cpuset: restore sanity to cpuset_cpus_allowed_fallback()
[linux/fpc-iii.git] / fs / xfs / xfs_rmap_item.c
blob127dc9c32a54247be2b24ec56de1f2d91e82a6c4
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_buf_item.h"
18 #include "xfs_rmap_item.h"
19 #include "xfs_log.h"
20 #include "xfs_rmap.h"
23 kmem_zone_t *xfs_rui_zone;
24 kmem_zone_t *xfs_rud_zone;
26 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
28 return container_of(lip, struct xfs_rui_log_item, rui_item);
31 void
32 xfs_rui_item_free(
33 struct xfs_rui_log_item *ruip)
35 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
36 kmem_free(ruip);
37 else
38 kmem_zone_free(xfs_rui_zone, ruip);
42 * Freeing the RUI requires that we remove it from the AIL if it has already
43 * been placed there. However, the RUI may not yet have been placed in the AIL
44 * when called by xfs_rui_release() from RUD processing due to the ordering of
45 * committed vs unpin operations in bulk insert operations. Hence the reference
46 * count to ensure only the last caller frees the RUI.
48 void
49 xfs_rui_release(
50 struct xfs_rui_log_item *ruip)
52 ASSERT(atomic_read(&ruip->rui_refcount) > 0);
53 if (atomic_dec_and_test(&ruip->rui_refcount)) {
54 xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
55 xfs_rui_item_free(ruip);
59 STATIC void
60 xfs_rui_item_size(
61 struct xfs_log_item *lip,
62 int *nvecs,
63 int *nbytes)
65 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
67 *nvecs += 1;
68 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
72 * This is called to fill in the vector of log iovecs for the
73 * given rui log item. We use only 1 iovec, and we point that
74 * at the rui_log_format structure embedded in the rui item.
75 * It is at this point that we assert that all of the extent
76 * slots in the rui item have been filled.
78 STATIC void
79 xfs_rui_item_format(
80 struct xfs_log_item *lip,
81 struct xfs_log_vec *lv)
83 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
84 struct xfs_log_iovec *vecp = NULL;
86 ASSERT(atomic_read(&ruip->rui_next_extent) ==
87 ruip->rui_format.rui_nextents);
89 ruip->rui_format.rui_type = XFS_LI_RUI;
90 ruip->rui_format.rui_size = 1;
92 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
93 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
97 * Pinning has no meaning for an rui item, so just return.
99 STATIC void
100 xfs_rui_item_pin(
101 struct xfs_log_item *lip)
106 * The unpin operation is the last place an RUI is manipulated in the log. It is
107 * either inserted in the AIL or aborted in the event of a log I/O error. In
108 * either case, the RUI transaction has been successfully committed to make it
109 * this far. Therefore, we expect whoever committed the RUI to either construct
110 * and commit the RUD or drop the RUD's reference in the event of error. Simply
111 * drop the log's RUI reference now that the log is done with it.
113 STATIC void
114 xfs_rui_item_unpin(
115 struct xfs_log_item *lip,
116 int remove)
118 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
120 xfs_rui_release(ruip);
124 * RUI items have no locking or pushing. However, since RUIs are pulled from
125 * the AIL when their corresponding RUDs are committed to disk, their situation
126 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
127 * will eventually flush the log. This should help in getting the RUI out of
128 * the AIL.
130 STATIC uint
131 xfs_rui_item_push(
132 struct xfs_log_item *lip,
133 struct list_head *buffer_list)
135 return XFS_ITEM_PINNED;
139 * The RUI has been either committed or aborted if the transaction has been
140 * cancelled. If the transaction was cancelled, an RUD isn't going to be
141 * constructed and thus we free the RUI here directly.
143 STATIC void
144 xfs_rui_item_unlock(
145 struct xfs_log_item *lip)
147 if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
148 xfs_rui_release(RUI_ITEM(lip));
152 * The RUI is logged only once and cannot be moved in the log, so simply return
153 * the lsn at which it's been logged.
155 STATIC xfs_lsn_t
156 xfs_rui_item_committed(
157 struct xfs_log_item *lip,
158 xfs_lsn_t lsn)
160 return lsn;
164 * The RUI dependency tracking op doesn't do squat. It can't because
165 * it doesn't know where the free extent is coming from. The dependency
166 * tracking has to be handled by the "enclosing" metadata object. For
167 * example, for inodes, the inode is locked throughout the extent freeing
168 * so the dependency should be recorded there.
170 STATIC void
171 xfs_rui_item_committing(
172 struct xfs_log_item *lip,
173 xfs_lsn_t lsn)
178 * This is the ops vector shared by all rui log items.
