mm/memory_hotplug.c: fix false softlockup during pfn range removal
[linux/fpc-iii.git] / mm / memory_hotplug.c
blobda374cd3d45b31e068082e013ee55dba245181d3
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
5 * Copyright (C)
6 */
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
40 #include <asm/tlbflush.h>
42 #include "internal.h"
43 #include "shuffle.h"
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
57 void get_online_mems(void)
59 percpu_down_read(&mem_hotplug_lock);
62 void put_online_mems(void)
64 percpu_up_read(&mem_hotplug_lock);
67 bool movable_node_enabled = false;
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
75 static int __init setup_memhp_default_state(char *str)
77 const int online_type = memhp_online_type_from_str(str);
79 if (online_type >= 0)
80 memhp_default_online_type = online_type;
82 return 1;
84 __setup("memhp_default_state=", setup_memhp_default_state);
86 void mem_hotplug_begin(void)
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
92 void mem_hotplug_done(void)
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
98 u64 max_mem_size = U64_MAX;
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size,
102 const char *resource_name)
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
107 if (strcmp(resource_name, "System RAM"))
108 flags |= IORESOURCE_MEM_DRIVER_MANAGED;
111 * Make sure value parsed from 'mem=' only restricts memory adding
112 * while booting, so that memory hotplug won't be impacted. Please
113 * refer to document of 'mem=' in kernel-parameters.txt for more
114 * details.
116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 return ERR_PTR(-E2BIG);
120 * Request ownership of the new memory range. This might be
121 * a child of an existing resource that was present but
122 * not marked as busy.
124 res = __request_region(&iomem_resource, start, size,
125 resource_name, flags);
127 if (!res) {
128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 start, start + size);
130 return ERR_PTR(-EEXIST);
132 return res;
135 static void release_memory_resource(struct resource *res)
137 if (!res)
138 return;
139 release_resource(res);
140 kfree(res);
143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144 void get_page_bootmem(unsigned long info, struct page *page,
145 unsigned long type)
147 page->freelist = (void *)type;
148 SetPagePrivate(page);
149 set_page_private(page, info);
150 page_ref_inc(page);
153 void put_page_bootmem(struct page *page)
155 unsigned long type;
157 type = (unsigned long) page->freelist;
158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
161 if (page_ref_dec_return(page) == 1) {
162 page->freelist = NULL;
163 ClearPagePrivate(page);
164 set_page_private(page, 0);
165 INIT_LIST_HEAD(&page->lru);
166 free_reserved_page(page);
170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171 #ifndef CONFIG_SPARSEMEM_VMEMMAP
172 static void register_page_bootmem_info_section(unsigned long start_pfn)
174 unsigned long mapsize, section_nr, i;
175 struct mem_section *ms;
176 struct page *page, *memmap;
177 struct mem_section_usage *usage;
179 section_nr = pfn_to_section_nr(start_pfn);
180 ms = __nr_to_section(section_nr);
182 /* Get section's memmap address */
183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
186 * Get page for the memmap's phys address
187 * XXX: need more consideration for sparse_vmemmap...
189 page = virt_to_page(memmap);
190 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
193 /* remember memmap's page */
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, SECTION_INFO);
197 usage = ms->usage;
198 page = virt_to_page(usage);
200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
202 for (i = 0; i < mapsize; i++, page++)
203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
206 #else /* CONFIG_SPARSEMEM_VMEMMAP */
207 static void register_page_bootmem_info_section(unsigned long start_pfn)
209 unsigned long mapsize, section_nr, i;
210 struct mem_section *ms;
211 struct page *page, *memmap;
212 struct mem_section_usage *usage;
214 section_nr = pfn_to_section_nr(start_pfn);
215 ms = __nr_to_section(section_nr);
217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
221 usage = ms->usage;
222 page = virt_to_page(usage);
224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
226 for (i = 0; i < mapsize; i++, page++)
227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
233 unsigned long i, pfn, end_pfn, nr_pages;
234 int node = pgdat->node_id;
235 struct page *page;
237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 page = virt_to_page(pgdat);
240 for (i = 0; i < nr_pages; i++, page++)
241 get_page_bootmem(node, page, NODE_INFO);
243 pfn = pgdat->node_start_pfn;
244 end_pfn = pgdat_end_pfn(pgdat);
246 /* register section info */
247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
249 * Some platforms can assign the same pfn to multiple nodes - on
250 * node0 as well as nodeN. To avoid registering a pfn against
251 * multiple nodes we check that this pfn does not already
252 * reside in some other nodes.
254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 register_page_bootmem_info_section(pfn);
258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 const char *reason)
264 * Disallow all operations smaller than a sub-section and only
265 * allow operations smaller than a section for
266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 * enforces a larger memory_block_size_bytes() granularity for
268 * memory that will be marked online, so this check should only
269 * fire for direct arch_{add,remove}_memory() users outside of
270 * add_memory_resource().
272 unsigned long min_align;
274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 min_align = PAGES_PER_SUBSECTION;
276 else
277 min_align = PAGES_PER_SECTION;
278 if (!IS_ALIGNED(pfn, min_align)
279 || !IS_ALIGNED(nr_pages, min_align)) {
280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 reason, pfn, pfn + nr_pages - 1);
282 return -EINVAL;
284 return 0;
287 static int check_hotplug_memory_addressable(unsigned long pfn,
288 unsigned long nr_pages)
290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
292 if (max_addr >> MAX_PHYSMEM_BITS) {
293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 WARN(1,
295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 return -E2BIG;
300 return 0;
304 * Reasonably generic function for adding memory. It is
305 * expected that archs that support memory hotplug will
306 * call this function after deciding the zone to which to
307 * add the new pages.
