cpuset: restore sanity to cpuset_cpus_allowed_fallback()
[linux/fpc-iii.git] / mm / swapfile.c
blob0047dcaf93697825424aa75ddf1caee54b8189f6
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 static DEFINE_MUTEX(swapon_mutex);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
110 static inline unsigned char swap_count(unsigned char ent)
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
115 /* returns 1 if swap entry is freed */
116 static int
117 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
119 swp_entry_t entry = swp_entry(si->type, offset);
120 struct page *page;
121 int ret = 0;
123 page = find_get_page(swap_address_space(entry), swp_offset(entry));
124 if (!page)
125 return 0;
127 * This function is called from scan_swap_map() and it's called
128 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
129 * We have to use trylock for avoiding deadlock. This is a special
130 * case and you should use try_to_free_swap() with explicit lock_page()
131 * in usual operations.
133 if (trylock_page(page)) {
134 ret = try_to_free_swap(page);
135 unlock_page(page);
137 put_page(page);
138 return ret;
142 * swapon tell device that all the old swap contents can be discarded,
143 * to allow the swap device to optimize its wear-levelling.
145 static int discard_swap(struct swap_info_struct *si)
147 struct swap_extent *se;
148 sector_t start_block;
149 sector_t nr_blocks;
150 int err = 0;
152 /* Do not discard the swap header page! */
153 se = &si->first_swap_extent;
154 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
155 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
156 if (nr_blocks) {
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, 0);
159 if (err)
160 return err;
161 cond_resched();
164 list_for_each_entry(se, &si->first_swap_extent.list, list) {
165 start_block = se->start_block << (PAGE_SHIFT - 9);
166 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
168 err = blkdev_issue_discard(si->bdev, start_block,
169 nr_blocks, GFP_KERNEL, 0);
170 if (err)
171 break;
173 cond_resched();
175 return err; /* That will often be -EOPNOTSUPP */
179 * swap allocation tell device that a cluster of swap can now be discarded,
180 * to allow the swap device to optimize its wear-levelling.
182 static void discard_swap_cluster(struct swap_info_struct *si,
183 pgoff_t start_page, pgoff_t nr_pages)
185 struct swap_extent *se = si->curr_swap_extent;
186 int found_extent = 0;
188 while (nr_pages) {
189 if (se->start_page <= start_page &&
190 start_page < se->start_page + se->nr_pages) {
191 pgoff_t offset = start_page - se->start_page;
192 sector_t start_block = se->start_block + offset;
193 sector_t nr_blocks = se->nr_pages - offset;
195 if (nr_blocks > nr_pages)
196 nr_blocks = nr_pages;
197 start_page += nr_blocks;
198 nr_pages -= nr_blocks;
200 if (!found_extent++)
201 si->curr_swap_extent = se;
203 start_block <<= PAGE_SHIFT - 9;
204 nr_blocks <<= PAGE_SHIFT - 9;
205 if (blkdev_issue_discard(si->bdev, start_block,
206 nr_blocks, GFP_NOIO, 0))
207 break;
210 se = list_next_entry(se, list);
214 #ifdef CONFIG_THP_SWAP
215 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
217 #define swap_entry_size(size) (size)
218 #else
219 #define SWAPFILE_CLUSTER 256
222 * Define swap_entry_size() as constant to let compiler to optimize
223 * out some code if !CONFIG_THP_SWAP
225 #define swap_entry_size(size) 1
226 #endif
227 #define LATENCY_LIMIT 256
229 static inline void cluster_set_flag(struct swap_cluster_info *info,
230 unsigned int flag)
232 info->flags = flag;
235 static inline unsigned int cluster_count(struct swap_cluster_info *info)
237 return info->data;
240 static inline void cluster_set_count(struct swap_cluster_info *info,
241 unsigned int c)
243 info->data = c;
246 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
247 unsigned int c, unsigned int f)
249 info->flags = f;
250 info->data = c;
253 static inline unsigned int cluster_next(struct swap_cluster_info *info)
255 return info->data;
258 static inline void cluster_set_next(struct swap_cluster_info *info,
259 unsigned int n)
261 info->data = n;
264 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
265 unsigned int n, unsigned int f)
267 info->flags = f;
268 info->data = n;
271 static inline bool cluster_is_free(struct swap_cluster_info *info)
273 return info->flags & CLUSTER_FLAG_FREE;
276 static inline bool cluster_is_null(struct swap_cluster_info *info)
278 return info->flags & CLUSTER_FLAG_NEXT_NULL;
281 static inline void cluster_set_null(struct swap_cluster_info *info)
283 info->flags = CLUSTER_FLAG_NEXT_NULL;
284 info->data = 0;
287 static inline bool cluster_is_huge(struct swap_cluster_info *info)
289 if (IS_ENABLED(CONFIG_THP_SWAP))
290 return info->flags & CLUSTER_FLAG_HUGE;
291 return false;
294 static inline void cluster_clear_huge(struct swap_cluster_info *info)
296 info->flags &= ~CLUSTER_FLAG_HUGE;
299 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
300 unsigned long offset)
302 struct swap_cluster_info *ci;
304 ci = si->cluster_info;
305 if (ci) {
306 ci += offset / SWAPFILE_CLUSTER;
307 spin_lock(&ci->lock);
309 return ci;
312 static inline void unlock_cluster(struct swap_cluster_info *ci)
314 if (ci)
315 spin_unlock(&ci->lock);
319 * Determine the locking method in use for this device. Return
320 * swap_cluster_info if SSD-style cluster-based locking is in place.
322 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
323 struct swap_info_struct *si, unsigned long offset)
325 struct swap_cluster_info *ci;
327 /* Try to use fine-grained SSD-style locking if available: */
328 ci = lock_cluster(si, offset);
329 /* Otherwise, fall back to traditional, coarse locking: */
330 if (!ci)
331 spin_lock(&si->lock);
333 return ci;
336 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
337 struct swap_cluster_info *ci)
339 if (ci)
340 unlock_cluster(ci);
341 else
342 spin_unlock(&si->lock);
345 static inline bool cluster_list_empty(struct swap_cluster_list *list)
347 return cluster_is_null(&list->head);
350 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
352 return cluster_next(&list->head);
355 static void cluster_list_init(struct swap_cluster_list *list)
357 cluster_set_null(&list->head);
358 cluster_set_null(&list->tail);
361 static void cluster_list_add_tail(struct swap_cluster_list *list,
362 struct swap_cluster_info *ci,
363 unsigned int idx)
365 if (cluster_list_empty(list)) {
366 cluster_set_next_flag(&list->head, idx, 0);
367 cluster_set_next_flag(&list->tail, idx, 0);
368 } else {
369 struct swap_cluster_info *ci_tail;
370 unsigned int tail = cluster_next(&list->tail);
373 * Nested cluster lock, but both cluster locks are
374 * only acquired when we held swap_info_struct->lock
376 ci_tail = ci + tail;
377 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
378 cluster_set_next(ci_tail, idx);
379 spin_unlock(&ci_tail->lock);
380 cluster_set_next_flag(&list->tail, idx, 0);
384 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
385 struct swap_cluster_info *ci)
387 unsigned int idx;
389 idx = cluster_next(&list->head);
390 if (cluster_next(&list->tail) == idx) {
391 cluster_set_null(&list->head);
392 cluster_set_null(&list->tail);
393 } else
394 cluster_set_next_flag(&list->head,
395 cluster_next(&ci[idx]), 0);
397 return idx;
400 /* Add a cluster to discard list and schedule it to do discard */
401 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
402 unsigned int idx)
405 * If scan_swap_map() can't find a free cluster, it will check
406 * si->swap_map directly. To make sure the discarding cluster isn't
407 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
408 * will be cleared after discard
410 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
413 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
415 schedule_work(&si->discard_work);
418 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
420 struct swap_cluster_info *ci = si->cluster_info;
422 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
423 cluster_list_add_tail(&si->free_clusters, ci, idx);
427 * Doing discard actually. After a cluster discard is finished, the cluster
428 * will be added to free cluster list. caller should hold si->lock.
430 static void swap_do_scheduled_discard(struct swap_info_struct *si)
432 struct swap_cluster_info *info, *ci;
433 unsigned int idx;
435 info = si->cluster_info;
437 while (!cluster_list_empty(&si->discard_clusters)) {
438 idx = cluster_list_del_first(&si->discard_clusters, info);
439 spin_unlock(&si->lock);
441 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
442 SWAPFILE_CLUSTER);
444 spin_lock(&si->lock);
445 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
446 __free_cluster(si, idx);
447 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
448 0, SWAPFILE_CLUSTER);
449 unlock_cluster(ci);
453 static void swap_discard_work(struct work_struct *work)
455 struct swap_info_struct *si;
457 si = container_of(work, struct swap_info_struct, discard_work);
459 spin_lock(&si->lock);
460 swap_do_scheduled_discard(si);
461 spin_unlock(&si->lock);
464 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
466 struct swap_cluster_info *ci = si->cluster_info;
468 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
469 cluster_list_del_first(&si->free_clusters, ci);
470 cluster_set_count_flag(ci + idx, 0, 0);
473 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
475 struct swap_cluster_info *ci = si->cluster_info + idx;
477 VM_BUG_ON(cluster_count(ci) != 0);
479 * If the swap is discardable, prepare discard the cluster
480 * instead of free it immediately. The cluster will be freed
481 * after discard.
483 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
484 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
485 swap_cluster_schedule_discard(si, idx);
486 return;
489 __free_cluster(si, idx);
493 * The cluster corresponding to page_nr will be used. The cluster will be
494 * removed from free cluster list and its usage counter will be increased.
496 static void inc_cluster_info_page(struct swap_info_struct *p,
497 struct swap_cluster_info *cluster_info, unsigned long page_nr)
499 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
501 if (!cluster_info)
502 return;
503 if (cluster_is_free(&cluster_info[idx]))
504 alloc_cluster(p, idx);
506 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
507 cluster_set_count(&cluster_info[idx],
508 cluster_count(&cluster_info[idx]) + 1);
512 * The cluster corresponding to page_nr decreases one usage. If the usage
513 * counter becomes 0, which means no page in the cluster is in using, we can
514 * optionally discard the cluster and add it to free cluster list.
516 static void dec_cluster_info_page(struct swap_info_struct *p,
517 struct swap_cluster_info *cluster_info, unsigned long page_nr)
519 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
521 if (!cluster_info)
522 return;
524 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
525 cluster_set_count(&cluster_info[idx],
526 cluster_count(&cluster_info[idx]) - 1);
528 if (cluster_count(&cluster_info[idx]) == 0)
529 free_cluster(p, idx);
533 * It's possible scan_swap_map() uses a free cluster in the middle of free
534 * cluster list. Avoiding such abuse to avoid list corruption.
536 static bool
537 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
538 unsigned long offset)
540 struct percpu_cluster *percpu_cluster;
541 bool conflict;
543 offset /= SWAPFILE_CLUSTER;
544 conflict = !cluster_list_empty(&si->free_clusters) &&
545 offset != cluster_list_first(&si->free_clusters) &&
546 cluster_is_free(&si->cluster_info[offset]);
548 if (!conflict)
549 return false;
551 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
552 cluster_set_null(&percpu_cluster->index);
553 return true;
557 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
558 * might involve allocating a new cluster for current CPU too.