180 static const struct xfs_item_ops xfs_rui_item_ops = {
181 .iop_size = xfs_rui_item_size,
182 .iop_format = xfs_rui_item_format,
183 .iop_pin = xfs_rui_item_pin,
184 .iop_unpin = xfs_rui_item_unpin,
185 .iop_unlock = xfs_rui_item_unlock,
186 .iop_committed = xfs_rui_item_committed,
187 .iop_push = xfs_rui_item_push,
188 .iop_committing = xfs_rui_item_committing,
192 * Allocate and initialize an rui item with the given number of extents.
194 struct xfs_rui_log_item *
195 xfs_rui_init(
196 struct xfs_mount *mp,
197 uint nextents)
200 struct xfs_rui_log_item *ruip;
202 ASSERT(nextents > 0);
203 if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
204 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
205 else
206 ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
208 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
209 ruip->rui_format.rui_nextents = nextents;
210 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
211 atomic_set(&ruip->rui_next_extent, 0);
212 atomic_set(&ruip->rui_refcount, 2);
214 return ruip;
218 * Copy an RUI format buffer from the given buf, and into the destination
219 * RUI format structure. The RUI/RUD items were designed not to need any
220 * special alignment handling.
223 xfs_rui_copy_format(
224 struct xfs_log_iovec *buf,
225 struct xfs_rui_log_format *dst_rui_fmt)
227 struct xfs_rui_log_format *src_rui_fmt;
228 uint len;
230 src_rui_fmt = buf->i_addr;
231 len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
233 if (buf->i_len != len)
234 return -EFSCORRUPTED;
236 memcpy(dst_rui_fmt, src_rui_fmt, len);
237 return 0;
240 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
242 return container_of(lip, struct xfs_rud_log_item, rud_item);
245 STATIC void
246 xfs_rud_item_size(
247 struct xfs_log_item *lip,
248 int *nvecs,
249 int *nbytes)
251 *nvecs += 1;
252 *nbytes += sizeof(struct xfs_rud_log_format);
256 * This is called to fill in the vector of log iovecs for the
257 * given rud log item. We use only 1 iovec, and we point that
258 * at the rud_log_format structure embedded in the rud item.
259 * It is at this point that we assert that all of the extent
260 * slots in the rud item have been filled.
262 STATIC void
263 xfs_rud_item_format(
264 struct xfs_log_item *lip,
265 struct xfs_log_vec *lv)
267 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
268 struct xfs_log_iovec *vecp = NULL;
270 rudp->rud_format.rud_type = XFS_LI_RUD;
271 rudp->rud_format.rud_size = 1;
273 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
274 sizeof(struct xfs_rud_log_format));
278 * Pinning has no meaning for an rud item, so just return.
280 STATIC void
281 xfs_rud_item_pin(
282 struct xfs_log_item *lip)
287 * Since pinning has no meaning for an rud item, unpinning does
288 * not either.
290 STATIC void
291 xfs_rud_item_unpin(
292 struct xfs_log_item *lip,
293 int remove)
298 * There isn't much you can do to push on an rud item. It is simply stuck
299 * waiting for the log to be flushed to disk.
301 STATIC uint
302 xfs_rud_item_push(
303 struct xfs_log_item *lip,
304 struct list_head *buffer_list)
306 return XFS_ITEM_PINNED;
310 * The RUD is either committed or aborted if the transaction is cancelled. If
311 * the transaction is cancelled, drop our reference to the RUI and free the
312 * RUD.
314 STATIC void
315 xfs_rud_item_unlock(
316 struct xfs_log_item *lip)
318 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
320 if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
321 xfs_rui_release(rudp->rud_ruip);
322 kmem_zone_free(xfs_rud_zone, rudp);
327 * When the rud item is committed to disk, all we need to do is delete our
328 * reference to our partner rui item and then free ourselves. Since we're
329 * freeing ourselves we must return -1 to keep the transaction code from
330 * further referencing this item.
332 STATIC xfs_lsn_t
333 xfs_rud_item_committed(
334 struct xfs_log_item *lip,
335 xfs_lsn_t lsn)
337 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
340 * Drop the RUI reference regardless of whether the RUD has been
341 * aborted. Once the RUD transaction is constructed, it is the sole
342 * responsibility of the RUD to release the RUI (even if the RUI is
343 * aborted due to log I/O error).
345 xfs_rui_release(rudp->rud_ruip);
346 kmem_zone_free(xfs_rud_zone, rudp);
348 return (xfs_lsn_t)-1;
352 * The RUD dependency tracking op doesn't do squat. It can't because
353 * it doesn't know where the free extent is coming from. The dependency
354 * tracking has to be handled by the "enclosing" metadata object. For
355 * example, for inodes, the inode is locked throughout the extent freeing
356 * so the dependency should be recorded there.
358 STATIC void
359 xfs_rud_item_committing(
360 struct xfs_log_item *lip,
361 xfs_lsn_t lsn)
366 * This is the ops vector shared by all rud log items.