309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 struct mhp_params *params)
312 const unsigned long end_pfn = pfn + nr_pages;
313 unsigned long cur_nr_pages;
314 int err;
315 struct vmem_altmap *altmap = params->altmap;
317 if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 return -EINVAL;
320 err = check_hotplug_memory_addressable(pfn, nr_pages);
321 if (err)
322 return err;
324 if (altmap) {
326 * Validate altmap is within bounds of the total request
328 if (altmap->base_pfn != pfn
329 || vmem_altmap_offset(altmap) > nr_pages) {
330 pr_warn_once("memory add fail, invalid altmap\n");
331 return -EINVAL;
333 altmap->alloc = 0;
336 err = check_pfn_span(pfn, nr_pages, "add");
337 if (err)
338 return err;
340 for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 /* Select all remaining pages up to the next section boundary */
342 cur_nr_pages = min(end_pfn - pfn,
343 SECTION_ALIGN_UP(pfn + 1) - pfn);
344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 if (err)
346 break;
347 cond_resched();
349 vmemmap_populate_print_last();
350 return err;
353 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
354 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
355 unsigned long start_pfn,
356 unsigned long end_pfn)
358 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
359 if (unlikely(!pfn_to_online_page(start_pfn)))
360 continue;
362 if (unlikely(pfn_to_nid(start_pfn) != nid))
363 continue;
365 if (zone != page_zone(pfn_to_page(start_pfn)))
366 continue;
368 return start_pfn;
371 return 0;
374 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
375 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
376 unsigned long start_pfn,
377 unsigned long end_pfn)
379 unsigned long pfn;
381 /* pfn is the end pfn of a memory section. */
382 pfn = end_pfn - 1;
383 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
384 if (unlikely(!pfn_to_online_page(pfn)))
385 continue;
387 if (unlikely(pfn_to_nid(pfn) != nid))
388 continue;
390 if (zone != page_zone(pfn_to_page(pfn)))
391 continue;
393 return pfn;
396 return 0;
399 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
400 unsigned long end_pfn)
402 unsigned long pfn;
403 int nid = zone_to_nid(zone);
405 zone_span_writelock(zone);
406 if (zone->zone_start_pfn == start_pfn) {
408 * If the section is smallest section in the zone, it need
409 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
410 * In this case, we find second smallest valid mem_section
411 * for shrinking zone.
413 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
414 zone_end_pfn(zone));
415 if (pfn) {
416 zone->spanned_pages = zone_end_pfn(zone) - pfn;
417 zone->zone_start_pfn = pfn;
418 } else {
419 zone->zone_start_pfn = 0;
420 zone->spanned_pages = 0;
422 } else if (zone_end_pfn(zone) == end_pfn) {
424 * If the section is biggest section in the zone, it need
425 * shrink zone->spanned_pages.
426 * In this case, we find second biggest valid mem_section for
427 * shrinking zone.
429 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
430 start_pfn);
431 if (pfn)
432 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
433 else {
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
438 zone_span_writeunlock(zone);
441 static void update_pgdat_span(struct pglist_data *pgdat)
443 unsigned long node_start_pfn = 0, node_end_pfn = 0;
444 struct zone *zone;
446 for (zone = pgdat->node_zones;
447 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
448 unsigned long zone_end_pfn = zone->zone_start_pfn +
449 zone->spanned_pages;
451 /* No need to lock the zones, they can't change. */
452 if (!zone->spanned_pages)
453 continue;
454 if (!node_end_pfn) {
455 node_start_pfn = zone->zone_start_pfn;
456 node_end_pfn = zone_end_pfn;
457 continue;
460 if (zone_end_pfn > node_end_pfn)
461 node_end_pfn = zone_end_pfn;
462 if (zone->zone_start_pfn < node_start_pfn)
463 node_start_pfn = zone->zone_start_pfn;
466 pgdat->node_start_pfn = node_start_pfn;
467 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
470 void __ref remove_pfn_range_from_zone(struct zone *zone,
471 unsigned long start_pfn,
472 unsigned long nr_pages)
474 const unsigned long end_pfn = start_pfn + nr_pages;
475 struct pglist_data *pgdat = zone->zone_pgdat;
476 unsigned long pfn, cur_nr_pages, flags;
478 /* Poison struct pages because they are now uninitialized again. */
479 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
480 cond_resched();
482 /* Select all remaining pages up to the next section boundary */
483 cur_nr_pages =
484 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
485 page_init_poison(pfn_to_page(pfn),
486 sizeof(struct page) * cur_nr_pages);
489 #ifdef CONFIG_ZONE_DEVICE
491 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
492 * we will not try to shrink the zones - which is okay as
493 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
495 if (zone_idx(zone) == ZONE_DEVICE)
496 return;
497 #endif
499 clear_zone_contiguous(zone);
501 pgdat_resize_lock(zone->zone_pgdat, &flags);
502 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
503 update_pgdat_span(pgdat);
504 pgdat_resize_unlock(zone->zone_pgdat, &flags);
506 set_zone_contiguous(zone);
509 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
510 unsigned long map_offset,
511 struct vmem_altmap *altmap)
513 struct mem_section *ms = __pfn_to_section(pfn);
515 if (WARN_ON_ONCE(!valid_section(ms)))
516 return;
518 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
522 * __remove_pages() - remove sections of pages
523 * @pfn: starting pageframe (must be aligned to start of a section)
524 * @nr_pages: number of pages to remove (must be multiple of section size)
525 * @altmap: alternative device page map or %NULL if default memmap is used
527 * Generic helper function to remove section mappings and sysfs entries
528 * for the section of the memory we are removing. Caller needs to make
529 * sure that pages are marked reserved and zones are adjust properly by
530 * calling offline_pages().
