asm-generic: unistd.h: fixup broken macro include.
[linux/fpc-iii.git] / block / blk-iolatency.c
blob38c35c32aff2dcf3fc0e9ac294a649f0be4a1cb1
1 /*
2 * Block rq-qos base io controller
4 * This works similar to wbt with a few exceptions
6 * - It's bio based, so the latency covers the whole block layer in addition to
7 * the actual io.
8 * - We will throttle all IO that comes in here if we need to.
9 * - We use the mean latency over the 100ms window. This is because writes can
10 * be particularly fast, which could give us a false sense of the impact of
11 * other workloads on our protected workload.
12 * - By default there's no throttling, we set the queue_depth to UINT_MAX so
13 * that we can have as many outstanding bio's as we're allowed to. Only at
14 * throttle time do we pay attention to the actual queue depth.
16 * The hierarchy works like the cpu controller does, we track the latency at
17 * every configured node, and each configured node has it's own independent
18 * queue depth. This means that we only care about our latency targets at the
19 * peer level. Some group at the bottom of the hierarchy isn't going to affect
20 * a group at the end of some other path if we're only configred at leaf level.
22 * Consider the following
24 * root blkg
25 * / \
26 * fast (target=5ms) slow (target=10ms)
27 * / \ / \
28 * a b normal(15ms) unloved
30 * "a" and "b" have no target, but their combined io under "fast" cannot exceed
31 * an average latency of 5ms. If it does then we will throttle the "slow"
32 * group. In the case of "normal", if it exceeds its 15ms target, we will
33 * throttle "unloved", but nobody else.
35 * In this example "fast", "slow", and "normal" will be the only groups actually
36 * accounting their io latencies. We have to walk up the heirarchy to the root
37 * on every submit and complete so we can do the appropriate stat recording and
38 * adjust the queue depth of ourselves if needed.
40 * There are 2 ways we throttle IO.
42 * 1) Queue depth throttling. As we throttle down we will adjust the maximum
43 * number of IO's we're allowed to have in flight. This starts at (u64)-1 down
44 * to 1. If the group is only ever submitting IO for itself then this is the
45 * only way we throttle.
47 * 2) Induced delay throttling. This is for the case that a group is generating
48 * IO that has to be issued by the root cg to avoid priority inversion. So think
49 * REQ_META or REQ_SWAP. If we are already at qd == 1 and we're getting a lot
50 * of work done for us on behalf of the root cg and are being asked to scale
51 * down more then we induce a latency at userspace return. We accumulate the
52 * total amount of time we need to be punished by doing
54 * total_time += min_lat_nsec - actual_io_completion
56 * and then at throttle time will do
58 * throttle_time = min(total_time, NSEC_PER_SEC)
60 * This induced delay will throttle back the activity that is generating the
61 * root cg issued io's, wethere that's some metadata intensive operation or the
62 * group is using so much memory that it is pushing us into swap.
