4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/types.h>
38 #include <linux/wait.h>
40 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
41 #define DMAPOOL_DEBUG 1
44 struct dma_pool
{ /* the pool */
45 struct list_head page_list
;
52 struct list_head pools
;
55 struct dma_page
{ /* cacheable header for 'allocation' bytes */
56 struct list_head page_list
;
63 static DEFINE_MUTEX(pools_lock
);
66 show_pools(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
71 struct dma_page
*page
;
72 struct dma_pool
*pool
;
77 temp
= scnprintf(next
, size
, "poolinfo - 0.1\n");
81 mutex_lock(&pools_lock
);
82 list_for_each_entry(pool
, &dev
->dma_pools
, pools
) {
86 spin_lock_irq(&pool
->lock
);
87 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
89 blocks
+= page
->in_use
;
91 spin_unlock_irq(&pool
->lock
);
93 /* per-pool info, no real statistics yet */
94 temp
= scnprintf(next
, size
, "%-16s %4u %4Zu %4Zu %2u\n",
96 pages
* (pool
->allocation
/ pool
->size
),
101 mutex_unlock(&pools_lock
);
103 return PAGE_SIZE
- size
;
106 static DEVICE_ATTR(pools
, S_IRUGO
, show_pools
, NULL
);
109 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
110 * @name: name of pool, for diagnostics
111 * @dev: device that will be doing the DMA
112 * @size: size of the blocks in this pool.
113 * @align: alignment requirement for blocks; must be a power of two
114 * @boundary: returned blocks won't cross this power of two boundary
115 * Context: !in_interrupt()
117 * Returns a dma allocation pool with the requested characteristics, or
118 * null if one can't be created. Given one of these pools, dma_pool_alloc()
119 * may be used to allocate memory. Such memory will all have "consistent"
120 * DMA mappings, accessible by the device and its driver without using
121 * cache flushing primitives. The actual size of blocks allocated may be
122 * larger than requested because of alignment.
124 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
125 * cross that size boundary. This is useful for devices which have
126 * addressing restrictions on individual DMA transfers, such as not crossing
127 * boundaries of 4KBytes.
129 struct dma_pool
*dma_pool_create(const char *name
, struct device
*dev
,
130 size_t size
, size_t align
, size_t boundary
)
132 struct dma_pool
*retval
;
137 } else if (align
& (align
- 1)) {
143 } else if (size
< 4) {
147 if ((size
% align
) != 0)
148 size
= ALIGN(size
, align
);
150 allocation
= max_t(size_t, size
, PAGE_SIZE
);
153 boundary
= allocation
;
154 } else if ((boundary
< size
) || (boundary
& (boundary
- 1))) {
158 retval
= kmalloc_node(sizeof(*retval
), GFP_KERNEL
, dev_to_node(dev
));
162 strlcpy(retval
->name
, name
, sizeof(retval
->name
));
166 INIT_LIST_HEAD(&retval
->page_list
);
167 spin_lock_init(&retval
->lock
);
169 retval
->boundary
= boundary
;
170 retval
->allocation
= allocation
;
175 mutex_lock(&pools_lock
);
176 if (list_empty(&dev
->dma_pools
))
177 ret
= device_create_file(dev
, &dev_attr_pools
);
180 /* note: not currently insisting "name" be unique */
182 list_add(&retval
->pools
, &dev
->dma_pools
);
187 mutex_unlock(&pools_lock
);
189 INIT_LIST_HEAD(&retval
->pools
);
193 EXPORT_SYMBOL(dma_pool_create
);
195 static void pool_initialise_page(struct dma_pool
*pool
, struct dma_page
*page
)
197 unsigned int offset
= 0;
198 unsigned int next_boundary
= pool
->boundary
;
201 unsigned int next
= offset
+ pool
->size
;
202 if (unlikely((next
+ pool
->size
) >= next_boundary
)) {
203 next
= next_boundary
;
204 next_boundary
+= pool
->boundary
;
206 *(int *)(page
->vaddr
+ offset
) = next
;
208 } while (offset
< pool
->allocation
);
211 static struct dma_page
*pool_alloc_page(struct dma_pool
*pool
, gfp_t mem_flags
)
213 struct dma_page
*page
;
215 page
= kmalloc(sizeof(*page
), mem_flags
);
218 page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->allocation
,
219 &page
->dma
, mem_flags
);
222 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
224 pool_initialise_page(pool
, page
);
234 static inline int is_page_busy(struct dma_page
*page
)
236 return page
->in_use
!= 0;
239 static void pool_free_page(struct dma_pool
*pool
, struct dma_page
*page
)
241 dma_addr_t dma
= page
->dma
;
244 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
246 dma_free_coherent(pool
->dev
, pool
->allocation
, page
->vaddr
, dma
);
247 list_del(&page
->page_list
);
252 * dma_pool_destroy - destroys a pool of dma memory blocks.
