4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
49 static void free_swap_count_continuations(struct swap_info_struct
*);
50 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
52 DEFINE_SPINLOCK(swap_lock
);
53 static unsigned int nr_swapfiles
;
54 atomic_long_t nr_swap_pages
;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages
);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages
;
63 static int least_priority
= -1;
65 static const char Bad_file
[] = "Bad swap file entry ";
66 static const char Unused_file
[] = "Unused swap file entry ";
67 static const char Bad_offset
[] = "Bad swap offset entry ";
68 static const char Unused_offset
[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head
);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head
*swap_avail_heads
;
89 static DEFINE_SPINLOCK(swap_avail_lock
);
91 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
93 static DEFINE_MUTEX(swapon_mutex
);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap
= ATOMIC_INIT(0);
101 static struct swap_info_struct
*swap_type_to_swap_info(int type
)
103 if (type
>= READ_ONCE(nr_swapfiles
))
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info
[type
]);
110 static inline unsigned char swap_count(unsigned char ent
)
112 return ent
& ~SWAP_HAS_CACHE
; /* may include COUNT_CONTINUED flag */
115 /* returns 1 if swap entry is freed */
117 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
119 swp_entry_t entry
= swp_entry(si
->type
, offset
);
123 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
127 * This function is called from scan_swap_map() and it's called
128 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
129 * We have to use trylock for avoiding deadlock. This is a special
130 * case and you should use try_to_free_swap() with explicit lock_page()
131 * in usual operations.
133 if (trylock_page(page
)) {
134 ret
= try_to_free_swap(page
);
142 * swapon tell device that all the old swap contents can be discarded,
143 * to allow the swap device to optimize its wear-levelling.
145 static int discard_swap(struct swap_info_struct
*si
)
147 struct swap_extent
*se
;
148 sector_t start_block
;
152 /* Do not discard the swap header page! */
153 se
= &si
->first_swap_extent
;
154 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
155 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
157 err
= blkdev_issue_discard(si
->bdev
, start_block
,
158 nr_blocks
, GFP_KERNEL
, 0);
164 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
165 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
166 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
168 err
= blkdev_issue_discard(si
->bdev
, start_block
,
169 nr_blocks
, GFP_KERNEL
, 0);
175 return err
; /* That will often be -EOPNOTSUPP */
179 * swap allocation tell device that a cluster of swap can now be discarded,
180 * to allow the swap device to optimize its wear-levelling.
182 static void discard_swap_cluster(struct swap_info_struct
*si
,
183 pgoff_t start_page
, pgoff_t nr_pages
)
185 struct swap_extent
*se
= si
->curr_swap_extent
;
186 int found_extent
= 0;
189 if (se
->start_page
<= start_page
&&
190 start_page
< se
->start_page
+ se
->nr_pages
) {
191 pgoff_t offset
= start_page
- se
->start_page
;
192 sector_t start_block
= se
->start_block
+ offset
;
193 sector_t nr_blocks
= se
->nr_pages
- offset
;
195 if (nr_blocks
> nr_pages
)
196 nr_blocks
= nr_pages
;
197 start_page
+= nr_blocks
;
198 nr_pages
-= nr_blocks
;
201 si
->curr_swap_extent
= se
;
203 start_block
<<= PAGE_SHIFT
- 9;
204 nr_blocks
<<= PAGE_SHIFT
- 9;
205 if (blkdev_issue_discard(si
->bdev
, start_block
,
206 nr_blocks
, GFP_NOIO
, 0))
210 se
= list_next_entry(se
, list
);
214 #ifdef CONFIG_THP_SWAP
215 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
217 #define swap_entry_size(size) (size)
219 #define SWAPFILE_CLUSTER 256
222 * Define swap_entry_size() as constant to let compiler to optimize
223 * out some code if !CONFIG_THP_SWAP
225 #define swap_entry_size(size) 1
227 #define LATENCY_LIMIT 256
229 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
235 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
240 static inline void cluster_set_count(struct swap_cluster_info
*info
,
246 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
247 unsigned int c
, unsigned int f
)
253 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
258 static inline void cluster_set_next(struct swap_cluster_info
*info
,
264 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
265 unsigned int n
, unsigned int f
)
271 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
273 return info
->flags
& CLUSTER_FLAG_FREE
;
276 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
278 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
281 static inline void cluster_set_null(struct swap_cluster_info
*info
)
283 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
287 static inline bool cluster_is_huge(struct swap_cluster_info
*info
)
289 if (IS_ENABLED(CONFIG_THP_SWAP
))
290 return info
->flags
& CLUSTER_FLAG_HUGE
;
294 static inline void cluster_clear_huge(struct swap_cluster_info
*info
)
296 info
->flags
&= ~CLUSTER_FLAG_HUGE
;
299 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
300 unsigned long offset
)
302 struct swap_cluster_info
*ci
;
304 ci
= si
->cluster_info
;
306 ci
+= offset
/ SWAPFILE_CLUSTER
;
307 spin_lock(&ci
->lock
);
312 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
315 spin_unlock(&ci
->lock
);
319 * Determine the locking method in use for this device. Return
320 * swap_cluster_info if SSD-style cluster-based locking is in place.
322 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
323 struct swap_info_struct
*si
, unsigned long offset
)
325 struct swap_cluster_info
*ci
;
327 /* Try to use fine-grained SSD-style locking if available: */
328 ci
= lock_cluster(si
, offset
);
329 /* Otherwise, fall back to traditional, coarse locking: */
331 spin_lock(&si
->lock
);
336 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
337 struct swap_cluster_info
*ci
)
342 spin_unlock(&si
->lock
);
345 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
347 return cluster_is_null(&list
->head
);
350 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
352 return cluster_next(&list
->head
);
355 static void cluster_list_init(struct swap_cluster_list
*list
)
357 cluster_set_null(&list
->head
);
358 cluster_set_null(&list
->tail
);
361 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
362 struct swap_cluster_info
*ci
,
365 if (cluster_list_empty(list
)) {
366 cluster_set_next_flag(&list
->head
, idx
, 0);
367 cluster_set_next_flag(&list
->tail
, idx
, 0);
369 struct swap_cluster_info
*ci_tail
;
370 unsigned int tail
= cluster_next(&list
->tail
);
373 * Nested cluster lock, but both cluster locks are
374 * only acquired when we held swap_info_struct->lock
377 spin_lock_nested(&ci_tail
->lock
, SINGLE_DEPTH_NESTING
);
378 cluster_set_next(ci_tail
, idx
);
379 spin_unlock(&ci_tail
->lock
);
380 cluster_set_next_flag(&list
->tail
, idx
, 0);
384 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
385 struct swap_cluster_info
*ci
)
389 idx
= cluster_next(&list
->head
);
390 if (cluster_next(&list
->tail
) == idx
) {
391 cluster_set_null(&list
->head
);
392 cluster_set_null(&list
->tail
);
394 cluster_set_next_flag(&list
->head
,
395 cluster_next(&ci
[idx
]), 0);
400 /* Add a cluster to discard list and schedule it to do discard */
401 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
405 * If scan_swap_map() can't find a free cluster, it will check
406 * si->swap_map directly. To make sure the discarding cluster isn't
407 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
408 * will be cleared after discard
410 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
411 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
413 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
415 schedule_work(&si
->discard_work
);
418 static void __free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
420 struct swap_cluster_info
*ci
= si
->cluster_info
;
422 cluster_set_flag(ci
+ idx
, CLUSTER_FLAG_FREE
);
423 cluster_list_add_tail(&si
->free_clusters
, ci
, idx
);
427 * Doing discard actually. After a cluster discard is finished, the cluster
428 * will be added to free cluster list. caller should hold si->lock.
430 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
432 struct swap_cluster_info
*info
, *ci
;
435 info
= si
->cluster_info
;
437 while (!cluster_list_empty(&si
->discard_clusters
)) {
438 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
439 spin_unlock(&si
->lock
);
441 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
444 spin_lock(&si
->lock
);
445 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
446 __free_cluster(si
, idx
);
447 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
448 0, SWAPFILE_CLUSTER
);
453 static void swap_discard_work(struct work_struct
*work
)
455 struct swap_info_struct
*si
;
457 si
= container_of(work
, struct swap_info_struct
, discard_work
);
459 spin_lock(&si
->lock
);
460 swap_do_scheduled_discard(si
);
461 spin_unlock(&si
->lock
);
464 static void alloc_cluster(struct swap_info_struct
*si
, unsigned long idx
)
466 struct swap_cluster_info
*ci
= si
->cluster_info
;
468 VM_BUG_ON(cluster_list_first(&si
->free_clusters
) != idx
);
469 cluster_list_del_first(&si
->free_clusters
, ci
);
470 cluster_set_count_flag(ci
+ idx
, 0, 0);
473 static void free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
475 struct swap_cluster_info
*ci
= si
->cluster_info
+ idx
;
477 VM_BUG_ON(cluster_count(ci
) != 0);
479 * If the swap is discardable, prepare discard the cluster
480 * instead of free it immediately. The cluster will be freed
483 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
484 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
485 swap_cluster_schedule_discard(si
, idx
);
489 __free_cluster(si
, idx
);
493 * The cluster corresponding to page_nr will be used. The cluster will be
494 * removed from free cluster list and its usage counter will be increased.
496 static void inc_cluster_info_page(struct swap_info_struct
*p
,
497 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
499 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
503 if (cluster_is_free(&cluster_info
[idx
]))
504 alloc_cluster(p
, idx
);
506 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
507 cluster_set_count(&cluster_info
[idx
],
508 cluster_count(&cluster_info
[idx
]) + 1);
512 * The cluster corresponding to page_nr decreases one usage. If the usage
513 * counter becomes 0, which means no page in the cluster is in using, we can
514 * optionally discard the cluster and add it to free cluster list.
516 static void dec_cluster_info_page(struct swap_info_struct
*p
,
517 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
519 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
524 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
525 cluster_set_count(&cluster_info
[idx
],
526 cluster_count(&cluster_info
[idx
]) - 1);
528 if (cluster_count(&cluster_info
[idx
]) == 0)
529 free_cluster(p
, idx
);
533 * It's possible scan_swap_map() uses a free cluster in the middle of free
534 * cluster list. Avoiding such abuse to avoid list corruption.
537 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
538 unsigned long offset
)
540 struct percpu_cluster
*percpu_cluster
;
543 offset
/= SWAPFILE_CLUSTER
;
544 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
545 offset
!= cluster_list_first(&si
->free_clusters
) &&
546 cluster_is_free(&si
->cluster_info
[offset
]);
551 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
552 cluster_set_null(&percpu_cluster
->index
);
557 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
558 * might involve allocating a new cluster for current CPU too.