560 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
561 unsigned long *offset, unsigned long *scan_base)
563 struct percpu_cluster *cluster;
564 struct swap_cluster_info *ci;
565 bool found_free;
566 unsigned long tmp, max;
568 new_cluster:
569 cluster = this_cpu_ptr(si->percpu_cluster);
570 if (cluster_is_null(&cluster->index)) {
571 if (!cluster_list_empty(&si->free_clusters)) {
572 cluster->index = si->free_clusters.head;
573 cluster->next = cluster_next(&cluster->index) *
574 SWAPFILE_CLUSTER;
575 } else if (!cluster_list_empty(&si->discard_clusters)) {
577 * we don't have free cluster but have some clusters in
578 * discarding, do discard now and reclaim them
580 swap_do_scheduled_discard(si);
581 *scan_base = *offset = si->cluster_next;
582 goto new_cluster;
583 } else
584 return false;
587 found_free = false;
590 * Other CPUs can use our cluster if they can't find a free cluster,
591 * check if there is still free entry in the cluster
593 tmp = cluster->next;
594 max = min_t(unsigned long, si->max,
595 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
596 if (tmp >= max) {
597 cluster_set_null(&cluster->index);
598 goto new_cluster;
600 ci = lock_cluster(si, tmp);
601 while (tmp < max) {
602 if (!si->swap_map[tmp]) {
603 found_free = true;
604 break;
606 tmp++;
608 unlock_cluster(ci);
609 if (!found_free) {
610 cluster_set_null(&cluster->index);
611 goto new_cluster;
613 cluster->next = tmp + 1;
614 *offset = tmp;
615 *scan_base = tmp;
616 return found_free;
619 static void __del_from_avail_list(struct swap_info_struct *p)
621 int nid;
623 for_each_node(nid)
624 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
627 static void del_from_avail_list(struct swap_info_struct *p)
629 spin_lock(&swap_avail_lock);
630 __del_from_avail_list(p);
631 spin_unlock(&swap_avail_lock);
634 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
635 unsigned int nr_entries)
637 unsigned int end = offset + nr_entries - 1;
639 if (offset == si->lowest_bit)
640 si->lowest_bit += nr_entries;
641 if (end == si->highest_bit)
642 si->highest_bit -= nr_entries;
643 si->inuse_pages += nr_entries;
644 if (si->inuse_pages == si->pages) {
645 si->lowest_bit = si->max;
646 si->highest_bit = 0;
647 del_from_avail_list(si);
651 static void add_to_avail_list(struct swap_info_struct *p)
653 int nid;
655 spin_lock(&swap_avail_lock);
656 for_each_node(nid) {
657 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
658 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
660 spin_unlock(&swap_avail_lock);
663 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
664 unsigned int nr_entries)
666 unsigned long end = offset + nr_entries - 1;
667 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
669 if (offset < si->lowest_bit)
670 si->lowest_bit = offset;
671 if (end > si->highest_bit) {
672 bool was_full = !si->highest_bit;
674 si->highest_bit = end;
675 if (was_full && (si->flags & SWP_WRITEOK))
676 add_to_avail_list(si);
678 atomic_long_add(nr_entries, &nr_swap_pages);
679 si->inuse_pages -= nr_entries;
680 if (si->flags & SWP_BLKDEV)
681 swap_slot_free_notify =
682 si->bdev->bd_disk->fops->swap_slot_free_notify;
683 else
684 swap_slot_free_notify = NULL;
685 while (offset <= end) {
686 frontswap_invalidate_page(si->type, offset);
687 if (swap_slot_free_notify)
688 swap_slot_free_notify(si->bdev, offset);
689 offset++;
693 static int scan_swap_map_slots(struct swap_info_struct *si,
694 unsigned char usage, int nr,
695 swp_entry_t slots[])
697 struct swap_cluster_info *ci;
698 unsigned long offset;
699 unsigned long scan_base;
700 unsigned long last_in_cluster = 0;
701 int latency_ration = LATENCY_LIMIT;
702 int n_ret = 0;
704 if (nr > SWAP_BATCH)
705 nr = SWAP_BATCH;
708 * We try to cluster swap pages by allocating them sequentially
709 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
710 * way, however, we resort to first-free allocation, starting
711 * a new cluster. This prevents us from scattering swap pages
712 * all over the entire swap partition, so that we reduce
713 * overall disk seek times between swap pages. -- sct
714 * But we do now try to find an empty cluster. -Andrea
715 * And we let swap pages go all over an SSD partition. Hugh
718 si->flags += SWP_SCANNING;
719 scan_base = offset = si->cluster_next;
721 /* SSD algorithm */
722 if (si->cluster_info) {
723 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
724 goto checks;
725 else
726 goto scan;
729 if (unlikely(!si->cluster_nr--)) {
730 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
731 si->cluster_nr = SWAPFILE_CLUSTER - 1;
732 goto checks;
735 spin_unlock(&si->lock);
738 * If seek is expensive, start searching for new cluster from
739 * start of partition, to minimize the span of allocated swap.
740 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
741 * case, just handled by scan_swap_map_try_ssd_cluster() above.
743 scan_base = offset = si->lowest_bit;
744 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
746 /* Locate the first empty (unaligned) cluster */
747 for (; last_in_cluster <= si->highest_bit; offset++) {
748 if (si->swap_map[offset])
749 last_in_cluster = offset + SWAPFILE_CLUSTER;
750 else if (offset == last_in_cluster) {
751 spin_lock(&si->lock);
752 offset -= SWAPFILE_CLUSTER - 1;
753 si->cluster_next = offset;
754 si->cluster_nr = SWAPFILE_CLUSTER - 1;
755 goto checks;
757 if (unlikely(--latency_ration < 0)) {
758 cond_resched();
759 latency_ration = LATENCY_LIMIT;
763 offset = scan_base;
764 spin_lock(&si->lock);
765 si->cluster_nr = SWAPFILE_CLUSTER - 1;
768 checks:
769 if (si->cluster_info) {
770 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
771 /* take a break if we already got some slots */
772 if (n_ret)
773 goto done;
774 if (!scan_swap_map_try_ssd_cluster(si, &offset,
775 &scan_base))
776 goto scan;
779 if (!(si->flags & SWP_WRITEOK))
780 goto no_page;
781 if (!si->highest_bit)
782 goto no_page;
783 if (offset > si->highest_bit)
784 scan_base = offset = si->lowest_bit;
786 ci = lock_cluster(si, offset);
787 /* reuse swap entry of cache-only swap if not busy. */
788 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
789 int swap_was_freed;
790 unlock_cluster(ci);
791 spin_unlock(&si->lock);
792 swap_was_freed = __try_to_reclaim_swap(si, offset);
793 spin_lock(&si->lock);
794 /* entry was freed successfully, try to use this again */
795 if (swap_was_freed)
796 goto checks;
797 goto scan; /* check next one */
800 if (si->swap_map[offset]) {
801 unlock_cluster(ci);
802 if (!n_ret)
803 goto scan;
804 else
805 goto done;
807 si->swap_map[offset] = usage;
808 inc_cluster_info_page(si, si->cluster_info, offset);
809 unlock_cluster(ci);
811 swap_range_alloc(si, offset, 1);
812 si->cluster_next = offset + 1;
813 slots[n_ret++] = swp_entry(si->type, offset);
815 /* got enough slots or reach max slots? */
816 if ((n_ret == nr) || (offset >= si->highest_bit))
817 goto done;
819 /* search for next available slot */
821 /* time to take a break? */
822 if (unlikely(--latency_ration < 0)) {
823 if (n_ret)
824 goto done;
825 spin_unlock(&si->lock);
826 cond_resched();
827 spin_lock(&si->lock);
828 latency_ration = LATENCY_LIMIT;
831 /* try to get more slots in cluster */
832 if (si->cluster_info) {
833 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
834 goto checks;
835 else
836 goto done;
838 /* non-ssd case */
839 ++offset;
841 /* non-ssd case, still more slots in cluster? */
842 if (si->cluster_nr && !si->swap_map[offset]) {
843 --si->cluster_nr;
844 goto checks;
847 done:
848 si->flags -= SWP_SCANNING;
849 return n_ret;
851 scan:
852 spin_unlock(&si->lock);
853 while (++offset <= si->highest_bit) {
854 if (!si->swap_map[offset]) {
855 spin_lock(&si->lock);
856 goto checks;
858 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
859 spin_lock(&si->lock);
860 goto checks;
862 if (unlikely(--latency_ration < 0)) {
863 cond_resched();
864 latency_ration = LATENCY_LIMIT;
867 offset = si->lowest_bit;
868 while (offset < scan_base) {
869 if (!si->swap_map[offset]) {
870 spin_lock(&si->lock);
871 goto checks;
873 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
874 spin_lock(&si->lock);
875 goto checks;
877 if (unlikely(--latency_ration < 0)) {
878 cond_resched();
879 latency_ration = LATENCY_LIMIT;
881 offset++;
883 spin_lock(&si->lock);
885 no_page:
886 si->flags -= SWP_SCANNING;
887 return n_ret;
890 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
892 unsigned long idx;
893 struct swap_cluster_info *ci;
894 unsigned long offset, i;
895 unsigned char *map;
898 * Should not even be attempting cluster allocations when huge
899 * page swap is disabled. Warn and fail the allocation.
901 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
902 VM_WARN_ON_ONCE(1);
903 return 0;
906 if (cluster_list_empty(&si->free_clusters))
907 return 0;
909 idx = cluster_list_first(&si->free_clusters);
910 offset = idx * SWAPFILE_CLUSTER;
911 ci = lock_cluster(si, offset);
912 alloc_cluster(si, idx);
913 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
915 map = si->swap_map + offset;
916 for (i = 0; i < SWAPFILE_CLUSTER; i++)
917 map[i] = SWAP_HAS_CACHE;
918 unlock_cluster(ci);
919 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
920 *slot = swp_entry(si->type, offset);
922 return 1;
925 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
927 unsigned long offset = idx * SWAPFILE_CLUSTER;
928 struct swap_cluster_info *ci;
930 ci = lock_cluster(si, offset);
931 cluster_set_count_flag(ci, 0, 0);
932 free_cluster(si, idx);
933 unlock_cluster(ci);
934 swap_range_free(si, offset, SWAPFILE_CLUSTER);
937 static unsigned long scan_swap_map(struct swap_info_struct *si,
938 unsigned char usage)
940 swp_entry_t entry;
941 int n_ret;
943 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
945 if (n_ret)
946 return swp_offset(entry);
947 else
948 return 0;
952 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
954 unsigned long size = swap_entry_size(entry_size);
955 struct swap_info_struct *si, *next;
956 long avail_pgs;
957 int n_ret = 0;
958 int node;
960 /* Only single cluster request supported */
961 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
963 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
964 if (avail_pgs <= 0)
965 goto noswap;
967 if (n_goal > SWAP_BATCH)
968 n_goal = SWAP_BATCH;
970 if (n_goal > avail_pgs)
971 n_goal = avail_pgs;
973 atomic_long_sub(n_goal * size, &nr_swap_pages);
975 spin_lock(&swap_avail_lock);
977 start_over:
978 node = numa_node_id();
979 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
980 /* requeue si to after same-priority siblings */
981 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
982 spin_unlock(&swap_avail_lock);
983 spin_lock(&si->lock);
984 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
985 spin_lock(&swap_avail_lock);
986 if (plist_node_empty(&si->avail_lists[node])) {
987 spin_unlock(&si->lock);
988 goto nextsi;
990 WARN(!si->highest_bit,
991 "swap_info %d in list but !highest_bit\n",
992 si->type);
993 WARN(!(si->flags & SWP_WRITEOK),
994 "swap_info %d in list but !SWP_WRITEOK\n",
995 si->type);
996 __del_from_avail_list(si);
997 spin_unlock(&si->lock);
998 goto nextsi;
1000 if (size == SWAPFILE_CLUSTER) {
1001 if (!(si->flags & SWP_FILE))
1002 n_ret = swap_alloc_cluster(si, swp_entries);
1003 } else
1004 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1005 n_goal, swp_entries);
1006 spin_unlock(&si->lock);
1007 if (n_ret || size == SWAPFILE_CLUSTER)
1008 goto check_out;
1009 pr_debug("scan_swap_map of si %d failed to find offset\n",
1010 si->type);
1012 spin_lock(&swap_avail_lock);
1013 nextsi:
1015 * if we got here, it's likely that si was almost full before,
1016 * and since scan_swap_map() can drop the si->lock, multiple
1017 * callers probably all tried to get a page from the same si
1018 * and it filled up before we could get one; or, the si filled
1019 * up between us dropping swap_avail_lock and taking si->lock.
1020 * Since we dropped the swap_avail_lock, the swap_avail_head
1021 * list may have been modified; so if next is still in the
1022 * swap_avail_head list then try it, otherwise start over
1023 * if we have not gotten any slots.