253 * @pool: dma pool that will be destroyed
254 * Context: !in_interrupt()
256 * Caller guarantees that no more memory from the pool is in use,
257 * and that nothing will try to use the pool after this call.
259 void dma_pool_destroy(struct dma_pool
*pool
)
261 mutex_lock(&pools_lock
);
262 list_del(&pool
->pools
);
263 if (pool
->dev
&& list_empty(&pool
->dev
->dma_pools
))
264 device_remove_file(pool
->dev
, &dev_attr_pools
);
265 mutex_unlock(&pools_lock
);
267 while (!list_empty(&pool
->page_list
)) {
268 struct dma_page
*page
;
269 page
= list_entry(pool
->page_list
.next
,
270 struct dma_page
, page_list
);
271 if (is_page_busy(page
)) {
274 "dma_pool_destroy %s, %p busy\n",
275 pool
->name
, page
->vaddr
);
278 "dma_pool_destroy %s, %p busy\n",
279 pool
->name
, page
->vaddr
);
280 /* leak the still-in-use consistent memory */
281 list_del(&page
->page_list
);
284 pool_free_page(pool
, page
);
289 EXPORT_SYMBOL(dma_pool_destroy
);
292 * dma_pool_alloc - get a block of consistent memory
293 * @pool: dma pool that will produce the block
294 * @mem_flags: GFP_* bitmask
295 * @handle: pointer to dma address of block
297 * This returns the kernel virtual address of a currently unused block,
298 * and reports its dma address through the handle.
299 * If such a memory block can't be allocated, %NULL is returned.
301 void *dma_pool_alloc(struct dma_pool
*pool
, gfp_t mem_flags
,
305 struct dma_page
*page
;
309 might_sleep_if(mem_flags
& __GFP_WAIT
);
311 spin_lock_irqsave(&pool
->lock
, flags
);
312 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
313 if (page
->offset
< pool
->allocation
)
317 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
318 spin_unlock_irqrestore(&pool
->lock
, flags
);
320 page
= pool_alloc_page(pool
, mem_flags
);
324 spin_lock_irqsave(&pool
->lock
, flags
);
326 list_add(&page
->page_list
, &pool
->page_list
);
329 offset
= page
->offset
;
330 page
->offset
= *(int *)(page
->vaddr
+ offset
);
331 retval
= offset
+ page
->vaddr
;
332 *handle
= offset
+ page
->dma
;
334 memset(retval
, POOL_POISON_ALLOCATED
, pool
->size
);
336 spin_unlock_irqrestore(&pool
->lock
, flags
);
339 EXPORT_SYMBOL(dma_pool_alloc
);
341 static struct dma_page
*pool_find_page(struct dma_pool
*pool
, dma_addr_t dma
)
343 struct dma_page
*page
;
345 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
348 if (dma
< (page
->dma
+ pool
->allocation
))
355 * dma_pool_free - put block back into dma pool
356 * @pool: the dma pool holding the block
357 * @vaddr: virtual address of block
358 * @dma: dma address of block
360 * Caller promises neither device nor driver will again touch this block
361 * unless it is first re-allocated.