64 * Copyright (C) 2018 Josef Bacik
66 #include <linux/kernel.h>
67 #include <linux/blk_types.h>
68 #include <linux/backing-dev.h>
69 #include <linux/module.h>
70 #include <linux/timer.h>
71 #include <linux/memcontrol.h>
72 #include <linux/sched/loadavg.h>
73 #include <linux/sched/signal.h>
74 #include <trace/events/block.h>
75 #include "blk-rq-qos.h"
76 #include "blk-stat.h"
78 #define DEFAULT_SCALE_COOKIE 1000000U
80 static struct blkcg_policy blkcg_policy_iolatency;
81 struct iolatency_grp;
83 struct blk_iolatency {
84 struct rq_qos rqos;
85 struct timer_list timer;
86 atomic_t enabled;
89 static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
91 return container_of(rqos, struct blk_iolatency, rqos);
94 static inline bool blk_iolatency_enabled(struct blk_iolatency *blkiolat)
96 return atomic_read(&blkiolat->enabled) > 0;
99 struct child_latency_info {
100 spinlock_t lock;
102 /* Last time we adjusted the scale of everybody. */
103 u64 last_scale_event;
105 /* The latency that we missed. */
106 u64 scale_lat;
108 /* Total io's from all of our children for the last summation. */
109 u64 nr_samples;
111 /* The guy who actually changed the latency numbers. */
112 struct iolatency_grp *scale_grp;
114 /* Cookie to tell if we need to scale up or down. */
115 atomic_t scale_cookie;
118 struct percentile_stats {
119 u64 total;
120 u64 missed;
123 struct latency_stat {
124 union {
125 struct percentile_stats ps;
126 struct blk_rq_stat rqs;
130 struct iolatency_grp {
131 struct blkg_policy_data pd;
132 struct latency_stat __percpu *stats;
133 struct latency_stat cur_stat;
134 struct blk_iolatency *blkiolat;
135 struct rq_depth rq_depth;
136 struct rq_wait rq_wait;
137 atomic64_t window_start;
138 atomic_t scale_cookie;
139 u64 min_lat_nsec;
140 u64 cur_win_nsec;
142 /* total running average of our io latency. */
143 u64 lat_avg;
145 /* Our current number of IO's for the last summation. */
146 u64 nr_samples;
148 bool ssd;
149 struct child_latency_info child_lat;
152 #define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
153 #define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
155 * These are the constants used to fake the fixed-point moving average
156 * calculation just like load average. The call to calc_load() folds
157 * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg. The sampling
158 * window size is bucketed to try to approximately calculate average
159 * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
160 * elapse immediately. Note, windows only elapse with IO activity. Idle
161 * periods extend the most recent window.
163 #define BLKIOLATENCY_NR_EXP_FACTORS 5
164 #define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
165 (BLKIOLATENCY_NR_EXP_FACTORS - 1))
166 static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
167 2045, // exp(1/600) - 600 samples
168 2039, // exp(1/240) - 240 samples
169 2031, // exp(1/120) - 120 samples
170 2023, // exp(1/80) - 80 samples
171 2014, // exp(1/60) - 60 samples
174 static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
176 return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
179 static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
181 return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
184 static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
186 return pd_to_blkg(&iolat->pd);
189 static inline void latency_stat_init(struct iolatency_grp *iolat,
190 struct latency_stat *stat)
192 if (iolat->ssd) {
193 stat->ps.total = 0;
194 stat->ps.missed = 0;
195 } else
196 blk_rq_stat_init(&stat->rqs);
199 static inline void latency_stat_sum(struct iolatency_grp *iolat,
200 struct latency_stat *sum,
201 struct latency_stat *stat)
203 if (iolat->ssd) {
204 sum->ps.total += stat->ps.total;
205 sum->ps.missed += stat->ps.missed;
206 } else
207 blk_rq_stat_sum(&sum->rqs, &stat->rqs);
210 static inline void latency_stat_record_time(struct iolatency_grp *iolat,
211 u64 req_time)
213 struct latency_stat *stat = get_cpu_ptr(iolat->stats);
214 if (iolat->ssd) {
215 if (req_time >= iolat->min_lat_nsec)
216 stat->ps.missed++;
217 stat->ps.total++;
218 } else
219 blk_rq_stat_add(&stat->rqs, req_time);
220 put_cpu_ptr(stat);
223 static inline bool latency_sum_ok(struct iolatency_grp *iolat,
224 struct latency_stat *stat)
226 if (iolat->ssd) {
227 u64 thresh = div64_u64(stat->ps.total, 10);
228 thresh = max(thresh, 1ULL);
229 return stat->ps.missed < thresh;
231 return stat->rqs.mean <= iolat->min_lat_nsec;
234 static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
235 struct latency_stat *stat)
237 if (iolat->ssd)
238 return stat->ps.total;
239 return stat->rqs.nr_samples;
242 static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
243 struct latency_stat *stat)
245 int exp_idx;
247 if (iolat->ssd)
248 return;
251 * calc_load() takes in a number stored in fixed point representation.
252 * Because we are using this for IO time in ns, the values stored
253 * are significantly larger than the FIXED_1 denominator (2048).
254 * Therefore, rounding errors in the calculation are negligible and
255 * can be ignored.