1025 if (plist_node_empty(&next->avail_lists[node]))
1026 goto start_over;
1029 spin_unlock(&swap_avail_lock);
1031 check_out:
1032 if (n_ret < n_goal)
1033 atomic_long_add((long)(n_goal - n_ret) * size,
1034 &nr_swap_pages);
1035 noswap:
1036 return n_ret;
1039 /* The only caller of this function is now suspend routine */
1040 swp_entry_t get_swap_page_of_type(int type)
1042 struct swap_info_struct *si = swap_type_to_swap_info(type);
1043 pgoff_t offset;
1045 if (!si)
1046 goto fail;
1048 spin_lock(&si->lock);
1049 if (si->flags & SWP_WRITEOK) {
1050 atomic_long_dec(&nr_swap_pages);
1051 /* This is called for allocating swap entry, not cache */
1052 offset = scan_swap_map(si, 1);
1053 if (offset) {
1054 spin_unlock(&si->lock);
1055 return swp_entry(type, offset);
1057 atomic_long_inc(&nr_swap_pages);
1059 spin_unlock(&si->lock);
1060 fail:
1061 return (swp_entry_t) {0};
1064 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1066 struct swap_info_struct *p;
1067 unsigned long offset, type;
1069 if (!entry.val)
1070 goto out;
1071 type = swp_type(entry);
1072 p = swap_type_to_swap_info(type);
1073 if (!p)
1074 goto bad_nofile;
1075 if (!(p->flags & SWP_USED))
1076 goto bad_device;
1077 offset = swp_offset(entry);
1078 if (offset >= p->max)
1079 goto bad_offset;
1080 return p;
1082 bad_offset:
1083 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1084 goto out;
1085 bad_device:
1086 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1087 goto out;
1088 bad_nofile:
1089 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1090 out:
1091 return NULL;
1094 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1096 struct swap_info_struct *p;
1098 p = __swap_info_get(entry);
1099 if (!p)
1100 goto out;
1101 if (!p->swap_map[swp_offset(entry)])
1102 goto bad_free;
1103 return p;
1105 bad_free:
1106 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1107 goto out;
1108 out:
1109 return NULL;
1112 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1114 struct swap_info_struct *p;
1116 p = _swap_info_get(entry);
1117 if (p)
1118 spin_lock(&p->lock);
1119 return p;
1122 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1123 struct swap_info_struct *q)
1125 struct swap_info_struct *p;
1127 p = _swap_info_get(entry);
1129 if (p != q) {
1130 if (q != NULL)
1131 spin_unlock(&q->lock);
1132 if (p != NULL)
1133 spin_lock(&p->lock);
1135 return p;
1138 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1139 unsigned long offset,
1140 unsigned char usage)
1142 unsigned char count;
1143 unsigned char has_cache;
1145 count = p->swap_map[offset];
1147 has_cache = count & SWAP_HAS_CACHE;
1148 count &= ~SWAP_HAS_CACHE;
1150 if (usage == SWAP_HAS_CACHE) {
1151 VM_BUG_ON(!has_cache);
1152 has_cache = 0;
1153 } else if (count == SWAP_MAP_SHMEM) {
1155 * Or we could insist on shmem.c using a special
1156 * swap_shmem_free() and free_shmem_swap_and_cache()...
1158 count = 0;
1159 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1160 if (count == COUNT_CONTINUED) {
1161 if (swap_count_continued(p, offset, count))
1162 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1163 else
1164 count = SWAP_MAP_MAX;
1165 } else
1166 count--;
1169 usage = count | has_cache;
1170 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1172 return usage;
1175 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1176 swp_entry_t entry, unsigned char usage)
1178 struct swap_cluster_info *ci;
1179 unsigned long offset = swp_offset(entry);
1181 ci = lock_cluster_or_swap_info(p, offset);
1182 usage = __swap_entry_free_locked(p, offset, usage);
1183 unlock_cluster_or_swap_info(p, ci);
1185 return usage;
1188 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1190 struct swap_cluster_info *ci;
1191 unsigned long offset = swp_offset(entry);
1192 unsigned char count;
1194 ci = lock_cluster(p, offset);
1195 count = p->swap_map[offset];
1196 VM_BUG_ON(count != SWAP_HAS_CACHE);
1197 p->swap_map[offset] = 0;
1198 dec_cluster_info_page(p, p->cluster_info, offset);
1199 unlock_cluster(ci);
1201 mem_cgroup_uncharge_swap(entry, 1);
1202 swap_range_free(p, offset, 1);
1206 * Caller has made sure that the swap device corresponding to entry
1207 * is still around or has not been recycled.
1209 void swap_free(swp_entry_t entry)
1211 struct swap_info_struct *p;
1213 p = _swap_info_get(entry);
1214 if (p) {
1215 if (!__swap_entry_free(p, entry, 1))
1216 free_swap_slot(entry);
1221 * Called after dropping swapcache to decrease refcnt to swap entries.
1223 void put_swap_page(struct page *page, swp_entry_t entry)
1225 unsigned long offset = swp_offset(entry);
1226 unsigned long idx = offset / SWAPFILE_CLUSTER;
1227 struct swap_cluster_info *ci;
1228 struct swap_info_struct *si;
1229 unsigned char *map;
1230 unsigned int i, free_entries = 0;
1231 unsigned char val;
1232 int size = swap_entry_size(hpage_nr_pages(page));
1234 si = _swap_info_get(entry);
1235 if (!si)
1236 return;
1238 ci = lock_cluster_or_swap_info(si, offset);
1239 if (size == SWAPFILE_CLUSTER) {
1240 VM_BUG_ON(!cluster_is_huge(ci));
1241 map = si->swap_map + offset;
1242 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1243 val = map[i];
1244 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1245 if (val == SWAP_HAS_CACHE)
1246 free_entries++;
1248 cluster_clear_huge(ci);
1249 if (free_entries == SWAPFILE_CLUSTER) {
1250 unlock_cluster_or_swap_info(si, ci);
1251 spin_lock(&si->lock);
1252 ci = lock_cluster(si, offset);
1253 memset(map, 0, SWAPFILE_CLUSTER);
1254 unlock_cluster(ci);
1255 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1256 swap_free_cluster(si, idx);
1257 spin_unlock(&si->lock);
1258 return;
1261 for (i = 0; i < size; i++, entry.val++) {
1262 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1263 unlock_cluster_or_swap_info(si, ci);
1264 free_swap_slot(entry);
1265 if (i == size - 1)
1266 return;
1267 lock_cluster_or_swap_info(si, offset);
1270 unlock_cluster_or_swap_info(si, ci);
1273 #ifdef CONFIG_THP_SWAP
1274 int split_swap_cluster(swp_entry_t entry)
1276 struct swap_info_struct *si;
1277 struct swap_cluster_info *ci;
1278 unsigned long offset = swp_offset(entry);
1280 si = _swap_info_get(entry);
1281 if (!si)
1282 return -EBUSY;
1283 ci = lock_cluster(si, offset);
1284 cluster_clear_huge(ci);
1285 unlock_cluster(ci);
1286 return 0;
1288 #endif
1290 static int swp_entry_cmp(const void *ent1, const void *ent2)
1292 const swp_entry_t *e1 = ent1, *e2 = ent2;
1294 return (int)swp_type(*e1) - (int)swp_type(*e2);
1297 void swapcache_free_entries(swp_entry_t *entries, int n)
1299 struct swap_info_struct *p, *prev;
1300 int i;
1302 if (n <= 0)
1303 return;
1305 prev = NULL;
1306 p = NULL;
1309 * Sort swap entries by swap device, so each lock is only taken once.
1310 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1311 * so low that it isn't necessary to optimize further.
1313 if (nr_swapfiles > 1)
1314 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1315 for (i = 0; i < n; ++i) {
1316 p = swap_info_get_cont(entries[i], prev);
1317 if (p)
1318 swap_entry_free(p, entries[i]);
1319 prev = p;
1321 if (p)
1322 spin_unlock(&p->lock);
1326 * How many references to page are currently swapped out?
1327 * This does not give an exact answer when swap count is continued,
1328 * but does include the high COUNT_CONTINUED flag to allow for that.
1330 int page_swapcount(struct page *page)
1332 int count = 0;
1333 struct swap_info_struct *p;
1334 struct swap_cluster_info *ci;
1335 swp_entry_t entry;
1336 unsigned long offset;
1338 entry.val = page_private(page);
1339 p = _swap_info_get(entry);
1340 if (p) {
1341 offset = swp_offset(entry);
1342 ci = lock_cluster_or_swap_info(p, offset);
1343 count = swap_count(p->swap_map[offset]);
1344 unlock_cluster_or_swap_info(p, ci);
1346 return count;
1349 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1351 pgoff_t offset = swp_offset(entry);
1353 return swap_count(si->swap_map[offset]);
1356 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1358 int count = 0;
1359 pgoff_t offset = swp_offset(entry);
1360 struct swap_cluster_info *ci;
1362 ci = lock_cluster_or_swap_info(si, offset);
1363 count = swap_count(si->swap_map[offset]);
1364 unlock_cluster_or_swap_info(si, ci);
1365 return count;
1369 * How many references to @entry are currently swapped out?
1370 * This does not give an exact answer when swap count is continued,
1371 * but does include the high COUNT_CONTINUED flag to allow for that.
1373 int __swp_swapcount(swp_entry_t entry)
1375 int count = 0;
1376 struct swap_info_struct *si;
1378 si = __swap_info_get(entry);
1379 if (si)
1380 count = swap_swapcount(si, entry);
1381 return count;
1385 * How many references to @entry are currently swapped out?
1386 * This considers COUNT_CONTINUED so it returns exact answer.
1388 int swp_swapcount(swp_entry_t entry)
1390 int count, tmp_count, n;
1391 struct swap_info_struct *p;
1392 struct swap_cluster_info *ci;
1393 struct page *page;
1394 pgoff_t offset;
1395 unsigned char *map;
1397 p = _swap_info_get(entry);
1398 if (!p)
1399 return 0;
1401 offset = swp_offset(entry);
1403 ci = lock_cluster_or_swap_info(p, offset);
1405 count = swap_count(p->swap_map[offset]);
1406 if (!(count & COUNT_CONTINUED))
1407 goto out;
1409 count &= ~COUNT_CONTINUED;
1410 n = SWAP_MAP_MAX + 1;
1412 page = vmalloc_to_page(p->swap_map + offset);
1413 offset &= ~PAGE_MASK;
1414 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1416 do {
1417 page = list_next_entry(page, lru);
1418 map = kmap_atomic(page);
1419 tmp_count = map[offset];
1420 kunmap_atomic(map);
1422 count += (tmp_count & ~COUNT_CONTINUED) * n;
1423 n *= (SWAP_CONT_MAX + 1);
1424 } while (tmp_count & COUNT_CONTINUED);
1425 out:
1426 unlock_cluster_or_swap_info(p, ci);
1427 return count;
1430 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1431 swp_entry_t entry)
1433 struct swap_cluster_info *ci;
1434 unsigned char *map = si->swap_map;
1435 unsigned long roffset = swp_offset(entry);
1436 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1437 int i;
1438 bool ret = false;
1440 ci = lock_cluster_or_swap_info(si, offset);
1441 if (!ci || !cluster_is_huge(ci)) {
1442 if (swap_count(map[roffset]))
1443 ret = true;
1444 goto unlock_out;
1446 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1447 if (swap_count(map[offset + i])) {
1448 ret = true;
1449 break;
1452 unlock_out:
1453 unlock_cluster_or_swap_info(si, ci);
1454 return ret;
1457 static bool page_swapped(struct page *page)
1459 swp_entry_t entry;
1460 struct swap_info_struct *si;
1462 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1463 return page_swapcount(page) != 0;
1465 page = compound_head(page);
1466 entry.val = page_private(page);
1467 si = _swap_info_get(entry);
1468 if (si)
1469 return swap_page_trans_huge_swapped(si, entry);
1470 return false;
1473 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1474 int *total_swapcount)
1476 int i, map_swapcount, _total_mapcount, _total_swapcount;
1477 unsigned long offset = 0;
1478 struct swap_info_struct *si;
1479 struct swap_cluster_info *ci = NULL;
1480 unsigned char *map = NULL;
1481 int mapcount, swapcount = 0;
1483 /* hugetlbfs shouldn't call it */
1484 VM_BUG_ON_PAGE(PageHuge(page), page);
1486 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1487 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1488 if (PageSwapCache(page))
1489 swapcount = page_swapcount(page);
1490 if (total_swapcount)
1491 *total_swapcount = swapcount;
1492 return mapcount + swapcount;
1495 page = compound_head(page);
1497 _total_mapcount = _total_swapcount = map_swapcount = 0;
1498 if (PageSwapCache(page)) {
1499 swp_entry_t entry;
1501 entry.val = page_private(page);
1502 si = _swap_info_get(entry);
1503 if (si) {
1504 map = si->swap_map;
1505 offset = swp_offset(entry);
1508 if (map)
1509 ci = lock_cluster(si, offset);
1510 for (i = 0; i < HPAGE_PMD_NR; i++) {
1511 mapcount = atomic_read(&page[i]._mapcount) + 1;
1512 _total_mapcount += mapcount;
1513 if (map) {
1514 swapcount = swap_count(map[offset + i]);
1515 _total_swapcount += swapcount;
1517 map_swapcount = max(map_swapcount, mapcount + swapcount);
1519 unlock_cluster(ci);
1520 if (PageDoubleMap(page)) {
1521 map_swapcount -= 1;
1522 _total_mapcount -= HPAGE_PMD_NR;
1524 mapcount = compound_mapcount(page);
1525 map_swapcount += mapcount;
1526 _total_mapcount += mapcount;
1527 if (total_mapcount)
1528 *total_mapcount = _total_mapcount;
1529 if (total_swapcount)
1530 *total_swapcount = _total_swapcount;
1532 return map_swapcount;
1536 * We can write to an anon page without COW if there are no other references
1537 * to it. And as a side-effect, free up its swap: because the old content
1538 * on disk will never be read, and seeking back there to write new content
1539 * later would only waste time away from clustering.
