2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pnp.h>
32 #include <linux/interrupt.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <media/rc-core.h>
36 #include <linux/pci_ids.h>
38 #include "nuvoton-cir.h"
40 /* write val to config reg */
41 static inline void nvt_cr_write(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
43 outb(reg
, nvt
->cr_efir
);
44 outb(val
, nvt
->cr_efdr
);
47 /* read val from config reg */
48 static inline u8
nvt_cr_read(struct nvt_dev
*nvt
, u8 reg
)
50 outb(reg
, nvt
->cr_efir
);
51 return inb(nvt
->cr_efdr
);
54 /* update config register bit without changing other bits */
55 static inline void nvt_set_reg_bit(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
57 u8 tmp
= nvt_cr_read(nvt
, reg
) | val
;
58 nvt_cr_write(nvt
, tmp
, reg
);
61 /* clear config register bit without changing other bits */
62 static inline void nvt_clear_reg_bit(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
64 u8 tmp
= nvt_cr_read(nvt
, reg
) & ~val
;
65 nvt_cr_write(nvt
, tmp
, reg
);
68 /* enter extended function mode */
69 static inline void nvt_efm_enable(struct nvt_dev
*nvt
)
71 /* Enabling Extended Function Mode explicitly requires writing 2x */
72 outb(EFER_EFM_ENABLE
, nvt
->cr_efir
);
73 outb(EFER_EFM_ENABLE
, nvt
->cr_efir
);
76 /* exit extended function mode */
77 static inline void nvt_efm_disable(struct nvt_dev
*nvt
)
79 outb(EFER_EFM_DISABLE
, nvt
->cr_efir
);
83 * When you want to address a specific logical device, write its logical
84 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
85 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
87 static inline void nvt_select_logical_dev(struct nvt_dev
*nvt
, u8 ldev
)
89 outb(CR_LOGICAL_DEV_SEL
, nvt
->cr_efir
);
90 outb(ldev
, nvt
->cr_efdr
);
93 /* write val to cir config register */
94 static inline void nvt_cir_reg_write(struct nvt_dev
*nvt
, u8 val
, u8 offset
)
96 outb(val
, nvt
->cir_addr
+ offset
);
99 /* read val from cir config register */
100 static u8
nvt_cir_reg_read(struct nvt_dev
*nvt
, u8 offset
)
104 val
= inb(nvt
->cir_addr
+ offset
);
109 /* write val to cir wake register */
110 static inline void nvt_cir_wake_reg_write(struct nvt_dev
*nvt
,
113 outb(val
, nvt
->cir_wake_addr
+ offset
);
116 /* read val from cir wake config register */
117 static u8
nvt_cir_wake_reg_read(struct nvt_dev
*nvt
, u8 offset
)
121 val
= inb(nvt
->cir_wake_addr
+ offset
);
126 #define pr_reg(text, ...) \
127 printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)
129 /* dump current cir register contents */
130 static void cir_dump_regs(struct nvt_dev
*nvt
)
133 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
135 pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME
);
136 pr_reg(" * CR CIR ACTIVE : 0x%x\n",
137 nvt_cr_read(nvt
, CR_LOGICAL_DEV_EN
));
138 pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
139 (nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8) |
140 nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
));
141 pr_reg(" * CR CIR IRQ NUM: 0x%x\n",
142 nvt_cr_read(nvt
, CR_CIR_IRQ_RSRC
));
144 nvt_efm_disable(nvt
);
146 pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME
);
147 pr_reg(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRCON
));
148 pr_reg(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRSTS
));
149 pr_reg(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IREN
));
150 pr_reg(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_RXFCONT
));
151 pr_reg(" * CP: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_CP
));
152 pr_reg(" * CC: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_CC
));
153 pr_reg(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SLCH
));
154 pr_reg(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SLCL
));
155 pr_reg(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FIFOCON
));
156 pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRFIFOSTS
));
157 pr_reg(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SRXFIFO
));
158 pr_reg(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_TXFCONT
));
159 pr_reg(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_STXFIFO
));
160 pr_reg(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FCCH
));
161 pr_reg(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FCCL
));
162 pr_reg(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRFSM
));
165 /* dump current cir wake register contents */
166 static void cir_wake_dump_regs(struct nvt_dev
*nvt
)