257 exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
258 div64_u64(iolat->cur_win_nsec,
259 BLKIOLATENCY_EXP_BUCKET_SIZE));
260 iolat->lat_avg = calc_load(iolat->lat_avg,
261 iolatency_exp_factors[exp_idx],
262 stat->rqs.mean);
265 static inline bool iolatency_may_queue(struct iolatency_grp *iolat,
266 wait_queue_entry_t *wait,
267 bool first_block)
269 struct rq_wait *rqw = &iolat->rq_wait;
271 if (first_block && waitqueue_active(&rqw->wait) &&
272 rqw->wait.head.next != &wait->entry)
273 return false;
274 return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
277 static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
278 struct iolatency_grp *iolat,
279 spinlock_t *lock, bool issue_as_root,
280 bool use_memdelay)
281 __releases(lock)
282 __acquires(lock)
284 struct rq_wait *rqw = &iolat->rq_wait;
285 unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
286 DEFINE_WAIT(wait);
287 bool first_block = true;
289 if (use_delay)
290 blkcg_schedule_throttle(rqos->q, use_memdelay);
293 * To avoid priority inversions we want to just take a slot if we are
294 * issuing as root. If we're being killed off there's no point in
295 * delaying things, we may have been killed by OOM so throttling may
296 * make recovery take even longer, so just let the IO's through so the
297 * task can go away.
299 if (issue_as_root || fatal_signal_pending(current)) {
300 atomic_inc(&rqw->inflight);
301 return;
304 if (iolatency_may_queue(iolat, &wait, first_block))
305 return;
307 do {
308 prepare_to_wait_exclusive(&rqw->wait, &wait,
309 TASK_UNINTERRUPTIBLE);
311 if (iolatency_may_queue(iolat, &wait, first_block))
312 break;
313 first_block = false;
315 if (lock) {
316 spin_unlock_irq(lock);
317 io_schedule();
318 spin_lock_irq(lock);
319 } else {
320 io_schedule();
322 } while (1);
324 finish_wait(&rqw->wait, &wait);
327 #define SCALE_DOWN_FACTOR 2
328 #define SCALE_UP_FACTOR 4
330 static inline unsigned long scale_amount(unsigned long qd, bool up)
332 return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
336 * We scale the qd down faster than we scale up, so we need to use this helper
337 * to adjust the scale_cookie accordingly so we don't prematurely get
338 * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
340 * Each group has their own local copy of the last scale cookie they saw, so if
341 * the global scale cookie goes up or down they know which way they need to go
342 * based on their last knowledge of it.
344 static void scale_cookie_change(struct blk_iolatency *blkiolat,
345 struct child_latency_info *lat_info,
346 bool up)
348 unsigned long qd = blkiolat->rqos.q->nr_requests;
349 unsigned long scale = scale_amount(qd, up);
350 unsigned long old = atomic_read(&lat_info->scale_cookie);
351 unsigned long max_scale = qd << 1;
352 unsigned long diff = 0;
354 if (old < DEFAULT_SCALE_COOKIE)
355 diff = DEFAULT_SCALE_COOKIE - old;
357 if (up) {
358 if (scale + old > DEFAULT_SCALE_COOKIE)
359 atomic_set(&lat_info->scale_cookie,
360 DEFAULT_SCALE_COOKIE);
361 else if (diff > qd)
362 atomic_inc(&lat_info->scale_cookie);
363 else
364 atomic_add(scale, &lat_info->scale_cookie);
365 } else {
367 * We don't want to dig a hole so deep that it takes us hours to
368 * dig out of it. Just enough that we don't throttle/unthrottle
369 * with jagged workloads but can still unthrottle once pressure
370 * has sufficiently dissipated.
372 if (diff > qd) {
373 if (diff < max_scale)
374 atomic_dec(&lat_info->scale_cookie);
375 } else {
376 atomic_sub(scale, &lat_info->scale_cookie);
382 * Change the queue depth of the iolatency_grp. We add/subtract 1/16th of the
383 * queue depth at a time so we don't get wild swings and hopefully dial in to
384 * fairer distribution of the overall queue depth.