368 static const struct xfs_item_ops xfs_rud_item_ops = {
369 .iop_size = xfs_rud_item_size,
370 .iop_format = xfs_rud_item_format,
371 .iop_pin = xfs_rud_item_pin,
372 .iop_unpin = xfs_rud_item_unpin,
373 .iop_unlock = xfs_rud_item_unlock,
374 .iop_committed = xfs_rud_item_committed,
375 .iop_push = xfs_rud_item_push,
376 .iop_committing = xfs_rud_item_committing,
380 * Allocate and initialize an rud item with the given number of extents.
382 struct xfs_rud_log_item *
383 xfs_rud_init(
384 struct xfs_mount *mp,
385 struct xfs_rui_log_item *ruip)
388 struct xfs_rud_log_item *rudp;
390 rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
391 xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
392 rudp->rud_ruip = ruip;
393 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
395 return rudp;
399 * Process an rmap update intent item that was recovered from the log.
400 * We need to update the rmapbt.
403 xfs_rui_recover(
404 struct xfs_mount *mp,
405 struct xfs_rui_log_item *ruip)
407 int i;
408 int error = 0;
409 struct xfs_map_extent *rmap;
410 xfs_fsblock_t startblock_fsb;
411 bool op_ok;
412 struct xfs_rud_log_item *rudp;
413 enum xfs_rmap_intent_type type;
414 int whichfork;
415 xfs_exntst_t state;
416 struct xfs_trans *tp;
417 struct xfs_btree_cur *rcur = NULL;
419 ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
422 * First check the validity of the extents described by the
423 * RUI. If any are bad, then assume that all are bad and
424 * just toss the RUI.
426 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
427 rmap = &ruip->rui_format.rui_extents[i];
428 startblock_fsb = XFS_BB_TO_FSB(mp,
429 XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
430 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
431 case XFS_RMAP_EXTENT_MAP:
432 case XFS_RMAP_EXTENT_MAP_SHARED:
433 case XFS_RMAP_EXTENT_UNMAP:
434 case XFS_RMAP_EXTENT_UNMAP_SHARED:
435 case XFS_RMAP_EXTENT_CONVERT:
436 case XFS_RMAP_EXTENT_CONVERT_SHARED:
437 case XFS_RMAP_EXTENT_ALLOC:
438 case XFS_RMAP_EXTENT_FREE:
439 op_ok = true;
440 break;
441 default:
442 op_ok = false;
443 break;
445 if (!op_ok || startblock_fsb == 0 ||
446 rmap->me_len == 0 ||
447 startblock_fsb >= mp->m_sb.sb_dblocks ||
448 rmap->me_len >= mp->m_sb.sb_agblocks ||
449 (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
451 * This will pull the RUI from the AIL and
452 * free the memory associated with it.
454 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
455 xfs_rui_release(ruip);
456 return -EIO;
460 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
461 mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
462 if (error)
463 return error;
464 rudp = xfs_trans_get_rud(tp, ruip);
466 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
467 rmap = &ruip->rui_format.rui_extents[i];
468 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
469 XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
470 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
471 XFS_ATTR_FORK : XFS_DATA_FORK;
472 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
473 case XFS_RMAP_EXTENT_MAP:
474 type = XFS_RMAP_MAP;
475 break;
476 case XFS_RMAP_EXTENT_MAP_SHARED:
477 type = XFS_RMAP_MAP_SHARED;
478 break;
479 case XFS_RMAP_EXTENT_UNMAP:
480 type = XFS_RMAP_UNMAP;
481 break;
482 case XFS_RMAP_EXTENT_UNMAP_SHARED:
483 type = XFS_RMAP_UNMAP_SHARED;
484 break;
485 case XFS_RMAP_EXTENT_CONVERT:
486 type = XFS_RMAP_CONVERT;
487 break;
488 case XFS_RMAP_EXTENT_CONVERT_SHARED:
489 type = XFS_RMAP_CONVERT_SHARED;
490 break;
491 case XFS_RMAP_EXTENT_ALLOC:
492 type = XFS_RMAP_ALLOC;
493 break;
494 case XFS_RMAP_EXTENT_FREE:
495 type = XFS_RMAP_FREE;
496 break;
497 default:
498 error = -EFSCORRUPTED;
499 goto abort_error;
501 error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
502 rmap->me_owner, whichfork,
503 rmap->me_startoff, rmap->me_startblock,
504 rmap->me_len, state, &rcur);
505 if (error)
506 goto abort_error;
510 xfs_rmap_finish_one_cleanup(tp, rcur, error);
511 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
512 error = xfs_trans_commit(tp);
513 return error;
515 abort_error:
516 xfs_rmap_finish_one_cleanup(tp, rcur, error);
517 xfs_trans_cancel(tp);
518 return error;