171 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
173 pr_reg("%s: Dump CIR WAKE logical device registers:\n",
175 pr_reg(" * CR CIR WAKE ACTIVE : 0x%x\n",
176 nvt_cr_read(nvt
, CR_LOGICAL_DEV_EN
));
177 pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
178 (nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8) |
179 nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
));
180 pr_reg(" * CR CIR WAKE IRQ NUM: 0x%x\n",
181 nvt_cr_read(nvt
, CR_CIR_IRQ_RSRC
));
183 nvt_efm_disable(nvt
);
185 pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME
);
186 pr_reg(" * IRCON: 0x%x\n",
187 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRCON
));
188 pr_reg(" * IRSTS: 0x%x\n",
189 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRSTS
));
190 pr_reg(" * IREN: 0x%x\n",
191 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IREN
));
192 pr_reg(" * FIFO CMP DEEP: 0x%x\n",
193 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_CMP_DEEP
));
194 pr_reg(" * FIFO CMP TOL: 0x%x\n",
195 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_CMP_TOL
));
196 pr_reg(" * FIFO COUNT: 0x%x\n",
197 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
));
198 pr_reg(" * SLCH: 0x%x\n",
199 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SLCH
));
200 pr_reg(" * SLCL: 0x%x\n",
201 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SLCL
));
202 pr_reg(" * FIFOCON: 0x%x\n",
203 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFOCON
));
204 pr_reg(" * SRXFSTS: 0x%x\n",
205 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SRXFSTS
));
206 pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
207 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SAMPLE_RX_FIFO
));
208 pr_reg(" * WR FIFO DATA: 0x%x\n",
209 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_WR_FIFO_DATA
));
210 pr_reg(" * RD FIFO ONLY: 0x%x\n",
211 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
));
212 pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
213 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY_IDX
));
214 pr_reg(" * FIFO IGNORE: 0x%x\n",
215 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_IGNORE
));
216 pr_reg(" * IRFSM: 0x%x\n",
217 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRFSM
));
219 fifo_len
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
);
220 pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME
, fifo_len
);
221 pr_reg("* Contents = ");
222 for (i
= 0; i
< fifo_len
; i
++)
223 printk(KERN_CONT
"%02x ",
224 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
));
225 printk(KERN_CONT
"\n");
228 /* detect hardware features */
229 static int nvt_hw_detect(struct nvt_dev
*nvt
)
232 u8 chip_major
, chip_minor
;
235 bool chip_unknown
= false;
239 /* Check if we're wired for the alternate EFER setup */
240 chip_major
= nvt_cr_read(nvt
, CR_CHIP_ID_HI
);
241 if (chip_major
== 0xff) {
242 nvt
->cr_efir
= CR_EFIR2
;
243 nvt
->cr_efdr
= CR_EFDR2
;
245 chip_major
= nvt_cr_read(nvt
, CR_CHIP_ID_HI
);
248 chip_minor
= nvt_cr_read(nvt
, CR_CHIP_ID_LO
);
250 /* these are the known working chip revisions... */
251 switch (chip_major
) {
252 case CHIP_ID_HIGH_667
:
253 strcpy(chip_id
, "w83667hg\0");
254 if (chip_minor
!= CHIP_ID_LOW_667
)
257 case CHIP_ID_HIGH_677B
:
258 strcpy(chip_id
, "w83677hg\0");
259 if (chip_minor
!= CHIP_ID_LOW_677B2
&&
260 chip_minor
!= CHIP_ID_LOW_677B3
)
263 case CHIP_ID_HIGH_677C
:
264 strcpy(chip_id
, "w83677hg-c\0");
265 if (chip_minor
!= CHIP_ID_LOW_677C
)
269 strcpy(chip_id
, "w836x7hg\0");
274 /* warn, but still let the driver load, if we don't know this chip */
276 nvt_pr(KERN_WARNING
, "%s: unknown chip, id: 0x%02x 0x%02x, "
277 "it may not work...", chip_id
, chip_major
, chip_minor
);
279 nvt_dbg("%s: chip id: 0x%02x 0x%02x",
280 chip_id
, chip_major
, chip_minor
);
282 nvt_efm_disable(nvt
);
284 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
285 nvt
->chip_major
= chip_major
;
286 nvt
->chip_minor
= chip_minor
;
287 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
292 static void nvt_cir_ldev_init(struct nvt_dev
*nvt
)
294 u8 val
, psreg
, psmask
, psval
;
296 if (nvt
->chip_major
== CHIP_ID_HIGH_667
) {
297 psreg
= CR_MULTIFUNC_PIN_SEL
;
298 psmask
= MULTIFUNC_PIN_SEL_MASK
;
299 psval
= MULTIFUNC_ENABLE_CIR
| MULTIFUNC_ENABLE_CIRWB
;
301 psreg
= CR_OUTPUT_PIN_SEL
;
302 psmask
= OUTPUT_PIN_SEL_MASK
;
303 psval
= OUTPUT_ENABLE_CIR
| OUTPUT_ENABLE_CIRWB
;
306 /* output pin selection: enable CIR, with WB sensor enabled */
307 val
