staging: ks7010: replace cast type in assignment in hostif_sme_set_pmksa
[linux/fpc-iii.git] / net / bluetooth / hci_conn.c
blob45ff5dc124cc3f45739c7d47b5c020d60831e9f6
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI connection handling. */
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
91 params->explicit_connect = false;
93 list_del_init(&params->action);
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(&params->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(&params->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
111 hci_update_background_scan(hdev);
114 static void hci_conn_cleanup(struct hci_conn *conn)
116 struct hci_dev *hdev = conn->hdev;
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
121 hci_chan_list_flush(conn);
123 hci_conn_hash_del(hdev, conn);
125 if (hdev->notify)
126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
128 hci_conn_del_sysfs(conn);
130 debugfs_remove_recursive(conn->debugfs);
132 hci_dev_put(hdev);
134 hci_conn_put(conn);
137 static void le_scan_cleanup(struct work_struct *work)
139 struct hci_conn *conn = container_of(work, struct hci_conn,
140 le_scan_cleanup);
141 struct hci_dev *hdev = conn->hdev;
142 struct hci_conn *c = NULL;
144 BT_DBG("%s hcon %p", hdev->name, conn);
146 hci_dev_lock(hdev);
148 /* Check that the hci_conn is still around */
149 rcu_read_lock();
150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
151 if (c == conn)
152 break;
154 rcu_read_unlock();
156 if (c == conn) {
157 hci_connect_le_scan_cleanup(conn);
158 hci_conn_cleanup(conn);
161 hci_dev_unlock(hdev);
162 hci_dev_put(hdev);
163 hci_conn_put(conn);
166 static void hci_connect_le_scan_remove(struct hci_conn *conn)
168 BT_DBG("%s hcon %p", conn->hdev->name, conn);
170 /* We can't call hci_conn_del/hci_conn_cleanup here since that
171 * could deadlock with another hci_conn_del() call that's holding
172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
173 * Instead, grab temporary extra references to the hci_dev and
174 * hci_conn and perform the necessary cleanup in a separate work
175 * callback.
178 hci_dev_hold(conn->hdev);
179 hci_conn_get(conn);
181 /* Even though we hold a reference to the hdev, many other
182 * things might get cleaned up meanwhile, including the hdev's
183 * own workqueue, so we can't use that for scheduling.
185 schedule_work(&conn->le_scan_cleanup);
188 static void hci_acl_create_connection(struct hci_conn *conn)
190 struct hci_dev *hdev = conn->hdev;
191 struct inquiry_entry *ie;
192 struct hci_cp_create_conn cp;
194 BT_DBG("hcon %p", conn);
196 conn->state = BT_CONNECT;
197 conn->out = true;
198 conn->role = HCI_ROLE_MASTER;
200 conn->attempt++;
202 conn->link_policy = hdev->link_policy;
204 memset(&cp, 0, sizeof(cp));
205 bacpy(&cp.bdaddr, &conn->dst);
206 cp.pscan_rep_mode = 0x02;
208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
209 if (ie) {
210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
211 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
212 cp.pscan_mode = ie->data.pscan_mode;
213 cp.clock_offset = ie->data.clock_offset |
214 cpu_to_le16(0x8000);
217 memcpy(conn->dev_class, ie->data.dev_class, 3);
218 if (ie->data.ssp_mode > 0)
219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
222 cp.pkt_type = cpu_to_le16(conn->pkt_type);
223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
224 cp.role_switch = 0x01;
225 else
226 cp.role_switch = 0x00;
228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
231 int hci_disconnect(struct hci_conn *conn, __u8 reason)
233 BT_DBG("hcon %p", conn);
235 /* When we are master of an established connection and it enters
236 * the disconnect timeout, then go ahead and try to read the
237 * current clock offset. Processing of the result is done
238 * within the event handling and hci_clock_offset_evt function.
