4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
39 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
62 EXPORT_SYMBOL(high_memory
);
64 unsigned long max_mapnr
;
65 unsigned long highest_memmap_pfn
;
66 struct percpu_counter vm_committed_as
;
67 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
68 int sysctl_overcommit_ratio
= 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly
;
70 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
71 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
74 int heap_stack_gap
= 0;
76 atomic_long_t mmap_pages_allocated
;
79 * The global memory commitment made in the system can be a metric
80 * that can be used to drive ballooning decisions when Linux is hosted
81 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82 * balancing memory across competing virtual machines that are hosted.
83 * Several metrics drive this policy engine including the guest reported
86 unsigned long vm_memory_committed(void)
88 return percpu_counter_read_positive(&vm_committed_as
);
91 EXPORT_SYMBOL_GPL(vm_memory_committed
);
93 EXPORT_SYMBOL(mem_map
);
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache
*vm_region_jar
;
97 struct rb_root nommu_region_tree
= RB_ROOT
;
98 DECLARE_RWSEM(nommu_region_sem
);
100 const struct vm_operations_struct generic_file_vm_ops
= {
104 * Return the total memory allocated for this pointer, not
105 * just what the caller asked for.
107 * Doesn't have to be accurate, i.e. may have races.
109 unsigned int kobjsize(const void *objp
)
114 * If the object we have should not have ksize performed on it,
117 if (!objp
|| !virt_addr_valid(objp
))
120 page
= virt_to_head_page(objp
);
123 * If the allocator sets PageSlab, we know the pointer came from
130 * If it's not a compound page, see if we have a matching VMA
131 * region. This test is intentionally done in reverse order,
132 * so if there's no VMA, we still fall through and hand back
133 * PAGE_SIZE for 0-order pages.
135 if (!PageCompound(page
)) {
136 struct vm_area_struct
*vma
;
138 vma
= find_vma(current
->mm
, (unsigned long)objp
);
140 return vma
->vm_end
- vma
->vm_start
;
144 * The ksize() function is only guaranteed to work for pointers
145 * returned by kmalloc(). So handle arbitrary pointers here.
147 return PAGE_SIZE
<< compound_order(page
);
150 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
151 unsigned long start
, unsigned long nr_pages
,
152 unsigned int foll_flags
, struct page
**pages
,
153 struct vm_area_struct
**vmas
, int *nonblocking
)
155 struct vm_area_struct
*vma
;
156 unsigned long vm_flags
;
159 /* calculate required read or write permissions.
160 * If FOLL_FORCE is set, we only require the "MAY" flags.
162 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
163 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
164 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
165 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
167 for (i
= 0; i
< nr_pages
; i
++) {
168 vma
= find_vma(mm
, start
);
170 goto finish_or_fault
;
172 /* protect what we can, including chardevs */
173 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
174 !(vm_flags
& vma
->vm_flags
))
175 goto finish_or_fault
;
178 pages
[i
] = virt_to_page(start
);
180 page_cache_get(pages
[i
]);
184 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
190 return i
? : -EFAULT
;
194 * get a list of pages in an address range belonging to the specified process
195 * and indicate the VMA that covers each page
196 * - this is potentially dodgy as we may end incrementing the page count of a
197 * slab page or a secondary page from a compound page
198 * - don't permit access to VMAs that don't support it, such as I/O mappings
200 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
201 unsigned long start
, unsigned long nr_pages
,
202 int write
, int force
, struct page
**pages
,
203 struct vm_area_struct
**vmas
)
212 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
215 EXPORT_SYMBOL(get_user_pages
);
218 * follow_pfn - look up PFN at a user virtual address
219 * @vma: memory mapping
220 * @address: user virtual address
221 * @pfn: location to store found PFN
223 * Only IO mappings and raw PFN mappings are allowed.
225 * Returns zero and the pfn at @pfn on success, -ve otherwise.
227 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
230 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
233 *pfn
= address
>> PAGE_SHIFT
;
236 EXPORT_SYMBOL(follow_pfn
);
238 LIST_HEAD(vmap_area_list
);
240 void vfree(const void *addr
)
244 EXPORT_SYMBOL(vfree
);
246 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
249 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
250 * returns only a logical address.