= nvt_cr_read(nvt
, psreg
);
310 nvt_cr_write(nvt
, val
, psreg
);
312 /* Select CIR logical device and enable */
313 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
314 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
316 nvt_cr_write(nvt
, nvt
->cir_addr
>> 8, CR_CIR_BASE_ADDR_HI
);
317 nvt_cr_write(nvt
, nvt
->cir_addr
& 0xff, CR_CIR_BASE_ADDR_LO
);
319 nvt_cr_write(nvt
, nvt
->cir_irq
, CR_CIR_IRQ_RSRC
);
321 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
322 nvt
->cir_addr
, nvt
->cir_irq
);
325 static void nvt_cir_wake_ldev_init(struct nvt_dev
*nvt
)
327 /* Select ACPI logical device, enable it and CIR Wake */
328 nvt_select_logical_dev(nvt
, LOGICAL_DEV_ACPI
);
329 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
331 /* Enable CIR Wake via PSOUT# (Pin60) */
332 nvt_set_reg_bit(nvt
, CIR_WAKE_ENABLE_BIT
, CR_ACPI_CIR_WAKE
);
334 /* enable cir interrupt of mouse/keyboard IRQ event */
335 nvt_set_reg_bit(nvt
, CIR_INTR_MOUSE_IRQ_BIT
, CR_ACPI_IRQ_EVENTS
);
337 /* enable pme interrupt of cir wakeup event */
338 nvt_set_reg_bit(nvt
, PME_INTR_CIR_PASS_BIT
, CR_ACPI_IRQ_EVENTS2
);
340 /* Select CIR Wake logical device and enable */
341 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
342 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
344 nvt_cr_write(nvt
, nvt
->cir_wake_addr
>> 8, CR_CIR_BASE_ADDR_HI
);
345 nvt_cr_write(nvt
, nvt
->cir_wake_addr
& 0xff, CR_CIR_BASE_ADDR_LO
);
347 nvt_cr_write(nvt
, nvt
->cir_wake_irq
, CR_CIR_IRQ_RSRC
);
349 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
350 nvt
->cir_wake_addr
, nvt
->cir_wake_irq
);
353 /* clear out the hardware's cir rx fifo */
354 static void nvt_clear_cir_fifo(struct nvt_dev
*nvt
)
358 val
= nvt_cir_reg_read(nvt
, CIR_FIFOCON
);
359 nvt_cir_reg_write(nvt
, val
| CIR_FIFOCON_RXFIFOCLR
, CIR_FIFOCON
);
362 /* clear out the hardware's cir wake rx fifo */
363 static void nvt_clear_cir_wake_fifo(struct nvt_dev
*nvt
)
367 val
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFOCON
);
368 nvt_cir_wake_reg_write(nvt
, val
| CIR_WAKE_FIFOCON_RXFIFOCLR
,
372 /* clear out the hardware's cir tx fifo */
373 static void nvt_clear_tx_fifo(struct nvt_dev
*nvt
)
377 val
= nvt_cir_reg_read(nvt
, CIR_FIFOCON
);
378 nvt_cir_reg_write(nvt
, val
| CIR_FIFOCON_TXFIFOCLR
, CIR_FIFOCON
);
381 /* enable RX Trigger Level Reach and Packet End interrupts */
382 static void nvt_set_cir_iren(struct nvt_dev
*nvt
)
386 iren
= CIR_IREN_RTR
| CIR_IREN_PE
;
387 nvt_cir_reg_write(nvt
, iren
, CIR_IREN
);
390 static void nvt_cir_regs_init(struct nvt_dev
*nvt
)
392 /* set sample limit count (PE interrupt raised when reached) */
393 nvt_cir_reg_write(nvt
, CIR_RX_LIMIT_COUNT
>> 8, CIR_SLCH
);
394 nvt_cir_reg_write(nvt
, CIR_RX_LIMIT_COUNT
& 0xff, CIR_SLCL
);
396 /* set fifo irq trigger levels */
397 nvt_cir_reg_write(nvt
, CIR_FIFOCON_TX_TRIGGER_LEV
|
398 CIR_FIFOCON_RX_TRIGGER_LEV
, CIR_FIFOCON
);
401 * Enable TX and RX, specify carrier on = low, off = high, and set
402 * sample period (currently 50us)
404 nvt_cir_reg_write(nvt
,
405 CIR_IRCON_TXEN
| CIR_IRCON_RXEN
|
406 CIR_IRCON_RXINV
| CIR_IRCON_SAMPLE_PERIOD_SEL
,
409 /* clear hardware rx and tx fifos */
410 nvt_clear_cir_fifo(nvt
);
411 nvt_clear_tx_fifo(nvt
);
413 /* clear any and all stray interrupts */
414 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
416 /* and finally, enable interrupts */
417 nvt_set_cir_iren(nvt
);
420 static void nvt_cir_wake_regs_init(struct nvt_dev
*nvt
)
422 /* set number of bytes needed for wake from s3 (default 65) */
423 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_FIFO_CMP_BYTES
,
424 CIR_WAKE_FIFO_CMP_DEEP
);
426 /* set tolerance/variance allowed per byte during wake compare */
427 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_CMP_TOLERANCE
,
428 CIR_WAKE_FIFO_CMP_TOL
);
430 /* set sample limit count (PE interrupt raised when reached) */
431 nvt_cir_wake_reg_write(nvt
, CIR_RX_LIMIT_COUNT
>> 8, CIR_WAKE_SLCH
);
432 nvt_cir_wake_reg_write(nvt
, CIR_RX_LIMIT_COUNT
& 0xff, CIR_WAKE_SLCL
);
434 /* set cir wake fifo rx trigger level (currently 67) */
435 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV
,
439 * Enable TX and RX, specific carrier on = low, off = high, and set
440 * sample period (currently 50us)
442 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_IRCON_MODE0
| CIR_WAKE_IRCON_RXEN
|
443 CIR_WAKE_IRCON_R
| CIR_WAKE_IRCON_RXINV
|
444 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL
,
447 /* clear cir wake rx fifo */