532 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
533 struct vmem_altmap *altmap)
535 const unsigned long end_pfn = pfn + nr_pages;
536 unsigned long cur_nr_pages;
537 unsigned long map_offset = 0;
539 map_offset = vmem_altmap_offset(altmap);
541 if (check_pfn_span(pfn, nr_pages, "remove"))
542 return;
544 for (; pfn < end_pfn; pfn += cur_nr_pages) {
545 cond_resched();
546 /* Select all remaining pages up to the next section boundary */
547 cur_nr_pages = min(end_pfn - pfn,
548 SECTION_ALIGN_UP(pfn + 1) - pfn);
549 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
550 map_offset = 0;
554 int set_online_page_callback(online_page_callback_t callback)
556 int rc = -EINVAL;
558 get_online_mems();
559 mutex_lock(&online_page_callback_lock);
561 if (online_page_callback == generic_online_page) {
562 online_page_callback = callback;
563 rc = 0;
566 mutex_unlock(&online_page_callback_lock);
567 put_online_mems();
569 return rc;
571 EXPORT_SYMBOL_GPL(set_online_page_callback);
573 int restore_online_page_callback(online_page_callback_t callback)
575 int rc = -EINVAL;
577 get_online_mems();
578 mutex_lock(&online_page_callback_lock);
580 if (online_page_callback == callback) {
581 online_page_callback = generic_online_page;
582 rc = 0;
585 mutex_unlock(&online_page_callback_lock);
586 put_online_mems();
588 return rc;
590 EXPORT_SYMBOL_GPL(restore_online_page_callback);
592 void generic_online_page(struct page *page, unsigned int order)
595 * Freeing the page with debug_pagealloc enabled will try to unmap it,
596 * so we should map it first. This is better than introducing a special
597 * case in page freeing fast path.
599 if (debug_pagealloc_enabled_static())
600 kernel_map_pages(page, 1 << order, 1);
601 __free_pages_core(page, order);
602 totalram_pages_add(1UL << order);
603 #ifdef CONFIG_HIGHMEM
604 if (PageHighMem(page))
605 totalhigh_pages_add(1UL << order);
606 #endif
608 EXPORT_SYMBOL_GPL(generic_online_page);
610 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
611 void *arg)
613 const unsigned long end_pfn = start_pfn + nr_pages;
614 unsigned long pfn;
615 int order;
618 * Online the pages. The callback might decide to keep some pages
619 * PG_reserved (to add them to the buddy later), but we still account
620 * them as being online/belonging to this zone ("present").
622 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
623 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
624 /* __free_pages_core() wants pfns to be aligned to the order */
625 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
626 order = 0;
627 (*online_page_callback)(pfn_to_page(pfn), order);
630 /* mark all involved sections as online */
631 online_mem_sections(start_pfn, end_pfn);
633 *(unsigned long *)arg += nr_pages;
634 return 0;
637 /* check which state of node_states will be changed when online memory */
638 static void node_states_check_changes_online(unsigned long nr_pages,
639 struct zone *zone, struct memory_notify *arg)
641 int nid = zone_to_nid(zone);
643 arg->status_change_nid = NUMA_NO_NODE;
644 arg->status_change_nid_normal = NUMA_NO_NODE;
645 arg->status_change_nid_high = NUMA_NO_NODE;
647 if (!node_state(nid, N_MEMORY))
648 arg->status_change_nid = nid;
649 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
650 arg->status_change_nid_normal = nid;
651 #ifdef CONFIG_HIGHMEM
652 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
653 arg->status_change_nid_high = nid;
654 #endif
657 static void node_states_set_node(int node, struct memory_notify *arg)
659 if (arg->status_change_nid_normal >= 0)
660 node_set_state(node, N_NORMAL_MEMORY);
662 if (arg->status_change_nid_high >= 0)
663 node_set_state(node, N_HIGH_MEMORY);
665 if (arg->status_change_nid >= 0)
666 node_set_state(node, N_MEMORY);
669 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
670 unsigned long nr_pages)
672 unsigned long old_end_pfn = zone_end_pfn(zone);
674 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
675 zone->zone_start_pfn = start_pfn;
677 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
680 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
681 unsigned long nr_pages)
683 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
685 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
686 pgdat->node_start_pfn = start_pfn;
688 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
692 * Associate the pfn range with the given zone, initializing the memmaps
693 * and resizing the pgdat/zone data to span the added pages. After this
694 * call, all affected pages are PG_reserved.
696 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
697 unsigned long nr_pages, struct vmem_altmap *altmap)
699 struct pglist_data *pgdat = zone->zone_pgdat;
700 int nid = pgdat->node_id;
701 unsigned long flags;
703 clear_zone_contiguous(zone);
705 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
706 pgdat_resize_lock(pgdat, &flags);
707 zone_span_writelock(zone);
708 if (zone_is_empty(zone))
709 init_currently_empty_zone(zone, start_pfn, nr_pages);
710 resize_zone_range(zone, start_pfn, nr_pages);
711 zone_span_writeunlock(zone);
712 resize_pgdat_range(pgdat, start_pfn, nr_pages);
713 pgdat_resize_unlock(pgdat, &flags);
716 * TODO now we have a visible range of pages which are not associated
717 * with their zone properly. Not nice but set_pfnblock_flags_mask
718 * expects the zone spans the pfn range. All the pages in the range
719 * are reserved so nobody should be touching them so we should be safe
721 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
722 MEMMAP_HOTPLUG, altmap);
724 set_zone_contiguous(zone);
728 * Returns a default kernel memory zone for the given pfn range.
729 * If no kernel zone covers this pfn range it will automatically go
730 * to the ZONE_NORMAL.
732 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
733 unsigned long nr_pages)
735 struct pglist_data *pgdat = NODE_DATA(nid);
736 int zid;
738 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
739 struct zone *zone = &pgdat->node_zones[zid];
741 if (zone_intersects(zone, start_pfn, nr_pages))
742 return zone;
745 return &pgdat->node_zones[ZONE_NORMAL];
748 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
749 unsigned long nr_pages)
751 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
752 nr_pages);
753 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
754 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
755 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
758 * We inherit the existing zone in a simple case where zones do not
759 * overlap in the given range
761 if (in_kernel ^ in_movable)
762 return (in_kernel) ? kernel_zone : movable_zone;
765 * If the range doesn't belong to any zone or two zones overlap in the
766 * given range then we use movable zone only if movable_node is
767 * enabled because we always online to a kernel zone by default.