560 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
561 unsigned long *offset
, unsigned long *scan_base
)
563 struct percpu_cluster
*cluster
;
564 struct swap_cluster_info
*ci
;
566 unsigned long tmp
, max
;
569 cluster
= this_cpu_ptr(si
->percpu_cluster
);
570 if (cluster_is_null(&cluster
->index
)) {
571 if (!cluster_list_empty(&si
->free_clusters
)) {
572 cluster
->index
= si
->free_clusters
.head
;
573 cluster
->next
= cluster_next(&cluster
->index
) *
575 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
577 * we don't have free cluster but have some clusters in
578 * discarding, do discard now and reclaim them
580 swap_do_scheduled_discard(si
);
581 *scan_base
= *offset
= si
->cluster_next
;
590 * Other CPUs can use our cluster if they can't find a free cluster,
591 * check if there is still free entry in the cluster
594 max
= min_t(unsigned long, si
->max
,
595 (cluster_next(&cluster
->index
) + 1) * SWAPFILE_CLUSTER
);
597 cluster_set_null(&cluster
->index
);
600 ci
= lock_cluster(si
, tmp
);
602 if (!si
->swap_map
[tmp
]) {
610 cluster_set_null(&cluster
->index
);
613 cluster
->next
= tmp
+ 1;
619 static void __del_from_avail_list(struct swap_info_struct
*p
)
624 plist_del(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
627 static void del_from_avail_list(struct swap_info_struct
*p
)
629 spin_lock(&swap_avail_lock
);
630 __del_from_avail_list(p
);
631 spin_unlock(&swap_avail_lock
);
634 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
635 unsigned int nr_entries
)
637 unsigned int end
= offset
+ nr_entries
- 1;
639 if (offset
== si
->lowest_bit
)
640 si
->lowest_bit
+= nr_entries
;
641 if (end
== si
->highest_bit
)
642 si
->highest_bit
-= nr_entries
;
643 si
->inuse_pages
+= nr_entries
;
644 if (si
->inuse_pages
== si
->pages
) {
645 si
->lowest_bit
= si
->max
;
647 del_from_avail_list(si
);
651 static void add_to_avail_list(struct swap_info_struct
*p
)
655 spin_lock(&swap_avail_lock
);
657 WARN_ON(!plist_node_empty(&p
->avail_lists
[nid
]));
658 plist_add(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
660 spin_unlock(&swap_avail_lock
);
663 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
664 unsigned int nr_entries
)
666 unsigned long end
= offset
+ nr_entries
- 1;
667 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
669 if (offset
< si
->lowest_bit
)
670 si
->lowest_bit
= offset
;
671 if (end
> si
->highest_bit
) {
672 bool was_full
= !si
->highest_bit
;
674 si
->highest_bit
= end
;
675 if (was_full
&& (si
->flags
& SWP_WRITEOK
))
676 add_to_avail_list(si
);
678 atomic_long_add(nr_entries
, &nr_swap_pages
);
679 si
->inuse_pages
-= nr_entries
;
680 if (si
->flags
& SWP_BLKDEV
)
681 swap_slot_free_notify
=
682 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
684 swap_slot_free_notify
= NULL
;
685 while (offset
<= end
) {
686 frontswap_invalidate_page(si
->type
, offset
);
687 if (swap_slot_free_notify
)
688 swap_slot_free_notify(si
->bdev
, offset
);
693 static int scan_swap_map_slots(struct swap_info_struct
*si
,
694 unsigned char usage
, int nr
,
697 struct swap_cluster_info
*ci
;
698 unsigned long offset
;
699 unsigned long scan_base
;
700 unsigned long last_in_cluster
= 0;
701 int latency_ration
= LATENCY_LIMIT
;
708 * We try to cluster swap pages by allocating them sequentially
709 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
710 * way, however, we resort to first-free allocation, starting
711 * a new cluster. This prevents us from scattering swap pages
712 * all over the entire swap partition, so that we reduce
713 * overall disk seek times between swap pages. -- sct
714 * But we do now try to find an empty cluster. -Andrea
715 * And we let swap pages go all over an SSD partition. Hugh
718 si
->flags
+= SWP_SCANNING
;
719 scan_base
= offset
= si
->cluster_next
;
722 if (si
->cluster_info
) {
723 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
729 if (unlikely(!si
->cluster_nr
--)) {
730 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
731 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
735 spin_unlock(&si
->lock
);
738 * If seek is expensive, start searching for new cluster from
739 * start of partition, to minimize the span of allocated swap.
740 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
741 * case, just handled by scan_swap_map_try_ssd_cluster() above.
743 scan_base
= offset
= si
->lowest_bit
;
744 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
746 /* Locate the first empty (unaligned) cluster */
747 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
748 if (si
->swap_map
[offset
])
749 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
750 else if (offset
== last_in_cluster
) {
751 spin_lock(&si
->lock
);
752 offset
-= SWAPFILE_CLUSTER
- 1;
753 si
->cluster_next
= offset
;
754 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
757 if (unlikely(--latency_ration
< 0)) {
759 latency_ration
= LATENCY_LIMIT
;
764 spin_lock(&si
->lock
);
765 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
769 if (si
->cluster_info
) {
770 while (scan_swap_map_ssd_cluster_conflict(si
, offset
)) {
771 /* take a break if we already got some slots */
774 if (!scan_swap_map_try_ssd_cluster(si
, &offset
,
779 if (!(si
->flags
& SWP_WRITEOK
))
781 if (!si
->highest_bit
)
783 if (offset
> si
->highest_bit
)
784 scan_base
= offset
= si
->lowest_bit
;
786 ci
= lock_cluster(si
, offset
);
787 /* reuse swap entry of cache-only swap if not busy. */
788 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
791 spin_unlock(&si
->lock
);
792 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
793 spin_lock(&si
->lock
);
794 /* entry was freed successfully, try to use this again */
797 goto scan
; /* check next one */
800 if (si
->swap_map
[offset
]) {
807 si
->swap_map
[offset
] = usage
;
808 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
811 swap_range_alloc(si
, offset
, 1);
812 si
->cluster_next
= offset
+ 1;
813 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
815 /* got enough slots or reach max slots? */
816 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
819 /* search for next available slot */
821 /* time to take a break? */
822 if (unlikely(--latency_ration
< 0)) {
825 spin_unlock(&si
->lock
);
827 spin_lock(&si
->lock
);
828 latency_ration
= LATENCY_LIMIT
;
831 /* try to get more slots in cluster */
832 if (si
->cluster_info
) {
833 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
841 /* non-ssd case, still more slots in cluster? */
842 if (si
->cluster_nr
&& !si
->swap_map
[offset
]) {
848 si
->flags
-= SWP_SCANNING
;
852 spin_unlock(&si
->lock
);
853 while (++offset
<= si
->highest_bit
) {
854 if (!si
->swap_map
[offset
]) {
855 spin_lock(&si
->lock
);
858 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
859 spin_lock(&si
->lock
);
862 if (unlikely(--latency_ration
< 0)) {
864 latency_ration
= LATENCY_LIMIT
;
867 offset
= si
->lowest_bit
;
868 while (offset
< scan_base
) {
869 if (!si
->swap_map
[offset
]) {
870 spin_lock(&si
->lock
);
873 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
874 spin_lock(&si
->lock
);
877 if (unlikely(--latency_ration
< 0)) {
879 latency_ration
= LATENCY_LIMIT
;
883 spin_lock(&si
->lock
);
886 si
->flags
-= SWP_SCANNING
;
890 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
893 struct swap_cluster_info
*ci
;
894 unsigned long offset
, i
;
898 * Should not even be attempting cluster allocations when huge
899 * page swap is disabled. Warn and fail the allocation.
901 if (!IS_ENABLED(CONFIG_THP_SWAP
)) {
906 if (cluster_list_empty(&si
->free_clusters
))
909 idx
= cluster_list_first(&si
->free_clusters
);
910 offset
= idx
* SWAPFILE_CLUSTER
;
911 ci
= lock_cluster(si
, offset
);
912 alloc_cluster(si
, idx
);
913 cluster_set_count_flag(ci
, SWAPFILE_CLUSTER
, CLUSTER_FLAG_HUGE
);
915 map
= si
->swap_map
+ offset
;
916 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++)
917 map
[i
] = SWAP_HAS_CACHE
;
919 swap_range_alloc(si
, offset
, SWAPFILE_CLUSTER
);
920 *slot
= swp_entry(si
->type
, offset
);
925 static void swap_free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
927 unsigned long offset
= idx
* SWAPFILE_CLUSTER
;
928 struct swap_cluster_info
*ci
;
930 ci
= lock_cluster(si
, offset
);
931 cluster_set_count_flag(ci
, 0, 0);
932 free_cluster(si
, idx
);
934 swap_range_free(si
, offset
, SWAPFILE_CLUSTER
);
937 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
943 n_ret
= scan_swap_map_slots(si
, usage
, 1, &entry
);
946 return swp_offset(entry
);
952 int get_swap_pages(int n_goal
, swp_entry_t swp_entries
[], int entry_size
)
954 unsigned long size
= swap_entry_size(entry_size
);
955 struct swap_info_struct
*si
, *next
;
960 /* Only single cluster request supported */
961 WARN_ON_ONCE(n_goal
> 1 && size
== SWAPFILE_CLUSTER
);
963 avail_pgs
= atomic_long_read(&nr_swap_pages
) / size
;
967 if (n_goal
> SWAP_BATCH
)
970 if (n_goal
> avail_pgs
)
973 atomic_long_sub(n_goal
* size
, &nr_swap_pages
);
975 spin_lock(&swap_avail_lock
);
978 node
= numa_node_id();
979 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
], avail_lists
[node
]) {
980 /* requeue si to after same-priority siblings */
981 plist_requeue(&si
->avail_lists
[node
], &swap_avail_heads
[node
]);
982 spin_unlock(&swap_avail_lock
);
983 spin_lock(&si
->lock
);
984 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
985 spin_lock(&swap_avail_lock
);
986 if (plist_node_empty(&si
->avail_lists
[node
])) {
987 spin_unlock(&si
->lock
);
990 WARN(!si
->highest_bit
,
991 "swap_info %d in list but !highest_bit\n",
993 WARN(!(si
->flags
& SWP_WRITEOK
),
994 "swap_info %d in list but !SWP_WRITEOK\n",
996 __del_from_avail_list(si
);
997 spin_unlock(&si
->lock
);
1000 if (size
== SWAPFILE_CLUSTER
) {
1001 if (!(si
->flags
& SWP_FILE
))
1002 n_ret
= swap_alloc_cluster(si
, swp_entries
);
1004 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
1005 n_goal
, swp_entries
);
1006 spin_unlock(&si
->lock
);
1007 if (n_ret
|| size
== SWAPFILE_CLUSTER
)
1009 pr_debug("scan_swap_map of si %d failed to find offset\n",
1012 spin_lock(&swap_avail_lock
);
1015 * if we got here, it's likely that si was almost full before,
1016 * and since scan_swap_map() can drop the si->lock, multiple
1017 * callers probably all tried to get a page from the same si
1018 * and it filled up before we could get one; or, the si filled
1019 * up between us dropping swap_avail_lock and taking si->lock.
1020 * Since we dropped the swap_avail_lock, the swap_avail_head
1021 * list may have been modified; so if next is still in the
1022 * swap_avail_head list then try it, otherwise start over
1023 * if we have not gotten any slots.