448 nvt_clear_cir_wake_fifo(nvt
);
450 /* clear any and all stray interrupts */
451 nvt_cir_wake_reg_write(nvt
, 0xff, CIR_WAKE_IRSTS
);
454 static void nvt_enable_wake(struct nvt_dev
*nvt
)
458 nvt_select_logical_dev(nvt
, LOGICAL_DEV_ACPI
);
459 nvt_set_reg_bit(nvt
, CIR_WAKE_ENABLE_BIT
, CR_ACPI_CIR_WAKE
);
460 nvt_set_reg_bit(nvt
, CIR_INTR_MOUSE_IRQ_BIT
, CR_ACPI_IRQ_EVENTS
);
461 nvt_set_reg_bit(nvt
, PME_INTR_CIR_PASS_BIT
, CR_ACPI_IRQ_EVENTS2
);
463 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
464 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
466 nvt_efm_disable(nvt
);
468 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_IRCON_MODE0
| CIR_WAKE_IRCON_RXEN
|
469 CIR_WAKE_IRCON_R
| CIR_WAKE_IRCON_RXINV
|
470 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL
,
472 nvt_cir_wake_reg_write(nvt
, 0xff, CIR_WAKE_IRSTS
);
473 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IREN
);
476 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
477 static u32
nvt_rx_carrier_detect(struct nvt_dev
*nvt
)
479 u32 count
, carrier
, duration
= 0;
482 count
= nvt_cir_reg_read(nvt
, CIR_FCCL
) |
483 nvt_cir_reg_read(nvt
, CIR_FCCH
) << 8;
485 for (i
= 0; i
< nvt
->pkts
; i
++) {
486 if (nvt
->buf
[i
] & BUF_PULSE_BIT
)
487 duration
+= nvt
->buf
[i
] & BUF_LEN_MASK
;
490 duration
*= SAMPLE_PERIOD
;
492 if (!count
|| !duration
) {
493 nvt_pr(KERN_NOTICE
, "Unable to determine carrier! (c:%u, d:%u)",
498 carrier
= MS_TO_NS(count
) / duration
;
500 if ((carrier
> MAX_CARRIER
) || (carrier
< MIN_CARRIER
))
501 nvt_dbg("WTF? Carrier frequency out of range!");
503 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
504 carrier
, count
, duration
);
510 * set carrier frequency
512 * set carrier on 2 registers: CP & CC
513 * always set CP as 0x81
514 * set CC by SPEC, CC = 3MHz/carrier - 1
516 static int nvt_set_tx_carrier(struct rc_dev
*dev
, u32 carrier
)
518 struct nvt_dev
*nvt
= dev
->priv
;
521 nvt_cir_reg_write(nvt
, 1, CIR_CP
);
522 val
= 3000000 / (carrier
) - 1;
523 nvt_cir_reg_write(nvt
, val
& 0xff, CIR_CC
);
525 nvt_dbg("cp: 0x%x cc: 0x%x\n",
526 nvt_cir_reg_read(nvt
, CIR_CP
), nvt_cir_reg_read(nvt
, CIR_CC
));
534 * 1) clean TX fifo first (handled by AP)
535 * 2) copy data from user space
536 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
537 * 4) send 9 packets to TX FIFO to open TTR
538 * in interrupt_handler:
539 * 5) send all data out
540 * go back to write():
541 * 6) disable TX interrupts, re-enable RX interupts
543 * The key problem of this function is user space data may larger than
544 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
545 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
546 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
547 * set TXFCONT as 0xff, until buf_count less than 0xff.
549 static int nvt_tx_ir(struct rc_dev
*dev
, int *txbuf
, u32 n
)
551 struct nvt_dev
*nvt
= dev
->priv
;
558 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
560 if (n
>= TX_BUF_LEN
) {
561 nvt
->tx
.buf_count
= cur_count
= TX_BUF_LEN
;
564 nvt
->tx
.buf_count
= cur_count
= n
;
568 memcpy(nvt
->tx
.buf
, txbuf
, nvt
->tx
.buf_count
);
570 nvt
->tx
.cur_buf_num
= 0;
572 /* save currently enabled interrupts */
573 iren
= nvt_cir_reg_read(nvt
, CIR_IREN
);
575 /* now disable all interrupts, save TFU & TTR */
576 nvt_cir_reg_write(nvt
, CIR_IREN_TFU
| CIR_IREN_TTR
, CIR_IREN
);
578 nvt
->tx
.tx_state
= ST_TX_REPLY
;
580 nvt_cir_reg_write(nvt
, CIR_FIFOCON_TX_TRIGGER_LEV_8
|
581 CIR_FIFOCON_RXFIFOCLR
, CIR_FIFOCON
);
583 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
584 for (i
= 0; i
< 9; i
++)
585 nvt_cir_reg_write(nvt
, 0x01, CIR_STXFIFO
);
587 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
589 wait_event(nvt
->tx
.queue
, nvt
->tx
.tx_state
== ST_TX_REQUEST
);
591 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
592 nvt
->tx
.tx_state
= ST_TX_NONE
;
593 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
595 /* restore enabled interrupts to prior state */
596 nvt_cir_reg_write(nvt
, iren
, CIR_IREN
);
601 /* dump contents of the last rx buffer we got from the hw rx fifo */
602 static void nvt_dump_rx_buf(struct nvt_dev
*nvt
)
606 printk(KERN_DEBUG
"%s (len %d): ", __func__
, nvt
->pkts
);
607 for (i
= 0; (i
< nvt
->pkts
) && (i
< RX_BUF_LEN
); i
++)
608 printk(KERN_CONT
"0x%02x ", nvt
->buf
[i
]);
609 printk(KERN_CONT
"\n");
613 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
614 * trigger decode when appropriate.