386 static void scale_change(struct iolatency_grp *iolat, bool up)
388 unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
389 unsigned long scale = scale_amount(qd, up);
390 unsigned long old = iolat->rq_depth.max_depth;
392 if (old > qd)
393 old = qd;
395 if (up) {
396 if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
397 return;
399 if (old < qd) {
400 old += scale;
401 old = min(old, qd);
402 iolat->rq_depth.max_depth = old;
403 wake_up_all(&iolat->rq_wait.wait);
405 } else {
406 old >>= 1;
407 iolat->rq_depth.max_depth = max(old, 1UL);
411 /* Check our parent and see if the scale cookie has changed. */
412 static void check_scale_change(struct iolatency_grp *iolat)
414 struct iolatency_grp *parent;
415 struct child_latency_info *lat_info;
416 unsigned int cur_cookie;
417 unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
418 u64 scale_lat;
419 unsigned int old;
420 int direction = 0;
422 if (lat_to_blkg(iolat)->parent == NULL)
423 return;
425 parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
426 if (!parent)
427 return;
429 lat_info = &parent->child_lat;
430 cur_cookie = atomic_read(&lat_info->scale_cookie);
431 scale_lat = READ_ONCE(lat_info->scale_lat);
433 if (cur_cookie < our_cookie)
434 direction = -1;
435 else if (cur_cookie > our_cookie)
436 direction = 1;
437 else
438 return;
440 old = atomic_cmpxchg(&iolat->scale_cookie, our_cookie, cur_cookie);
442 /* Somebody beat us to the punch, just bail. */
443 if (old != our_cookie)
444 return;
446 if (direction < 0 && iolat->min_lat_nsec) {
447 u64 samples_thresh;
449 if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
450 return;
453 * Sometimes high priority groups are their own worst enemy, so
454 * instead of taking it out on some poor other group that did 5%
455 * or less of the IO's for the last summation just skip this
456 * scale down event.
458 samples_thresh = lat_info->nr_samples * 5;
459 samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
460 if (iolat->nr_samples <= samples_thresh)
461 return;
464 /* We're as low as we can go. */
465 if (iolat->rq_depth.max_depth == 1 && direction < 0) {
466 blkcg_use_delay(lat_to_blkg(iolat));
467 return;
470 /* We're back to the default cookie, unthrottle all the things. */
471 if (cur_cookie == DEFAULT_SCALE_COOKIE) {
472 blkcg_clear_delay(lat_to_blkg(iolat));
473 iolat->rq_depth.max_depth = UINT_MAX;
474 wake_up_all(&iolat->rq_wait.wait);
475 return;
478 scale_change(iolat, direction > 0);
481 static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio,
482 spinlock_t *lock)
484 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
485 struct blkcg *blkcg;
486 struct blkcg_gq *blkg;
487 struct request_queue *q = rqos->q;
488 bool issue_as_root = bio_issue_as_root_blkg(bio);
490 if (!blk_iolatency_enabled(blkiolat))
491 return;
493 rcu_read_lock();
494 blkcg = bio_blkcg(bio);
495 bio_associate_blkcg(bio, &blkcg->css);
496 blkg = blkg_lookup(blkcg, q);
497 if (unlikely(!blkg)) {
498 if (!lock)
499 spin_lock_irq(q->queue_lock);
500 blkg = blkg_lookup_create(blkcg, q);
501 if (IS_ERR(blkg))
502 blkg = NULL;
503 if (!lock)
504 spin_unlock_irq(q->queue_lock);
506 if (!blkg)
507 goto out;
509 bio_issue_init(&bio->bi_issue, bio_sectors(bio));
510 bio_associate_blkg(bio, blkg);
511 out:
512 rcu_read_unlock();
513 while (blkg && blkg->parent) {
514 struct iolatency_grp *iolat = blkg_to_lat(blkg);
515 if (!iolat) {
516 blkg = blkg->parent;
517 continue;
520 check_scale_change(iolat);
521 __blkcg_iolatency_throttle(rqos, iolat, lock, issue_as_root,
522 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
523 blkg = blkg->parent;
525 if (!timer_pending(&blkiolat->timer))
526 mod_timer(&blkiolat->timer, jiffies + HZ);
529 static void iolatency_record_time(struct iolatency_grp *iolat,
530 struct bio_issue *issue, u64 now,
531 bool issue_as_root)
533 u64 start = bio_issue_time(issue);
534 u64 req_time;
537 * Have to do this so we are truncated to the correct time that our
538 * issue is truncated to.