769 return movable_node_enabled ? movable_zone : kernel_zone;
772 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
773 unsigned long nr_pages)
775 if (online_type == MMOP_ONLINE_KERNEL)
776 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
778 if (online_type == MMOP_ONLINE_MOVABLE)
779 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
781 return default_zone_for_pfn(nid, start_pfn, nr_pages);
784 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
785 int online_type, int nid)
787 unsigned long flags;
788 unsigned long onlined_pages = 0;
789 struct zone *zone;
790 int need_zonelists_rebuild = 0;
791 int ret;
792 struct memory_notify arg;
794 mem_hotplug_begin();
796 /* associate pfn range with the zone */
797 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
798 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
800 arg.start_pfn = pfn;
801 arg.nr_pages = nr_pages;
802 node_states_check_changes_online(nr_pages, zone, &arg);
804 ret = memory_notify(MEM_GOING_ONLINE, &arg);
805 ret = notifier_to_errno(ret);
806 if (ret)
807 goto failed_addition;
810 * If this zone is not populated, then it is not in zonelist.
811 * This means the page allocator ignores this zone.
812 * So, zonelist must be updated after online.
814 if (!populated_zone(zone)) {
815 need_zonelists_rebuild = 1;
816 setup_zone_pageset(zone);
819 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
820 online_pages_range);
821 if (ret) {
822 /* not a single memory resource was applicable */
823 if (need_zonelists_rebuild)
824 zone_pcp_reset(zone);
825 goto failed_addition;
828 zone->present_pages += onlined_pages;
830 pgdat_resize_lock(zone->zone_pgdat, &flags);
831 zone->zone_pgdat->node_present_pages += onlined_pages;
832 pgdat_resize_unlock(zone->zone_pgdat, &flags);
834 shuffle_zone(zone);
836 node_states_set_node(nid, &arg);
837 if (need_zonelists_rebuild)
838 build_all_zonelists(NULL);
839 else
840 zone_pcp_update(zone);
842 init_per_zone_wmark_min();
844 kswapd_run(nid);
845 kcompactd_run(nid);
847 vm_total_pages = nr_free_pagecache_pages();
849 writeback_set_ratelimit();
851 memory_notify(MEM_ONLINE, &arg);
852 mem_hotplug_done();
853 return 0;
855 failed_addition:
856 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
857 (unsigned long long) pfn << PAGE_SHIFT,
858 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
859 memory_notify(MEM_CANCEL_ONLINE, &arg);
860 remove_pfn_range_from_zone(zone, pfn, nr_pages);
861 mem_hotplug_done();
862 return ret;
864 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
866 static void reset_node_present_pages(pg_data_t *pgdat)
868 struct zone *z;
870 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
871 z->present_pages = 0;
873 pgdat->node_present_pages = 0;
876 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
877 static pg_data_t __ref *hotadd_new_pgdat(int nid)
879 struct pglist_data *pgdat;
881 pgdat = NODE_DATA(nid);
882 if (!pgdat) {
883 pgdat = arch_alloc_nodedata(nid);
884 if (!pgdat)
885 return NULL;
887 pgdat->per_cpu_nodestats =
888 alloc_percpu(struct per_cpu_nodestat);
889 arch_refresh_nodedata(nid, pgdat);
890 } else {
891 int cpu;
893 * Reset the nr_zones, order and highest_zoneidx before reuse.
894 * Note that kswapd will init kswapd_highest_zoneidx properly
895 * when it starts in the near future.
897 pgdat->nr_zones = 0;
898 pgdat->kswapd_order = 0;
899 pgdat->kswapd_highest_zoneidx = 0;
900 for_each_online_cpu(cpu) {
901 struct per_cpu_nodestat *p;
903 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
904 memset(p, 0, sizeof(*p));
908 /* we can use NODE_DATA(nid) from here */
909 pgdat->node_id = nid;
910 pgdat->node_start_pfn = 0;
912 /* init node's zones as empty zones, we don't have any present pages.*/
913 free_area_init_core_hotplug(nid);
916 * The node we allocated has no zone fallback lists. For avoiding
917 * to access not-initialized zonelist, build here.
919 build_all_zonelists(pgdat);
922 * When memory is hot-added, all the memory is in offline state. So
923 * clear all zones' present_pages because they will be updated in
924 * online_pages() and offline_pages().
926 reset_node_managed_pages(pgdat);
927 reset_node_present_pages(pgdat);
929 return pgdat;
932 static void rollback_node_hotadd(int nid)
934 pg_data_t *pgdat = NODE_DATA(nid);
936 arch_refresh_nodedata(nid, NULL);
937 free_percpu(pgdat->per_cpu_nodestats);
938 arch_free_nodedata(pgdat);
943 * try_online_node - online a node if offlined
944 * @nid: the node ID
945 * @set_node_online: Whether we want to online the node
946 * called by cpu_up() to online a node without onlined memory.
948 * Returns:
949 * 1 -> a new node has been allocated
950 * 0 -> the node is already online
951 * -ENOMEM -> the node could not be allocated
953 static int __try_online_node(int nid, bool set_node_online)
955 pg_data_t *pgdat;
956 int ret = 1;
958 if (node_online(nid))
959 return 0;
961 pgdat = hotadd_new_pgdat(nid);
962 if (!pgdat) {
963 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
964 ret = -ENOMEM;
965 goto out;
968 if (set_node_online) {
969 node_set_online(nid);
970 ret = register_one_node(nid);
971 BUG_ON(ret);
973 out:
974 return ret;
978 * Users of this function always want to online/register the node
980 int try_online_node(int nid)
982 int ret;
984 mem_hotplug_begin();
985 ret = __try_online_node(nid, true);
986 mem_hotplug_done();
987 return ret;
990 static int check_hotplug_memory_range(u64 start, u64 size)
992 /* memory range must be block size aligned */
993 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
994 !IS_ALIGNED(size, memory_block_size_bytes())) {
995 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
996 memory_block_size_bytes(), start, size);
997 return -EINVAL;
1000 return 0;
1003 static int online_memory_block(struct memory_block *mem, void *arg)
1005 mem->online_type = memhp_default_online_type;
1006 return device_online(&mem->dev);
1010 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1011 * and online/offline operations (triggered e.g. by sysfs).