252 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
254 EXPORT_SYMBOL(__vmalloc
);
256 void *vmalloc_user(unsigned long size
)
260 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
263 struct vm_area_struct
*vma
;
265 down_write(¤t
->mm
->mmap_sem
);
266 vma
= find_vma(current
->mm
, (unsigned long)ret
);
268 vma
->vm_flags
|= VM_USERMAP
;
269 up_write(¤t
->mm
->mmap_sem
);
274 EXPORT_SYMBOL(vmalloc_user
);
276 struct page
*vmalloc_to_page(const void *addr
)
278 return virt_to_page(addr
);
280 EXPORT_SYMBOL(vmalloc_to_page
);
282 unsigned long vmalloc_to_pfn(const void *addr
)
284 return page_to_pfn(virt_to_page(addr
));
286 EXPORT_SYMBOL(vmalloc_to_pfn
);
288 long vread(char *buf
, char *addr
, unsigned long count
)
290 /* Don't allow overflow */
291 if ((unsigned long) buf
+ count
< count
)
292 count
= -(unsigned long) buf
;
294 memcpy(buf
, addr
, count
);
298 long vwrite(char *buf
, char *addr
, unsigned long count
)
300 /* Don't allow overflow */
301 if ((unsigned long) addr
+ count
< count
)
302 count
= -(unsigned long) addr
;
304 memcpy(addr
, buf
, count
);
309 * vmalloc - allocate virtually continguos memory
311 * @size: allocation size
313 * Allocate enough pages to cover @size from the page level
314 * allocator and map them into continguos kernel virtual space.
316 * For tight control over page level allocator and protection flags
317 * use __vmalloc() instead.
319 void *vmalloc(unsigned long size
)
321 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
323 EXPORT_SYMBOL(vmalloc
);
326 * vzalloc - allocate virtually continguos memory with zero fill
328 * @size: allocation size
330 * Allocate enough pages to cover @size from the page level
331 * allocator and map them into continguos kernel virtual space.
332 * The memory allocated is set to zero.
334 * For tight control over page level allocator and protection flags
335 * use __vmalloc() instead.
337 void *vzalloc(unsigned long size
)
339 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
342 EXPORT_SYMBOL(vzalloc
);
345 * vmalloc_node - allocate memory on a specific node
346 * @size: allocation size
349 * Allocate enough pages to cover @size from the page level
350 * allocator and map them into contiguous kernel virtual space.
352 * For tight control over page level allocator and protection flags
353 * use __vmalloc() instead.
355 void *vmalloc_node(unsigned long size
, int node
)
357 return vmalloc(size
);
359 EXPORT_SYMBOL(vmalloc_node
);
362 * vzalloc_node - allocate memory on a specific node with zero fill
363 * @size: allocation size
366 * Allocate enough pages to cover @size from the page level
367 * allocator and map them into contiguous kernel virtual space.
368 * The memory allocated is set to zero.
370 * For tight control over page level allocator and protection flags
371 * use __vmalloc() instead.
373 void *vzalloc_node(unsigned long size
, int node
)
375 return vzalloc(size
);
377 EXPORT_SYMBOL(vzalloc_node
);
379 #ifndef PAGE_KERNEL_EXEC
380 # define PAGE_KERNEL_EXEC PAGE_KERNEL
384 * vmalloc_exec - allocate virtually contiguous, executable memory
385 * @size: allocation size
387 * Kernel-internal function to allocate enough pages to cover @size
388 * the page level allocator and map them into contiguous and
389 * executable kernel virtual space.
391 * For tight control over page level allocator and protection flags
392 * use __vmalloc() instead.
395 void *vmalloc_exec(unsigned long size
)
397 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
401 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
402 * @size: allocation size
404 * Allocate enough 32bit PA addressable pages to cover @size from the
405 * page level allocator and map them into continguos kernel virtual space.
407 void *vmalloc_32(unsigned long size
)
409 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
411 EXPORT_SYMBOL(vmalloc_32
);
414 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
415 * @size: allocation size
417 * The resulting memory area is 32bit addressable and zeroed so it can be
418 * mapped to userspace without leaking data.
420 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
421 * remap_vmalloc_range() are permissible.
423 void *vmalloc_32_user(unsigned long size
)
426 * We'll have to sort out the ZONE_DMA bits for 64-bit,
427 * but for now this can simply use vmalloc_user() directly.