540 now = __bio_issue_time(now);
542 if (now <= start)
543 return;
545 req_time = now - start;
548 * We don't want to count issue_as_root bio's in the cgroups latency
549 * statistics as it could skew the numbers downwards.
551 if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
552 u64 sub = iolat->min_lat_nsec;
553 if (req_time < sub)
554 blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
555 return;
558 latency_stat_record_time(iolat, req_time);
561 #define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
562 #define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
564 static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
566 struct blkcg_gq *blkg = lat_to_blkg(iolat);
567 struct iolatency_grp *parent;
568 struct child_latency_info *lat_info;
569 struct latency_stat stat;
570 unsigned long flags;
571 int cpu;
573 latency_stat_init(iolat, &stat);
574 preempt_disable();
575 for_each_online_cpu(cpu) {
576 struct latency_stat *s;
577 s = per_cpu_ptr(iolat->stats, cpu);
578 latency_stat_sum(iolat, &stat, s);
579 latency_stat_init(iolat, s);
581 preempt_enable();
583 parent = blkg_to_lat(blkg->parent);
584 if (!parent)
585 return;
587 lat_info = &parent->child_lat;
589 iolat_update_total_lat_avg(iolat, &stat);
591 /* Everything is ok and we don't need to adjust the scale. */
592 if (latency_sum_ok(iolat, &stat) &&
593 atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
594 return;
596 /* Somebody beat us to the punch, just bail. */
597 spin_lock_irqsave(&lat_info->lock, flags);
599 latency_stat_sum(iolat, &iolat->cur_stat, &stat);
600 lat_info->nr_samples -= iolat->nr_samples;
601 lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
602 iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
604 if ((lat_info->last_scale_event >= now ||
605 now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
606 goto out;
608 if (latency_sum_ok(iolat, &iolat->cur_stat) &&
609 latency_sum_ok(iolat, &stat)) {
610 if (latency_stat_samples(iolat, &iolat->cur_stat) <
611 BLKIOLATENCY_MIN_GOOD_SAMPLES)
612 goto out;
613 if (lat_info->scale_grp == iolat) {
614 lat_info->last_scale_event = now;
615 scale_cookie_change(iolat->blkiolat, lat_info, true);
617 } else if (lat_info->scale_lat == 0 ||
618 lat_info->scale_lat >= iolat->min_lat_nsec) {
619 lat_info->last_scale_event = now;
620 if (!lat_info->scale_grp ||
621 lat_info->scale_lat > iolat->min_lat_nsec) {
622 WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
623 lat_info->scale_grp = iolat;
625 scale_cookie_change(iolat->blkiolat, lat_info, false);
627 latency_stat_init(iolat, &iolat->cur_stat);
628 out:
629 spin_unlock_irqrestore(&lat_info->lock, flags);
632 static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
634 struct blkcg_gq *blkg;
635 struct rq_wait *rqw;
636 struct iolatency_grp *iolat;
637 u64 window_start;
638 u64 now = ktime_to_ns(ktime_get());
639 bool issue_as_root = bio_issue_as_root_blkg(bio);