616 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
617 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
618 * (default 50us) intervals for that pulse/space. A discrete signal is
619 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
620 * to signal more IR coming (repeats) or end of IR, respectively. We store
621 * sample data in the raw event kfifo until we see 0x7<something> (except f)
622 * or 0x80, at which time, we trigger a decode operation.
624 static void nvt_process_rx_ir_data(struct nvt_dev
*nvt
)
626 DEFINE_IR_RAW_EVENT(rawir
);
631 nvt_dbg_verbose("%s firing", __func__
);
634 nvt_dump_rx_buf(nvt
);
636 if (nvt
->carrier_detect_enabled
)
637 carrier
= nvt_rx_carrier_detect(nvt
);
639 nvt_dbg_verbose("Processing buffer of len %d", nvt
->pkts
);
641 init_ir_raw_event(&rawir
);
643 for (i
= 0; i
< nvt
->pkts
; i
++) {
644 sample
= nvt
->buf
[i
];
646 rawir
.pulse
= ((sample
& BUF_PULSE_BIT
) != 0);
647 rawir
.duration
= US_TO_NS((sample
& BUF_LEN_MASK
)
650 nvt_dbg("Storing %s with duration %d",
651 rawir
.pulse
? "pulse" : "space", rawir
.duration
);
653 ir_raw_event_store_with_filter(nvt
->rdev
, &rawir
);
656 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
657 * indicates end of IR signal, but new data incoming. In both
658 * cases, it means we're ready to call ir_raw_event_handle
660 if ((sample
== BUF_PULSE_BIT
) && (i
+ 1 < nvt
->pkts
)) {
661 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
662 ir_raw_event_handle(nvt
->rdev
);
668 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
669 ir_raw_event_handle(nvt
->rdev
);
671 nvt_dbg_verbose("%s done", __func__
);
674 static void nvt_handle_rx_fifo_overrun(struct nvt_dev
*nvt
)
676 nvt_pr(KERN_WARNING
, "RX FIFO overrun detected, flushing data!");
679 nvt_clear_cir_fifo(nvt
);
680 ir_raw_event_reset(nvt
->rdev
);
683 /* copy data from hardware rx fifo into driver buffer */
684 static void nvt_get_rx_ir_data(struct nvt_dev
*nvt
)
689 bool overrun
= false;
692 /* Get count of how many bytes to read from RX FIFO */
693 fifocount
= nvt_cir_reg_read(nvt
, CIR_RXFCONT
);
694 /* if we get 0xff, probably means the logical dev is disabled */
695 if (fifocount
== 0xff)
697 /* watch out for a fifo overrun condition */
698 else if (fifocount
> RX_BUF_LEN
) {
700 fifocount
= RX_BUF_LEN
;
703 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount
);
705 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
709 /* This should never happen, but lets check anyway... */
710 if (b_idx
+ fifocount
> RX_BUF_LEN
) {
711 nvt_process_rx_ir_data(nvt
);
715 /* Read fifocount bytes from CIR Sample RX FIFO register */
716 for (i
= 0; i
< fifocount
; i
++) {
717 val
= nvt_cir_reg_read(nvt
, CIR_SRXFIFO
);
718 nvt
->buf
[b_idx
+ i
] = val
;
721 nvt
->pkts
+= fifocount
;
722 nvt_dbg("%s: pkts now %d", __func__
, nvt
->pkts
);
724 nvt_process_rx_ir_data(nvt
);
727 nvt_handle_rx_fifo_overrun(nvt
);
729 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
732 static void nvt_cir_log_irqs(u8 status
, u8 iren
)
734 nvt_pr(KERN_INFO
, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
736 status
& CIR_IRSTS_RDR
? " RDR" : "",
737 status
& CIR_IRSTS_RTR
? " RTR" : "",
738 status
& CIR_IRSTS_PE
? " PE" : "",
739 status
& CIR_IRSTS_RFO
? " RFO" : "",
740 status
& CIR_IRSTS_TE
? " TE" : "",
741 status
& CIR_IRSTS_TTR
? " TTR" : "",
742 status
& CIR_IRSTS_TFU
? " TFU" : "",
743 status
& CIR_IRSTS_GH
? " GH" : "",
744 status
& ~(CIR_IRSTS_RDR
| CIR_IRSTS_RTR
| CIR_IRSTS_PE
|
745 CIR_IRSTS_RFO
| CIR_IRSTS_TE
| CIR_IRSTS_TTR
|
746 CIR_IRSTS_TFU
| CIR_IRSTS_GH
) ? " ?" : "");
749 static bool nvt_cir_tx_inactive(struct nvt_dev
*nvt
)
755 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
756 tx_state
= nvt
->tx
.tx_state
;
757 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
759 tx_inactive
= (tx_state
== ST_TX_NONE
);
764 /* interrupt service routine for incoming and outgoing CIR data */
765 static irqreturn_t
nvt_cir_isr(int irq
, void *data
)
767 struct nvt_dev
*nvt
= data
;
768 u8 status
, iren