240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
242 struct hci_dev *hdev = conn->hdev;
243 struct hci_cp_read_clock_offset clkoff_cp;
245 clkoff_cp.handle = cpu_to_le16(conn->handle);
246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
247 &clkoff_cp);
250 return hci_abort_conn(conn, reason);
253 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
255 struct hci_dev *hdev = conn->hdev;
256 struct hci_cp_add_sco cp;
258 BT_DBG("hcon %p", conn);
260 conn->state = BT_CONNECT;
261 conn->out = true;
263 conn->attempt++;
265 cp.handle = cpu_to_le16(handle);
266 cp.pkt_type = cpu_to_le16(conn->pkt_type);
268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
273 struct hci_dev *hdev = conn->hdev;
274 struct hci_cp_setup_sync_conn cp;
275 const struct sco_param *param;
277 BT_DBG("hcon %p", conn);
279 conn->state = BT_CONNECT;
280 conn->out = true;
282 conn->attempt++;
284 cp.handle = cpu_to_le16(handle);
286 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
287 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
288 cp.voice_setting = cpu_to_le16(conn->setting);
290 switch (conn->setting & SCO_AIRMODE_MASK) {
291 case SCO_AIRMODE_TRANSP:
292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
293 return false;
294 param = &esco_param_msbc[conn->attempt - 1];
295 break;
296 case SCO_AIRMODE_CVSD:
297 if (lmp_esco_capable(conn->link)) {
298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
299 return false;
300 param = &esco_param_cvsd[conn->attempt - 1];
301 } else {
302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
303 return false;
304 param = &sco_param_cvsd[conn->attempt - 1];
306 break;
307 default:
308 return false;
311 cp.retrans_effort = param->retrans_effort;
312 cp.pkt_type = __cpu_to_le16(param->pkt_type);
313 cp.max_latency = __cpu_to_le16(param->max_latency);
315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
316 return false;
318 return true;
321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
322 u16 to_multiplier)
324 struct hci_dev *hdev = conn->hdev;
325 struct hci_conn_params *params;
326 struct hci_cp_le_conn_update cp;
328 hci_dev_lock(hdev);
330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
331 if (params) {
332 params->conn_min_interval = min;
333 params->conn_max_interval = max;
334 params->conn_latency = latency;
335 params->supervision_timeout = to_multiplier;
338 hci_dev_unlock(hdev);
340 memset(&cp, 0, sizeof(cp));
341 cp.handle = cpu_to_le16(conn->handle);
342 cp.conn_interval_min = cpu_to_le16(min);
343 cp.conn_interval_max = cpu_to_le16(max);
344 cp.conn_latency = cpu_to_le16(latency);
345 cp.supervision_timeout = cpu_to_le16(to_multiplier);
346 cp.min_ce_len = cpu_to_le16(0x0000);
347 cp.max_ce_len = cpu_to_le16(0x0000);
349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
351 if (params)
352 return 0x01;
354 return 0x00;
357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
358 __u8 ltk[16], __u8 key_size)
360 struct hci_dev *hdev = conn->hdev;
361 struct hci_cp_le_start_enc cp;
363 BT_DBG("hcon %p", conn);
365 memset(&cp, 0, sizeof(cp));
367 cp.handle = cpu_to_le16(conn->handle);
368 cp.rand = rand;
369 cp.ediv = ediv;
370 memcpy(cp.ltk, ltk, key_size);
372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
375 /* Device _must_ be locked */
376 void hci_sco_setup(struct hci_conn *conn, __u8 status)
378 struct hci_conn *sco = conn->link;
380 if (!sco)
381 return;
383 BT_DBG("hcon %p", conn);
385 if (!status) {
386 if (lmp_esco_capable(conn->hdev))
387 hci_setup_sync(sco, conn->handle);
388 else
389 hci_add_sco(sco, conn->handle);
390 } else {
391 hci_connect_cfm(sco, status);
392 hci_conn_del(sco);
396 static void hci_conn_timeout(struct work_struct *work)
398 struct hci_conn *conn = container_of(work, struct hci_conn,
399 disc_work.work);
400 int refcnt = atomic_read(&conn->refcnt);
402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
404 WARN_ON(refcnt < 0);
406 /* FIXME: It was observed that in pairing failed scenario, refcnt
407 * drops below 0. Probably this is because l2cap_conn_del calls
408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
409 * dropped. After that loop hci_chan_del is called which also drops
410 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
411 * otherwise drop it.
413 if (refcnt > 0)
414 return;
416 /* LE connections in scanning state need special handling */
417 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
418 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
419 hci_connect_le_scan_remove(conn);
420 return;
423 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
426 /* Enter sniff mode */
427 static void hci_conn_idle(struct work_struct *work)
429 struct hci_conn *conn = container_of(work, struct hci_conn,
430 idle_work.work);
431 struct hci_dev *hdev = conn->hdev;
433 BT_DBG("hcon %p mode %d", conn, conn->mode);
435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
436 return;
438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
439 return;
441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
442 struct hci_cp_sniff_subrate cp;
443 cp.handle = cpu_to_le16(conn->handle);
444 cp.max_latency = cpu_to_le16(0);
445 cp.min_remote_timeout = cpu_to_le16(0);
446 cp.min_local_timeout = cpu_to_le16(0);
447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
451 struct hci_cp_sniff_mode cp;
452 cp.handle = cpu_to_le16(conn->handle);
453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
455 cp.attempt = cpu_to_le16(4);
456 cp.timeout = cpu_to_le16(1);
457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
461 static void hci_conn_auto_accept(struct work_struct *work)
463 struct hci_conn *conn = container_of(work, struct hci_conn,
464 auto_accept_work.work);
466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
467 &conn->dst);
470 static void le_conn_timeout(struct work_struct *work)
472 struct hci_conn *conn = container_of(work, struct hci_conn,
473 le_conn_timeout.work);
474 struct hci_dev *hdev = conn->hdev;
476 BT_DBG("");
478 /* We could end up here due to having done directed advertising,
479 * so clean up the state if necessary. This should however only
480 * happen with broken hardware or if low duty cycle was used
481 * (which doesn't have a timeout of its own).