1013 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1015 int __ref add_memory_resource(int nid, struct resource *res)
1017 struct mhp_params params = { .pgprot = PAGE_KERNEL };
1018 u64 start, size;
1019 bool new_node = false;
1020 int ret;
1022 start = res->start;
1023 size = resource_size(res);
1025 ret = check_hotplug_memory_range(start, size);
1026 if (ret)
1027 return ret;
1029 if (!node_possible(nid)) {
1030 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1031 return -EINVAL;
1034 mem_hotplug_begin();
1036 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1037 memblock_add_node(start, size, nid);
1039 ret = __try_online_node(nid, false);
1040 if (ret < 0)
1041 goto error;
1042 new_node = ret;
1044 /* call arch's memory hotadd */
1045 ret = arch_add_memory(nid, start, size, &params);
1046 if (ret < 0)
1047 goto error;
1049 /* create memory block devices after memory was added */
1050 ret = create_memory_block_devices(start, size);
1051 if (ret) {
1052 arch_remove_memory(nid, start, size, NULL);
1053 goto error;
1056 if (new_node) {
1057 /* If sysfs file of new node can't be created, cpu on the node
1058 * can't be hot-added. There is no rollback way now.
1059 * So, check by BUG_ON() to catch it reluctantly..
1060 * We online node here. We can't roll back from here.
1062 node_set_online(nid);
1063 ret = __register_one_node(nid);
1064 BUG_ON(ret);
1067 /* link memory sections under this node.*/
1068 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1069 BUG_ON(ret);
1071 /* create new memmap entry */
1072 if (!strcmp(res->name, "System RAM"))
1073 firmware_map_add_hotplug(start, start + size, "System RAM");
1075 /* device_online() will take the lock when calling online_pages() */
1076 mem_hotplug_done();
1078 /* online pages if requested */
1079 if (memhp_default_online_type != MMOP_OFFLINE)
1080 walk_memory_blocks(start, size, NULL, online_memory_block);
1082 return ret;
1083 error:
1084 /* rollback pgdat allocation and others */
1085 if (new_node)
1086 rollback_node_hotadd(nid);
1087 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1088 memblock_remove(start, size);
1089 mem_hotplug_done();
1090 return ret;
1093 /* requires device_hotplug_lock, see add_memory_resource() */
1094 int __ref __add_memory(int nid, u64 start, u64 size)
1096 struct resource *res;
1097 int ret;
1099 res = register_memory_resource(start, size, "System RAM");
1100 if (IS_ERR(res))
1101 return PTR_ERR(res);
1103 ret = add_memory_resource(nid, res);
1104 if (ret < 0)
1105 release_memory_resource(res);
1106 return ret;
1109 int add_memory(int nid, u64 start, u64 size)
1111 int rc;
1113 lock_device_hotplug();
1114 rc = __add_memory(nid, start, size);
1115 unlock_device_hotplug();
1117 return rc;
1119 EXPORT_SYMBOL_GPL(add_memory);
1122 * Add special, driver-managed memory to the system as system RAM. Such
1123 * memory is not exposed via the raw firmware-provided memmap as system
1124 * RAM, instead, it is detected and added by a driver - during cold boot,
1125 * after a reboot, and after kexec.
1127 * Reasons why this memory should not be used for the initial memmap of a
1128 * kexec kernel or for placing kexec images:
1129 * - The booting kernel is in charge of determining how this memory will be
1130 * used (e.g., use persistent memory as system RAM)
1131 * - Coordination with a hypervisor is required before this memory
1132 * can be used (e.g., inaccessible parts).
1134 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1135 * memory map") are created. Also, the created memory resource is flagged
1136 * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case
1137 * this memory as well (esp., not place kexec images onto it).
1139 * The resource_name (visible via /proc/iomem) has to have the format
1140 * "System RAM ($DRIVER)".
1142 int add_memory_driver_managed(int nid, u64 start, u64 size,
1143 const char *resource_name)
1145 struct resource *res;
1146 int rc;
1148 if (!resource_name ||
1149 strstr(resource_name, "System RAM (") != resource_name ||
1150 resource_name[strlen(resource_name) - 1] != ')')
1151 return -EINVAL;
1153 lock_device_hotplug();
1155 res = register_memory_resource(start, size, resource_name);
1156 if (IS_ERR(res)) {
1157 rc = PTR_ERR(res);
1158 goto out_unlock;
1161 rc = add_memory_resource(nid, res);
1162 if (rc < 0)
1163 release_memory_resource(res);
1165 out_unlock:
1166 unlock_device_hotplug();
1167 return rc;
1169 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1171 #ifdef CONFIG_MEMORY_HOTREMOVE
1173 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1174 * memory holes). When true, return the zone.