640 bool enabled = false;
642 blkg = bio->bi_blkg;
643 if (!blkg)
644 return;
646 iolat = blkg_to_lat(bio->bi_blkg);
647 if (!iolat)
648 return;
650 enabled = blk_iolatency_enabled(iolat->blkiolat);
651 while (blkg && blkg->parent) {
652 iolat = blkg_to_lat(blkg);
653 if (!iolat) {
654 blkg = blkg->parent;
655 continue;
657 rqw = &iolat->rq_wait;
659 atomic_dec(&rqw->inflight);
660 if (!enabled || iolat->min_lat_nsec == 0)
661 goto next;
662 iolatency_record_time(iolat, &bio->bi_issue, now,
663 issue_as_root);
664 window_start = atomic64_read(&iolat->window_start);
665 if (now > window_start &&
666 (now - window_start) >= iolat->cur_win_nsec) {
667 if (atomic64_cmpxchg(&iolat->window_start,
668 window_start, now) == window_start)
669 iolatency_check_latencies(iolat, now);
671 next:
672 wake_up(&rqw->wait);
673 blkg = blkg->parent;
677 static void blkcg_iolatency_cleanup(struct rq_qos *rqos, struct bio *bio)
679 struct blkcg_gq *blkg;
681 blkg = bio->bi_blkg;
682 while (blkg && blkg->parent) {
683 struct rq_wait *rqw;
684 struct iolatency_grp *iolat;
686 iolat = blkg_to_lat(blkg);
687 if (!iolat)
688 goto next;
690 rqw = &iolat->rq_wait;
691 atomic_dec(&rqw->inflight);
692 wake_up(&rqw->wait);
693 next:
694 blkg = blkg->parent;
698 static void blkcg_iolatency_exit(struct rq_qos *rqos)
700 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
702 del_timer_sync(&blkiolat->timer);
703 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
704 kfree(blkiolat);
707 static struct rq_qos_ops blkcg_iolatency_ops = {
708 .throttle = blkcg_iolatency_throttle,
709 .cleanup = blkcg_iolatency_cleanup,
710 .done_bio = blkcg_iolatency_done_bio,
711 .exit = blkcg_iolatency_exit,
714 static void blkiolatency_timer_fn(struct timer_list *t)
716 struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
717 struct blkcg_gq *blkg;
718 struct cgroup_subsys_state *pos_css;
719 u64 now = ktime_to_ns(ktime_get());
721 rcu_read_lock();
722 blkg_for_each_descendant_pre(blkg, pos_css,
723 blkiolat->rqos.q->root_blkg) {
724 struct iolatency_grp *iolat;
725 struct child_latency_info *lat_info;
726 unsigned long flags;
727 u64 cookie;
730 * We could be exiting, don't access the pd unless we have a
731 * ref on the blkg.
733 if (!blkg_try_get(blkg))
734 continue;
736 iolat = blkg_to_lat(blkg);
737 if (!iolat)
738 goto next;
740 lat_info = &iolat->child_lat;
741 cookie = atomic_read(&lat_info->scale_cookie);
743 if (cookie >= DEFAULT_SCALE_COOKIE)
744 goto next;
746 spin_lock_irqsave(&lat_info->lock, flags);
747 if (lat_info->last_scale_event >= now)
748 goto next_lock;
751 * We scaled down but don't have a scale_grp, scale up and carry
752 * on.
754 if (lat_info->scale_grp == NULL) {
755 scale_cookie_change(iolat->blkiolat, lat_info, true);
756 goto next_lock;
760 * It's been 5 seconds since our last scale event, clear the
761 * scale grp in case the group that needed the scale down isn't
762 * doing any IO currently.