483 if (conn->role == HCI_ROLE_SLAVE) {
484 u8 enable = 0x00;
485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
486 &enable);
487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
488 return;
491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
495 u8 role)
497 struct hci_conn *conn;
499 BT_DBG("%s dst %pMR", hdev->name, dst);
501 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
502 if (!conn)
503 return NULL;
505 bacpy(&conn->dst, dst);
506 bacpy(&conn->src, &hdev->bdaddr);
507 conn->hdev = hdev;
508 conn->type = type;
509 conn->role = role;
510 conn->mode = HCI_CM_ACTIVE;
511 conn->state = BT_OPEN;
512 conn->auth_type = HCI_AT_GENERAL_BONDING;
513 conn->io_capability = hdev->io_capability;
514 conn->remote_auth = 0xff;
515 conn->key_type = 0xff;
516 conn->rssi = HCI_RSSI_INVALID;
517 conn->tx_power = HCI_TX_POWER_INVALID;
518 conn->max_tx_power = HCI_TX_POWER_INVALID;
520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
521 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
523 if (conn->role == HCI_ROLE_MASTER)
524 conn->out = true;
526 switch (type) {
527 case ACL_LINK:
528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
529 break;
530 case LE_LINK:
531 /* conn->src should reflect the local identity address */
532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
533 break;
534 case SCO_LINK:
535 if (lmp_esco_capable(hdev))
536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
537 (hdev->esco_type & EDR_ESCO_MASK);
538 else
539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
540 break;
541 case ESCO_LINK:
542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
543 break;
546 skb_queue_head_init(&conn->data_q);
548 INIT_LIST_HEAD(&conn->chan_list);
550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
556 atomic_set(&conn->refcnt, 0);
558 hci_dev_hold(hdev);
560 hci_conn_hash_add(hdev, conn);
561 if (hdev->notify)
562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
564 hci_conn_init_sysfs(conn);
566 return conn;
569 int hci_conn_del(struct hci_conn *conn)
571 struct hci_dev *hdev = conn->hdev;
573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
575 cancel_delayed_work_sync(&conn->disc_work);
576 cancel_delayed_work_sync(&conn->auto_accept_work);
577 cancel_delayed_work_sync(&conn->idle_work);
579 if (conn->type == ACL_LINK) {
580 struct hci_conn *sco = conn->link;
581 if (sco)
582 sco->link = NULL;
584 /* Unacked frames */
585 hdev->acl_cnt += conn->sent;
586 } else if (conn->type == LE_LINK) {
587 cancel_delayed_work(&conn->le_conn_timeout);
589 if (hdev->le_pkts)
590 hdev->le_cnt += conn->sent;
591 else
592 hdev->acl_cnt += conn->sent;
593 } else {
594 struct hci_conn *acl = conn->link;
595 if (acl) {
596 acl->link = NULL;
597 hci_conn_drop(acl);
601 if (conn->amp_mgr)
602 amp_mgr_put(conn->amp_mgr);
604 skb_queue_purge(&conn->data_q);
606 /* Remove the connection from the list and cleanup its remaining
607 * state. This is a separate function since for some cases like
608 * BT_CONNECT_SCAN we *only* want the cleanup part without the
609 * rest of hci_conn_del.
611 hci_conn_cleanup(conn);
613 return 0;
616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
618 int use_src = bacmp(src, BDADDR_ANY);
619 struct hci_dev *hdev = NULL, *d;
621 BT_DBG("%pMR -> %pMR", src, dst);
623 read_lock(&hci_dev_list_lock);
625 list_for_each_entry(d, &hci_dev_list, list) {
626 if (!test_bit(HCI_UP, &d->flags) ||
627 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
628 d->dev_type != HCI_PRIMARY)
629 continue;
631 /* Simple routing:
632 * No source address - find interface with bdaddr != dst
633 * Source address - find interface with bdaddr == src
636 if (use_src) {
637 bdaddr_t id_addr;
638 u8 id_addr_type;
640 if (src_type == BDADDR_BREDR) {
641 if (!lmp_bredr_capable(d))
642 continue;
643 bacpy(&id_addr, &d->bdaddr);
644 id_addr_type = BDADDR_BREDR;
645 } else {
646 if (!lmp_le_capable(d))
647 continue;
649 hci_copy_identity_address(d, &id_addr,
650 &id_addr_type);
652 /* Convert from HCI to three-value type */
653 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
654 id_addr_type = BDADDR_LE_PUBLIC;
655 else
656 id_addr_type = BDADDR_LE_RANDOM;
659 if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
660 hdev = d; break;
662 } else {
663 if (bacmp(&d->bdaddr, dst)) {
664 hdev = d; break;
669 if (hdev)
670 hdev = hci_dev_hold(hdev);
672 read_unlock(&hci_dev_list_lock);
673 return hdev;
675 EXPORT_SYMBOL(hci_get_route);
677 /* This function requires the caller holds hdev->lock */
678 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
680 struct hci_dev *hdev = conn->hdev;
681 struct hci_conn_params *params;
683 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
684 conn->dst_type);
685 if (params && params->conn) {
686 hci_conn_drop(params->conn);
687 hci_conn_put(params->conn);
688 params->conn = NULL;
691 conn->state = BT_CLOSED;
693 /* If the status indicates successful cancellation of
694 * the attempt (i.e. Unkown Connection Id) there's no point of
695 * notifying failure since we'll go back to keep trying to
696 * connect. The only exception is explicit connect requests
697 * where a timeout + cancel does indicate an actual failure.