1025 if (plist_node_empty(&next
->avail_lists
[node
]))
1029 spin_unlock(&swap_avail_lock
);
1033 atomic_long_add((long)(n_goal
- n_ret
) * size
,
1039 /* The only caller of this function is now suspend routine */
1040 swp_entry_t
get_swap_page_of_type(int type
)
1042 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1048 spin_lock(&si
->lock
);
1049 if (si
->flags
& SWP_WRITEOK
) {
1050 atomic_long_dec(&nr_swap_pages
);
1051 /* This is called for allocating swap entry, not cache */
1052 offset
= scan_swap_map(si
, 1);
1054 spin_unlock(&si
->lock
);
1055 return swp_entry(type
, offset
);
1057 atomic_long_inc(&nr_swap_pages
);
1059 spin_unlock(&si
->lock
);
1061 return (swp_entry_t
) {0};
1064 static struct swap_info_struct
*__swap_info_get(swp_entry_t entry
)
1066 struct swap_info_struct
*p
;
1067 unsigned long offset
, type
;
1071 type
= swp_type(entry
);
1072 p
= swap_type_to_swap_info(type
);
1075 if (!(p
->flags
& SWP_USED
))
1077 offset
= swp_offset(entry
);
1078 if (offset
>= p
->max
)
1083 pr_err("swap_info_get: %s%08lx\n", Bad_offset
, entry
.val
);
1086 pr_err("swap_info_get: %s%08lx\n", Unused_file
, entry
.val
);
1089 pr_err("swap_info_get: %s%08lx\n", Bad_file
, entry
.val
);
1094 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1096 struct swap_info_struct
*p
;
1098 p
= __swap_info_get(entry
);
1101 if (!p
->swap_map
[swp_offset(entry
)])
1106 pr_err("swap_info_get: %s%08lx\n", Unused_offset
, entry
.val
);
1112 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
1114 struct swap_info_struct
*p
;
1116 p
= _swap_info_get(entry
);
1118 spin_lock(&p
->lock
);
1122 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
1123 struct swap_info_struct
*q
)
1125 struct swap_info_struct
*p
;
1127 p
= _swap_info_get(entry
);
1131 spin_unlock(&q
->lock
);
1133 spin_lock(&p
->lock
);
1138 static unsigned char __swap_entry_free_locked(struct swap_info_struct
*p
,
1139 unsigned long offset
,
1140 unsigned char usage
)
1142 unsigned char count
;
1143 unsigned char has_cache
;
1145 count
= p
->swap_map
[offset
];
1147 has_cache
= count
& SWAP_HAS_CACHE
;
1148 count
&= ~SWAP_HAS_CACHE
;
1150 if (usage
== SWAP_HAS_CACHE
) {
1151 VM_BUG_ON(!has_cache
);
1153 } else if (count
== SWAP_MAP_SHMEM
) {
1155 * Or we could insist on shmem.c using a special
1156 * swap_shmem_free() and free_shmem_swap_and_cache()...
1159 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1160 if (count
== COUNT_CONTINUED
) {
1161 if (swap_count_continued(p
, offset
, count
))
1162 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1164 count
= SWAP_MAP_MAX
;
1169 usage
= count
| has_cache
;
1170 p
->swap_map
[offset
] = usage
? : SWAP_HAS_CACHE
;
1175 static unsigned char __swap_entry_free(struct swap_info_struct
*p
,
1176 swp_entry_t entry
, unsigned char usage
)
1178 struct swap_cluster_info
*ci
;
1179 unsigned long offset
= swp_offset(entry
);
1181 ci
= lock_cluster_or_swap_info(p
, offset
);
1182 usage
= __swap_entry_free_locked(p
, offset
, usage
);
1183 unlock_cluster_or_swap_info(p
, ci
);
1188 static void swap_entry_free(struct swap_info_struct
*p
, swp_entry_t entry
)
1190 struct swap_cluster_info
*ci
;
1191 unsigned long offset
= swp_offset(entry
);
1192 unsigned char count
;
1194 ci
= lock_cluster(p
, offset
);
1195 count
= p
->swap_map
[offset
];
1196 VM_BUG_ON(count
!= SWAP_HAS_CACHE
);
1197 p
->swap_map
[offset
] = 0;
1198 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
1201 mem_cgroup_uncharge_swap(entry
, 1);
1202 swap_range_free(p
, offset
, 1);
1206 * Caller has made sure that the swap device corresponding to entry
1207 * is still around or has not been recycled.
1209 void swap_free(swp_entry_t entry
)
1211 struct swap_info_struct
*p
;
1213 p
= _swap_info_get(entry
);
1215 if (!__swap_entry_free(p
, entry
, 1))
1216 free_swap_slot(entry
);
1221 * Called after dropping swapcache to decrease refcnt to swap entries.
1223 void put_swap_page(struct page
*page
, swp_entry_t entry
)
1225 unsigned long offset
= swp_offset(entry
);
1226 unsigned long idx
= offset
/ SWAPFILE_CLUSTER
;
1227 struct swap_cluster_info
*ci
;
1228 struct swap_info_struct
*si
;
1230 unsigned int i
, free_entries
= 0;
1232 int size
= swap_entry_size(hpage_nr_pages(page
));
1234 si
= _swap_info_get(entry
);
1238 ci
= lock_cluster_or_swap_info(si
, offset
);
1239 if (size
== SWAPFILE_CLUSTER
) {
1240 VM_BUG_ON(!cluster_is_huge(ci
));
1241 map
= si
->swap_map
+ offset
;
1242 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1244 VM_BUG_ON(!(val
& SWAP_HAS_CACHE
));
1245 if (val
== SWAP_HAS_CACHE
)
1248 cluster_clear_huge(ci
);
1249 if (free_entries
== SWAPFILE_CLUSTER
) {
1250 unlock_cluster_or_swap_info(si
, ci
);
1251 spin_lock(&si
->lock
);
1252 ci
= lock_cluster(si
, offset
);
1253 memset(map
, 0, SWAPFILE_CLUSTER
);
1255 mem_cgroup_uncharge_swap(entry
, SWAPFILE_CLUSTER
);
1256 swap_free_cluster(si
, idx
);
1257 spin_unlock(&si
->lock
);
1261 for (i
= 0; i
< size
; i
++, entry
.val
++) {
1262 if (!__swap_entry_free_locked(si
, offset
+ i
, SWAP_HAS_CACHE
)) {
1263 unlock_cluster_or_swap_info(si
, ci
);
1264 free_swap_slot(entry
);
1267 lock_cluster_or_swap_info(si
, offset
);
1270 unlock_cluster_or_swap_info(si
, ci
);
1273 #ifdef CONFIG_THP_SWAP
1274 int split_swap_cluster(swp_entry_t entry
)
1276 struct swap_info_struct
*si
;
1277 struct swap_cluster_info
*ci
;
1278 unsigned long offset
= swp_offset(entry
);
1280 si
= _swap_info_get(entry
);
1283 ci
= lock_cluster(si
, offset
);
1284 cluster_clear_huge(ci
);
1290 static int swp_entry_cmp(const void *ent1
, const void *ent2
)
1292 const swp_entry_t
*e1
= ent1
, *e2
= ent2
;
1294 return (int)swp_type(*e1
) - (int)swp_type(*e2
);
1297 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1299 struct swap_info_struct
*p
, *prev
;
1309 * Sort swap entries by swap device, so each lock is only taken once.
1310 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1311 * so low that it isn't necessary to optimize further.
1313 if (nr_swapfiles
> 1)
1314 sort(entries
, n
, sizeof(entries
[0]), swp_entry_cmp
, NULL
);
1315 for (i
= 0; i
< n
; ++i
) {
1316 p
= swap_info_get_cont(entries
[i
], prev
);
1318 swap_entry_free(p
, entries
[i
]);
1322 spin_unlock(&p
->lock
);
1326 * How many references to page are currently swapped out?
1327 * This does not give an exact answer when swap count is continued,
1328 * but does include the high COUNT_CONTINUED flag to allow for that.
1330 int page_swapcount(struct page
*page
)
1333 struct swap_info_struct
*p
;
1334 struct swap_cluster_info
*ci
;
1336 unsigned long offset
;
1338 entry
.val
= page_private(page
);
1339 p
= _swap_info_get(entry
);
1341 offset
= swp_offset(entry
);
1342 ci
= lock_cluster_or_swap_info(p
, offset
);
1343 count
= swap_count(p
->swap_map
[offset
]);
1344 unlock_cluster_or_swap_info(p
, ci
);
1349 int __swap_count(struct swap_info_struct
*si
, swp_entry_t entry
)
1351 pgoff_t offset
= swp_offset(entry
);
1353 return swap_count(si
->swap_map
[offset
]);
1356 static int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1359 pgoff_t offset
= swp_offset(entry
);
1360 struct swap_cluster_info
*ci
;
1362 ci
= lock_cluster_or_swap_info(si
, offset
);
1363 count
= swap_count(si
->swap_map
[offset
]);
1364 unlock_cluster_or_swap_info(si
, ci
);
1369 * How many references to @entry are currently swapped out?
1370 * This does not give an exact answer when swap count is continued,
1371 * but does include the high COUNT_CONTINUED flag to allow for that.
1373 int __swp_swapcount(swp_entry_t entry
)
1376 struct swap_info_struct
*si
;
1378 si
= __swap_info_get(entry
);
1380 count
= swap_swapcount(si
, entry
);
1385 * How many references to @entry are currently swapped out?
1386 * This considers COUNT_CONTINUED so it returns exact answer.