764 if (now - lat_info->last_scale_event >=
765 ((u64)NSEC_PER_SEC * 5))
766 lat_info->scale_grp = NULL;
767 next_lock:
768 spin_unlock_irqrestore(&lat_info->lock, flags);
769 next:
770 blkg_put(blkg);
772 rcu_read_unlock();
775 int blk_iolatency_init(struct request_queue *q)
777 struct blk_iolatency *blkiolat;
778 struct rq_qos *rqos;
779 int ret;
781 blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
782 if (!blkiolat)
783 return -ENOMEM;
785 rqos = &blkiolat->rqos;
786 rqos->id = RQ_QOS_CGROUP;
787 rqos->ops = &blkcg_iolatency_ops;
788 rqos->q = q;
790 rq_qos_add(q, rqos);
792 ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
793 if (ret) {
794 rq_qos_del(q, rqos);
795 kfree(blkiolat);
796 return ret;
799 timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
801 return 0;
804 static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
806 struct iolatency_grp *iolat = blkg_to_lat(blkg);
807 struct blk_iolatency *blkiolat = iolat->blkiolat;
808 u64 oldval = iolat->min_lat_nsec;
810 iolat->min_lat_nsec = val;
811 iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
812 iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
813 BLKIOLATENCY_MAX_WIN_SIZE);
815 if (!oldval && val)
816 atomic_inc(&blkiolat->enabled);
817 if (oldval && !val)
818 atomic_dec(&blkiolat->enabled);
821 static void iolatency_clear_scaling(struct blkcg_gq *blkg)
823 if (blkg->parent) {
824 struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
825 struct child_latency_info *lat_info;
826 if (!iolat)
827 return;
829 lat_info = &iolat->child_lat;
830 spin_lock(&lat_info->lock);
831 atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
832 lat_info->last_scale_event = 0;
833 lat_info->scale_grp = NULL;
834 lat_info->scale_lat = 0;
835 spin_unlock(&lat_info->lock);
839 static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
840 size_t nbytes, loff_t off)
842 struct blkcg *blkcg = css_to_blkcg(of_css(of));
843 struct blkcg_gq *blkg;
844 struct blkg_conf_ctx ctx;
845 struct iolatency_grp *iolat;
846 char *p, *tok;
847 u64 lat_val = 0;
848 u64 oldval;
849 int ret;
851 ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
852 if (ret)
853 return ret;
855 iolat = blkg_to_lat(ctx.blkg);
856 p = ctx.body;
858 ret = -EINVAL;
859 while ((tok = strsep(&p, " "))) {
860 char key[16];
861 char val[21]; /* 18446744073709551616 */
863 if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
864 goto out;
866 if (!strcmp(key, "target")) {
867 u64 v;
869 if (!strcmp(val, "max"))
870 lat_val = 0;
871 else if (sscanf(val, "%llu", &v) == 1)
872 lat_val = v * NSEC_PER_USEC;
873 else
874 goto out;
875 } else {
876 goto out;
880 /* Walk up the tree to see if our new val is lower than it should be. */
881 blkg = ctx.blkg;
882 oldval = iolat->min_lat_nsec;
884 iolatency_set_min_lat_nsec(blkg, lat_val);
885 if (oldval != iolat->min_lat_nsec) {
886 iolatency_clear_scaling(blkg);
889 ret = 0;
890 out:
891 blkg_conf_finish(&ctx);
892 return ret ?: nbytes;
895 static u64 iolatency_prfill_limit(struct seq_file *sf,
896 struct blkg_policy_data *pd, int off)
898 struct iolatency_grp *iolat = pd_to_lat(pd);
899 const char *dname = blkg_dev_name(pd->blkg);
901 if (!dname || !iolat->min_lat_nsec)
902 return 0;
903 seq_printf(sf, "%s target=%llu\n",
904 dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
905 return 0;
908 static int iolatency_print_limit(struct seq_file *sf, void *v)
910 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
911 iolatency_prfill_limit,
912 &blkcg_policy_iolatency, seq_cft(sf)->private, false);
913 return 0;
916 static size_t iolatency_ssd_stat(struct iolatency_grp *iolat, char *buf,
917 size_t size)
919 struct latency_stat stat;
920 int cpu;
922 latency_stat_init(iolat, &stat);
923 preempt_disable();
924 for_each_online_cpu(cpu) {
925 struct latency_stat *s;
926 s = per_cpu_ptr(iolat->stats, cpu);
927 latency_stat_sum(iolat, &stat, s);
929 preempt_enable();
931 if (iolat->rq_depth.max_depth == UINT_MAX)