699 if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
700 (params && params->explicit_connect))
701 mgmt_connect_failed(hdev, &conn->dst, conn->type,
702 conn->dst_type, status);
704 hci_connect_cfm(conn, status);
706 hci_conn_del(conn);
708 /* Since we may have temporarily stopped the background scanning in
709 * favor of connection establishment, we should restart it.
711 hci_update_background_scan(hdev);
713 /* Re-enable advertising in case this was a failed connection
714 * attempt as a peripheral.
716 hci_req_reenable_advertising(hdev);
719 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
721 struct hci_conn *conn;
723 hci_dev_lock(hdev);
725 conn = hci_lookup_le_connect(hdev);
727 if (!status) {
728 hci_connect_le_scan_cleanup(conn);
729 goto done;
732 bt_dev_err(hdev, "request failed to create LE connection: "
733 "status 0x%2.2x", status);
735 if (!conn)
736 goto done;
738 hci_le_conn_failed(conn, status);
740 done:
741 hci_dev_unlock(hdev);
744 static bool conn_use_rpa(struct hci_conn *conn)
746 struct hci_dev *hdev = conn->hdev;
748 return hci_dev_test_flag(hdev, HCI_PRIVACY);
751 static void hci_req_add_le_create_conn(struct hci_request *req,
752 struct hci_conn *conn,
753 bdaddr_t *direct_rpa)
755 struct hci_cp_le_create_conn cp;
756 struct hci_dev *hdev = conn->hdev;
757 u8 own_addr_type;
759 /* If direct address was provided we use it instead of current
760 * address.
762 if (direct_rpa) {
763 if (bacmp(&req->hdev->random_addr, direct_rpa))
764 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
765 direct_rpa);
767 /* direct address is always RPA */
768 own_addr_type = ADDR_LE_DEV_RANDOM;
769 } else {
770 /* Update random address, but set require_privacy to false so
771 * that we never connect with an non-resolvable address.
773 if (hci_update_random_address(req, false, conn_use_rpa(conn),
774 &own_addr_type))
775 return;
778 memset(&cp, 0, sizeof(cp));
780 /* Set window to be the same value as the interval to enable
781 * continuous scanning.
783 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
784 cp.scan_window = cp.scan_interval;
786 bacpy(&cp.peer_addr, &conn->dst);
787 cp.peer_addr_type = conn->dst_type;
788 cp.own_address_type = own_addr_type;
789 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
790 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
791 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
792 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
793 cp.min_ce_len = cpu_to_le16(0x0000);
794 cp.max_ce_len = cpu_to_le16(0x0000);
796 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
798 conn->state = BT_CONNECT;
799 clear_bit(HCI_CONN_SCANNING, &conn->flags);
802 static void hci_req_directed_advertising(struct hci_request *req,
803 struct hci_conn *conn)
805 struct hci_dev *hdev = req->hdev;
806 struct hci_cp_le_set_adv_param cp;
807 u8 own_addr_type;
808 u8 enable;
810 /* Clear the HCI_LE_ADV bit temporarily so that the
811 * hci_update_random_address knows that it's safe to go ahead
812 * and write a new random address. The flag will be set back on
813 * as soon as the SET_ADV_ENABLE HCI command completes.
815 hci_dev_clear_flag(hdev, HCI_LE_ADV);
817 /* Set require_privacy to false so that the remote device has a
818 * chance of identifying us.