363 void dma_pool_free(struct dma_pool
*pool
, void *vaddr
, dma_addr_t dma
)
365 struct dma_page
*page
;
369 spin_lock_irqsave(&pool
->lock
, flags
);
370 page
= pool_find_page(pool
, dma
);
372 spin_unlock_irqrestore(&pool
->lock
, flags
);
375 "dma_pool_free %s, %p/%lx (bad dma)\n",
376 pool
->name
, vaddr
, (unsigned long)dma
);
378 printk(KERN_ERR
"dma_pool_free %s, %p/%lx (bad dma)\n",
379 pool
->name
, vaddr
, (unsigned long)dma
);
383 offset
= vaddr
- page
->vaddr
;
385 if ((dma
- page
->dma
) != offset
) {
386 spin_unlock_irqrestore(&pool
->lock
, flags
);
389 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
390 pool
->name
, vaddr
, (unsigned long long)dma
);
393 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
394 pool
->name
, vaddr
, (unsigned long long)dma
);
398 unsigned int chain
= page
->offset
;
399 while (chain
< pool
->allocation
) {
400 if (chain
!= offset
) {
401 chain
= *(int *)(page
->vaddr
+ chain
);
404 spin_unlock_irqrestore(&pool
->lock
, flags
);
406 dev_err(pool
->dev
, "dma_pool_free %s, dma %Lx "
407 "already free\n", pool
->name
,
408 (unsigned long long)dma
);
410 printk(KERN_ERR
"dma_pool_free %s, dma %Lx "
411 "already free\n", pool
->name
,
412 (unsigned long long)dma
);
416 memset(vaddr
, POOL_POISON_FREED
, pool
->size
);
420 *(int *)vaddr
= page
->offset
;
421 page
->offset
= offset
;
423 * Resist a temptation to do
424 * if (!is_page_busy(page)) pool_free_page(pool, page);
425 * Better have a few empty pages hang around.
427 spin_unlock_irqrestore(&pool
->lock
, flags
);
429 EXPORT_SYMBOL(dma_pool_free
);
434 static void dmam_pool_release(struct device
*dev
, void *res
)
436 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
438 dma_pool_destroy(pool
);
441 static int dmam_pool_match(struct device
*dev
, void *res
, void *match_data
)
443 return *(struct dma_pool
**)res
== match_data
;
447 * dmam_pool_create - Managed dma_pool_create()
448 * @name: name of pool, for diagnostics
449 * @dev: device that will be doing the DMA
450 * @size: size of the blocks in this pool.
451 * @align: alignment requirement for blocks; must be a power of two
452 * @allocation: returned blocks won't cross this boundary (or zero)
454 * Managed dma_pool_create(). DMA pool created with this function is
455 * automatically destroyed on driver detach.
457 struct dma_pool
*dmam_pool_create(const char *name
, struct device
*dev
,
458 size_t size
, size_t align
, size_t allocation
)
460 struct dma_pool
**ptr
, *pool
;
462 ptr
= devres_alloc(dmam_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
466 pool
= *ptr
= dma_pool_create(name
, dev
, size
, align
, allocation
);
468 devres_add(dev
, ptr
);
474 EXPORT_SYMBOL(dmam_pool_create
);
477 * dmam_pool_destroy - Managed dma_pool_destroy()
478 * @pool: dma pool that will be destroyed
480 * Managed dma_pool_destroy().
482 void dmam_pool_destroy(struct dma_pool
*pool
)
484 struct device
*dev
= pool
->dev
;
486 dma_pool_destroy(pool
);
487 WARN_ON(devres_destroy(dev
, dmam_pool_release
, dmam_pool_match
, pool
));
489 EXPORT_SYMBOL(dmam_pool_destroy
);