932 return scnprintf(buf, size, " missed=%llu total=%llu depth=max",
933 (unsigned long long)stat.ps.missed,
934 (unsigned long long)stat.ps.total);
935 return scnprintf(buf, size, " missed=%llu total=%llu depth=%u",
936 (unsigned long long)stat.ps.missed,
937 (unsigned long long)stat.ps.total,
938 iolat->rq_depth.max_depth);
941 static size_t iolatency_pd_stat(struct blkg_policy_data *pd, char *buf,
942 size_t size)
944 struct iolatency_grp *iolat = pd_to_lat(pd);
945 unsigned long long avg_lat;
946 unsigned long long cur_win;
948 if (iolat->ssd)
949 return iolatency_ssd_stat(iolat, buf, size);
951 avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
952 cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
953 if (iolat->rq_depth.max_depth == UINT_MAX)
954 return scnprintf(buf, size, " depth=max avg_lat=%llu win=%llu",
955 avg_lat, cur_win);
957 return scnprintf(buf, size, " depth=%u avg_lat=%llu win=%llu",
958 iolat->rq_depth.max_depth, avg_lat, cur_win);
962 static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp, int node)
964 struct iolatency_grp *iolat;
966 iolat = kzalloc_node(sizeof(*iolat), gfp, node);
967 if (!iolat)
968 return NULL;
969 iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
970 __alignof__(struct latency_stat), gfp);
971 if (!iolat->stats) {
972 kfree(iolat);
973 return NULL;
975 return &iolat->pd;
978 static void iolatency_pd_init(struct blkg_policy_data *pd)
980 struct iolatency_grp *iolat = pd_to_lat(pd);
981 struct blkcg_gq *blkg = lat_to_blkg(iolat);
982 struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
983 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
984 u64 now = ktime_to_ns(ktime_get());
985 int cpu;
987 if (blk_queue_nonrot(blkg->q))
988 iolat->ssd = true;
989 else
990 iolat->ssd = false;
992 for_each_possible_cpu(cpu) {
993 struct latency_stat *stat;
994 stat = per_cpu_ptr(iolat->stats, cpu);
995 latency_stat_init(iolat, stat);
998 latency_stat_init(iolat, &iolat->cur_stat);
999 rq_wait_init(&iolat->rq_wait);
1000 spin_lock_init(&iolat->child_lat.lock);
1001 iolat->rq_depth.queue_depth = blkg->q->nr_requests;
1002 iolat->rq_depth.max_depth = UINT_MAX;
1003 iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
1004 iolat->blkiolat = blkiolat;
1005 iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
1006 atomic64_set(&iolat->window_start, now);
1009 * We init things in list order, so the pd for the parent may not be
1010 * init'ed yet for whatever reason.
1012 if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
1013 struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
1014 atomic_set(&iolat->scale_cookie,
1015 atomic_read(&parent->child_lat.scale_cookie));
1016 } else {
1017 atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
1020 atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
1023 static void iolatency_pd_offline(struct blkg_policy_data *pd)
1025 struct iolatency_grp *iolat = pd_to_lat(pd);
1026 struct blkcg_gq *blkg = lat_to_blkg(iolat);
1028 iolatency_set_min_lat_nsec(blkg, 0);
1029 iolatency_clear_scaling(blkg);
1032 static void iolatency_pd_free(struct blkg_policy_data *pd)
1034 struct iolatency_grp *iolat = pd_to_lat(pd);
1035 free_percpu(iolat->stats);
1036 kfree(iolat);
1039 static struct cftype iolatency_files[] = {
1041 .name = "latency",
1042 .flags = CFTYPE_NOT_ON_ROOT,
1043 .seq_show = iolatency_print_limit,
1044 .write = iolatency_set_limit,
1049 static struct blkcg_policy blkcg_policy_iolatency = {
1050 .dfl_cftypes = iolatency_files,
1051 .pd_alloc_fn = iolatency_pd_alloc,
1052 .pd_init_fn = iolatency_pd_init,
1053 .pd_offline_fn = iolatency_pd_offline,
1054 .pd_free_fn = iolatency_pd_free,
1055 .pd_stat_fn = iolatency_pd_stat,
1058 static int __init iolatency_init(void)
1060 return blkcg_policy_register(&blkcg_policy_iolatency);
1063 static void __exit iolatency_exit(void)
1065 return blkcg_policy_unregister(&blkcg_policy_iolatency);
1068 module_init(iolatency_init);
1069 module_exit(iolatency_exit);