820 if (hci_update_random_address(req, false, conn_use_rpa(conn),
821 &own_addr_type) < 0)
822 return;
824 memset(&cp, 0, sizeof(cp));
825 cp.type = LE_ADV_DIRECT_IND;
826 cp.own_address_type = own_addr_type;
827 cp.direct_addr_type = conn->dst_type;
828 bacpy(&cp.direct_addr, &conn->dst);
829 cp.channel_map = hdev->le_adv_channel_map;
831 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
833 enable = 0x01;
834 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
836 conn->state = BT_CONNECT;
839 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
840 u8 dst_type, u8 sec_level, u16 conn_timeout,
841 u8 role, bdaddr_t *direct_rpa)
843 struct hci_conn_params *params;
844 struct hci_conn *conn;
845 struct smp_irk *irk;
846 struct hci_request req;
847 int err;
849 /* Let's make sure that le is enabled.*/
850 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
851 if (lmp_le_capable(hdev))
852 return ERR_PTR(-ECONNREFUSED);
854 return ERR_PTR(-EOPNOTSUPP);
857 /* Since the controller supports only one LE connection attempt at a
858 * time, we return -EBUSY if there is any connection attempt running.
860 if (hci_lookup_le_connect(hdev))
861 return ERR_PTR(-EBUSY);
863 /* If there's already a connection object but it's not in
864 * scanning state it means it must already be established, in
865 * which case we can't do anything else except report a failure
866 * to connect.
868 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
869 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
870 return ERR_PTR(-EBUSY);
873 /* When given an identity address with existing identity
874 * resolving key, the connection needs to be established
875 * to a resolvable random address.
877 * Storing the resolvable random address is required here
878 * to handle connection failures. The address will later
879 * be resolved back into the original identity address
880 * from the connect request.
882 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
883 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
884 dst = &irk->rpa;
885 dst_type = ADDR_LE_DEV_RANDOM;
888 if (conn) {
889 bacpy(&conn->dst, dst);
890 } else {
891 conn = hci_conn_add(hdev, LE_LINK, dst, role);
892 if (!conn)
893 return ERR_PTR(-ENOMEM);
894 hci_conn_hold(conn);
895 conn->pending_sec_level = sec_level;
898 conn->dst_type = dst_type;
899 conn->sec_level = BT_SECURITY_LOW;
900 conn->conn_timeout = conn_timeout;
902 hci_req_init(&req, hdev);
904 /* Disable advertising if we're active. For master role
905 * connections most controllers will refuse to connect if
906 * advertising is enabled, and for slave role connections we
907 * anyway have to disable it in order to start directed
908 * advertising.
910 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
911 u8 enable = 0x00;
912 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
913 &enable);
916 /* If requested to connect as slave use directed advertising */
917 if (conn->role == HCI_ROLE_SLAVE) {
918 /* If we're active scanning most controllers are unable
919 * to initiate advertising. Simply reject the attempt.
921 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
922 hdev->le_scan_type == LE_SCAN_ACTIVE) {
923 hci_req_purge(&req);
924 hci_conn_del(conn);
925 return ERR_PTR(-EBUSY);
928 hci_req_directed_advertising(&req, conn);
929 goto create_conn;
932 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
933 if (params) {
934 conn->le_conn_min_interval = params->conn_min_interval;
935 conn->le_conn_max_interval = params->conn_max_interval;
936 conn->le_conn_latency = params->conn_latency;
937 conn->le_supv_timeout = params->supervision_timeout;
938 } else {
939 conn->le_conn_min_interval = hdev->le_conn_min_interval;
940 conn->le_conn_max_interval = hdev->le_conn_max_interval;
941 conn->le_conn_latency = hdev->le_conn_latency;
942 conn->le_supv_timeout = hdev->le_supv_timeout;
945 /* If controller is scanning, we stop it since some controllers are
946 * not able to scan and connect at the same time. Also set the
947 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
948 * handler for scan disabling knows to set the correct discovery
949 * state.
951 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
952 hci_req_add_le_scan_disable(&req);
953 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
956 hci_req_add_le_create_conn(&req, conn, direct_rpa);
958 create_conn:
959 err = hci_req_run(&req, create_le_conn_complete);
960 if (err) {
961 hci_conn_del(conn);
962 return ERR_PTR(err);
965 return conn;
968 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
970 struct hci_conn *conn;
972 conn = hci_conn_hash_lookup_le(hdev, addr, type);
973 if (!conn)
974 return false;
976 if (conn->state != BT_CONNECTED)
977 return false;
979 return true;
982 /* This function requires the caller holds hdev->lock */
983 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
984 bdaddr_t *addr, u8 addr_type)
986 struct hci_conn_params *params;
988 if (is_connected(hdev, addr, addr_type))
989 return -EISCONN;
991 params = hci_conn_params_lookup(hdev, addr, addr_type);
992 if (!params) {
993 params = hci_conn_params_add(hdev, addr, addr_type);
994 if (!params)
995 return -ENOMEM;
997 /* If we created new params, mark them to be deleted in
998 * hci_connect_le_scan_cleanup. It's different case than
999 * existing disabled params, those will stay after cleanup.