429 return vmalloc_user(size
);
431 EXPORT_SYMBOL(vmalloc_32_user
);
433 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
440 void vunmap(const void *addr
)
444 EXPORT_SYMBOL(vunmap
);
446 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
451 EXPORT_SYMBOL(vm_map_ram
);
453 void vm_unmap_ram(const void *mem
, unsigned int count
)
457 EXPORT_SYMBOL(vm_unmap_ram
);
459 void vm_unmap_aliases(void)
462 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
465 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
468 void __weak
vmalloc_sync_all(void)
473 * alloc_vm_area - allocate a range of kernel address space
474 * @size: size of the area
476 * Returns: NULL on failure, vm_struct on success
478 * This function reserves a range of kernel address space, and
479 * allocates pagetables to map that range. No actual mappings
480 * are created. If the kernel address space is not shared
481 * between processes, it syncs the pagetable across all
484 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
489 EXPORT_SYMBOL_GPL(alloc_vm_area
);
491 void free_vm_area(struct vm_struct
*area
)
495 EXPORT_SYMBOL_GPL(free_vm_area
);
497 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
502 EXPORT_SYMBOL(vm_insert_page
);
505 * sys_brk() for the most part doesn't need the global kernel
506 * lock, except when an application is doing something nasty
507 * like trying to un-brk an area that has already been mapped
508 * to a regular file. in this case, the unmapping will need
509 * to invoke file system routines that need the global lock.
511 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
513 struct mm_struct
*mm
= current
->mm
;
515 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
522 * Always allow shrinking brk
524 if (brk
<= mm
->brk
) {
530 * Ok, looks good - let it rip.
532 flush_icache_range(mm
->brk
, brk
);
533 return mm
->brk
= brk
;
537 * initialise the VMA and region record slabs
539 void __init
mmap_init(void)
543 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
545 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
549 * validate the region tree
550 * - the caller must hold the region lock
552 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
553 static noinline
void validate_nommu_regions(void)
555 struct vm_region
*region
, *last
;
556 struct rb_node
*p
, *lastp
;
558 lastp
= rb_first(&nommu_region_tree
);
562 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
563 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
564 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
566 while ((p
= rb_next(lastp
))) {
567 region
= rb_entry(p
, struct vm_region
, vm_rb
);
568 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
570 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
571 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
572 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
578 static void validate_nommu_regions(void)
584 * add a region into the global tree
586 static void add_nommu_region(struct vm_region
*region
)
588 struct vm_region
*pregion
;
589 struct rb_node
**p
, *parent
;
591 validate_nommu_regions();
594 p
= &nommu_region_tree
.rb_node
;
597 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
598 if (region
->vm_start
< pregion
->vm_start
)
600 else if (region
->vm_start
> pregion
->vm_start
)
602 else if (pregion
== region
)
608 rb_link_node(®ion
->vm_rb
, parent
, p
);
609 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
611 validate_nommu_regions();
615 * delete a region from the global tree
617 static void delete_nommu_region(struct vm_region
*region
)
619 BUG_ON(!nommu_region_tree
.rb_node
);
621 validate_nommu_regions();
622 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
623 validate_nommu_regions();
627 * free a contiguous series of pages
629 static void free_page_series(unsigned long from
, unsigned long to
)
631 for (; from
< to
; from
+= PAGE_SIZE
) {
632 struct page
*page
= virt_to_page(from
);
634 kdebug("- free %lx", from
);
635 atomic_long_dec(&mmap_pages_allocated
);
636 if (page_count(page
) != 1)
637 kdebug("free page %p: refcount not one: %d",
638 page
, page_count(page
));
644 * release a reference to a region
645 * - the caller must hold the region semaphore for writing, which this releases
646 * - the region may not have been added to the tree yet, in which case vm_top
647 * will equal vm_start
649 static void __put_nommu_region(struct vm_region
*region
)
650 __releases(nommu_region_sem
)
652 kenter("%p{%d}", region
, region
->vm_usage
);
654 BUG_ON(!nommu_region_tree
.rb_node
);
656 if (--region
->vm_usage
== 0) {
657 if (region
->vm_top
> region
->vm_start
)
