock(&fs->lock);
2263 if (new_fd) {
2264 fd = current->files;
2265 current->files = new_fd;
2266 new_fd = fd;
2269 task_unlock(current);
2271 if (new_cred) {
2272 /* Install the new user namespace */
2273 commit_creds(new_cred);
2274 new_cred = NULL;
2278 bad_unshare_cleanup_cred:
2279 if (new_cred)
2280 put_cred(new_cred);
2281 bad_unshare_cleanup_fd:
2282 if (new_fd)
2283 put_files_struct(new_fd);
2285 bad_unshare_cleanup_fs:
2286 if (new_fs)
2287 free_fs_struct(new_fs);
2289 bad_unshare_out:
2290 return err;
2294 * Helper to unshare the files of the current task.
2295 * We don't want to expose copy_files internals to
2296 * the exec layer of the kernel.
2299 int unshare_files(struct files_struct **displaced)
2301 struct task_struct *task = current;
2302 struct files_struct *copy = NULL;
2303 int error;
2305 error = unshare_fd(CLONE_FILES, &copy);
2306 if (error || !copy) {
2307 *displaced = NULL;
2308 return error;
2310 *displaced = task->files;
2311 task_lock(task);
2312 task->files = copy;
2313 task_unlock(task);
2314 return 0;
2317 int sysctl_max_threads(struct ctl_table *table, int write,
2318 void __user *buffer, size_t *lenp, loff_t *ppos)
2320 struct ctl_table t;
2321 int ret;
2322 int threads = max_threads;
2323 int min = MIN_THREADS;
2324 int max = MAX_THREADS;
2326 t = *table;
2327 t.data = &threads;
2328 t.extra1 = &min;
2329 t.extra2 = &max;
2331 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2332 if (ret || !write)
2333 return ret;
2335 set_max_threads(threads);
2337 return 0;