, cur_state
;
771 nvt_dbg_verbose("%s firing", __func__
);
774 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
775 nvt_efm_disable(nvt
);
778 * Get IR Status register contents. Write 1 to ack/clear
780 * bit: reg name - description
781 * 7: CIR_IRSTS_RDR - RX Data Ready
782 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
783 * 5: CIR_IRSTS_PE - Packet End
784 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
785 * 3: CIR_IRSTS_TE - TX FIFO Empty
786 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
787 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
788 * 0: CIR_IRSTS_GH - Min Length Detected
790 status
= nvt_cir_reg_read(nvt
, CIR_IRSTS
);
792 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__
);
793 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
794 return IRQ_RETVAL(IRQ_NONE
);
797 /* ack/clear all irq flags we've got */
798 nvt_cir_reg_write(nvt
, status
, CIR_IRSTS
);
799 nvt_cir_reg_write(nvt
, 0, CIR_IRSTS
);
801 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
802 iren
= nvt_cir_reg_read(nvt
, CIR_IREN
);
804 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__
);
805 return IRQ_RETVAL(IRQ_NONE
);
809 nvt_cir_log_irqs(status
, iren
);
811 if (status
& CIR_IRSTS_RTR
) {
812 /* FIXME: add code for study/learn mode */
813 /* We only do rx if not tx'ing */
814 if (nvt_cir_tx_inactive(nvt
))
815 nvt_get_rx_ir_data(nvt
);
818 if (status
& CIR_IRSTS_PE
) {
819 if (nvt_cir_tx_inactive(nvt
))
820 nvt_get_rx_ir_data(nvt
);
822 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
824 cur_state
= nvt
->study_state
;
826 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
828 if (cur_state
== ST_STUDY_NONE
)
829 nvt_clear_cir_fifo(nvt
);
832 if (status
& CIR_IRSTS_TE
)
833 nvt_clear_tx_fifo(nvt
);
835 if (status
& CIR_IRSTS_TTR
) {
836 unsigned int pos
, count
;
839 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
841 pos
= nvt
->tx
.cur_buf_num
;
842 count
= nvt
->tx
.buf_count
;
844 /* Write data into the hardware tx fifo while pos < count */
846 nvt_cir_reg_write(nvt
, nvt
->tx
.buf
[pos
], CIR_STXFIFO
);
847 nvt
->tx
.cur_buf_num
++;
848 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
850 tmp
= nvt_cir_reg_read(nvt
, CIR_IREN
);
851 nvt_cir_reg_write(nvt
, tmp
& ~CIR_IREN_TTR
, CIR_IREN
);
854 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
858 if (status
& CIR_IRSTS_TFU
) {
859 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
860 if (nvt
->tx
.tx_state
== ST_TX_REPLY
) {
861 nvt
->tx
.tx_state
= ST_TX_REQUEST
;
862 wake_up(&nvt
->tx
.queue
);
864 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
867 nvt_dbg_verbose("%s done", __func__
);
868 return IRQ_RETVAL(IRQ_HANDLED
);
871 /* Interrupt service routine for CIR Wake */
872 static irqreturn_t
nvt_cir_wake_isr(int irq
, void *data
)
874 u8 status
, iren
, val
;
875 struct nvt_dev
*nvt
= data
;
878 nvt_dbg_wake("%s firing", __func__
);
880 status
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRSTS
);
882 return IRQ_RETVAL(IRQ_NONE
);
884 if (status
& CIR_WAKE_IRSTS_IR_PENDING
)
885 nvt_clear_cir_wake_fifo(nvt
);
887 nvt_cir_wake_reg_write(nvt
, status
, CIR_WAKE_IRSTS
);
888 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IRSTS
);
890 /* Interrupt may be shared with CIR, bail if Wake not enabled */
891 iren
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IREN
);
893 nvt_dbg_wake("%s exiting, wake not enabled", __func__
);
894 return IRQ_RETVAL(IRQ_HANDLED
);
897 if ((status
& CIR_WAKE_IRSTS_PE
) &&
898 (nvt
->wake_state
== ST_WAKE_START
)) {
899 while (nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY_IDX
)) {
900 val
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
);
901 nvt_dbg("setting wake up key: 0x%x", val
);
904 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IREN
);
905 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
906 nvt
->wake_state
= ST_WAKE_FINISH
;
907 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
910 nvt_dbg_wake("%s done", __func__
);
911 return IRQ_RETVAL(IRQ_HANDLED
);