1388 int swp_swapcount(swp_entry_t entry
)
1390 int count
, tmp_count
, n
;
1391 struct swap_info_struct
*p
;
1392 struct swap_cluster_info
*ci
;
1397 p
= _swap_info_get(entry
);
1401 offset
= swp_offset(entry
);
1403 ci
= lock_cluster_or_swap_info(p
, offset
);
1405 count
= swap_count(p
->swap_map
[offset
]);
1406 if (!(count
& COUNT_CONTINUED
))
1409 count
&= ~COUNT_CONTINUED
;
1410 n
= SWAP_MAP_MAX
+ 1;
1412 page
= vmalloc_to_page(p
->swap_map
+ offset
);
1413 offset
&= ~PAGE_MASK
;
1414 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1417 page
= list_next_entry(page
, lru
);
1418 map
= kmap_atomic(page
);
1419 tmp_count
= map
[offset
];
1422 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1423 n
*= (SWAP_CONT_MAX
+ 1);
1424 } while (tmp_count
& COUNT_CONTINUED
);
1426 unlock_cluster_or_swap_info(p
, ci
);
1430 static bool swap_page_trans_huge_swapped(struct swap_info_struct
*si
,
1433 struct swap_cluster_info
*ci
;
1434 unsigned char *map
= si
->swap_map
;
1435 unsigned long roffset
= swp_offset(entry
);
1436 unsigned long offset
= round_down(roffset
, SWAPFILE_CLUSTER
);
1440 ci
= lock_cluster_or_swap_info(si
, offset
);
1441 if (!ci
|| !cluster_is_huge(ci
)) {
1442 if (swap_count(map
[roffset
]))
1446 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1447 if (swap_count(map
[offset
+ i
])) {
1453 unlock_cluster_or_swap_info(si
, ci
);
1457 static bool page_swapped(struct page
*page
)
1460 struct swap_info_struct
*si
;
1462 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!PageTransCompound(page
)))
1463 return page_swapcount(page
) != 0;
1465 page
= compound_head(page
);
1466 entry
.val
= page_private(page
);
1467 si
= _swap_info_get(entry
);
1469 return swap_page_trans_huge_swapped(si
, entry
);
1473 static int page_trans_huge_map_swapcount(struct page
*page
, int *total_mapcount
,
1474 int *total_swapcount
)
1476 int i
, map_swapcount
, _total_mapcount
, _total_swapcount
;
1477 unsigned long offset
= 0;
1478 struct swap_info_struct
*si
;
1479 struct swap_cluster_info
*ci
= NULL
;
1480 unsigned char *map
= NULL
;
1481 int mapcount
, swapcount
= 0;
1483 /* hugetlbfs shouldn't call it */
1484 VM_BUG_ON_PAGE(PageHuge(page
), page
);
1486 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!PageTransCompound(page
))) {
1487 mapcount
= page_trans_huge_mapcount(page
, total_mapcount
);
1488 if (PageSwapCache(page
))
1489 swapcount
= page_swapcount(page
);
1490 if (total_swapcount
)
1491 *total_swapcount
= swapcount
;
1492 return mapcount
+ swapcount
;
1495 page
= compound_head(page
);
1497 _total_mapcount
= _total_swapcount
= map_swapcount
= 0;
1498 if (PageSwapCache(page
)) {
1501 entry
.val
= page_private(page
);
1502 si
= _swap_info_get(entry
);
1505 offset
= swp_offset(entry
);
1509 ci
= lock_cluster(si
, offset
);
1510 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1511 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
1512 _total_mapcount
+= mapcount
;
1514 swapcount
= swap_count(map
[offset
+ i
]);
1515 _total_swapcount
+= swapcount
;
1517 map_swapcount
= max(map_swapcount
, mapcount
+ swapcount
);
1520 if (PageDoubleMap(page
)) {
1522 _total_mapcount
-= HPAGE_PMD_NR
;
1524 mapcount
= compound_mapcount(page
);
1525 map_swapcount
+= mapcount
;
1526 _total_mapcount
+= mapcount
;
1528 *total_mapcount
= _total_mapcount
;
1529 if (total_swapcount
)
1530 *total_swapcount
= _total_swapcount
;
1532 return map_swapcount
;
1536 * We can write to an anon page without COW if there are no other references
1537 * to it. And as a side-effect, free up its swap: because the old content
1538 * on disk will never be read, and seeking back there to write new content
1539 * later would only waste time away from clustering.
1541 * NOTE: total_map_swapcount should not be relied upon by the caller if
1542 * reuse_swap_page() returns false, but it may be always overwritten
1543 * (see the other implementation for CONFIG_SWAP=n).
1545 bool reuse_swap_page(struct page
*page
, int *total_map_swapcount
)
1547 int count
, total_mapcount
, total_swapcount
;
1549 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1550 if (unlikely(PageKsm(page
)))
1552 count
= page_trans_huge_map_swapcount(page
, &total_mapcount
,
1554 if (total_map_swapcount
)
1555 *total_map_swapcount
= total_mapcount
+ total_swapcount
;
1556 if (count
== 1 && PageSwapCache(page
) &&
1557 (likely(!PageTransCompound(page
)) ||
1558 /* The remaining swap count will be freed soon */
1559 total_swapcount
== page_swapcount(page
))) {
1560 if (!PageWriteback(page
)) {
1561 page
= compound_head(page
);
1562 delete_from_swap_cache(page
);
1566 struct swap_info_struct
*p
;
1568 entry
.val
= page_private(page
);
1569 p
= swap_info_get(entry
);
1570 if (p
->flags
& SWP_STABLE_WRITES
) {
1571 spin_unlock(&p
->lock
);
1574 spin_unlock(&p
->lock
);
1582 * If swap is getting full, or if there are no more mappings of this page,
1583 * then try_to_free_swap is called to free its swap space.
1585 int try_to_free_swap(struct page
*page
)
1587 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1589 if (!PageSwapCache(page
))
1591 if (PageWriteback(page
))
1593 if (page_swapped(page
))
1597 * Once hibernation has begun to create its image of memory,
1598 * there's a danger that one of the calls to try_to_free_swap()
1599 * - most probably a call from __try_to_reclaim_swap() while
1600 * hibernation is allocating its own swap pages for the image,
1601 * but conceivably even a call from memory reclaim - will free
1602 * the swap from a page which has already been recorded in the
1603 * image as a clean swapcache page, and then reuse its swap for
1604 * another page of the image. On waking from hibernation, the
1605 * original page might be freed under memory pressure, then
1606 * later read back in from swap, now with the wrong data.
1608 * Hibernation suspends storage while it is writing the image
1609 * to disk so check that here.
1611 if (pm_suspended_storage())
1614 page
= compound_head(page
);
1615 delete_from_swap_cache(page
);
1621 * Free the swap entry like above, but also try to
1622 * free the page cache entry if it is the last user.
1624 int free_swap_and_cache(swp_entry_t entry
)
1626 struct swap_info_struct
*p
;
1627 struct page
*page
= NULL
;
1628 unsigned char count
;
1630 if (non_swap_entry(entry
))
1633 p
= _swap_info_get(entry
);
1635 count
= __swap_entry_free(p
, entry
, 1);
1636 if (count
== SWAP_HAS_CACHE
&&
1637 !swap_page_trans_huge_swapped(p
, entry
)) {
1638 page
= find_get_page(swap_address_space(entry
),
1640 if (page
&& !trylock_page(page
)) {
1645 free_swap_slot(entry
);
1649 * Not mapped elsewhere, or swap space full? Free it!
1650 * Also recheck PageSwapCache now page is locked (above).
1652 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1653 (!page_mapped(page
) || mem_cgroup_swap_full(page
)) &&
1654 !swap_page_trans_huge_swapped(p
, entry
)) {
1655 page
= compound_head(page
);
1656 delete_from_swap_cache(page
);
1665 #ifdef CONFIG_HIBERNATION
1667 * Find the swap type that corresponds to given device (if any).
1669 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670 * from 0, in which the swap header is expected to be located.
1672 * This is needed for the suspend to disk (aka swsusp).
1674 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1676 struct block_device
*bdev
= NULL
;
1680 bdev
= bdget(device
);
1682 spin_lock(&swap_lock
);
1683 for (type
= 0; type
< nr_swapfiles
; type
++) {
1684 struct swap_info_struct
*sis
= swap_info
[type
];
1686 if (!(sis
->flags
& SWP_WRITEOK
))
1691 *bdev_p
= bdgrab(sis
->bdev
);
1693 spin_unlock(&swap_lock
);
1696 if (bdev
== sis
->bdev
) {
1697 struct swap_extent
*se
= &sis
->first_swap_extent
;
1699 if (se
->start_block
== offset
) {
1701 *bdev_p
= bdgrab(sis
->bdev
);
1703 spin_unlock(&swap_lock
);
1709 spin_unlock(&swap_lock
);
1717 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718 * corresponding to given index in swap_info (swap type).
1720 sector_t
swapdev_block(int type
, pgoff_t offset
)
1722 struct block_device
*bdev
;
1723 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1725 if (!si
|| !(si
->flags
& SWP_WRITEOK
))
1727 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1731 * Return either the total number of swap pages of given type, or the number
1732 * of free pages of that type (depending on @free)
1734 * This is needed for software suspend
1736 unsigned int count_swap_pages(int type
, int free
)
1740 spin_lock(&swap_lock
);
1741 if ((unsigned int)type
< nr_swapfiles
) {
1742 struct swap_info_struct
*sis
= swap_info
[type
];
1744 spin_lock(&sis
->lock
);
1745 if (sis
->flags
& SWP_WRITEOK
) {
1748 n
-= sis
->inuse_pages
;
1750 spin_unlock(&sis
->lock
);
1752 spin_unlock(&swap_lock
);
1755 #endif /* CONFIG_HIBERNATION */
1757 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1759 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1763 * No need to decide whether this PTE shares the swap entry with others,
1764 * just let do_wp_page work it out if a write is requested later - to
1765 * force COW, vm_page_prot omits write permission from any private vma.
1767 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1768 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1770 struct page
*swapcache
;
1771 struct mem_cgroup
*memcg
;
1777 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1778 if (unlikely(!page
))
1781 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1787 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1788 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1789 mem_cgroup_cancel_charge(page
, memcg
, false);
1794 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1795 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1797 set_pte_at(vma
->vm_mm
, addr
, pte
,
1798 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1799 if (page
== swapcache
) {
1800 page_add_anon_rmap(page
, vma
, addr
, false);
1801 mem_cgroup_commit_charge(page
, memcg
, true, false);
1802 } else { /* ksm created a completely new copy */
1803 page_add_new_anon_rmap(page
, vma
, addr
, false);
1804 mem_cgroup_commit_charge(page
, memcg
, false, false);
1805 lru_cache_add_active_or_unevictable(page
, vma
);
1809 * Move the page to the active list so it is not
1810 * immediately swapped out again after swapon.
1812 activate_page(page
);
1814 pte_unmap_unlock(pte
, ptl
);
1816 if (page
!= swapcache
) {
1823 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1824 unsigned long addr
, unsigned long end
,
1825 swp_entry_t entry
, struct page
*page
)
1827 pte_t swp_pte
= swp_entry_to_pte(entry
);
1832 * We don't actually need pte lock while scanning for swp_pte: since
1833 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1834 * page table while we're scanning; though it could get zapped, and on
1835 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1836 * of unmatched parts which look like swp_pte, so unuse_pte must
1837 * recheck under pte lock. Scanning without pte lock lets it be
1838 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1840 pte
= pte_offset_map(pmd
, addr
);
1843 * swapoff spends a _lot_ of time in this loop!
1844 * Test inline before going to call unuse_pte.