1541 * NOTE: total_map_swapcount should not be relied upon by the caller if
1542 * reuse_swap_page() returns false, but it may be always overwritten
1543 * (see the other implementation for CONFIG_SWAP=n).
1545 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1547 int count, total_mapcount, total_swapcount;
1549 VM_BUG_ON_PAGE(!PageLocked(page), page);
1550 if (unlikely(PageKsm(page)))
1551 return false;
1552 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1553 &total_swapcount);
1554 if (total_map_swapcount)
1555 *total_map_swapcount = total_mapcount + total_swapcount;
1556 if (count == 1 && PageSwapCache(page) &&
1557 (likely(!PageTransCompound(page)) ||
1558 /* The remaining swap count will be freed soon */
1559 total_swapcount == page_swapcount(page))) {
1560 if (!PageWriteback(page)) {
1561 page = compound_head(page);
1562 delete_from_swap_cache(page);
1563 SetPageDirty(page);
1564 } else {
1565 swp_entry_t entry;
1566 struct swap_info_struct *p;
1568 entry.val = page_private(page);
1569 p = swap_info_get(entry);
1570 if (p->flags & SWP_STABLE_WRITES) {
1571 spin_unlock(&p->lock);
1572 return false;
1574 spin_unlock(&p->lock);
1578 return count <= 1;
1582 * If swap is getting full, or if there are no more mappings of this page,
1583 * then try_to_free_swap is called to free its swap space.
1585 int try_to_free_swap(struct page *page)
1587 VM_BUG_ON_PAGE(!PageLocked(page), page);
1589 if (!PageSwapCache(page))
1590 return 0;
1591 if (PageWriteback(page))
1592 return 0;
1593 if (page_swapped(page))
1594 return 0;
1597 * Once hibernation has begun to create its image of memory,
1598 * there's a danger that one of the calls to try_to_free_swap()
1599 * - most probably a call from __try_to_reclaim_swap() while
1600 * hibernation is allocating its own swap pages for the image,
1601 * but conceivably even a call from memory reclaim - will free
1602 * the swap from a page which has already been recorded in the
1603 * image as a clean swapcache page, and then reuse its swap for
1604 * another page of the image. On waking from hibernation, the
1605 * original page might be freed under memory pressure, then
1606 * later read back in from swap, now with the wrong data.
1608 * Hibernation suspends storage while it is writing the image
1609 * to disk so check that here.
1611 if (pm_suspended_storage())
1612 return 0;
1614 page = compound_head(page);
1615 delete_from_swap_cache(page);
1616 SetPageDirty(page);
1617 return 1;
1621 * Free the swap entry like above, but also try to
1622 * free the page cache entry if it is the last user.
1624 int free_swap_and_cache(swp_entry_t entry)
1626 struct swap_info_struct *p;
1627 struct page *page = NULL;
1628 unsigned char count;
1630 if (non_swap_entry(entry))
1631 return 1;
1633 p = _swap_info_get(entry);
1634 if (p) {
1635 count = __swap_entry_free(p, entry, 1);
1636 if (count == SWAP_HAS_CACHE &&
1637 !swap_page_trans_huge_swapped(p, entry)) {
1638 page = find_get_page(swap_address_space(entry),
1639 swp_offset(entry));
1640 if (page && !trylock_page(page)) {
1641 put_page(page);
1642 page = NULL;
1644 } else if (!count)
1645 free_swap_slot(entry);
1647 if (page) {
1649 * Not mapped elsewhere, or swap space full? Free it!
1650 * Also recheck PageSwapCache now page is locked (above).
1652 if (PageSwapCache(page) && !PageWriteback(page) &&
1653 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1654 !swap_page_trans_huge_swapped(p, entry)) {
1655 page = compound_head(page);
1656 delete_from_swap_cache(page);
1657 SetPageDirty(page);
1659 unlock_page(page);
1660 put_page(page);
1662 return p != NULL;
1665 #ifdef CONFIG_HIBERNATION
1667 * Find the swap type that corresponds to given device (if any).
1669 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1670 * from 0, in which the swap header is expected to be located.
1672 * This is needed for the suspend to disk (aka swsusp).
1674 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1676 struct block_device *bdev = NULL;
1677 int type;
1679 if (device)
1680 bdev = bdget(device);
1682 spin_lock(&swap_lock);
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 struct swap_info_struct *sis = swap_info[type];
1686 if (!(sis->flags & SWP_WRITEOK))
1687 continue;
1689 if (!bdev) {
1690 if (bdev_p)
1691 *bdev_p = bdgrab(sis->bdev);
1693 spin_unlock(&swap_lock);
1694 return type;
1696 if (bdev == sis->bdev) {
1697 struct swap_extent *se = &sis->first_swap_extent;
1699 if (se->start_block == offset) {
1700 if (bdev_p)
1701 *bdev_p = bdgrab(sis->bdev);
1703 spin_unlock(&swap_lock);
1704 bdput(bdev);
1705 return type;
1709 spin_unlock(&swap_lock);
1710 if (bdev)
1711 bdput(bdev);
1713 return -ENODEV;
1717 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1718 * corresponding to given index in swap_info (swap type).
1720 sector_t swapdev_block(int type, pgoff_t offset)
1722 struct block_device *bdev;
1723 struct swap_info_struct *si = swap_type_to_swap_info(type);
1725 if (!si || !(si->flags & SWP_WRITEOK))
1726 return 0;
1727 return map_swap_entry(swp_entry(type, offset), &bdev);
1731 * Return either the total number of swap pages of given type, or the number
1732 * of free pages of that type (depending on @free)
1734 * This is needed for software suspend
1736 unsigned int count_swap_pages(int type, int free)
1738 unsigned int n = 0;
1740 spin_lock(&swap_lock);
1741 if ((unsigned int)type < nr_swapfiles) {
1742 struct swap_info_struct *sis = swap_info[type];
1744 spin_lock(&sis->lock);
1745 if (sis->flags & SWP_WRITEOK) {
1746 n = sis->pages;
1747 if (free)
1748 n -= sis->inuse_pages;
1750 spin_unlock(&sis->lock);
1752 spin_unlock(&swap_lock);
1753 return n;
1755 #endif /* CONFIG_HIBERNATION */
1757 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1759 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1763 * No need to decide whether this PTE shares the swap entry with others,
1764 * just let do_wp_page work it out if a write is requested later - to
1765 * force COW, vm_page_prot omits write permission from any private vma.
1767 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1768 unsigned long addr, swp_entry_t entry, struct page *page)
1770 struct page *swapcache;
1771 struct mem_cgroup *memcg;
1772 spinlock_t *ptl;
1773 pte_t *pte;
1774 int ret = 1;
1776 swapcache = page;
1777 page = ksm_might_need_to_copy(page, vma, addr);
1778 if (unlikely(!page))
1779 return -ENOMEM;
1781 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1782 &memcg, false)) {
1783 ret = -ENOMEM;
1784 goto out_nolock;
1787 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1788 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1789 mem_cgroup_cancel_charge(page, memcg, false);
1790 ret = 0;
1791 goto out;
1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1796 get_page(page);
1797 set_pte_at(vma->vm_mm, addr, pte,
1798 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1799 if (page == swapcache) {
1800 page_add_anon_rmap(page, vma, addr, false);
1801 mem_cgroup_commit_charge(page, memcg, true, false);
1802 } else { /* ksm created a completely new copy */
1803 page_add_new_anon_rmap(page, vma, addr, false);
1804 mem_cgroup_commit_charge(page, memcg, false, false);
1805 lru_cache_add_active_or_unevictable(page, vma);
1807 swap_free(entry);
1809 * Move the page to the active list so it is not
1810 * immediately swapped out again after swapon.
1812 activate_page(page);
1813 out:
1814 pte_unmap_unlock(pte, ptl);
1815 out_nolock:
1816 if (page != swapcache) {
1817 unlock_page(page);
1818 put_page(page);
1820 return ret;
1823 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1824 unsigned long addr, unsigned long end,
1825 swp_entry_t entry, struct page *page)
1827 pte_t swp_pte = swp_entry_to_pte(entry);
1828 pte_t *pte;
1829 int ret = 0;
1832 * We don't actually need pte lock while scanning for swp_pte: since
1833 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1834 * page table while we're scanning; though it could get zapped, and on
1835 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1836 * of unmatched parts which look like swp_pte, so unuse_pte must
1837 * recheck under pte lock. Scanning without pte lock lets it be
1838 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1840 pte = pte_offset_map(pmd, addr);
1841 do {
1843 * swapoff spends a _lot_ of time in this loop!
1844 * Test inline before going to call unuse_pte.
1846 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1847 pte_unmap(pte);
1848 ret = unuse_pte(vma, pmd, addr, entry, page);
1849 if (ret)
1850 goto out;
1851 pte = pte_offset_map(pmd, addr);
1853 } while (pte++, addr += PAGE_SIZE, addr != end);
1854 pte_unmap(pte - 1);
1855 out:
1856 return ret;
1859 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1860 unsigned long addr, unsigned long end,
1861 swp_entry_t entry, struct page *page)
1863 pmd_t *pmd;
1864 unsigned long next;
1865 int ret;
1867 pmd = pmd_offset(pud, addr);
1868 do {
1869 cond_resched();
1870 next = pmd_addr_end(addr, end);
1871 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1872 continue;
1873 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1874 if (ret)
1875 return ret;
1876 } while (pmd++, addr = next, addr != end);
1877 return 0;
1880 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1881 unsigned long addr, unsigned long end,
1882 swp_entry_t entry, struct page *page)
1884 pud_t *pud;
1885 unsigned long next;
1886 int ret;
1888 pud = pud_offset(p4d, addr);
1889 do {
1890 next = pud_addr_end(addr, end);
1891 if (pud_none_or_clear_bad(pud))
1892 continue;
1893 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1894 if (ret)
1895 return ret;
1896 } while (pud++, addr = next, addr != end);
1897 return 0;
1900 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1901 unsigned long addr, unsigned long end,
1902 swp_entry_t entry, struct page *page)
1904 p4d_t *p4d;
1905 unsigned long next;
1906 int ret;
1908 p4d = p4d_offset(pgd, addr);
1909 do {
1910 next = p4d_addr_end(addr, end);
1911 if (p4d_none_or_clear_bad(p4d))
1912 continue;
1913 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1914 if (ret)
1915 return ret;
1916 } while (p4d++, addr = next, addr != end);
1917 return 0;
1920 static int unuse_vma(struct vm_area_struct *vma,
1921 swp_entry_t entry, struct page *page)
1923 pgd_t *pgd;
1924 unsigned long addr, end, next;
1925 int ret;
1927 if (page_anon_vma(page)) {
1928 addr = page_address_in_vma(page, vma);
1929 if (addr == -EFAULT)
1930 return 0;
1931 else
1932 end = addr + PAGE_SIZE;
1933 } else {
1934 addr = vma->vm_start;
1935 end = vma->vm_end;
1938 pgd = pgd_offset(vma->vm_mm, addr);
1939 do {
1940 next = pgd_addr_end(addr, end);
1941 if (pgd_none_or_clear_bad(pgd))
1942 continue;
1943 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1944 if (ret)
1945 return ret;
1946 } while (pgd++, addr = next, addr != end);
1947 return 0;
1950 static int unuse_mm(struct mm_struct *mm,
1951 swp_entry_t entry, struct page *page)
1953 struct vm_area_struct *vma;
1954 int ret = 0;
1956 if (!down_read_trylock(&mm->mmap_sem)) {
1958 * Activate page so shrink_inactive_list is unlikely to unmap
1959 * its ptes while lock is dropped, so swapoff can make progress.
1961 activate_page(page);
1962 unlock_page(page);
1963 down_read(&mm->mmap_sem);
1964 lock_page(page);
1966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1967 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1968 break;
1969 cond_resched();
1971 up_read(&mm->mmap_sem);
1972 return (ret < 0)? ret: 0;
1976 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1977 * from current position to next entry still in use.