914 static void nvt_enable_cir(struct nvt_dev
*nvt
)
916 /* set function enable flags */
917 nvt_cir_reg_write(nvt
, CIR_IRCON_TXEN
| CIR_IRCON_RXEN
|
918 CIR_IRCON_RXINV
| CIR_IRCON_SAMPLE_PERIOD_SEL
,
923 /* enable the CIR logical device */
924 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
925 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
927 nvt_efm_disable(nvt
);
929 /* clear all pending interrupts */
930 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
932 /* enable interrupts */
933 nvt_set_cir_iren(nvt
);
936 static void nvt_disable_cir(struct nvt_dev
*nvt
)
938 /* disable CIR interrupts */
939 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
941 /* clear any and all pending interrupts */
942 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
944 /* clear all function enable flags */
945 nvt_cir_reg_write(nvt
, 0, CIR_IRCON
);
947 /* clear hardware rx and tx fifos */
948 nvt_clear_cir_fifo(nvt
);
949 nvt_clear_tx_fifo(nvt
);
953 /* disable the CIR logical device */
954 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
955 nvt_cr_write(nvt
, LOGICAL_DEV_DISABLE
, CR_LOGICAL_DEV_EN
);
957 nvt_efm_disable(nvt
);
960 static int nvt_open(struct rc_dev
*dev
)
962 struct nvt_dev
*nvt
= dev
->priv
;
965 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
967 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
972 static void nvt_close(struct rc_dev
*dev
)
974 struct nvt_dev
*nvt
= dev
->priv
;
977 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
978 nvt_disable_cir(nvt
);
979 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
982 /* Allocate memory, probe hardware, and initialize everything */
983 static int nvt_probe(struct pnp_dev
*pdev
, const struct pnp_device_id
*dev_id
)
989 nvt
= kzalloc(sizeof(struct nvt_dev
), GFP_KERNEL
);
993 /* input device for IR remote (and tx) */
994 rdev
= rc_allocate_device();
999 /* validate pnp resources */
1000 if (!pnp_port_valid(pdev
, 0) ||
1001 pnp_port_len(pdev
, 0) < CIR_IOREG_LENGTH
) {
1002 dev_err(&pdev
->dev
, "IR PNP Port not valid!\n");
1006 if (!pnp_irq_valid(pdev
, 0)) {
1007 dev_err(&pdev
->dev
, "PNP IRQ not valid!\n");
1011 if (!pnp_port_valid(pdev
, 1) ||
1012 pnp_port_len(pdev
, 1) < CIR_IOREG_LENGTH
) {
1013 dev_err(&pdev
->dev
, "Wake PNP Port not valid!\n");
1017 nvt
->cir_addr
= pnp_port_start(pdev
, 0);
1018 nvt
->cir_irq
= pnp_irq(pdev
, 0);
1020 nvt
->cir_wake_addr
= pnp_port_start(pdev
, 1);
1021 /* irq is always shared between cir and cir wake */
1022 nvt
->cir_wake_irq
= nvt
->cir_irq
;
1024 nvt
->cr_efir
= CR_EFIR
;
1025 nvt
->cr_efdr
= CR_EFDR
;
1027 spin_lock_init(&nvt
->nvt_lock
);
1028 spin_lock_init(&nvt
->tx
.lock
);
1030 pnp_set_drvdata(pdev
, nvt
);
1033 init_waitqueue_head(&nvt
->tx
.queue
);
1035 ret
= nvt_hw_detect(nvt
);
1039 /* Initialize CIR & CIR Wake Logical Devices */
1040 nvt_efm_enable(nvt
);
1041 nvt_cir_ldev_init(nvt
);
1042 nvt_cir_wake_ldev_init(nvt
);
1043 nvt_efm_disable(nvt
);
1045 /* Initialize CIR & CIR Wake Config Registers */
1046 nvt_cir_regs_init(nvt
);
1047 nvt_cir_wake_regs_init(nvt
);
1049 /* Set up the rc device */
1051 rdev
->driver_type
= RC_DRIVER_IR_RAW
;
1052 rdev
->allowed_protos
= RC_TYPE_ALL
;
1053 rdev
->open
= nvt_open
;
1054 rdev
->close
= nvt_close
;
1055 rdev
->tx_ir
= nvt_tx_ir
;
1056 rdev
->s_tx_carrier
= nvt_set_tx_carrier
;
1057 rdev
->input_name
= "Nuvoton w836x7hg Infrared Remote Transceiver";
1058 rdev
->input_phys
= "nuvoton/cir0";
1059 rdev
->input_id
.bustype
= BUS_HOST
;
1060 rdev
->input_id
.vendor
= PCI_VENDOR_ID_WINBOND2
;
1061 rdev
->input_id
.product
= nvt
->chip_major
;
1062 rdev
->input_id
.version
= nvt
->chip_minor
;
1063 rdev
->dev
.parent
= &pdev
->dev
;
1064 rdev
->driver_name
= NVT_DRIVER_NAME
;
1065 rdev
->map_name
= RC_MAP_RC6_MCE
;
1066 rdev
->timeout
= MS_TO_NS(100);
1067 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1068 rdev
->rx_resolution
= US_TO_NS(CIR_SAMPLE_PERIOD
);
1070 rdev
->min_timeout
= XYZ
;
1071 rdev
->max_timeout
= XYZ
;
1073 rdev
->tx_resolution
= XYZ
;