658 delete_nommu_region(region
);
659 up_write(&nommu_region_sem
);
662 fput(region
->vm_file
);
664 /* IO memory and memory shared directly out of the pagecache
665 * from ramfs/tmpfs mustn't be released here */
666 if (region
->vm_flags
& VM_MAPPED_COPY
) {
667 kdebug("free series");
668 free_page_series(region
->vm_start
, region
->vm_top
);
670 kmem_cache_free(vm_region_jar
, region
);
672 up_write(&nommu_region_sem
);
677 * release a reference to a region
679 static void put_nommu_region(struct vm_region
*region
)
681 down_write(&nommu_region_sem
);
682 __put_nommu_region(region
);
686 * update protection on a vma
688 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
691 struct mm_struct
*mm
= vma
->vm_mm
;
692 long start
= vma
->vm_start
& PAGE_MASK
;
693 while (start
< vma
->vm_end
) {
694 protect_page(mm
, start
, flags
);
697 update_protections(mm
);
702 * add a VMA into a process's mm_struct in the appropriate place in the list
703 * and tree and add to the address space's page tree also if not an anonymous
705 * - should be called with mm->mmap_sem held writelocked
707 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
709 struct vm_area_struct
*pvma
, *prev
;
710 struct address_space
*mapping
;
711 struct rb_node
**p
, *parent
, *rb_prev
;
715 BUG_ON(!vma
->vm_region
);
720 protect_vma(vma
, vma
->vm_flags
);
722 /* add the VMA to the mapping */
724 mapping
= vma
->vm_file
->f_mapping
;
726 i_mmap_lock_write(mapping
);
727 flush_dcache_mmap_lock(mapping
);
728 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
729 flush_dcache_mmap_unlock(mapping
);
730 i_mmap_unlock_write(mapping
);
733 /* add the VMA to the tree */
734 parent
= rb_prev
= NULL
;
735 p
= &mm
->mm_rb
.rb_node
;
738 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
740 /* sort by: start addr, end addr, VMA struct addr in that order
741 * (the latter is necessary as we may get identical VMAs) */
742 if (vma
->vm_start
< pvma
->vm_start
)
744 else if (vma
->vm_start
> pvma
->vm_start
) {
747 } else if (vma
->vm_end
< pvma
->vm_end
)
749 else if (vma
->vm_end
> pvma
->vm_end
) {
752 } else if (vma
< pvma
)
754 else if (vma
> pvma
) {
761 rb_link_node(&vma
->vm_rb
, parent
, p
);
762 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
764 /* add VMA to the VMA list also */
767 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
769 __vma_link_list(mm
, vma
, prev
, parent
);
773 * delete a VMA from its owning mm_struct and address space
775 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
778 struct address_space
*mapping
;
779 struct mm_struct
*mm
= vma
->vm_mm
;
780 struct task_struct
*curr
= current
;
787 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
788 /* if the vma is cached, invalidate the entire cache */
789 if (curr
->vmacache
[i
] == vma
) {
790 vmacache_invalidate(mm
);
795 /* remove the VMA from the mapping */
797 mapping
= vma
->vm_file
->f_mapping
;
799 i_mmap_lock_write(mapping
);
800 flush_dcache_mmap_lock(mapping
);
801 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
802 flush_dcache_mmap_unlock(mapping
);
803 i_mmap_unlock_write(mapping
);
806 /* remove from the MM's tree and list */
807 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
810 vma
->vm_prev
->vm_next
= vma
->vm_next
;
812 mm
->mmap
= vma
->vm_next
;
815 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
819 * destroy a VMA record
821 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
824 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
825 vma
->vm_ops
->close(vma
);
828 put_nommu_region(vma
->vm_region
);
829 kmem_cache_free(vm_area_cachep
, vma
);
833 * look up the first VMA in which addr resides, NULL if none
834 * - should be called with mm->mmap_sem at least held readlocked
836 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
838 struct vm_area_struct
*vma
;
840 /* check the cache first */
841 vma
= vmacache_find(mm
, addr
);
845 /* trawl the list (there may be multiple mappings in which addr
847 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
848 if (vma
->vm_start
> addr
)
850 if (vma
->vm_end
> addr
) {
851 vmacache_update(addr
, vma
);
858 EXPORT_SYMBOL(find_vma
);
862 * - we don't extend stack VMAs under NOMMU conditions
864 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
866 return find_vma(mm
, addr
);
870 * expand a stack to a given address
871 * - not supported under NOMMU conditions
873 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
879 * look up the first VMA exactly that exactly matches addr
880 * - should be called with mm->mmap_sem at least held readlocked
882 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