1978 * Recycle to start on reaching the end, returning 0 when empty.
1980 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1981 unsigned int prev, bool frontswap)
1983 unsigned int max = si->max;
1984 unsigned int i = prev;
1985 unsigned char count;
1988 * No need for swap_lock here: we're just looking
1989 * for whether an entry is in use, not modifying it; false
1990 * hits are okay, and sys_swapoff() has already prevented new
1991 * allocations from this area (while holding swap_lock).
1993 for (;;) {
1994 if (++i >= max) {
1995 if (!prev) {
1996 i = 0;
1997 break;
2000 * No entries in use at top of swap_map,
2001 * loop back to start and recheck there.
2003 max = prev + 1;
2004 prev = 0;
2005 i = 1;
2007 count = READ_ONCE(si->swap_map[i]);
2008 if (count && swap_count(count) != SWAP_MAP_BAD)
2009 if (!frontswap || frontswap_test(si, i))
2010 break;
2011 if ((i % LATENCY_LIMIT) == 0)
2012 cond_resched();
2014 return i;
2018 * We completely avoid races by reading each swap page in advance,
2019 * and then search for the process using it. All the necessary
2020 * page table adjustments can then be made atomically.
2022 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2023 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2025 int try_to_unuse(unsigned int type, bool frontswap,
2026 unsigned long pages_to_unuse)
2028 struct swap_info_struct *si = swap_info[type];
2029 struct mm_struct *start_mm;
2030 volatile unsigned char *swap_map; /* swap_map is accessed without
2031 * locking. Mark it as volatile
2032 * to prevent compiler doing
2033 * something odd.
2035 unsigned char swcount;
2036 struct page *page;
2037 swp_entry_t entry;
2038 unsigned int i = 0;
2039 int retval = 0;
2042 * When searching mms for an entry, a good strategy is to
2043 * start at the first mm we freed the previous entry from
2044 * (though actually we don't notice whether we or coincidence
2045 * freed the entry). Initialize this start_mm with a hold.
2047 * A simpler strategy would be to start at the last mm we
2048 * freed the previous entry from; but that would take less
2049 * advantage of mmlist ordering, which clusters forked mms
2050 * together, child after parent. If we race with dup_mmap(), we
2051 * prefer to resolve parent before child, lest we miss entries
2052 * duplicated after we scanned child: using last mm would invert
2053 * that.
2055 start_mm = &init_mm;
2056 mmget(&init_mm);
2059 * Keep on scanning until all entries have gone. Usually,
2060 * one pass through swap_map is enough, but not necessarily:
2061 * there are races when an instance of an entry might be missed.
2063 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2064 if (signal_pending(current)) {
2065 retval = -EINTR;
2066 break;
2070 * Get a page for the entry, using the existing swap
2071 * cache page if there is one. Otherwise, get a clean
2072 * page and read the swap into it.
2074 swap_map = &si->swap_map[i];
2075 entry = swp_entry(type, i);
2076 page = read_swap_cache_async(entry,
2077 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2078 if (!page) {
2080 * Either swap_duplicate() failed because entry
2081 * has been freed independently, and will not be
2082 * reused since sys_swapoff() already disabled
2083 * allocation from here, or alloc_page() failed.
2085 swcount = *swap_map;
2087 * We don't hold lock here, so the swap entry could be
2088 * SWAP_MAP_BAD (when the cluster is discarding).
2089 * Instead of fail out, We can just skip the swap
2090 * entry because swapoff will wait for discarding
2091 * finish anyway.
2093 if (!swcount || swcount == SWAP_MAP_BAD)
2094 continue;
2095 retval = -ENOMEM;
2096 break;
2100 * Don't hold on to start_mm if it looks like exiting.
2102 if (atomic_read(&start_mm->mm_users) == 1) {
2103 mmput(start_mm);
2104 start_mm = &init_mm;
2105 mmget(&init_mm);
2109 * Wait for and lock page. When do_swap_page races with
2110 * try_to_unuse, do_swap_page can handle the fault much
2111 * faster than try_to_unuse can locate the entry. This
2112 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2113 * defer to do_swap_page in such a case - in some tests,
2114 * do_swap_page and try_to_unuse repeatedly compete.
2116 wait_on_page_locked(page);
2117 wait_on_page_writeback(page);
2118 lock_page(page);
2119 wait_on_page_writeback(page);
2122 * Remove all references to entry.
2124 swcount = *swap_map;
2125 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2126 retval = shmem_unuse(entry, page);
2127 /* page has already been unlocked and released */
2128 if (retval < 0)
2129 break;
2130 continue;
2132 if (swap_count(swcount) && start_mm != &init_mm)
2133 retval = unuse_mm(start_mm, entry, page);
2135 if (swap_count(*swap_map)) {
2136 int set_start_mm = (*swap_map >= swcount);
2137 struct list_head *p = &start_mm->mmlist;
2138 struct mm_struct *new_start_mm = start_mm;
2139 struct mm_struct *prev_mm = start_mm;
2140 struct mm_struct *mm;
2142 mmget(new_start_mm);
2143 mmget(prev_mm);
2144 spin_lock(&mmlist_lock);
2145 while (swap_count(*swap_map) && !retval &&
2146 (p = p->next) != &start_mm->mmlist) {
2147 mm = list_entry(p, struct mm_struct, mmlist);
2148 if (!mmget_not_zero(mm))
2149 continue;
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 prev_mm = mm;
2154 cond_resched();
2156 swcount = *swap_map;
2157 if (!swap_count(swcount)) /* any usage ? */
2159 else if (mm == &init_mm)
2160 set_start_mm = 1;
2161 else
2162 retval = unuse_mm(mm, entry, page);
2164 if (set_start_mm && *swap_map < swcount) {
2165 mmput(new_start_mm);
2166 mmget(mm);
2167 new_start_mm = mm;
2168 set_start_mm = 0;
2170 spin_lock(&mmlist_lock);
2172 spin_unlock(&mmlist_lock);
2173 mmput(prev_mm);
2174 mmput(start_mm);
2175 start_mm = new_start_mm;
2177 if (retval) {
2178 unlock_page(page);
2179 put_page(page);
2180 break;
2184 * If a reference remains (rare), we would like to leave
2185 * the page in the swap cache; but try_to_unmap could
2186 * then re-duplicate the entry once we drop page lock,
2187 * so we might loop indefinitely; also, that page could
2188 * not be swapped out to other storage meanwhile. So:
2189 * delete from cache even if there's another reference,
2190 * after ensuring that the data has been saved to disk -
2191 * since if the reference remains (rarer), it will be
2192 * read from disk into another page. Splitting into two
2193 * pages would be incorrect if swap supported "shared
2194 * private" pages, but they are handled by tmpfs files.
2196 * Given how unuse_vma() targets one particular offset
2197 * in an anon_vma, once the anon_vma has been determined,
2198 * this splitting happens to be just what is needed to
2199 * handle where KSM pages have been swapped out: re-reading
2200 * is unnecessarily slow, but we can fix that later on.
2202 if (swap_count(*swap_map) &&
2203 PageDirty(page) && PageSwapCache(page)) {
2204 struct writeback_control wbc = {
2205 .sync_mode = WB_SYNC_NONE,
2208 swap_writepage(compound_head(page), &wbc);
2209 lock_page(page);
2210 wait_on_page_writeback(page);
2214 * It is conceivable that a racing task removed this page from
2215 * swap cache just before we acquired the page lock at the top,
2216 * or while we dropped it in unuse_mm(). The page might even
2217 * be back in swap cache on another swap area: that we must not
2218 * delete, since it may not have been written out to swap yet.
2220 if (PageSwapCache(page) &&
2221 likely(page_private(page) == entry.val) &&
2222 (!PageTransCompound(page) ||
2223 !swap_page_trans_huge_swapped(si, entry)))
2224 delete_from_swap_cache(compound_head(page));
2227 * So we could skip searching mms once swap count went
2228 * to 1, we did not mark any present ptes as dirty: must
2229 * mark page dirty so shrink_page_list will preserve it.
2231 SetPageDirty(page);
2232 unlock_page(page);
2233 put_page(page);
2236 * Make sure that we aren't completely killing
2237 * interactive performance.
2239 cond_resched();
2240 if (frontswap && pages_to_unuse > 0) {
2241 if (!--pages_to_unuse)
2242 break;
2246 mmput(start_mm);
2247 return retval;
2251 * After a successful try_to_unuse, if no swap is now in use, we know
2252 * we can empty the mmlist. swap_lock must be held on entry and exit.
2253 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2254 * added to the mmlist just after page_duplicate - before would be racy.
2256 static void drain_mmlist(void)
2258 struct list_head *p, *next;
2259 unsigned int type;
2261 for (type = 0; type < nr_swapfiles; type++)
2262 if (swap_info[type]->inuse_pages)
2263 return;
2264 spin_lock(&mmlist_lock);
2265 list_for_each_safe(p, next, &init_mm.mmlist)
2266 list_del_init(p);
2267 spin_unlock(&mmlist_lock);
2271 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2272 * corresponds to page offset for the specified swap entry.
2273 * Note that the type of this function is sector_t, but it returns page offset
2274 * into the bdev, not sector offset.
2276 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2278 struct swap_info_struct *sis;
2279 struct swap_extent *start_se;
2280 struct swap_extent *se;
2281 pgoff_t offset;
2283 sis = swp_swap_info(entry);
2284 *bdev = sis->bdev;
2286 offset = swp_offset(entry);
2287 start_se = sis->curr_swap_extent;
2288 se = start_se;
2290 for ( ; ; ) {
2291 if (se->start_page <= offset &&
2292 offset < (se->start_page + se->nr_pages)) {
2293 return se->start_block + (offset - se->start_page);
2295 se = list_next_entry(se, list);
2296 sis->curr_swap_extent = se;
2297 BUG_ON(se == start_se); /* It *must* be present */
2302 * Returns the page offset into bdev for the specified page's swap entry.
2304 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2306 swp_entry_t entry;
2307 entry.val = page_private(page);
2308 return map_swap_entry(entry, bdev);
2312 * Free all of a swapdev's extent information
2314 static void destroy_swap_extents(struct swap_info_struct *sis)
2316 while (!list_empty(&sis->first_swap_extent.list)) {
2317 struct swap_extent *se;
2319 se = list_first_entry(&sis->first_swap_extent.list,
2320 struct swap_extent, list);
2321 list_del(&se->list);
2322 kfree(se);
2325 if (sis->flags & SWP_FILE) {
2326 struct file *swap_file = sis->swap_file;
2327 struct address_space *mapping = swap_file->f_mapping;
2329 sis->flags &= ~SWP_FILE;
2330 mapping->a_ops->swap_deactivate(swap_file);
2335 * Add a block range (and the corresponding page range) into this swapdev's
2336 * extent list. The extent list is kept sorted in page order.
2338 * This function rather assumes that it is called in ascending page order.
2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 unsigned long nr_pages, sector_t start_block)
2344 struct swap_extent *se;
2345 struct swap_extent *new_se;
2346 struct list_head *lh;
2348 if (start_page == 0) {
2349 se = &sis->first_swap_extent;
2350 sis->curr_swap_extent = se;
2351 se->start_page = 0;
2352 se->nr_pages = nr_pages;
2353 se->start_block = start_block;
2354 return 1;
2355 } else {
2356 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2357 se = list_entry(lh, struct swap_extent, list);
2358 BUG_ON(se->start_page + se->nr_pages != start_page);
2359 if (se->start_block + se->nr_pages == start_block) {
2360 /* Merge it */
2361 se->nr_pages += nr_pages;
2362 return 0;
2367 * No merge. Insert a new extent, preserving ordering.
2369 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2370 if (new_se == NULL)
2371 return -ENOMEM;
2372 new_se->start_page = start_page;
2373 new_se->nr_pages = nr_pages;
2374 new_se->start_block = start_block;
2376 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2377 return 1;
2381 * A `swap extent' is a simple thing which maps a contiguous range of pages
2382 * onto a contiguous range of disk blocks. An ordered list of swap extents
2383 * is built at swapon time and is then used at swap_writepage/swap_readpage
2384 * time for locating where on disk a page belongs.
2386 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2387 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2388 * swap files identically.
2390 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2391 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2392 * swapfiles are handled *identically* after swapon time.
2394 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2395 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2396 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2397 * requirements, they are simply tossed out - we will never use those blocks
2398 * for swapping.
2400 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2401 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2402 * which will scribble on the fs.
2404 * The amount of disk space which a single swap extent represents varies.