1846 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1848 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1851 pte
= pte_offset_map(pmd
, addr
);
1853 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1859 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1860 unsigned long addr
, unsigned long end
,
1861 swp_entry_t entry
, struct page
*page
)
1867 pmd
= pmd_offset(pud
, addr
);
1870 next
= pmd_addr_end(addr
, end
);
1871 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1873 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1876 } while (pmd
++, addr
= next
, addr
!= end
);
1880 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
1881 unsigned long addr
, unsigned long end
,
1882 swp_entry_t entry
, struct page
*page
)
1888 pud
= pud_offset(p4d
, addr
);
1890 next
= pud_addr_end(addr
, end
);
1891 if (pud_none_or_clear_bad(pud
))
1893 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1896 } while (pud
++, addr
= next
, addr
!= end
);
1900 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1901 unsigned long addr
, unsigned long end
,
1902 swp_entry_t entry
, struct page
*page
)
1908 p4d
= p4d_offset(pgd
, addr
);
1910 next
= p4d_addr_end(addr
, end
);
1911 if (p4d_none_or_clear_bad(p4d
))
1913 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, entry
, page
);
1916 } while (p4d
++, addr
= next
, addr
!= end
);
1920 static int unuse_vma(struct vm_area_struct
*vma
,
1921 swp_entry_t entry
, struct page
*page
)
1924 unsigned long addr
, end
, next
;
1927 if (page_anon_vma(page
)) {
1928 addr
= page_address_in_vma(page
, vma
);
1929 if (addr
== -EFAULT
)
1932 end
= addr
+ PAGE_SIZE
;
1934 addr
= vma
->vm_start
;
1938 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1940 next
= pgd_addr_end(addr
, end
);
1941 if (pgd_none_or_clear_bad(pgd
))
1943 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, entry
, page
);
1946 } while (pgd
++, addr
= next
, addr
!= end
);
1950 static int unuse_mm(struct mm_struct
*mm
,
1951 swp_entry_t entry
, struct page
*page
)
1953 struct vm_area_struct
*vma
;
1956 if (!down_read_trylock(&mm
->mmap_sem
)) {
1958 * Activate page so shrink_inactive_list is unlikely to unmap
1959 * its ptes while lock is dropped, so swapoff can make progress.
1961 activate_page(page
);
1963 down_read(&mm
->mmap_sem
);
1966 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1967 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1971 up_read(&mm
->mmap_sem
);
1972 return (ret
< 0)? ret
: 0;
1976 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1977 * from current position to next entry still in use.
1978 * Recycle to start on reaching the end, returning 0 when empty.
1980 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1981 unsigned int prev
, bool frontswap
)
1983 unsigned int max
= si
->max
;
1984 unsigned int i
= prev
;
1985 unsigned char count
;
1988 * No need for swap_lock here: we're just looking
1989 * for whether an entry is in use, not modifying it; false
1990 * hits are okay, and sys_swapoff() has already prevented new
1991 * allocations from this area (while holding swap_lock).
2000 * No entries in use at top of swap_map,
2001 * loop back to start and recheck there.
2007 count
= READ_ONCE(si
->swap_map
[i
]);
2008 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
2009 if (!frontswap
|| frontswap_test(si
, i
))
2011 if ((i
% LATENCY_LIMIT
) == 0)
2018 * We completely avoid races by reading each swap page in advance,
2019 * and then search for the process using it. All the necessary
2020 * page table adjustments can then be made atomically.
2022 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2023 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2025 int try_to_unuse(unsigned int type
, bool frontswap
,
2026 unsigned long pages_to_unuse
)
2028 struct swap_info_struct
*si
= swap_info
[type
];
2029 struct mm_struct
*start_mm
;
2030 volatile unsigned char *swap_map
; /* swap_map is accessed without
2031 * locking. Mark it as volatile
2032 * to prevent compiler doing
2035 unsigned char swcount
;
2042 * When searching mms for an entry, a good strategy is to
2043 * start at the first mm we freed the previous entry from
2044 * (though actually we don't notice whether we or coincidence
2045 * freed the entry). Initialize this start_mm with a hold.
2047 * A simpler strategy would be to start at the last mm we
2048 * freed the previous entry from; but that would take less
2049 * advantage of mmlist ordering, which clusters forked mms
2050 * together, child after parent. If we race with dup_mmap(), we
2051 * prefer to resolve parent before child, lest we miss entries
2052 * duplicated after we scanned child: using last mm would invert
2055 start_mm
= &init_mm
;
2059 * Keep on scanning until all entries have gone. Usually,
2060 * one pass through swap_map is enough, but not necessarily:
2061 * there are races when an instance of an entry might be missed.
2063 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
2064 if (signal_pending(current
)) {
2070 * Get a page for the entry, using the existing swap
2071 * cache page if there is one. Otherwise, get a clean
2072 * page and read the swap into it.
2074 swap_map
= &si
->swap_map
[i
];
2075 entry
= swp_entry(type
, i
);
2076 page
= read_swap_cache_async(entry
,
2077 GFP_HIGHUSER_MOVABLE
, NULL
, 0, false);
2080 * Either swap_duplicate() failed because entry
2081 * has been freed independently, and will not be
2082 * reused since sys_swapoff() already disabled
2083 * allocation from here, or alloc_page() failed.
2085 swcount
= *swap_map
;
2087 * We don't hold lock here, so the swap entry could be
2088 * SWAP_MAP_BAD (when the cluster is discarding).
2089 * Instead of fail out, We can just skip the swap
2090 * entry because swapoff will wait for discarding
2093 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
2100 * Don't hold on to start_mm if it looks like exiting.
2102 if (atomic_read(&start_mm
->mm_users
) == 1) {
2104 start_mm
= &init_mm
;
2109 * Wait for and lock page. When do_swap_page races with
2110 * try_to_unuse, do_swap_page can handle the fault much
2111 * faster than try_to_unuse can locate the entry. This
2112 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2113 * defer to do_swap_page in such a case - in some tests,
2114 * do_swap_page and try_to_unuse repeatedly compete.
2116 wait_on_page_locked(page
);
2117 wait_on_page_writeback(page
);
2119 wait_on_page_writeback(page
);
2122 * Remove all references to entry.
2124 swcount
= *swap_map
;
2125 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
2126 retval
= shmem_unuse(entry
, page
);
2127 /* page has already been unlocked and released */
2132 if (swap_count(swcount
) && start_mm
!= &init_mm
)
2133 retval
= unuse_mm(start_mm
, entry
, page
);
2135 if (swap_count(*swap_map
)) {
2136 int set_start_mm
= (*swap_map
>= swcount
);
2137 struct list_head
*p
= &start_mm
->mmlist
;
2138 struct mm_struct
*new_start_mm
= start_mm
;
2139 struct mm_struct
*prev_mm
= start_mm
;
2140 struct mm_struct
*mm
;
2142 mmget(new_start_mm
);
2144 spin_lock(&mmlist_lock
);
2145 while (swap_count(*swap_map
) && !retval
&&
2146 (p
= p
->next
) != &start_mm
->mmlist
) {
2147 mm
= list_entry(p
, struct mm_struct
, mmlist
);
2148 if (!mmget_not_zero(mm
))
2150 spin_unlock(&mmlist_lock
);
2156 swcount
= *swap_map
;
2157 if (!swap_count(swcount
)) /* any usage ? */
2159 else if (mm
== &init_mm
)
2162 retval
= unuse_mm(mm
, entry
, page
);
2164 if (set_start_mm
&& *swap_map
< swcount
) {
2165 mmput(new_start_mm
);
2170 spin_lock(&mmlist_lock
);
2172 spin_unlock(&mmlist_lock
);
2175 start_mm
= new_start_mm
;
2184 * If a reference remains (rare), we would like to leave
2185 * the page in the swap cache; but try_to_unmap could
2186 * then re-duplicate the entry once we drop page lock,
2187 * so we might loop indefinitely; also, that page could
2188 * not be swapped out to other storage meanwhile. So:
2189 * delete from cache even if there's another reference,
2190 * after ensuring that the data has been saved to disk -
2191 * since if the reference remains (rarer), it will be
2192 * read from disk into another page. Splitting into two
2193 * pages would be incorrect if swap supported "shared
2194 * private" pages, but they are handled by tmpfs files.
2196 * Given how unuse_vma() targets one particular offset
2197 * in an anon_vma, once the anon_vma has been determined,
2198 * this splitting happens to be just what is needed to
2199 * handle where KSM pages have been swapped out: re-reading
2200 * is unnecessarily slow, but we can fix that later on.
2202 if (swap_count(*swap_map
) &&
2203 PageDirty(page
) && PageSwapCache(page
)) {
2204 struct writeback_control wbc
= {
2205 .sync_mode
= WB_SYNC_NONE
,
2208 swap_writepage(compound_head(page
), &wbc
);
2210 wait_on_page_writeback(page
);
2214 * It is conceivable that a racing task removed this page from
2215 * swap cache just before we acquired the page lock at the top,
2216 * or while we dropped it in unuse_mm(). The page might even
2217 * be back in swap cache on another swap area: that we must not
2218 * delete, since it may not have been written out to swap yet.
2220 if (PageSwapCache(page
) &&
2221 likely(page_private(page
) == entry
.val
) &&
2222 (!PageTransCompound(page
) ||
2223 !swap_page_trans_huge_swapped(si
, entry
)))
2224 delete_from_swap_cache(compound_head(page
));
2227 * So we could skip searching mms once swap count went
2228 * to 1, we did not mark any present ptes as dirty: must
2229 * mark page dirty so shrink_page_list will preserve it.
2236 * Make sure that we aren't completely killing
2237 * interactive performance.
2240 if (frontswap
&& pages_to_unuse
> 0) {
2241 if (!--pages_to_unuse
)
2251 * After a successful try_to_unuse, if no swap is now in use, we know
2252 * we can empty the mmlist. swap_lock must be held on entry and exit.
2253 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2254 * added to the mmlist just after page_duplicate - before would be racy.
2256 static void drain_mmlist(void)
2258 struct list_head
*p
, *next
;
2261 for (type
= 0; type
< nr_swapfiles
; type
++)
2262 if (swap_info
[type
]->inuse_pages
)
2264 spin_lock(&mmlist_lock
);
2265 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2267 spin_unlock(&mmlist_lock
);
2271 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2272 * corresponds to page offset for the specified swap entry.
2273 * Note that the type of this function is sector_t, but it returns page offset
2274 * into the bdev, not sector offset.
2276 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
2278 struct swap_info_struct
*sis
;
2279 struct swap_extent
*start_se
;
2280 struct swap_extent
*se
;
2283 sis
= swp_swap_info(entry
);
2286 offset
= swp_offset(entry
);
2287 start_se
= sis
->curr_swap_extent
;
2291 if (se
->start_page
<= offset
&&
2292 offset
< (se
->start_page
+ se
->nr_pages
)) {
2293 return se
->start_block
+ (offset
- se
->start_page
);
2295 se
= list_next_entry(se
, list
);
2296 sis
->curr_swap_extent
= se
;
2297 BUG_ON(se
== start_se
); /* It *must* be present */
2302 * Returns the page offset into bdev for the specified page's swap entry.
2304 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
2307 entry
.val
= page_private(page
);
2308 return map_swap_entry(entry
, bdev
);
2312 * Free all of a swapdev's extent information
2314 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2316 while (!list_empty(&sis
->first_swap_extent
.list
)) {
2317 struct swap_extent
*se
;
2319 se
= list_first_entry(&sis
->first_swap_extent
.list
,
2320 struct swap_extent
, list
);
2321 list_del(&se
->list
);
2325 if (sis
->flags
& SWP_FILE
) {
2326 struct file
*swap_file
= sis
->swap_file
;
2327 struct address_space
*mapping
= swap_file
->f_mapping
;
2329 sis
->flags
&= ~SWP_FILE
;
2330 mapping
->a_ops
->swap_deactivate(swap_file
);
2335 * Add a block range (and the corresponding page range) into this swapdev's
2336 * extent list. The extent list is kept sorted in page order.
2338 * This function rather assumes that it is called in ascending page order.