1176 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1177 unsigned long end_pfn)
1179 unsigned long pfn, sec_end_pfn;
1180 struct zone *zone = NULL;
1181 struct page *page;
1182 int i;
1183 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1184 pfn < end_pfn;
1185 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1186 /* Make sure the memory section is present first */
1187 if (!present_section_nr(pfn_to_section_nr(pfn)))
1188 continue;
1189 for (; pfn < sec_end_pfn && pfn < end_pfn;
1190 pfn += MAX_ORDER_NR_PAGES) {
1191 i = 0;
1192 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1193 while ((i < MAX_ORDER_NR_PAGES) &&
1194 !pfn_valid_within(pfn + i))
1195 i++;
1196 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1197 continue;
1198 /* Check if we got outside of the zone */
1199 if (zone && !zone_spans_pfn(zone, pfn + i))
1200 return NULL;
1201 page = pfn_to_page(pfn + i);
1202 if (zone && page_zone(page) != zone)
1203 return NULL;
1204 zone = page_zone(page);
1208 return zone;
1212 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1213 * non-lru movable pages and hugepages). Will skip over most unmovable
1214 * pages (esp., pages that can be skipped when offlining), but bail out on
1215 * definitely unmovable pages.
1217 * Returns:
1218 * 0 in case a movable page is found and movable_pfn was updated.
1219 * -ENOENT in case no movable page was found.
1220 * -EBUSY in case a definitely unmovable page was found.
1222 static int scan_movable_pages(unsigned long start, unsigned long end,
1223 unsigned long *movable_pfn)
1225 unsigned long pfn;
1227 for (pfn = start; pfn < end; pfn++) {
1228 struct page *page, *head;
1229 unsigned long skip;
1231 if (!pfn_valid(pfn))
1232 continue;
1233 page = pfn_to_page(pfn);
1234 if (PageLRU(page))
1235 goto found;
1236 if (__PageMovable(page))
1237 goto found;
1240 * PageOffline() pages that are not marked __PageMovable() and
1241 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1242 * definitely unmovable. If their reference count would be 0,
1243 * they could at least be skipped when offlining memory.
1245 if (PageOffline(page) && page_count(page))
1246 return -EBUSY;
1248 if (!PageHuge(page))
1249 continue;
1250 head = compound_head(page);
1251 if (page_huge_active(head))
1252 goto found;
1253 skip = compound_nr(head) - (page - head);
1254 pfn += skip - 1;
1256 return -ENOENT;
1257 found:
1258 *movable_pfn = pfn;
1259 return 0;
1262 static struct page *new_node_page(struct page *page, unsigned long private)
1264 int nid = page_to_nid(page);
1265 nodemask_t nmask = node_states[N_MEMORY];
1268 * try to allocate from a different node but reuse this node if there
1269 * are no other online nodes to be used (e.g. we are offlining a part
1270 * of the only existing node)
1272 node_clear(nid, nmask);
1273 if (nodes_empty(nmask))
1274 node_set(nid, nmask);
1276 return new_page_nodemask(page, nid, &nmask);
1279 static int
1280 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1282 unsigned long pfn;
1283 struct page *page;
1284 int ret = 0;
1285 LIST_HEAD(source);
1287 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1288 if (!pfn_valid(pfn))
1289 continue;
1290 page = pfn_to_page(pfn);
1292 if (PageHuge(page)) {
1293 struct page *head = compound_head(page);
1294 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1295 isolate_huge_page(head, &source);
1296 continue;
1297 } else if (PageTransHuge(page))
1298 pfn = page_to_pfn(compound_head(page))
1299 + hpage_nr_pages(page) - 1;
1302 * HWPoison pages have elevated reference counts so the migration would
1303 * fail on them. It also doesn't make any sense to migrate them in the
1304 * first place. Still try to unmap such a page in case it is still mapped
1305 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1306 * the unmap as the catch all safety net).
1308 if (PageHWPoison(page)) {
1309 if (WARN_ON(PageLRU(page)))
1310 isolate_lru_page(page);
1311 if (page_mapped(page))
1312 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1313 continue;
1316 if (!get_page_unless_zero(page))
1317 continue;
1319 * We can skip free pages. And we can deal with pages on
1320 * LRU and non-lru movable pages.
1322 if (PageLRU(page))
1323 ret = isolate_lru_page(page);
1324 else
1325 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1326 if (!ret) { /* Success */
1327 list_add_tail(&page->lru, &source);
1328 if (!__PageMovable(page))
1329 inc_node_page_state(page, NR_ISOLATED_ANON +
1330 page_is_file_lru(page));
1332 } else {
1333 pr_warn("failed to isolate pfn %lx\n", pfn);
1334 dump_page(page, "isolation failed");
1336 put_page(page);
1338 if (!list_empty(&source)) {
1339 /* Allocate a new page from the nearest neighbor node */
1340 ret = migrate_pages(&source, new_node_page, NULL, 0,
1341 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1342 if (ret) {
1343 list_for_each_entry(page, &source, lru) {
1344 pr_warn("migrating pfn %lx failed ret:%d ",
1345 page_to_pfn(page), ret);
1346 dump_page(page, "migration failure");
1348 putback_movable_pages(&source);
1352 return ret;
1355 /* Mark all sections offline and remove all free pages from the buddy. */
1356 static int
1357 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1358 void *data)
1360 unsigned long *offlined_pages = (unsigned long *)data;
1362 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1363 return 0;
1367 * Check all pages in range, recorded as memory resource, are isolated.
1369 static int
1370 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1371 void *data)
1373 return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1374 MEMORY_OFFLINE);
1377 static int __init cmdline_parse_movable_node(char *p)
1379 movable_node_enabled = true;
1380 return 0;
1382 early_param("movable_node", cmdline_parse_movable_node);
1384 /* check which state of node_states will be changed when offline memory */
1385 static void node_states_check_changes_offline(unsigned long nr_pages,
1386 struct zone *zone, struct memory_notify *arg)
1388 struct pglist_data *pgdat = zone->zone_pgdat;
1389 unsigned long present_pages = 0;
1390 enum zone_type zt;
1392 arg->status_change_nid = NUMA_NO_NODE;
1393 arg->status_change_nid_normal = NUMA_NO_NODE;
1394 arg->status_change_nid_high = NUMA_NO_NODE;
1397 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1398 * If the memory to be offline is within the range
1399 * [0..ZONE_NORMAL], and it is the last present memory there,
1400 * the zones in that range will become empty after the offlining,
1401 * thus we can determine that we need to clear the node from
1402 * node_states[N_NORMAL_MEMORY].