2405 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2406 * extents in the list. To avoid much list walking, we cache the previous
2407 * search location in `curr_swap_extent', and start new searches from there.
2408 * This is extremely effective. The average number of iterations in
2409 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2413 struct file *swap_file = sis->swap_file;
2414 struct address_space *mapping = swap_file->f_mapping;
2415 struct inode *inode = mapping->host;
2416 int ret;
2418 if (S_ISBLK(inode->i_mode)) {
2419 ret = add_swap_extent(sis, 0, sis->max, 0);
2420 *span = sis->pages;
2421 return ret;
2424 if (mapping->a_ops->swap_activate) {
2425 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2426 if (!ret) {
2427 sis->flags |= SWP_FILE;
2428 ret = add_swap_extent(sis, 0, sis->max, 0);
2429 *span = sis->pages;
2431 return ret;
2434 return generic_swapfile_activate(sis, swap_file, span);
2437 static int swap_node(struct swap_info_struct *p)
2439 struct block_device *bdev;
2441 if (p->bdev)
2442 bdev = p->bdev;
2443 else
2444 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2446 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2449 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2450 unsigned char *swap_map,
2451 struct swap_cluster_info *cluster_info)
2453 int i;
2455 if (prio >= 0)
2456 p->prio = prio;
2457 else
2458 p->prio = --least_priority;
2460 * the plist prio is negated because plist ordering is
2461 * low-to-high, while swap ordering is high-to-low
2463 p->list.prio = -p->prio;
2464 for_each_node(i) {
2465 if (p->prio >= 0)
2466 p->avail_lists[i].prio = -p->prio;
2467 else {
2468 if (swap_node(p) == i)
2469 p->avail_lists[i].prio = 1;
2470 else
2471 p->avail_lists[i].prio = -p->prio;
2474 p->swap_map = swap_map;
2475 p->cluster_info = cluster_info;
2476 p->flags |= SWP_WRITEOK;
2477 atomic_long_add(p->pages, &nr_swap_pages);
2478 total_swap_pages += p->pages;
2480 assert_spin_locked(&swap_lock);
2482 * both lists are plists, and thus priority ordered.
2483 * swap_active_head needs to be priority ordered for swapoff(),
2484 * which on removal of any swap_info_struct with an auto-assigned
2485 * (i.e. negative) priority increments the auto-assigned priority
2486 * of any lower-priority swap_info_structs.
2487 * swap_avail_head needs to be priority ordered for get_swap_page(),
2488 * which allocates swap pages from the highest available priority
2489 * swap_info_struct.
2491 plist_add(&p->list, &swap_active_head);
2492 add_to_avail_list(p);
2495 static void enable_swap_info(struct swap_info_struct *p, int prio,
2496 unsigned char *swap_map,
2497 struct swap_cluster_info *cluster_info,
2498 unsigned long *frontswap_map)
2500 frontswap_init(p->type, frontswap_map);
2501 spin_lock(&swap_lock);
2502 spin_lock(&p->lock);
2503 _enable_swap_info(p, prio, swap_map, cluster_info);
2504 spin_unlock(&p->lock);
2505 spin_unlock(&swap_lock);
2508 static void reinsert_swap_info(struct swap_info_struct *p)
2510 spin_lock(&swap_lock);
2511 spin_lock(&p->lock);
2512 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2513 spin_unlock(&p->lock);
2514 spin_unlock(&swap_lock);
2517 bool has_usable_swap(void)
2519 bool ret = true;
2521 spin_lock(&swap_lock);
2522 if (plist_head_empty(&swap_active_head))
2523 ret = false;
2524 spin_unlock(&swap_lock);
2525 return ret;
2528 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2530 struct swap_info_struct *p = NULL;
2531 unsigned char *swap_map;
2532 struct swap_cluster_info *cluster_info;
2533 unsigned long *frontswap_map;
2534 struct file *swap_file, *victim;
2535 struct address_space *mapping;
2536 struct inode *inode;
2537 struct filename *pathname;
2538 int err, found = 0;
2539 unsigned int old_block_size;
2541 if (!capable(CAP_SYS_ADMIN))
2542 return -EPERM;
2544 BUG_ON(!current->mm);
2546 pathname = getname(specialfile);
2547 if (IS_ERR(pathname))
2548 return PTR_ERR(pathname);
2550 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2551 err = PTR_ERR(victim);
2552 if (IS_ERR(victim))
2553 goto out;
2555 mapping = victim->f_mapping;
2556 spin_lock(&swap_lock);
2557 plist_for_each_entry(p, &swap_active_head, list) {
2558 if (p->flags & SWP_WRITEOK) {
2559 if (p->swap_file->f_mapping == mapping) {
2560 found = 1;
2561 break;
2565 if (!found) {
2566 err = -EINVAL;
2567 spin_unlock(&swap_lock);
2568 goto out_dput;
2570 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2571 vm_unacct_memory(p->pages);
2572 else {
2573 err = -ENOMEM;
2574 spin_unlock(&swap_lock);
2575 goto out_dput;
2577 del_from_avail_list(p);
2578 spin_lock(&p->lock);
2579 if (p->prio < 0) {
2580 struct swap_info_struct *si = p;
2581 int nid;
2583 plist_for_each_entry_continue(si, &swap_active_head, list) {
2584 si->prio++;
2585 si->list.prio--;
2586 for_each_node(nid) {
2587 if (si->avail_lists[nid].prio != 1)
2588 si->avail_lists[nid].prio--;
2591 least_priority++;
2593 plist_del(&p->list, &swap_active_head);
2594 atomic_long_sub(p->pages, &nr_swap_pages);
2595 total_swap_pages -= p->pages;
2596 p->flags &= ~SWP_WRITEOK;
2597 spin_unlock(&p->lock);
2598 spin_unlock(&swap_lock);
2600 disable_swap_slots_cache_lock();
2602 set_current_oom_origin();
2603 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2604 clear_current_oom_origin();
2606 if (err) {
2607 /* re-insert swap space back into swap_list */
2608 reinsert_swap_info(p);
2609 reenable_swap_slots_cache_unlock();
2610 goto out_dput;
2613 reenable_swap_slots_cache_unlock();
2615 flush_work(&p->discard_work);
2617 destroy_swap_extents(p);
2618 if (p->flags & SWP_CONTINUED)
2619 free_swap_count_continuations(p);
2621 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2622 atomic_dec(&nr_rotate_swap);
2624 mutex_lock(&swapon_mutex);
2625 spin_lock(&swap_lock);
2626 spin_lock(&p->lock);
2627 drain_mmlist();
2629 /* wait for anyone still in scan_swap_map */
2630 p->highest_bit = 0; /* cuts scans short */
2631 while (p->flags >= SWP_SCANNING) {
2632 spin_unlock(&p->lock);
2633 spin_unlock(&swap_lock);
2634 schedule_timeout_uninterruptible(1);
2635 spin_lock(&swap_lock);
2636 spin_lock(&p->lock);
2639 swap_file = p->swap_file;
2640 old_block_size = p->old_block_size;
2641 p->swap_file = NULL;
2642 p->max = 0;
2643 swap_map = p->swap_map;
2644 p->swap_map = NULL;
2645 cluster_info = p->cluster_info;
2646 p->cluster_info = NULL;
2647 frontswap_map = frontswap_map_get(p);
2648 spin_unlock(&p->lock);
2649 spin_unlock(&swap_lock);
2650 frontswap_invalidate_area(p->type);
2651 frontswap_map_set(p, NULL);
2652 mutex_unlock(&swapon_mutex);
2653 free_percpu(p->percpu_cluster);
2654 p->percpu_cluster = NULL;
2655 vfree(swap_map);
2656 kvfree(cluster_info);
2657 kvfree(frontswap_map);
2658 /* Destroy swap account information */
2659 swap_cgroup_swapoff(p->type);
2660 exit_swap_address_space(p->type);
2662 inode = mapping->host;
2663 if (S_ISBLK(inode->i_mode)) {
2664 struct block_device *bdev = I_BDEV(inode);
2665 set_blocksize(bdev, old_block_size);
2666 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2667 } else {
2668 inode_lock(inode);
2669 inode->i_flags &= ~S_SWAPFILE;
2670 inode_unlock(inode);
2672 filp_close(swap_file, NULL);
2675 * Clear the SWP_USED flag after all resources are freed so that swapon
2676 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2677 * not hold p->lock after we cleared its SWP_WRITEOK.
2679 spin_lock(&swap_lock);
2680 p->flags = 0;
2681 spin_unlock(&swap_lock);
2683 err = 0;
2684 atomic_inc(&proc_poll_event);
2685 wake_up_interruptible(&proc_poll_wait);
2687 out_dput:
2688 filp_close(victim, NULL);
2689 out:
2690 putname(pathname);
2691 return err;
2694 #ifdef CONFIG_PROC_FS
2695 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2697 struct seq_file *seq = file->private_data;
2699 poll_wait(file, &proc_poll_wait, wait);
2701 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2702 seq->poll_event = atomic_read(&proc_poll_event);
2703 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2706 return EPOLLIN | EPOLLRDNORM;
2709 /* iterator */
2710 static void *swap_start(struct seq_file *swap, loff_t *pos)
2712 struct swap_info_struct *si;
2713 int type;
2714 loff_t l = *pos;
2716 mutex_lock(&swapon_mutex);
2718 if (!l)
2719 return SEQ_START_TOKEN;
2721 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2722 if (!(si->flags & SWP_USED) || !si->swap_map)
2723 continue;
2724 if (!--l)
2725 return si;
2728 return NULL;
2731 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2733 struct swap_info_struct *si = v;
2734 int type;
2736 if (v == SEQ_START_TOKEN)
2737 type = 0;
2738 else
2739 type = si->type + 1;
2741 for (; (si = swap_type_to_swap_info(type)); type++) {
2742 if (!(si->flags & SWP_USED) || !si->swap_map)
2743 continue;
2744 ++*pos;
2745 return si;
2748 return NULL;
2751 static void swap_stop(struct seq_file *swap, void *v)
2753 mutex_unlock(&swapon_mutex);
2756 static int swap_show(struct seq_file *swap, void *v)
2758 struct swap_info_struct *si = v;
2759 struct file *file;
2760 int len;
2762 if (si == SEQ_START_TOKEN) {
2763 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2764 return 0;
2767 file = si->swap_file;
2768 len = seq_file_path(swap, file, " \t\n\\");
2769 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2770 len < 40 ? 40 - len : 1, " ",
2771 S_ISBLK(file_inode(file)->i_mode) ?
2772 "partition" : "file\t",
2773 si->pages << (PAGE_SHIFT - 10),
2774 si->inuse_pages << (PAGE_SHIFT - 10),
2775 si->prio);
2776 return 0;
2779 static const struct seq_operations swaps_op = {
2780 .start = swap_start,
2781 .next = swap_next,
2782 .stop = swap_stop,
2783 .show = swap_show
2786 static int swaps_open(struct inode *inode, struct file *file)
2788 struct seq_file *seq;
2789 int ret;
2791 ret = seq_open(file, &swaps_op);
2792 if (ret)
2793 return ret;
2795 seq = file->private_data;
2796 seq->poll_event = atomic_read(&proc_poll_event);
2797 return 0;
2800 static const struct file_operations proc_swaps_operations = {
2801 .open = swaps_open,
2802 .read = seq_read,
2803 .llseek = seq_lseek,
2804 .release = seq_release,
2805 .poll = swaps_poll,
2808 static int __init procswaps_init(void)
2810 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2811 return 0;
2813 __initcall(procswaps_init);
2814 #endif /* CONFIG_PROC_FS */
2816 #ifdef MAX_SWAPFILES_CHECK
2817 static int __init max_swapfiles_check(void)
2819 MAX_SWAPFILES_CHECK();
2820 return 0;
2822 late_initcall(max_swapfiles_check);
2823 #endif
2825 static struct swap_info_struct *alloc_swap_info(void)
2827 struct swap_info_struct *p;
2828 unsigned int type;
2829 int i;
2830 int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2832 p = kvzalloc(size, GFP_KERNEL);
2833 if (!p)
2834 return ERR_PTR(-ENOMEM);
2836 spin_lock(&swap_lock);
2837 for (type = 0; type < nr_swapfiles; type++) {
2838 if (!(swap_info[type]->flags & SWP_USED))
2839 break;
2841 if (type >= MAX_SWAPFILES) {
2842 spin_unlock(&swap_lock);
2843 kvfree(p);
2844 return ERR_PTR(-EPERM);
2846 if (type >= nr_swapfiles) {
2847 p->type = type;
2848 WRITE_ONCE(swap_info[type], p);
2850 * Write swap_info[type] before nr_swapfiles, in case a
2851 * racing procfs swap_start() or swap_next() is reading them.