2341 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2342 unsigned long nr_pages
, sector_t start_block
)
2344 struct swap_extent
*se
;
2345 struct swap_extent
*new_se
;
2346 struct list_head
*lh
;
2348 if (start_page
== 0) {
2349 se
= &sis
->first_swap_extent
;
2350 sis
->curr_swap_extent
= se
;
2352 se
->nr_pages
= nr_pages
;
2353 se
->start_block
= start_block
;
2356 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
2357 se
= list_entry(lh
, struct swap_extent
, list
);
2358 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2359 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2361 se
->nr_pages
+= nr_pages
;
2367 * No merge. Insert a new extent, preserving ordering.
2369 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2372 new_se
->start_page
= start_page
;
2373 new_se
->nr_pages
= nr_pages
;
2374 new_se
->start_block
= start_block
;
2376 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
2381 * A `swap extent' is a simple thing which maps a contiguous range of pages
2382 * onto a contiguous range of disk blocks. An ordered list of swap extents
2383 * is built at swapon time and is then used at swap_writepage/swap_readpage
2384 * time for locating where on disk a page belongs.
2386 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2387 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2388 * swap files identically.
2390 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2391 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2392 * swapfiles are handled *identically* after swapon time.
2394 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2395 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2396 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2397 * requirements, they are simply tossed out - we will never use those blocks
2400 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2401 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2402 * which will scribble on the fs.
2404 * The amount of disk space which a single swap extent represents varies.
2405 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2406 * extents in the list. To avoid much list walking, we cache the previous
2407 * search location in `curr_swap_extent', and start new searches from there.
2408 * This is extremely effective. The average number of iterations in
2409 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2411 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2413 struct file
*swap_file
= sis
->swap_file
;
2414 struct address_space
*mapping
= swap_file
->f_mapping
;
2415 struct inode
*inode
= mapping
->host
;
2418 if (S_ISBLK(inode
->i_mode
)) {
2419 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2424 if (mapping
->a_ops
->swap_activate
) {
2425 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2427 sis
->flags
|= SWP_FILE
;
2428 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2434 return generic_swapfile_activate(sis
, swap_file
, span
);
2437 static int swap_node(struct swap_info_struct
*p
)
2439 struct block_device
*bdev
;
2444 bdev
= p
->swap_file
->f_inode
->i_sb
->s_bdev
;
2446 return bdev
? bdev
->bd_disk
->node_id
: NUMA_NO_NODE
;
2449 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
2450 unsigned char *swap_map
,
2451 struct swap_cluster_info
*cluster_info
)
2458 p
->prio
= --least_priority
;
2460 * the plist prio is negated because plist ordering is
2461 * low-to-high, while swap ordering is high-to-low
2463 p
->list
.prio
= -p
->prio
;
2466 p
->avail_lists
[i
].prio
= -p
->prio
;
2468 if (swap_node(p
) == i
)
2469 p
->avail_lists
[i
].prio
= 1;
2471 p
->avail_lists
[i
].prio
= -p
->prio
;
2474 p
->swap_map
= swap_map
;
2475 p
->cluster_info
= cluster_info
;
2476 p
->flags
|= SWP_WRITEOK
;
2477 atomic_long_add(p
->pages
, &nr_swap_pages
);
2478 total_swap_pages
+= p
->pages
;
2480 assert_spin_locked(&swap_lock
);
2482 * both lists are plists, and thus priority ordered.
2483 * swap_active_head needs to be priority ordered for swapoff(),
2484 * which on removal of any swap_info_struct with an auto-assigned
2485 * (i.e. negative) priority increments the auto-assigned priority
2486 * of any lower-priority swap_info_structs.
2487 * swap_avail_head needs to be priority ordered for get_swap_page(),
2488 * which allocates swap pages from the highest available priority
2491 plist_add(&p
->list
, &swap_active_head
);
2492 add_to_avail_list(p
);
2495 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
2496 unsigned char *swap_map
,
2497 struct swap_cluster_info
*cluster_info
,
2498 unsigned long *frontswap_map
)
2500 frontswap_init(p
->type
, frontswap_map
);
2501 spin_lock(&swap_lock
);
2502 spin_lock(&p
->lock
);
2503 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
2504 spin_unlock(&p
->lock
);
2505 spin_unlock(&swap_lock
);
2508 static void reinsert_swap_info(struct swap_info_struct
*p
)
2510 spin_lock(&swap_lock
);
2511 spin_lock(&p
->lock
);
2512 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
2513 spin_unlock(&p
->lock
);
2514 spin_unlock(&swap_lock
);
2517 bool has_usable_swap(void)
2521 spin_lock(&swap_lock
);
2522 if (plist_head_empty(&swap_active_head
))
2524 spin_unlock(&swap_lock
);
2528 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2530 struct swap_info_struct
*p
= NULL
;
2531 unsigned char *swap_map
;
2532 struct swap_cluster_info
*cluster_info
;
2533 unsigned long *frontswap_map
;
2534 struct file
*swap_file
, *victim
;
2535 struct address_space
*mapping
;
2536 struct inode
*inode
;
2537 struct filename
*pathname
;
2539 unsigned int old_block_size
;
2541 if (!capable(CAP_SYS_ADMIN
))
2544 BUG_ON(!current
->mm
);
2546 pathname
= getname(specialfile
);
2547 if (IS_ERR(pathname
))
2548 return PTR_ERR(pathname
);
2550 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2551 err
= PTR_ERR(victim
);
2555 mapping
= victim
->f_mapping
;
2556 spin_lock(&swap_lock
);
2557 plist_for_each_entry(p
, &swap_active_head
, list
) {
2558 if (p
->flags
& SWP_WRITEOK
) {
2559 if (p
->swap_file
->f_mapping
== mapping
) {
2567 spin_unlock(&swap_lock
);
2570 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2571 vm_unacct_memory(p
->pages
);
2574 spin_unlock(&swap_lock
);
2577 del_from_avail_list(p
);
2578 spin_lock(&p
->lock
);
2580 struct swap_info_struct
*si
= p
;
2583 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2586 for_each_node(nid
) {
2587 if (si
->avail_lists
[nid
].prio
!= 1)
2588 si
->avail_lists
[nid
].prio
--;
2593 plist_del(&p
->list
, &swap_active_head
);
2594 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2595 total_swap_pages
-= p
->pages
;
2596 p
->flags
&= ~SWP_WRITEOK
;
2597 spin_unlock(&p
->lock
);
2598 spin_unlock(&swap_lock
);
2600 disable_swap_slots_cache_lock();
2602 set_current_oom_origin();
2603 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
2604 clear_current_oom_origin();
2607 /* re-insert swap space back into swap_list */
2608 reinsert_swap_info(p
);
2609 reenable_swap_slots_cache_unlock();
2613 reenable_swap_slots_cache_unlock();
2615 flush_work(&p
->discard_work
);
2617 destroy_swap_extents(p
);
2618 if (p
->flags
& SWP_CONTINUED
)
2619 free_swap_count_continuations(p
);
2621 if (!p
->bdev
|| !blk_queue_nonrot(bdev_get_queue(p
->bdev
)))
2622 atomic_dec(&nr_rotate_swap
);
2624 mutex_lock(&swapon_mutex
);
2625 spin_lock(&swap_lock
);
2626 spin_lock(&p
->lock
);
2629 /* wait for anyone still in scan_swap_map */
2630 p
->highest_bit
= 0; /* cuts scans short */
2631 while (p
->flags
>= SWP_SCANNING
) {
2632 spin_unlock(&p
->lock
);
2633 spin_unlock(&swap_lock
);
2634 schedule_timeout_uninterruptible(1);
2635 spin_lock(&swap_lock
);
2636 spin_lock(&p
->lock
);
2639 swap_file
= p
->swap_file
;
2640 old_block_size
= p
->old_block_size
;
2641 p
->swap_file
= NULL
;
2643 swap_map
= p
->swap_map
;
2645 cluster_info
= p
->cluster_info
;
2646 p
->cluster_info
= NULL
;
2647 frontswap_map
= frontswap_map_get(p
);
2648 spin_unlock(&p
->lock
);
2649 spin_unlock(&swap_lock
);
2650 frontswap_invalidate_area(p
->type
);
2651 frontswap_map_set(p
, NULL
);
2652 mutex_unlock(&swapon_mutex
);
2653 free_percpu(p
->percpu_cluster
);
2654 p
->percpu_cluster
= NULL
;
2656 kvfree(cluster_info
);
2657 kvfree(frontswap_map
);
2658 /* Destroy swap account information */
2659 swap_cgroup_swapoff(p
->type
);
2660 exit_swap_address_space(p
->type
);
2662 inode
= mapping
->host
;
2663 if (S_ISBLK(inode
->i_mode
)) {
2664 struct block_device
*bdev
= I_BDEV(inode
);
2665 set_blocksize(bdev
, old_block_size
);
2666 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2669 inode
->i_flags
&= ~S_SWAPFILE
;
2670 inode_unlock(inode
);
2672 filp_close(swap_file
, NULL
);
2675 * Clear the SWP_USED flag after all resources are freed so that swapon
2676 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2677 * not hold p->lock after we cleared its SWP_WRITEOK.
2679 spin_lock(&swap_lock
);
2681 spin_unlock(&swap_lock
);
2684 atomic_inc(&proc_poll_event
);
2685 wake_up_interruptible(&proc_poll_wait
);
2688 filp_close(victim
, NULL
);
2694 #ifdef CONFIG_PROC_FS
2695 static __poll_t
swaps_poll(struct file
*file
, poll_table
*wait
)
2697 struct seq_file
*seq
= file
->private_data
;
2699 poll_wait(file
, &proc_poll_wait
, wait
);
2701 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2702 seq
->poll_event
= atomic_read(&proc_poll_event
);
2703 return EPOLLIN
| EPOLLRDNORM
| EPOLLERR
| EPOLLPRI
;
2706 return EPOLLIN
| EPOLLRDNORM
;
2710 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2712 struct swap_info_struct
*si
;
2716 mutex_lock(&swapon_mutex
);
2719 return SEQ_START_TOKEN
;
2721 for (type
= 0; (si
= swap_type_to_swap_info(type
)); type
++) {
2722 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2731 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2733 struct swap_info_struct
*si
= v
;
2736 if (v
== SEQ_START_TOKEN
)
2739 type
= si
->type
+ 1;
2741 for (; (si
= swap_type_to_swap_info(type
)); type
++) {
2742 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2751 static void swap_stop(struct seq_file
*swap
, void *v
)
2753 mutex_unlock(&swapon_mutex
);
2756 static int swap_show(struct seq_file
*swap
, void *v
)
2758 struct swap_info_struct
*si
= v
;
2762 if (si
== SEQ_START_TOKEN
) {
2763 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2767 file
= si
->swap_file
;
2768 len
= seq_file_path(swap
, file
, " \t\n\\");
2769 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2770 len
< 40 ? 40 - len
: 1, " ",
2771 S_ISBLK(file_inode(file
)->i_mode
) ?