1077 /* now claim resources */
1078 if (!request_region(nvt
->cir_addr
,
1079 CIR_IOREG_LENGTH
, NVT_DRIVER_NAME
))
1082 if (request_irq(nvt
->cir_irq
, nvt_cir_isr
, IRQF_SHARED
,
1083 NVT_DRIVER_NAME
, (void *)nvt
))
1086 if (!request_region(nvt
->cir_wake_addr
,
1087 CIR_IOREG_LENGTH
, NVT_DRIVER_NAME
))
1090 if (request_irq(nvt
->cir_wake_irq
, nvt_cir_wake_isr
, IRQF_SHARED
,
1091 NVT_DRIVER_NAME
, (void *)nvt
))
1094 ret
= rc_register_device(rdev
);
1098 device_init_wakeup(&pdev
->dev
, true);
1100 nvt_pr(KERN_NOTICE
, "driver has been successfully loaded\n");
1103 cir_wake_dump_regs(nvt
);
1110 free_irq(nvt
->cir_irq
, nvt
);
1112 release_region(nvt
->cir_addr
, CIR_IOREG_LENGTH
);
1114 if (nvt
->cir_wake_irq
)
1115 free_irq(nvt
->cir_wake_irq
, nvt
);
1116 if (nvt
->cir_wake_addr
)
1117 release_region(nvt
->cir_wake_addr
, CIR_IOREG_LENGTH
);
1119 rc_free_device(rdev
);
1125 static void __devexit
nvt_remove(struct pnp_dev
*pdev
)
1127 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1128 unsigned long flags
;
1130 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
1132 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
1133 nvt_disable_cir(nvt
);
1134 /* enable CIR Wake (for IR power-on) */
1135 nvt_enable_wake(nvt
);
1136 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
1138 /* free resources */
1139 free_irq(nvt
->cir_irq
, nvt
);
1140 free_irq(nvt
->cir_wake_irq
, nvt
);
1141 release_region(nvt
->cir_addr
, CIR_IOREG_LENGTH
);
1142 release_region(nvt
->cir_wake_addr
, CIR_IOREG_LENGTH
);
1144 rc_unregister_device(nvt
->rdev
);
1149 static int nvt_suspend(struct pnp_dev
*pdev
, pm_message_t state
)
1151 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1152 unsigned long flags
;
1154 nvt_dbg("%s called", __func__
);
1156 /* zero out misc state tracking */
1157 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
1158 nvt
->study_state
= ST_STUDY_NONE
;
1159 nvt
->wake_state
= ST_WAKE_NONE
;
1160 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
1162 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
1163 nvt
->tx
.tx_state
= ST_TX_NONE
;
1164 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
1166 /* disable all CIR interrupts */
1167 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
1169 nvt_efm_enable(nvt
);
1171 /* disable cir logical dev */
1172 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1173 nvt_cr_write(nvt
, LOGICAL_DEV_DISABLE
, CR_LOGICAL_DEV_EN
);
1175 nvt_efm_disable(nvt
);
1177 /* make sure wake is enabled */
1178 nvt_enable_wake(nvt
);
1183 static int nvt_resume(struct pnp_dev
*pdev
)
1186 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1188 nvt_dbg("%s called", __func__
);
1190 /* open interrupt */
1191 nvt_set_cir_iren(nvt
);
1193 /* Enable CIR logical device */
1194 nvt_efm_enable(nvt
);
1195 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1196 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
1198 nvt_efm_disable(nvt
);
1200 nvt_cir_regs_init(nvt
);
1201 nvt_cir_wake_regs_init(nvt
);
1206 static void nvt_shutdown(struct pnp_dev
*pdev
)
1208 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1209 nvt_enable_wake(nvt
);
1212 static const struct pnp_device_id nvt_ids
[] = {
1213 { "WEC0530", 0 }, /* CIR */
1214 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1218 static struct pnp_driver nvt_driver
= {
1219 .name
= NVT_DRIVER_NAME
,
1220 .id_table
= nvt_ids
,
1221 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1223 .remove
= __devexit_p(nvt_remove
),
1224 .suspend
= nvt_suspend
,
1225 .resume
= nvt_resume
,
1226 .shutdown
= nvt_shutdown
,
1231 return pnp_register_driver(&nvt_driver
);
1236 pnp_unregister_driver(&nvt_driver
);
1239 module_param(debug
, int, S_IRUGO
| S_IWUSR
);
1240 MODULE_PARM_DESC(debug
, "Enable debugging output");
1242 MODULE_DEVICE_TABLE(pnp
, nvt_ids
);
1243 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1245 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1246 MODULE_LICENSE("GPL");
1248 module_init(nvt_init
);
1249 module_exit(nvt_exit
);