2852 * (We never shrink nr_swapfiles, we never free this entry.)
2854 smp_wmb();
2855 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2856 } else {
2857 kvfree(p);
2858 p = swap_info[type];
2860 * Do not memset this entry: a racing procfs swap_next()
2861 * would be relying on p->type to remain valid.
2864 INIT_LIST_HEAD(&p->first_swap_extent.list);
2865 plist_node_init(&p->list, 0);
2866 for_each_node(i)
2867 plist_node_init(&p->avail_lists[i], 0);
2868 p->flags = SWP_USED;
2869 spin_unlock(&swap_lock);
2870 spin_lock_init(&p->lock);
2871 spin_lock_init(&p->cont_lock);
2873 return p;
2876 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2878 int error;
2880 if (S_ISBLK(inode->i_mode)) {
2881 p->bdev = bdgrab(I_BDEV(inode));
2882 error = blkdev_get(p->bdev,
2883 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2884 if (error < 0) {
2885 p->bdev = NULL;
2886 return error;
2888 p->old_block_size = block_size(p->bdev);
2889 error = set_blocksize(p->bdev, PAGE_SIZE);
2890 if (error < 0)
2891 return error;
2892 p->flags |= SWP_BLKDEV;
2893 } else if (S_ISREG(inode->i_mode)) {
2894 p->bdev = inode->i_sb->s_bdev;
2895 inode_lock(inode);
2896 if (IS_SWAPFILE(inode))
2897 return -EBUSY;
2898 } else
2899 return -EINVAL;
2901 return 0;
2906 * Find out how many pages are allowed for a single swap device. There
2907 * are two limiting factors:
2908 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2909 * 2) the number of bits in the swap pte, as defined by the different
2910 * architectures.
2912 * In order to find the largest possible bit mask, a swap entry with
2913 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2914 * decoded to a swp_entry_t again, and finally the swap offset is
2915 * extracted.
2917 * This will mask all the bits from the initial ~0UL mask that can't
2918 * be encoded in either the swp_entry_t or the architecture definition
2919 * of a swap pte.
2921 unsigned long generic_max_swapfile_size(void)
2923 return swp_offset(pte_to_swp_entry(
2924 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2927 /* Can be overridden by an architecture for additional checks. */
2928 __weak unsigned long max_swapfile_size(void)
2930 return generic_max_swapfile_size();
2933 static unsigned long read_swap_header(struct swap_info_struct *p,
2934 union swap_header *swap_header,
2935 struct inode *inode)
2937 int i;
2938 unsigned long maxpages;
2939 unsigned long swapfilepages;
2940 unsigned long last_page;
2942 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2943 pr_err("Unable to find swap-space signature\n");
2944 return 0;
2947 /* swap partition endianess hack... */
2948 if (swab32(swap_header->info.version) == 1) {
2949 swab32s(&swap_header->info.version);
2950 swab32s(&swap_header->info.last_page);
2951 swab32s(&swap_header->info.nr_badpages);
2952 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2953 return 0;
2954 for (i = 0; i < swap_header->info.nr_badpages; i++)
2955 swab32s(&swap_header->info.badpages[i]);
2957 /* Check the swap header's sub-version */
2958 if (swap_header->info.version != 1) {
2959 pr_warn("Unable to handle swap header version %d\n",
2960 swap_header->info.version);
2961 return 0;
2964 p->lowest_bit = 1;
2965 p->cluster_next = 1;
2966 p->cluster_nr = 0;
2968 maxpages = max_swapfile_size();
2969 last_page = swap_header->info.last_page;
2970 if (!last_page) {
2971 pr_warn("Empty swap-file\n");
2972 return 0;
2974 if (last_page > maxpages) {
2975 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2976 maxpages << (PAGE_SHIFT - 10),
2977 last_page << (PAGE_SHIFT - 10));
2979 if (maxpages > last_page) {
2980 maxpages = last_page + 1;
2981 /* p->max is an unsigned int: don't overflow it */
2982 if ((unsigned int)maxpages == 0)
2983 maxpages = UINT_MAX;
2985 p->highest_bit = maxpages - 1;
2987 if (!maxpages)
2988 return 0;
2989 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2990 if (swapfilepages && maxpages > swapfilepages) {
2991 pr_warn("Swap area shorter than signature indicates\n");
2992 return 0;
2994 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2995 return 0;
2996 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997 return 0;
2999 return maxpages;
3002 #define SWAP_CLUSTER_INFO_COLS \
3003 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3004 #define SWAP_CLUSTER_SPACE_COLS \
3005 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3006 #define SWAP_CLUSTER_COLS \
3007 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3009 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3010 union swap_header *swap_header,
3011 unsigned char *swap_map,
3012 struct swap_cluster_info *cluster_info,
3013 unsigned long maxpages,
3014 sector_t *span)
3016 unsigned int j, k;
3017 unsigned int nr_good_pages;
3018 int nr_extents;
3019 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3020 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3021 unsigned long i, idx;
3023 nr_good_pages = maxpages - 1; /* omit header page */
3025 cluster_list_init(&p->free_clusters);
3026 cluster_list_init(&p->discard_clusters);
3028 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3029 unsigned int page_nr = swap_header->info.badpages[i];
3030 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3031 return -EINVAL;
3032 if (page_nr < maxpages) {
3033 swap_map[page_nr] = SWAP_MAP_BAD;
3034 nr_good_pages--;
3036 * Haven't marked the cluster free yet, no list
3037 * operation involved
3039 inc_cluster_info_page(p, cluster_info, page_nr);
3043 /* Haven't marked the cluster free yet, no list operation involved */
3044 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3045 inc_cluster_info_page(p, cluster_info, i);
3047 if (nr_good_pages) {
3048 swap_map[0] = SWAP_MAP_BAD;
3050 * Not mark the cluster free yet, no list
3051 * operation involved
3053 inc_cluster_info_page(p, cluster_info, 0);
3054 p->max = maxpages;
3055 p->pages = nr_good_pages;
3056 nr_extents = setup_swap_extents(p, span);
3057 if (nr_extents < 0)
3058 return nr_extents;
3059 nr_good_pages = p->pages;
3061 if (!nr_good_pages) {
3062 pr_warn("Empty swap-file\n");
3063 return -EINVAL;
3066 if (!cluster_info)
3067 return nr_extents;
3071 * Reduce false cache line sharing between cluster_info and
3072 * sharing same address space.
3074 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3075 j = (k + col) % SWAP_CLUSTER_COLS;
3076 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3077 idx = i * SWAP_CLUSTER_COLS + j;
3078 if (idx >= nr_clusters)
3079 continue;
3080 if (cluster_count(&cluster_info[idx]))
3081 continue;
3082 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3083 cluster_list_add_tail(&p->free_clusters, cluster_info,
3084 idx);
3087 return nr_extents;
3091 * Helper to sys_swapon determining if a given swap
3092 * backing device queue supports DISCARD operations.
3094 static bool swap_discardable(struct swap_info_struct *si)
3096 struct request_queue *q = bdev_get_queue(si->bdev);
3098 if (!q || !blk_queue_discard(q))
3099 return false;
3101 return true;
3104 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3106 struct swap_info_struct *p;
3107 struct filename *name;
3108 struct file *swap_file = NULL;
3109 struct address_space *mapping;
3110 int prio;
3111 int error;
3112 union swap_header *swap_header;
3113 int nr_extents;
3114 sector_t span;
3115 unsigned long maxpages;
3116 unsigned char *swap_map = NULL;
3117 struct swap_cluster_info *cluster_info = NULL;
3118 unsigned long *frontswap_map = NULL;
3119 struct page *page = NULL;
3120 struct inode *inode = NULL;
3121 bool inced_nr_rotate_swap = false;
3123 if (swap_flags & ~SWAP_FLAGS_VALID)
3124 return -EINVAL;
3126 if (!capable(CAP_SYS_ADMIN))
3127 return -EPERM;
3129 if (!swap_avail_heads)
3130 return -ENOMEM;
3132 p = alloc_swap_info();
3133 if (IS_ERR(p))
3134 return PTR_ERR(p);
3136 INIT_WORK(&p->discard_work, swap_discard_work);
3138 name = getname(specialfile);
3139 if (IS_ERR(name)) {
3140 error = PTR_ERR(name);
3141 name = NULL;
3142 goto bad_swap;
3144 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3145 if (IS_ERR(swap_file)) {
3146 error = PTR_ERR(swap_file);
3147 swap_file = NULL;
3148 goto bad_swap;
3151 p->swap_file = swap_file;
3152 mapping = swap_file->f_mapping;
3153 inode = mapping->host;
3155 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3156 error = claim_swapfile(p, inode);
3157 if (unlikely(error))
3158 goto bad_swap;
3161 * Read the swap header.
3163 if (!mapping->a_ops->readpage) {
3164 error = -EINVAL;
3165 goto bad_swap;
3167 page = read_mapping_page(mapping, 0, swap_file);
3168 if (IS_ERR(page)) {
3169 error = PTR_ERR(page);
3170 goto bad_swap;
3172 swap_header = kmap(page);
3174 maxpages = read_swap_header(p, swap_header, inode);
3175 if (unlikely(!maxpages)) {
3176 error = -EINVAL;
3177 goto bad_swap;
3180 /* OK, set up the swap map and apply the bad block list */
3181 swap_map = vzalloc(maxpages);
3182 if (!swap_map) {
3183 error = -ENOMEM;
3184 goto bad_swap;
3187 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3188 p->flags |= SWP_STABLE_WRITES;
3190 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3191 p->flags |= SWP_SYNCHRONOUS_IO;
3193 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3194 int cpu;
3195 unsigned long ci, nr_cluster;
3197 p->flags |= SWP_SOLIDSTATE;
3199 * select a random position to start with to help wear leveling
3200 * SSD
3202 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3203 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3205 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3206 GFP_KERNEL);
3207 if (!cluster_info) {
3208 error = -ENOMEM;
3209 goto bad_swap;
3212 for (ci = 0; ci < nr_cluster; ci++)
3213 spin_lock_init(&((cluster_info + ci)->lock));
3215 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3216 if (!p->percpu_cluster) {
3217 error = -ENOMEM;
3218 goto bad_swap;
3220 for_each_possible_cpu(cpu) {
3221 struct percpu_cluster *cluster;
3222 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3223 cluster_set_null(&cluster->index);
3225 } else {
3226 atomic_inc(&nr_rotate_swap);
3227 inced_nr_rotate_swap = true;
3230 error = swap_cgroup_swapon(p->type, maxpages);
3231 if (error)
3232 goto bad_swap;
3234 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3235 cluster_info, maxpages, &span);
3236 if (unlikely(nr_extents < 0)) {
3237 error = nr_extents;
3238 goto bad_swap;
3240 /* frontswap enabled? set up bit-per-page map for frontswap */
3241 if (IS_ENABLED(CONFIG_FRONTSWAP))
3242 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3243 sizeof(long),
3244 GFP_KERNEL);
3246 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3248 * When discard is enabled for swap with no particular
3249 * policy flagged, we set all swap discard flags here in
3250 * order to sustain backward compatibility with older
3251 * swapon(8) releases.
3253 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3254 SWP_PAGE_DISCARD);
3257 * By flagging sys_swapon, a sysadmin can tell us to
3258 * either do single-time area discards only, or to just
3259 * perform discards for released swap page-clusters.
3260 * Now it's time to adjust the p->flags accordingly.