2772 "partition" : "file\t",
2773 si
->pages
<< (PAGE_SHIFT
- 10),
2774 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2779 static const struct seq_operations swaps_op
= {
2780 .start
= swap_start
,
2786 static int swaps_open(struct inode
*inode
, struct file
*file
)
2788 struct seq_file
*seq
;
2791 ret
= seq_open(file
, &swaps_op
);
2795 seq
= file
->private_data
;
2796 seq
->poll_event
= atomic_read(&proc_poll_event
);
2800 static const struct file_operations proc_swaps_operations
= {
2803 .llseek
= seq_lseek
,
2804 .release
= seq_release
,
2808 static int __init
procswaps_init(void)
2810 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2813 __initcall(procswaps_init
);
2814 #endif /* CONFIG_PROC_FS */
2816 #ifdef MAX_SWAPFILES_CHECK
2817 static int __init
max_swapfiles_check(void)
2819 MAX_SWAPFILES_CHECK();
2822 late_initcall(max_swapfiles_check
);
2825 static struct swap_info_struct
*alloc_swap_info(void)
2827 struct swap_info_struct
*p
;
2830 int size
= sizeof(*p
) + nr_node_ids
* sizeof(struct plist_node
);
2832 p
= kvzalloc(size
, GFP_KERNEL
);
2834 return ERR_PTR(-ENOMEM
);
2836 spin_lock(&swap_lock
);
2837 for (type
= 0; type
< nr_swapfiles
; type
++) {
2838 if (!(swap_info
[type
]->flags
& SWP_USED
))
2841 if (type
>= MAX_SWAPFILES
) {
2842 spin_unlock(&swap_lock
);
2844 return ERR_PTR(-EPERM
);
2846 if (type
>= nr_swapfiles
) {
2848 WRITE_ONCE(swap_info
[type
], p
);
2850 * Write swap_info[type] before nr_swapfiles, in case a
2851 * racing procfs swap_start() or swap_next() is reading them.
2852 * (We never shrink nr_swapfiles, we never free this entry.)
2855 WRITE_ONCE(nr_swapfiles
, nr_swapfiles
+ 1);
2858 p
= swap_info
[type
];
2860 * Do not memset this entry: a racing procfs swap_next()
2861 * would be relying on p->type to remain valid.
2864 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2865 plist_node_init(&p
->list
, 0);
2867 plist_node_init(&p
->avail_lists
[i
], 0);
2868 p
->flags
= SWP_USED
;
2869 spin_unlock(&swap_lock
);
2870 spin_lock_init(&p
->lock
);
2871 spin_lock_init(&p
->cont_lock
);
2876 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2880 if (S_ISBLK(inode
->i_mode
)) {
2881 p
->bdev
= bdgrab(I_BDEV(inode
));
2882 error
= blkdev_get(p
->bdev
,
2883 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2888 p
->old_block_size
= block_size(p
->bdev
);
2889 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2892 p
->flags
|= SWP_BLKDEV
;
2893 } else if (S_ISREG(inode
->i_mode
)) {
2894 p
->bdev
= inode
->i_sb
->s_bdev
;
2896 if (IS_SWAPFILE(inode
))
2906 * Find out how many pages are allowed for a single swap device. There
2907 * are two limiting factors:
2908 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2909 * 2) the number of bits in the swap pte, as defined by the different
2912 * In order to find the largest possible bit mask, a swap entry with
2913 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2914 * decoded to a swp_entry_t again, and finally the swap offset is
2917 * This will mask all the bits from the initial ~0UL mask that can't
2918 * be encoded in either the swp_entry_t or the architecture definition
2921 unsigned long generic_max_swapfile_size(void)
2923 return swp_offset(pte_to_swp_entry(
2924 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2927 /* Can be overridden by an architecture for additional checks. */
2928 __weak
unsigned long max_swapfile_size(void)
2930 return generic_max_swapfile_size();
2933 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2934 union swap_header
*swap_header
,
2935 struct inode
*inode
)
2938 unsigned long maxpages
;
2939 unsigned long swapfilepages
;
2940 unsigned long last_page
;
2942 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2943 pr_err("Unable to find swap-space signature\n");
2947 /* swap partition endianess hack... */
2948 if (swab32(swap_header
->info
.version
) == 1) {
2949 swab32s(&swap_header
->info
.version
);
2950 swab32s(&swap_header
->info
.last_page
);
2951 swab32s(&swap_header
->info
.nr_badpages
);
2952 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2954 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2955 swab32s(&swap_header
->info
.badpages
[i
]);
2957 /* Check the swap header's sub-version */
2958 if (swap_header
->info
.version
!= 1) {
2959 pr_warn("Unable to handle swap header version %d\n",
2960 swap_header
->info
.version
);
2965 p
->cluster_next
= 1;
2968 maxpages
= max_swapfile_size();
2969 last_page
= swap_header
->info
.last_page
;
2971 pr_warn("Empty swap-file\n");
2974 if (last_page
> maxpages
) {
2975 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2976 maxpages
<< (PAGE_SHIFT
- 10),
2977 last_page
<< (PAGE_SHIFT
- 10));
2979 if (maxpages
> last_page
) {
2980 maxpages
= last_page
+ 1;
2981 /* p->max is an unsigned int: don't overflow it */
2982 if ((unsigned int)maxpages
== 0)
2983 maxpages
= UINT_MAX
;
2985 p
->highest_bit
= maxpages
- 1;
2989 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2990 if (swapfilepages
&& maxpages
> swapfilepages
) {
2991 pr_warn("Swap area shorter than signature indicates\n");
2994 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2996 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
3002 #define SWAP_CLUSTER_INFO_COLS \
3003 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3004 #define SWAP_CLUSTER_SPACE_COLS \
3005 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3006 #define SWAP_CLUSTER_COLS \
3007 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3009 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
3010 union swap_header
*swap_header
,
3011 unsigned char *swap_map
,
3012 struct swap_cluster_info
*cluster_info
,
3013 unsigned long maxpages
,
3017 unsigned int nr_good_pages
;
3019 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3020 unsigned long col
= p
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
3021 unsigned long i
, idx
;
3023 nr_good_pages
= maxpages
- 1; /* omit header page */
3025 cluster_list_init(&p
->free_clusters
);
3026 cluster_list_init(&p
->discard_clusters
);
3028 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
3029 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
3030 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
3032 if (page_nr
< maxpages
) {
3033 swap_map
[page_nr
] = SWAP_MAP_BAD
;
3036 * Haven't marked the cluster free yet, no list
3037 * operation involved
3039 inc_cluster_info_page(p
, cluster_info
, page_nr
);
3043 /* Haven't marked the cluster free yet, no list operation involved */
3044 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
3045 inc_cluster_info_page(p
, cluster_info
, i
);
3047 if (nr_good_pages
) {
3048 swap_map
[0] = SWAP_MAP_BAD
;
3050 * Not mark the cluster free yet, no list
3051 * operation involved
3053 inc_cluster_info_page(p
, cluster_info
, 0);
3055 p
->pages
= nr_good_pages
;
3056 nr_extents
= setup_swap_extents(p
, span
);
3059 nr_good_pages
= p
->pages
;
3061 if (!nr_good_pages
) {
3062 pr_warn("Empty swap-file\n");
3071 * Reduce false cache line sharing between cluster_info and
3072 * sharing same address space.
3074 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
3075 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
3076 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
3077 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
3078 if (idx
>= nr_clusters
)
3080 if (cluster_count(&cluster_info
[idx
]))
3082 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
3083 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
3091 * Helper to sys_swapon determining if a given swap
3092 * backing device queue supports DISCARD operations.
3094 static bool swap_discardable(struct swap_info_struct
*si
)
3096 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
3098 if (!q
|| !blk_queue_discard(q
))
3104 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
3106 struct swap_info_struct
*p
;
3107 struct filename
*name
;
3108 struct file
*swap_file
= NULL
;
3109 struct address_space
*mapping
;
3112 union swap_header
*swap_header
;
3115 unsigned long maxpages
;
3116 unsigned char *swap_map
= NULL
;
3117 struct swap_cluster_info
*cluster_info
= NULL
;
3118 unsigned long *frontswap_map
= NULL
;
3119 struct page
*page
= NULL
;
3120 struct inode
*inode
= NULL
;
3121 bool inced_nr_rotate_swap
= false;
3123 if (swap_flags
& ~SWAP_FLAGS_VALID
)
3126 if (!capable(CAP_SYS_ADMIN
))
3129 if (!swap_avail_heads
)
3132 p
= alloc_swap_info();
3136 INIT_WORK(&p
->discard_work
, swap_discard_work
);
3138 name
= getname(specialfile
);
3140 error
= PTR_ERR(name
);
3144 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
3145 if (IS_ERR(swap_file
)) {
3146 error
= PTR_ERR(swap_file
);
3151 p
->swap_file
= swap_file
;
3152 mapping
= swap_file
->f_mapping
;
3153 inode
= mapping
->host
;
3155 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3156 error
= claim_swapfile(p
, inode
);
3157 if (unlikely(error
))
3161 * Read the swap header.
3163 if (!mapping
->a_ops
->readpage
) {
3167 page
= read_mapping_page(mapping
, 0, swap_file
);
3169 error
= PTR_ERR(page
);
3172 swap_header
= kmap(page
);
3174 maxpages
= read_swap_header(p
, swap_header
, inode
);
3175 if (unlikely(!maxpages
)) {
3180 /* OK, set up the swap map and apply the bad block list */
3181 swap_map
= vzalloc(maxpages
);
3187 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
3188 p
->flags
|= SWP_STABLE_WRITES
;
3190 if (bdi_cap_synchronous_io(inode_to_bdi(inode
)))
3191 p
->flags
|= SWP_SYNCHRONOUS_IO
;
3193 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
3195 unsigned long ci
, nr_cluster
;
3197 p
->flags
|= SWP_SOLIDSTATE
;
3199 * select a random position to start with to help wear leveling
3202 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
3203 nr_cluster
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3205 cluster_info
= kvcalloc(nr_cluster
, sizeof(*cluster_info
),
3207 if (!cluster_info
) {
3212 for (ci
= 0; ci
< nr_cluster
; ci
++)
3213 spin_lock_init(&((cluster_info
+ ci
)->lock
));
3215 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
3216 if (!p
->percpu_cluster
) {
3220 for_each_possible_cpu(cpu
) {
3221 struct percpu_cluster
*cluster
;
3222 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
3223 cluster_set_null(&cluster
->index
);
3226 atomic_inc(&nr_rotate_swap
);
3227 inced_nr_rotate_swap
= true;
3230 error
= swap_cgroup_swapon(p
->type
, maxpages
);
3234 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
3235 cluster_info
, maxpages
, &span
);
3236 if (unlikely(nr_extents
< 0)) {
3240 /* frontswap enabled? set up bit-per-page map for frontswap */
3241 if (IS_ENABLED(CONFIG_FRONTSWAP
))
3242 frontswap_map
= kvcalloc(BITS_TO_LONGS(maxpages
),
3246 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
3248 * When discard is enabled for swap with no particular
3249 * policy flagged, we set all swap discard flags here in
3250 * order to sustain backward compatibility with older
3251 * swapon(8) releases.