1001 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1004 /* We're trying to connect, so make sure params are at pend_le_conns */
1005 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1006 params->auto_connect == HCI_AUTO_CONN_REPORT ||
1007 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1008 list_del_init(&params->action);
1009 list_add(&params->action, &hdev->pend_le_conns);
1012 params->explicit_connect = true;
1014 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1015 params->auto_connect);
1017 return 0;
1020 /* This function requires the caller holds hdev->lock */
1021 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1022 u8 dst_type, u8 sec_level,
1023 u16 conn_timeout)
1025 struct hci_conn *conn;
1027 /* Let's make sure that le is enabled.*/
1028 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1029 if (lmp_le_capable(hdev))
1030 return ERR_PTR(-ECONNREFUSED);
1032 return ERR_PTR(-EOPNOTSUPP);
1035 /* Some devices send ATT messages as soon as the physical link is
1036 * established. To be able to handle these ATT messages, the user-
1037 * space first establishes the connection and then starts the pairing
1038 * process.
1040 * So if a hci_conn object already exists for the following connection
1041 * attempt, we simply update pending_sec_level and auth_type fields
1042 * and return the object found.
1044 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1045 if (conn) {
1046 if (conn->pending_sec_level < sec_level)
1047 conn->pending_sec_level = sec_level;
1048 goto done;
1051 BT_DBG("requesting refresh of dst_addr");
1053 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1054 if (!conn)
1055 return ERR_PTR(-ENOMEM);
1057 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0)
1058 return ERR_PTR(-EBUSY);
1060 conn->state = BT_CONNECT;
1061 set_bit(HCI_CONN_SCANNING, &conn->flags);
1062 conn->dst_type = dst_type;
1063 conn->sec_level = BT_SECURITY_LOW;
1064 conn->pending_sec_level = sec_level;
1065 conn->conn_timeout = conn_timeout;
1067 hci_update_background_scan(hdev);
1069 done:
1070 hci_conn_hold(conn);
1071 return conn;
1074 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1075 u8 sec_level, u8 auth_type)
1077 struct hci_conn *acl;
1079 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1080 if (lmp_bredr_capable(hdev))
1081 return ERR_PTR(-ECONNREFUSED);
1083 return ERR_PTR(-EOPNOTSUPP);
1086 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1087 if (!acl) {
1088 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1089 if (!acl)
1090 return ERR_PTR(-ENOMEM);
1093 hci_conn_hold(acl);
1095 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1096 acl->sec_level = BT_SECURITY_LOW;
1097 acl->pending_sec_level = sec_level;
1098 acl->auth_type = auth_type;
1099 hci_acl_create_connection(acl);
1102 return acl;
1105 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1106 __u16 setting)
1108 struct hci_conn *acl;
1109 struct hci_conn *sco;
1111 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
1112 if (IS_ERR(acl))
1113 return acl;
1115 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1116 if (!sco) {
1117 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1118 if (!sco) {
1119 hci_conn_drop(acl);
1120 return ERR_PTR(-ENOMEM);
1124 acl->link = sco;
1125 sco->link = acl;
1127 hci_conn_hold(sco);
1129 sco->setting = setting;
1131 if (acl->state == BT_CONNECTED &&
1132 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1133 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1134 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1136 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1137 /* defer SCO setup until mode change completed */
1138 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1139 return sco;
1142 hci_sco_setup(acl, 0x00);
1145 return sco;
1148 /* Check link security requirement */
1149 int hci_conn_check_link_mode(struct hci_conn *conn)
1151 BT_DBG("hcon %p", conn);
1153 /* In Secure Connections Only mode, it is required that Secure
1154 * Connections is used and the link is encrypted with AES-CCM
1155 * using a P-256 authenticated combination key.
1157 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1158 if (!hci_conn_sc_enabled(conn) ||
1159 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1160 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1161 return 0;
1164 if (hci_conn_ssp_enabled(conn) &&
1165 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1166 return 0;
1168 return 1;
1171 /* Authenticate remote device */
1172 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1174 BT_DBG("hcon %p", conn);
1176 if (conn->pending_sec_level > sec_level)
1177 sec_level = conn->pending_sec_level;
1179 if (sec_level > conn->sec_level)
1180 conn->pending_sec_level = sec_level;
1181 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1182 return 1;
1184 /* Make sure we preserve an existing MITM requirement*/
1185 auth_type |= (conn->auth_type & 0x01);
1187 conn->auth_type = auth_type;
1189 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1190 struct hci_cp_auth_requested cp;
1192 cp.handle = cpu_to_le16(conn->handle);
1193 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1194 sizeof(cp), &cp);
1196 /* If we're already encrypted set the REAUTH_PEND flag,
1197 * otherwise set the ENCRYPT_PEND.