3262 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3263 p->flags &= ~SWP_PAGE_DISCARD;
3264 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3265 p->flags &= ~SWP_AREA_DISCARD;
3267 /* issue a swapon-time discard if it's still required */
3268 if (p->flags & SWP_AREA_DISCARD) {
3269 int err = discard_swap(p);
3270 if (unlikely(err))
3271 pr_err("swapon: discard_swap(%p): %d\n",
3272 p, err);
3276 error = init_swap_address_space(p->type, maxpages);
3277 if (error)
3278 goto bad_swap;
3280 mutex_lock(&swapon_mutex);
3281 prio = -1;
3282 if (swap_flags & SWAP_FLAG_PREFER)
3283 prio =
3284 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3285 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3287 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3288 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3289 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3290 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3291 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3292 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3293 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3294 (frontswap_map) ? "FS" : "");
3296 mutex_unlock(&swapon_mutex);
3297 atomic_inc(&proc_poll_event);
3298 wake_up_interruptible(&proc_poll_wait);
3300 if (S_ISREG(inode->i_mode))
3301 inode->i_flags |= S_SWAPFILE;
3302 error = 0;
3303 goto out;
3304 bad_swap:
3305 free_percpu(p->percpu_cluster);
3306 p->percpu_cluster = NULL;
3307 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3308 set_blocksize(p->bdev, p->old_block_size);
3309 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3311 destroy_swap_extents(p);
3312 swap_cgroup_swapoff(p->type);
3313 spin_lock(&swap_lock);
3314 p->swap_file = NULL;
3315 p->flags = 0;
3316 spin_unlock(&swap_lock);
3317 vfree(swap_map);
3318 kvfree(cluster_info);
3319 kvfree(frontswap_map);
3320 if (inced_nr_rotate_swap)
3321 atomic_dec(&nr_rotate_swap);
3322 if (swap_file) {
3323 if (inode && S_ISREG(inode->i_mode)) {
3324 inode_unlock(inode);
3325 inode = NULL;
3327 filp_close(swap_file, NULL);
3329 out:
3330 if (page && !IS_ERR(page)) {
3331 kunmap(page);
3332 put_page(page);
3334 if (name)
3335 putname(name);
3336 if (inode && S_ISREG(inode->i_mode))
3337 inode_unlock(inode);
3338 if (!error)
3339 enable_swap_slots_cache();
3340 return error;
3343 void si_swapinfo(struct sysinfo *val)
3345 unsigned int type;
3346 unsigned long nr_to_be_unused = 0;
3348 spin_lock(&swap_lock);
3349 for (type = 0; type < nr_swapfiles; type++) {
3350 struct swap_info_struct *si = swap_info[type];
3352 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3353 nr_to_be_unused += si->inuse_pages;
3355 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3356 val->totalswap = total_swap_pages + nr_to_be_unused;
3357 spin_unlock(&swap_lock);
3361 * Verify that a swap entry is valid and increment its swap map count.
3363 * Returns error code in following case.
3364 * - success -> 0
3365 * - swp_entry is invalid -> EINVAL
3366 * - swp_entry is migration entry -> EINVAL
3367 * - swap-cache reference is requested but there is already one. -> EEXIST
3368 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3369 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3371 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3373 struct swap_info_struct *p;
3374 struct swap_cluster_info *ci;
3375 unsigned long offset;
3376 unsigned char count;
3377 unsigned char has_cache;
3378 int err = -EINVAL;
3380 if (non_swap_entry(entry))
3381 goto out;
3383 p = swp_swap_info(entry);
3384 if (!p)
3385 goto bad_file;
3387 offset = swp_offset(entry);
3388 if (unlikely(offset >= p->max))
3389 goto out;
3391 ci = lock_cluster_or_swap_info(p, offset);
3393 count = p->swap_map[offset];
3396 * swapin_readahead() doesn't check if a swap entry is valid, so the
3397 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3400 err = -ENOENT;
3401 goto unlock_out;
3404 has_cache = count & SWAP_HAS_CACHE;
3405 count &= ~SWAP_HAS_CACHE;
3406 err = 0;
3408 if (usage == SWAP_HAS_CACHE) {
3410 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3411 if (!has_cache && count)
3412 has_cache = SWAP_HAS_CACHE;
3413 else if (has_cache) /* someone else added cache */
3414 err = -EEXIST;
3415 else /* no users remaining */
3416 err = -ENOENT;
3418 } else if (count || has_cache) {
3420 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3421 count += usage;
3422 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3423 err = -EINVAL;
3424 else if (swap_count_continued(p, offset, count))
3425 count = COUNT_CONTINUED;
3426 else
3427 err = -ENOMEM;
3428 } else
3429 err = -ENOENT; /* unused swap entry */
3431 p->swap_map[offset] = count | has_cache;
3433 unlock_out:
3434 unlock_cluster_or_swap_info(p, ci);
3435 out:
3436 return err;
3438 bad_file:
3439 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3440 goto out;
3444 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3445 * (in which case its reference count is never incremented).
3447 void swap_shmem_alloc(swp_entry_t entry)
3449 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3453 * Increase reference count of swap entry by 1.
3454 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3455 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3456 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3457 * might occur if a page table entry has got corrupted.
3459 int swap_duplicate(swp_entry_t entry)
3461 int err = 0;
3463 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3464 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3465 return err;
3469 * @entry: swap entry for which we allocate swap cache.
3471 * Called when allocating swap cache for existing swap entry,
3472 * This can return error codes. Returns 0 at success.
3473 * -EBUSY means there is a swap cache.
3474 * Note: return code is different from swap_duplicate().
3476 int swapcache_prepare(swp_entry_t entry)
3478 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3481 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3483 return swap_type_to_swap_info(swp_type(entry));
3486 struct swap_info_struct *page_swap_info(struct page *page)
3488 swp_entry_t entry = { .val = page_private(page) };
3489 return swp_swap_info(entry);
3493 * out-of-line __page_file_ methods to avoid include hell.
3495 struct address_space *__page_file_mapping(struct page *page)
3497 return page_swap_info(page)->swap_file->f_mapping;
3499 EXPORT_SYMBOL_GPL(__page_file_mapping);
3501 pgoff_t __page_file_index(struct page *page)
3503 swp_entry_t swap = { .val = page_private(page) };
3504 return swp_offset(swap);
3506 EXPORT_SYMBOL_GPL(__page_file_index);
3509 * add_swap_count_continuation - called when a swap count is duplicated
3510 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3511 * page of the original vmalloc'ed swap_map, to hold the continuation count
3512 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3513 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3515 * These continuation pages are seldom referenced: the common paths all work
3516 * on the original swap_map, only referring to a continuation page when the
3517 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3519 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3520 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3521 * can be called after dropping locks.
3523 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3525 struct swap_info_struct *si;
3526 struct swap_cluster_info *ci;
3527 struct page *head;
3528 struct page *page;
3529 struct page *list_page;
3530 pgoff_t offset;
3531 unsigned char count;
3534 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3537 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3539 si = swap_info_get(entry);
3540 if (!si) {
3542 * An acceptable race has occurred since the failing
3543 * __swap_duplicate(): the swap entry has been freed,
3544 * perhaps even the whole swap_map cleared for swapoff.
3546 goto outer;
3549 offset = swp_offset(entry);
3551 ci = lock_cluster(si, offset);
3553 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3555 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3557 * The higher the swap count, the more likely it is that tasks
3558 * will race to add swap count continuation: we need to avoid
3559 * over-provisioning.
3561 goto out;
3564 if (!page) {
3565 unlock_cluster(ci);
3566 spin_unlock(&si->lock);
3567 return -ENOMEM;
3571 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3572 * no architecture is using highmem pages for kernel page tables: so it
3573 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3575 head = vmalloc_to_page(si->swap_map + offset);
3576 offset &= ~PAGE_MASK;
3578 spin_lock(&si->cont_lock);
3580 * Page allocation does not initialize the page's lru field,
3581 * but it does always reset its private field.
3583 if (!page_private(head)) {
3584 BUG_ON(count & COUNT_CONTINUED);
3585 INIT_LIST_HEAD(&head->lru);
3586 set_page_private(head, SWP_CONTINUED);
3587 si->flags |= SWP_CONTINUED;
3590 list_for_each_entry(list_page, &head->lru, lru) {
3591 unsigned char *map;
3594 * If the previous map said no continuation, but we've found
3595 * a continuation page, free our allocation and use this one.
3597 if (!(count & COUNT_CONTINUED))
3598 goto out_unlock_cont;
3600 map = kmap_atomic(list_page) + offset;
3601 count = *map;
3602 kunmap_atomic(map);
3605 * If this continuation count now has some space in it,
3606 * free our allocation and use this one.
3608 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3609 goto out_unlock_cont;
3612 list_add_tail(&page->lru, &head->lru);
3613 page = NULL; /* now it's attached, don't free it */
3614 out_unlock_cont:
3615 spin_unlock(&si->cont_lock);
3616 out:
3617 unlock_cluster(ci);
3618 spin_unlock(&si->lock);
3619 outer:
3620 if (page)
3621 __free_page(page);
3622 return 0;
3626 * swap_count_continued - when the original swap_map count is incremented
3627 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628 * into, carry if so, or else fail until a new continuation page is allocated;
3629 * when the original swap_map count is decremented from 0 with continuation,
3630 * borrow from the continuation and report whether it still holds more.
3631 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632 * lock.
3634 static bool swap_count_continued(struct swap_info_struct *si,
3635 pgoff_t offset, unsigned char count)
3637 struct page *head;
3638 struct page *page;
3639 unsigned char *map;
3640 bool ret;
3642 head = vmalloc_to_page(si->swap_map + offset);
3643 if (page_private(head) != SWP_CONTINUED) {
3644 BUG_ON(count & COUNT_CONTINUED);
3645 return false; /* need to add count continuation */
3648 spin_lock(&si->cont_lock);
3649 offset &= ~PAGE_MASK;
3650 page = list_entry(head->lru.next, struct page, lru);
3651 map = kmap_atomic(page) + offset;
3653 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3654 goto init_map; /* jump over SWAP_CONT_MAX checks */
3656 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3658 * Think of how you add 1 to 999
3660 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661 kunmap_atomic(map);
3662 page = list_entry(page->lru.next, struct page, lru);
3663 BUG_ON(page == head);
3664 map = kmap_atomic(page) + offset;
3666 if (*map == SWAP_CONT_MAX) {
3667 kunmap_atomic(map);
3668 page = list_entry(page->lru.next, struct page, lru);
3669 if (page == head) {
3670 ret = false; /* add count continuation */
3671 goto out;
3673 map = kmap_atomic(page) + offset;
3674 init_map: *map = 0; /* we didn't zero the page */
3676 *map += 1;
3677 kunmap_atomic(map);
3678 page = list_entry(page->lru.prev, struct page, lru);
3679 while (page != head) {
3680 map = kmap_atomic(page) + offset;
3681 *map = COUNT_CONTINUED;
3682 kunmap_atomic(map);
3683 page = list_entry(page->lru.prev, struct page, lru);
3685 ret = true; /* incremented */
3687 } else { /* decrementing */
3689 * Think of how you subtract 1 from 1000
3691 BUG_ON(count != COUNT_CONTINUED);
3692 while (*map == COUNT_CONTINUED) {
3693 kunmap_atomic(map);
3694 page = list_entry(page->lru.next, struct page, lru);
3695 BUG_ON(page == head);
3696 map = kmap_atomic(page) + offset;
3698 BUG_ON(*map == 0);
3699 *map -= 1;
3700 if (*map == 0)
3701 count = 0;
3702 kunmap_atomic(map);
3703 page = list_entry(page->lru.prev, struct page, lru);
3704 while (page != head) {
3705 map = kmap_atomic(page) + offset;
3706 *map = SWAP_CONT_MAX | count;
3707 count = COUNT_CONTINUED;
3708 kunmap_atomic(map);
3709 page = list_entry(page->lru.prev, struct page, lru);
3711 ret = count == COUNT_CONTINUED;
3713 out:
3714 spin_unlock(&si->cont_lock);
3715 return ret;
3719 * free_swap_count_continuations - swapoff free all the continuation pages
3720 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3722 static void free_swap_count_continuations(struct swap_info_struct *si)
3724 pgoff_t offset;
3726 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727 struct page *head;
3728 head = vmalloc_to_page(si->swap_map + offset);
3729 if (page_private(head)) {
3730 struct page *page, *next;
3732 list_for_each_entry_safe(page, next, &head->lru, lru) {
3733 list_del(&page->lru);
3734 __free_page(page);
3740 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742 gfp_t gfp_mask)
3744 struct swap_info_struct *si, *next;
3745 if (!(gfp_mask & __GFP_IO) || !memcg)
3746 return;
3748 if (!blk_cgroup_congested())
3749 return;
3752 * We've already scheduled a throttle, avoid taking the global swap
3753 * lock.
3755 if (current->throttle_queue)
3756 return;
3758 spin_lock(&swap_avail_lock);
3759 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760 avail_lists[node]) {
3761 if (si->bdev) {
3762 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763 true);
3764 break;
3767 spin_unlock(&swap_avail_lock);
3769 #endif
3771 static int __init swapfile_init(void)
3773 int nid;
3775 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776 GFP_KERNEL);
3777 if (!swap_avail_heads) {
3778 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779 return -ENOMEM;
3782 for_each_node(nid)
3783 plist_head_init(&swap_avail_heads[nid]);
3785 return 0;
3787 subsys_initcall(swapfile_init);