1404 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1405 present_pages += pgdat->node_zones[zt].present_pages;
1406 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1407 arg->status_change_nid_normal = zone_to_nid(zone);
1409 #ifdef CONFIG_HIGHMEM
1411 * node_states[N_HIGH_MEMORY] contains nodes which
1412 * have normal memory or high memory.
1413 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1414 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1415 * we determine that the zones in that range become empty,
1416 * we need to clear the node for N_HIGH_MEMORY.
1418 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1419 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1420 arg->status_change_nid_high = zone_to_nid(zone);
1421 #endif
1424 * We have accounted the pages from [0..ZONE_NORMAL), and
1425 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1426 * as well.
1427 * Here we count the possible pages from ZONE_MOVABLE.
1428 * If after having accounted all the pages, we see that the nr_pages
1429 * to be offlined is over or equal to the accounted pages,
1430 * we know that the node will become empty, and so, we can clear
1431 * it for N_MEMORY as well.
1433 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1435 if (nr_pages >= present_pages)
1436 arg->status_change_nid = zone_to_nid(zone);
1439 static void node_states_clear_node(int node, struct memory_notify *arg)
1441 if (arg->status_change_nid_normal >= 0)
1442 node_clear_state(node, N_NORMAL_MEMORY);
1444 if (arg->status_change_nid_high >= 0)
1445 node_clear_state(node, N_HIGH_MEMORY);
1447 if (arg->status_change_nid >= 0)
1448 node_clear_state(node, N_MEMORY);
1451 static int count_system_ram_pages_cb(unsigned long start_pfn,
1452 unsigned long nr_pages, void *data)
1454 unsigned long *nr_system_ram_pages = data;
1456 *nr_system_ram_pages += nr_pages;
1457 return 0;
1460 static int __ref __offline_pages(unsigned long start_pfn,
1461 unsigned long end_pfn)
1463 unsigned long pfn, nr_pages = 0;
1464 unsigned long offlined_pages = 0;
1465 int ret, node, nr_isolate_pageblock;
1466 unsigned long flags;
1467 struct zone *zone;
1468 struct memory_notify arg;
1469 char *reason;
1471 mem_hotplug_begin();
1474 * Don't allow to offline memory blocks that contain holes.
1475 * Consequently, memory blocks with holes can never get onlined
1476 * via the hotplug path - online_pages() - as hotplugged memory has
1477 * no holes. This way, we e.g., don't have to worry about marking
1478 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1479 * avoid using walk_system_ram_range() later.
1481 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1482 count_system_ram_pages_cb);
1483 if (nr_pages != end_pfn - start_pfn) {
1484 ret = -EINVAL;
1485 reason = "memory holes";
1486 goto failed_removal;
1489 /* This makes hotplug much easier...and readable.
1490 we assume this for now. .*/
1491 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1492 if (!zone) {
1493 ret = -EINVAL;
1494 reason = "multizone range";
1495 goto failed_removal;
1497 node = zone_to_nid(zone);
1499 /* set above range as isolated */
1500 ret = start_isolate_page_range(start_pfn, end_pfn,
1501 MIGRATE_MOVABLE,
1502 MEMORY_OFFLINE | REPORT_FAILURE);
1503 if (ret < 0) {
1504 reason = "failure to isolate range";
1505 goto failed_removal;
1507 nr_isolate_pageblock = ret;
1509 arg.start_pfn = start_pfn;
1510 arg.nr_pages = nr_pages;
1511 node_states_check_changes_offline(nr_pages, zone, &arg);
1513 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1514 ret = notifier_to_errno(ret);
1515 if (ret) {
1516 reason = "notifier failure";
1517 goto failed_removal_isolated;
1520 do {
1521 pfn = start_pfn;
1522 do {
1523 if (signal_pending(current)) {
1524 ret = -EINTR;
1525 reason = "signal backoff";
1526 goto failed_removal_isolated;
1529 cond_resched();
1530 lru_add_drain_all();
1532 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1533 if (!ret) {
1535 * TODO: fatal migration failures should bail
1536 * out
1538 do_migrate_range(pfn, end_pfn);
1540 } while (!ret);
1542 if (ret != -ENOENT) {
1543 reason = "unmovable page";
1544 goto failed_removal_isolated;
1548 * Dissolve free hugepages in the memory block before doing
1549 * offlining actually in order to make hugetlbfs's object
1550 * counting consistent.
1552 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1553 if (ret) {
1554 reason = "failure to dissolve huge pages";
1555 goto failed_removal_isolated;
1557 /* check again */
1558 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1559 NULL, check_pages_isolated_cb);
1560 } while (ret);
1562 /* Ok, all of our target is isolated.
1563 We cannot do rollback at this point. */
1564 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1565 &offlined_pages, offline_isolated_pages_cb);
1566 pr_info("Offlined Pages %ld\n", offlined_pages);
1568 * Onlining will reset pagetype flags and makes migrate type
1569 * MOVABLE, so just need to decrease the number of isolated
1570 * pageblocks zone counter here.