3253 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
3257 * By flagging sys_swapon, a sysadmin can tell us to
3258 * either do single-time area discards only, or to just
3259 * perform discards for released swap page-clusters.
3260 * Now it's time to adjust the p->flags accordingly.
3262 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3263 p
->flags
&= ~SWP_PAGE_DISCARD
;
3264 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3265 p
->flags
&= ~SWP_AREA_DISCARD
;
3267 /* issue a swapon-time discard if it's still required */
3268 if (p
->flags
& SWP_AREA_DISCARD
) {
3269 int err
= discard_swap(p
);
3271 pr_err("swapon: discard_swap(%p): %d\n",
3276 error
= init_swap_address_space(p
->type
, maxpages
);
3280 mutex_lock(&swapon_mutex
);
3282 if (swap_flags
& SWAP_FLAG_PREFER
)
3284 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3285 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
3287 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3288 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
3289 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
3290 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3291 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3292 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3293 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
3294 (frontswap_map
) ? "FS" : "");
3296 mutex_unlock(&swapon_mutex
);
3297 atomic_inc(&proc_poll_event
);
3298 wake_up_interruptible(&proc_poll_wait
);
3300 if (S_ISREG(inode
->i_mode
))
3301 inode
->i_flags
|= S_SWAPFILE
;
3305 free_percpu(p
->percpu_cluster
);
3306 p
->percpu_cluster
= NULL
;
3307 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
3308 set_blocksize(p
->bdev
, p
->old_block_size
);
3309 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
3311 destroy_swap_extents(p
);
3312 swap_cgroup_swapoff(p
->type
);
3313 spin_lock(&swap_lock
);
3314 p
->swap_file
= NULL
;
3316 spin_unlock(&swap_lock
);
3318 kvfree(cluster_info
);
3319 kvfree(frontswap_map
);
3320 if (inced_nr_rotate_swap
)
3321 atomic_dec(&nr_rotate_swap
);
3323 if (inode
&& S_ISREG(inode
->i_mode
)) {
3324 inode_unlock(inode
);
3327 filp_close(swap_file
, NULL
);
3330 if (page
&& !IS_ERR(page
)) {
3336 if (inode
&& S_ISREG(inode
->i_mode
))
3337 inode_unlock(inode
);
3339 enable_swap_slots_cache();
3343 void si_swapinfo(struct sysinfo
*val
)
3346 unsigned long nr_to_be_unused
= 0;
3348 spin_lock(&swap_lock
);
3349 for (type
= 0; type
< nr_swapfiles
; type
++) {
3350 struct swap_info_struct
*si
= swap_info
[type
];
3352 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3353 nr_to_be_unused
+= si
->inuse_pages
;
3355 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3356 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3357 spin_unlock(&swap_lock
);
3361 * Verify that a swap entry is valid and increment its swap map count.
3363 * Returns error code in following case.
3365 * - swp_entry is invalid -> EINVAL
3366 * - swp_entry is migration entry -> EINVAL
3367 * - swap-cache reference is requested but there is already one. -> EEXIST
3368 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3369 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3371 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
3373 struct swap_info_struct
*p
;
3374 struct swap_cluster_info
*ci
;
3375 unsigned long offset
;
3376 unsigned char count
;
3377 unsigned char has_cache
;
3380 if (non_swap_entry(entry
))
3383 p
= swp_swap_info(entry
);
3387 offset
= swp_offset(entry
);
3388 if (unlikely(offset
>= p
->max
))
3391 ci
= lock_cluster_or_swap_info(p
, offset
);
3393 count
= p
->swap_map
[offset
];
3396 * swapin_readahead() doesn't check if a swap entry is valid, so the
3397 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3404 has_cache
= count
& SWAP_HAS_CACHE
;
3405 count
&= ~SWAP_HAS_CACHE
;
3408 if (usage
== SWAP_HAS_CACHE
) {
3410 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3411 if (!has_cache
&& count
)
3412 has_cache
= SWAP_HAS_CACHE
;
3413 else if (has_cache
) /* someone else added cache */
3415 else /* no users remaining */
3418 } else if (count
|| has_cache
) {
3420 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3422 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
3424 else if (swap_count_continued(p
, offset
, count
))
3425 count
= COUNT_CONTINUED
;
3429 err
= -ENOENT
; /* unused swap entry */
3431 p
->swap_map
[offset
] = count
| has_cache
;
3434 unlock_cluster_or_swap_info(p
, ci
);
3439 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
3444 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3445 * (in which case its reference count is never incremented).
3447 void swap_shmem_alloc(swp_entry_t entry
)
3449 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
3453 * Increase reference count of swap entry by 1.
3454 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3455 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3456 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3457 * might occur if a page table entry has got corrupted.
3459 int swap_duplicate(swp_entry_t entry
)
3463 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
3464 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3469 * @entry: swap entry for which we allocate swap cache.
3471 * Called when allocating swap cache for existing swap entry,
3472 * This can return error codes. Returns 0 at success.
3473 * -EBUSY means there is a swap cache.
3474 * Note: return code is different from swap_duplicate().
3476 int swapcache_prepare(swp_entry_t entry
)
3478 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
3481 struct swap_info_struct
*swp_swap_info(swp_entry_t entry
)
3483 return swap_type_to_swap_info(swp_type(entry
));
3486 struct swap_info_struct
*page_swap_info(struct page
*page
)
3488 swp_entry_t entry
= { .val
= page_private(page
) };
3489 return swp_swap_info(entry
);
3493 * out-of-line __page_file_ methods to avoid include hell.
3495 struct address_space
*__page_file_mapping(struct page
*page
)
3497 return page_swap_info(page
)->swap_file
->f_mapping
;
3499 EXPORT_SYMBOL_GPL(__page_file_mapping
);
3501 pgoff_t
__page_file_index(struct page
*page
)
3503 swp_entry_t swap
= { .val
= page_private(page
) };
3504 return swp_offset(swap
);
3506 EXPORT_SYMBOL_GPL(__page_file_index
);
3509 * add_swap_count_continuation - called when a swap count is duplicated
3510 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3511 * page of the original vmalloc'ed swap_map, to hold the continuation count
3512 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3513 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3515 * These continuation pages are seldom referenced: the common paths all work
3516 * on the original swap_map, only referring to a continuation page when the
3517 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3519 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3520 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3521 * can be called after dropping locks.
3523 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3525 struct swap_info_struct
*si
;
3526 struct swap_cluster_info
*ci
;
3529 struct page
*list_page
;
3531 unsigned char count
;
3534 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3537 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3539 si
= swap_info_get(entry
);
3542 * An acceptable race has occurred since the failing
3543 * __swap_duplicate(): the swap entry has been freed,
3544 * perhaps even the whole swap_map cleared for swapoff.
3549 offset
= swp_offset(entry
);
3551 ci
= lock_cluster(si
, offset
);
3553 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
3555 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3557 * The higher the swap count, the more likely it is that tasks
3558 * will race to add swap count continuation: we need to avoid
3559 * over-provisioning.
3566 spin_unlock(&si
->lock
);
3571 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3572 * no architecture is using highmem pages for kernel page tables: so it
3573 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3575 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3576 offset
&= ~PAGE_MASK
;
3578 spin_lock(&si
->cont_lock
);
3580 * Page allocation does not initialize the page's lru field,
3581 * but it does always reset its private field.
3583 if (!page_private(head
)) {
3584 BUG_ON(count
& COUNT_CONTINUED
);
3585 INIT_LIST_HEAD(&head
->lru
);
3586 set_page_private(head
, SWP_CONTINUED
);
3587 si
->flags
|= SWP_CONTINUED
;
3590 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3594 * If the previous map said no continuation, but we've found
3595 * a continuation page, free our allocation and use this one.
3597 if (!(count
& COUNT_CONTINUED
))
3598 goto out_unlock_cont
;
3600 map
= kmap_atomic(list_page
) + offset
;
3605 * If this continuation count now has some space in it,
3606 * free our allocation and use this one.
3608 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3609 goto out_unlock_cont
;
3612 list_add_tail(&page
->lru
, &head
->lru
);
3613 page
= NULL
; /* now it's attached, don't free it */
3615 spin_unlock(&si
->cont_lock
);
3618 spin_unlock(&si
->lock
);
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3634 static bool swap_count_continued(struct swap_info_struct
*si
,
3635 pgoff_t offset
, unsigned char count
)
3642 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3643 if (page_private(head
) != SWP_CONTINUED
) {
3644 BUG_ON(count
& COUNT_CONTINUED
);
3645 return false; /* need to add count continuation */
3648 spin_lock(&si
->cont_lock
);
3649 offset
&= ~PAGE_MASK
;
3650 page
= list_entry(head
->lru
.next
, struct page
, lru
);
3651 map
= kmap_atomic(page
) + offset
;
3653 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3654 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3656 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3658 * Think of how you add 1 to 999
3660 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3662 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3663 BUG_ON(page
== head
);
3664 map
= kmap_atomic(page
) + offset
;
3666 if (*map
== SWAP_CONT_MAX
) {
3668 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3670 ret
= false; /* add count continuation */
3673 map
= kmap_atomic(page
) + offset
;
3674 init_map
: *map
= 0; /* we didn't zero the page */
3678 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3679 while (page
!= head
) {
3680 map
= kmap_atomic(page
) + offset
;
3681 *map
= COUNT_CONTINUED
;
3683 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3685 ret
= true; /* incremented */
3687 } else { /* decrementing */
3689 * Think of how you subtract 1 from 1000
3691 BUG_ON(count
!= COUNT_CONTINUED
);
3692 while (*map
== COUNT_CONTINUED
) {
3694 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3695 BUG_ON(page
== head
);
3696 map
= kmap_atomic(page
) + offset
;
3703 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3704 while (page
!= head
) {
3705 map
= kmap_atomic(page
) + offset
;
3706 *map
= SWAP_CONT_MAX
| count
;
3707 count
= COUNT_CONTINUED
;
3709 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3711 ret
= count
== COUNT_CONTINUED
;
3714 spin_unlock(&si
->cont_lock
);
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3722 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3726 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3728 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3729 if (page_private(head
)) {
3730 struct page
*page
, *next
;
3732 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3733 list_del(&page
->lru
);
3740 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741 void mem_cgroup_throttle_swaprate(struct mem_cgroup
*memcg
, int node
,
3744 struct swap_info_struct
*si
, *next
;
3745 if (!(gfp_mask
& __GFP_IO
) || !memcg
)
3748 if (!blk_cgroup_congested())
3752 * We've already scheduled a throttle, avoid taking the global swap
3755 if (current
->throttle_queue
)
3758 spin_lock(&swap_avail_lock
);
3759 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
],
3760 avail_lists
[node
]) {
3762 blkcg_schedule_throttle(bdev_get_queue(si
->bdev
),
3767 spin_unlock(&swap_avail_lock
);
3771 static int __init
swapfile_init(void)
3775 swap_avail_heads
= kmalloc_array(nr_node_ids
, sizeof(struct plist_head
),
3777 if (!swap_avail_heads
) {
3778 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3783 plist_head_init(&swap_avail_heads
[nid
]);
3787 subsys_initcall(swapfile_init
);