1199 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1200 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1201 else
1202 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1205 return 0;
1208 /* Encrypt the the link */
1209 static void hci_conn_encrypt(struct hci_conn *conn)
1211 BT_DBG("hcon %p", conn);
1213 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1214 struct hci_cp_set_conn_encrypt cp;
1215 cp.handle = cpu_to_le16(conn->handle);
1216 cp.encrypt = 0x01;
1217 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1218 &cp);
1222 /* Enable security */
1223 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1224 bool initiator)
1226 BT_DBG("hcon %p", conn);
1228 if (conn->type == LE_LINK)
1229 return smp_conn_security(conn, sec_level);
1231 /* For sdp we don't need the link key. */
1232 if (sec_level == BT_SECURITY_SDP)
1233 return 1;
1235 /* For non 2.1 devices and low security level we don't need the link
1236 key. */
1237 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1238 return 1;
1240 /* For other security levels we need the link key. */
1241 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1242 goto auth;
1244 /* An authenticated FIPS approved combination key has sufficient
1245 * security for security level 4. */
1246 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1247 sec_level == BT_SECURITY_FIPS)
1248 goto encrypt;
1250 /* An authenticated combination key has sufficient security for
1251 security level 3. */
1252 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1253 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1254 sec_level == BT_SECURITY_HIGH)
1255 goto encrypt;
1257 /* An unauthenticated combination key has sufficient security for
1258 security level 1 and 2. */
1259 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1260 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1261 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1262 goto encrypt;
1264 /* A combination key has always sufficient security for the security
1265 levels 1 or 2. High security level requires the combination key
1266 is generated using maximum PIN code length (16).
1267 For pre 2.1 units. */
1268 if (conn->key_type == HCI_LK_COMBINATION &&
1269 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1270 conn->pin_length == 16))
1271 goto encrypt;
1273 auth:
1274 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1275 return 0;
1277 if (initiator)
1278 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1280 if (!hci_conn_auth(conn, sec_level, auth_type))
1281 return 0;
1283 encrypt:
1284 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1285 return 1;
1287 hci_conn_encrypt(conn);
1288 return 0;
1290 EXPORT_SYMBOL(hci_conn_security);
1292 /* Check secure link requirement */
1293 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1295 BT_DBG("hcon %p", conn);
1297 /* Accept if non-secure or higher security level is required */
1298 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1299 return 1;
1301 /* Accept if secure or higher security level is already present */
1302 if (conn->sec_level == BT_SECURITY_HIGH ||
1303 conn->sec_level == BT_SECURITY_FIPS)
1304 return 1;
1306 /* Reject not secure link */
1307 return 0;
1309 EXPORT_SYMBOL(hci_conn_check_secure);
1311 /* Switch role */
1312 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1314 BT_DBG("hcon %p", conn);
1316 if (role == conn->role)
1317 return 1;
1319 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1320 struct hci_cp_switch_role cp;
1321 bacpy(&cp.bdaddr, &conn->dst);
1322 cp.role = role;
1323 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1326 return 0;
1328 EXPORT_SYMBOL(hci_conn_switch_role);
1330 /* Enter active mode */
1331 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1333 struct hci_dev *hdev = conn->hdev;
1335 BT_DBG("hcon %p mode %d", conn, conn->mode);
1337 if (conn->mode != HCI_CM_SNIFF)
1338 goto timer;
1340 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1341 goto timer;
1343 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1344 struct hci_cp_exit_sniff_mode cp;
1345 cp.handle = cpu_to_le16(conn->handle);
1346 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1349 timer:
1350 if (hdev->idle_timeout > 0)
1351 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1352 msecs_to_jiffies(hdev->idle_timeout));
1355 /* Drop all connection on the device */
1356 void hci_conn_hash_flush(struct hci_dev *hdev)
1358 struct hci_conn_hash *h = &hdev->conn_hash;
1359 struct hci_conn *c, *n;
1361 BT_DBG("hdev %s", hdev->name);
1363 list_for_each_entry_safe(c, n, &h->list, list) {
1364 c->state = BT_CLOSED;
1366 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1367 hci_conn_del(c);
1371 /* Check pending connect attempts */
1372 void hci_conn_check_pending(struct hci_dev *hdev)