1572 spin_lock_irqsave(&zone->lock, flags);
1573 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1574 spin_unlock_irqrestore(&zone->lock, flags);
1576 /* removal success */
1577 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1578 zone->present_pages -= offlined_pages;
1580 pgdat_resize_lock(zone->zone_pgdat, &flags);
1581 zone->zone_pgdat->node_present_pages -= offlined_pages;
1582 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1584 init_per_zone_wmark_min();
1586 if (!populated_zone(zone)) {
1587 zone_pcp_reset(zone);
1588 build_all_zonelists(NULL);
1589 } else
1590 zone_pcp_update(zone);
1592 node_states_clear_node(node, &arg);
1593 if (arg.status_change_nid >= 0) {
1594 kswapd_stop(node);
1595 kcompactd_stop(node);
1598 vm_total_pages = nr_free_pagecache_pages();
1599 writeback_set_ratelimit();
1601 memory_notify(MEM_OFFLINE, &arg);
1602 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1603 mem_hotplug_done();
1604 return 0;
1606 failed_removal_isolated:
1607 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1608 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1609 failed_removal:
1610 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1611 (unsigned long long) start_pfn << PAGE_SHIFT,
1612 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1613 reason);
1614 /* pushback to free area */
1615 mem_hotplug_done();
1616 return ret;
1619 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1621 return __offline_pages(start_pfn, start_pfn + nr_pages);
1624 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1626 int ret = !is_memblock_offlined(mem);
1628 if (unlikely(ret)) {
1629 phys_addr_t beginpa, endpa;
1631 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1632 endpa = beginpa + memory_block_size_bytes() - 1;
1633 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1634 &beginpa, &endpa);
1636 return -EBUSY;
1638 return 0;
1641 static int check_cpu_on_node(pg_data_t *pgdat)
1643 int cpu;
1645 for_each_present_cpu(cpu) {
1646 if (cpu_to_node(cpu) == pgdat->node_id)
1648 * the cpu on this node isn't removed, and we can't
1649 * offline this node.
1651 return -EBUSY;
1654 return 0;
1657 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1659 int nid = *(int *)arg;
1662 * If a memory block belongs to multiple nodes, the stored nid is not
1663 * reliable. However, such blocks are always online (e.g., cannot get
1664 * offlined) and, therefore, are still spanned by the node.
1666 return mem->nid == nid ? -EEXIST : 0;
1670 * try_offline_node
1671 * @nid: the node ID
1673 * Offline a node if all memory sections and cpus of the node are removed.
1675 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1676 * and online/offline operations before this call.
1678 void try_offline_node(int nid)
1680 pg_data_t *pgdat = NODE_DATA(nid);
1681 int rc;
1684 * If the node still spans pages (especially ZONE_DEVICE), don't
1685 * offline it. A node spans memory after move_pfn_range_to_zone(),
1686 * e.g., after the memory block was onlined.
1688 if (pgdat->node_spanned_pages)
1689 return;
1692 * Especially offline memory blocks might not be spanned by the
1693 * node. They will get spanned by the node once they get onlined.
1694 * However, they link to the node in sysfs and can get onlined later.
1696 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1697 if (rc)
1698 return;
1700 if (check_cpu_on_node(pgdat))
1701 return;
1704 * all memory/cpu of this node are removed, we can offline this
1705 * node now.
1707 node_set_offline(nid);
1708 unregister_one_node(nid);
1710 EXPORT_SYMBOL(try_offline_node);
1712 static void __release_memory_resource(resource_size_t start,
1713 resource_size_t size)
1715 int ret;
1718 * When removing memory in the same granularity as it was added,
1719 * this function never fails. It might only fail if resources
1720 * have to be adjusted or split. We'll ignore the error, as
1721 * removing of memory cannot fail.
1723 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1724 if (ret) {
1725 resource_size_t endres = start + size - 1;
1727 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1728 &start, &endres, ret);
1732 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1734 int rc = 0;
1736 BUG_ON(check_hotplug_memory_range(start, size));
1739 * All memory blocks must be offlined before removing memory. Check
1740 * whether all memory blocks in question are offline and return error
1741 * if this is not the case.
1743 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1744 if (rc)
1745 goto done;
1747 /* remove memmap entry */
1748 firmware_map_remove(start, start + size, "System RAM");
1751 * Memory block device removal under the device_hotplug_lock is
1752 * a barrier against racing online attempts.
1754 remove_memory_block_devices(start, size);
1756 mem_hotplug_begin();
1758 arch_remove_memory(nid, start, size, NULL);
1760 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1761 memblock_free(start, size);
1762 memblock_remove(start, size);
1765 __release_memory_resource(start, size);
1767 try_offline_node(nid);
1769 done:
1770 mem_hotplug_done();
1771 return rc;
1775 * remove_memory
1776 * @nid: the node ID
1777 * @start: physical address of the region to remove
1778 * @size: size of the region to remove
1780 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1781 * and online/offline operations before this call, as required by
1782 * try_offline_node().
1784 void __remove_memory(int nid, u64 start, u64 size)
1788 * trigger BUG() if some memory is not offlined prior to calling this
1789 * function
1791 if (try_remove_memory(nid, start, size))
1792 BUG();
1796 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1797 * some memory is not offline
1799 int remove_memory(int nid, u64 start, u64 size)
1801 int rc;
1803 lock_device_hotplug();
1804 rc = try_remove_memory(nid, start, size);
1805 unlock_device_hotplug();
1807 return rc;
1809 EXPORT_SYMBOL_GPL(remove_memory);
1812 * Try to offline and remove a memory block. Might take a long time to
1813 * finish in case memory is still in use. Primarily useful for memory devices
1814 * that logically unplugged all memory (so it's no longer in use) and want to
1815 * offline + remove the memory block.
1817 int offline_and_remove_memory(int nid, u64 start, u64 size)
1819 struct memory_block *mem;
1820 int rc = -EINVAL;
1822 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1823 size != memory_block_size_bytes())
1824 return rc;
1826 lock_device_hotplug();
1827 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1828 if (mem)
1829 rc = device_offline(&mem->dev);
1830 /* Ignore if the device is already offline. */
1831 if (rc > 0)
1832 rc = 0;
1835 * In case we succeeded to offline the memory block, remove it.
1836 * This cannot fail as it cannot get onlined in the meantime.
1838 if (!rc) {
1839 rc = try_remove_memory(nid, start, size);
1840 WARN_ON_ONCE(rc);
1842 unlock_device_hotplug();
1844 return rc;
1846 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1847 #endif /* CONFIG_MEMORY_HOTREMOVE */