1374 struct hci_conn *conn;
1376 BT_DBG("hdev %s", hdev->name);
1378 hci_dev_lock(hdev);
1380 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1381 if (conn)
1382 hci_acl_create_connection(conn);
1384 hci_dev_unlock(hdev);
1387 static u32 get_link_mode(struct hci_conn *conn)
1389 u32 link_mode = 0;
1391 if (conn->role == HCI_ROLE_MASTER)
1392 link_mode |= HCI_LM_MASTER;
1394 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1395 link_mode |= HCI_LM_ENCRYPT;
1397 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1398 link_mode |= HCI_LM_AUTH;
1400 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1401 link_mode |= HCI_LM_SECURE;
1403 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1404 link_mode |= HCI_LM_FIPS;
1406 return link_mode;
1409 int hci_get_conn_list(void __user *arg)
1411 struct hci_conn *c;
1412 struct hci_conn_list_req req, *cl;
1413 struct hci_conn_info *ci;
1414 struct hci_dev *hdev;
1415 int n = 0, size, err;
1417 if (copy_from_user(&req, arg, sizeof(req)))
1418 return -EFAULT;
1420 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1421 return -EINVAL;
1423 size = sizeof(req) + req.conn_num * sizeof(*ci);
1425 cl = kmalloc(size, GFP_KERNEL);
1426 if (!cl)
1427 return -ENOMEM;
1429 hdev = hci_dev_get(req.dev_id);
1430 if (!hdev) {
1431 kfree(cl);
1432 return -ENODEV;
1435 ci = cl->conn_info;
1437 hci_dev_lock(hdev);
1438 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1439 bacpy(&(ci + n)->bdaddr, &c->dst);
1440 (ci + n)->handle = c->handle;
1441 (ci + n)->type = c->type;
1442 (ci + n)->out = c->out;
1443 (ci + n)->state = c->state;
1444 (ci + n)->link_mode = get_link_mode(c);
1445 if (++n >= req.conn_num)
1446 break;
1448 hci_dev_unlock(hdev);
1450 cl->dev_id = hdev->id;
1451 cl->conn_num = n;
1452 size = sizeof(req) + n * sizeof(*ci);
1454 hci_dev_put(hdev);
1456 err = copy_to_user(arg, cl, size);
1457 kfree(cl);
1459 return err ? -EFAULT : 0;
1462 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1464 struct hci_conn_info_req req;
1465 struct hci_conn_info ci;
1466 struct hci_conn *conn;
1467 char __user *ptr = arg + sizeof(req);
1469 if (copy_from_user(&req, arg, sizeof(req)))
1470 return -EFAULT;
1472 hci_dev_lock(hdev);
1473 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1474 if (conn) {
1475 bacpy(&ci.bdaddr, &conn->dst);
1476 ci.handle = conn->handle;
1477 ci.type = conn->type;
1478 ci.out = conn->out;
1479 ci.state = conn->state;
1480 ci.link_mode = get_link_mode(conn);
1482 hci_dev_unlock(hdev);
1484 if (!conn)
1485 return -ENOENT;
1487 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1490 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1492 struct hci_auth_info_req req;
1493 struct hci_conn *conn;
1495 if (copy_from_user(&req, arg, sizeof(req)))
1496 return -EFAULT;
1498 hci_dev_lock(hdev);
1499 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1500 if (conn)
1501 req.type = conn->auth_type;
1502 hci_dev_unlock(hdev);
1504 if (!conn)
1505 return -ENOENT;
1507 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1510 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1512 struct hci_dev *hdev = conn->hdev;
1513 struct hci_chan *chan;
1515 BT_DBG("%s hcon %p", hdev->name, conn);
1517 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1518 BT_DBG("Refusing to create new hci_chan");
1519 return NULL;
1522 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1523 if (!chan)
1524 return NULL;
1526 chan->conn = hci_conn_get(conn);
1527 skb_queue_head_init(&chan->data_q);
1528 chan->state = BT_CONNECTED;
1530 list_add_rcu(&chan->list, &conn->chan_list);
1532 return chan;
1535 void hci_chan_del(struct hci_chan *chan)
1537 struct hci_conn *conn = chan->conn;
1538 struct hci_dev *hdev = conn->hdev;
1540 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1542 list_del_rcu(&chan->list);
1544 synchronize_rcu();
1546 /* Prevent new hci_chan's to be created for this hci_conn */
1547 set_bit(HCI_CONN_DROP, &conn->flags);
1549 hci_conn_put(conn);
1551 skb_queue_purge(&chan->data_q);
1552 kfree(chan);
1555 void hci_chan_list_flush(struct hci_conn *conn)
1557 struct hci_chan *chan, *n;
1559 BT_DBG("hcon %p", conn);
1561 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1562 hci_chan_del(chan);
1565 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1566 __u16 handle)
1568 struct hci_chan *hchan;
1570 list_for_each_entry(hchan, &hcon->chan_list, list) {
1571 if (hchan->handle == handle)
1572 return hchan;
1575 return NULL;
1578 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1580 struct hci_conn_hash *h = &hdev->conn_hash;
1581 struct hci_conn *hcon;
1582 struct hci_chan *hchan = NULL;
1584 rcu_read_lock();
1586 list_for_each_entry_rcu(hcon, &h->list, list) {
1587 hchan = __hci_chan_lookup_handle(hcon, handle);
1588 if (hchan)
1589 break;
1592 rcu_read_unlock();
1594 return hchan;