886 struct vm_area_struct
*vma
;
887 unsigned long end
= addr
+ len
;
889 /* check the cache first */
890 vma
= vmacache_find_exact(mm
, addr
, end
);
894 /* trawl the list (there may be multiple mappings in which addr
896 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
897 if (vma
->vm_start
< addr
)
899 if (vma
->vm_start
> addr
)
901 if (vma
->vm_end
== end
) {
902 vmacache_update(addr
, vma
);
911 * determine whether a mapping should be permitted and, if so, what sort of
912 * mapping we're capable of supporting
914 static int validate_mmap_request(struct file
*file
,
920 unsigned long *_capabilities
)
922 unsigned long capabilities
, rlen
;
925 /* do the simple checks first */
926 if (flags
& MAP_FIXED
) {
928 "%d: Can't do fixed-address/overlay mmap of RAM\n",
933 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
934 (flags
& MAP_TYPE
) != MAP_SHARED
)
940 /* Careful about overflows.. */
941 rlen
= PAGE_ALIGN(len
);
942 if (!rlen
|| rlen
> TASK_SIZE
)
945 /* offset overflow? */
946 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
950 /* validate file mapping requests */
951 struct address_space
*mapping
;
953 /* files must support mmap */
954 if (!file
->f_op
->mmap
)
957 /* work out if what we've got could possibly be shared
958 * - we support chardevs that provide their own "memory"
959 * - we support files/blockdevs that are memory backed
961 mapping
= file
->f_mapping
;
963 mapping
= file_inode(file
)->i_mapping
;
966 if (mapping
&& mapping
->backing_dev_info
)
967 capabilities
= mapping
->backing_dev_info
->capabilities
;
970 /* no explicit capabilities set, so assume some
972 switch (file_inode(file
)->i_mode
& S_IFMT
) {
975 capabilities
= BDI_CAP_MAP_COPY
;
990 /* eliminate any capabilities that we can't support on this
992 if (!file
->f_op
->get_unmapped_area
)
993 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
994 if (!file
->f_op
->read
)
995 capabilities
&= ~BDI_CAP_MAP_COPY
;
997 /* The file shall have been opened with read permission. */
998 if (!(file
->f_mode
& FMODE_READ
))
1001 if (flags
& MAP_SHARED
) {
1002 /* do checks for writing, appending and locking */
1003 if ((prot
& PROT_WRITE
) &&
1004 !(file
->f_mode
& FMODE_WRITE
))
1007 if (IS_APPEND(file_inode(file
)) &&
1008 (file
->f_mode
& FMODE_WRITE
))
1011 if (locks_verify_locked(file
))
1014 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1017 /* we mustn't privatise shared mappings */
1018 capabilities
&= ~BDI_CAP_MAP_COPY
;
1020 /* we're going to read the file into private memory we
1022 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1025 /* we don't permit a private writable mapping to be
1026 * shared with the backing device */
1027 if (prot
& PROT_WRITE
)
1028 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1031 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1032 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1033 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1034 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1036 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1037 if (flags
& MAP_SHARED
) {
1039 "MAP_SHARED not completely supported on !MMU\n");
1045 /* handle executable mappings and implied executable
1047 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1048 if (prot
& PROT_EXEC
)
1050 } else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1051 /* handle implication of PROT_EXEC by PROT_READ */
1052 if (current
->personality
& READ_IMPLIES_EXEC
) {
1053 if (capabilities
& BDI_CAP_EXEC_MAP
)
1056 } else if ((prot
& PROT_READ
) &&
1057 (prot
& PROT_EXEC
) &&
1058 !(capabilities
& BDI_CAP_EXEC_MAP
)
1060 /* backing file is not executable, try to copy */
1061 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1064 /* anonymous mappings are always memory backed and can be
1067 capabilities
= BDI_CAP_MAP_COPY
;
1069 /* handle PROT_EXEC implication by PROT_READ */
1070 if ((prot
& PROT_READ
) &&
1071 (current
->personality
& READ_IMPLIES_EXEC
))
1075 /* allow the security API to have its say */
1076 ret
= security_mmap_addr(addr
);
1081 *_capabilities
= capabilities
;
1086 * we've determined that we can make the mapping, now translate what we
1087 * now know into VMA flags
1089 static unsigned long determine_vm_flags(struct file
*file
,
1091 unsigned long flags
,
1092 unsigned long capabilities
)
1094 unsigned long vm_flags
;
1096 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1097 /* vm_flags |= mm->def_flags; */
1099 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1100 /* attempt to share read-only copies of mapped file chunks */
1101 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1102 if (file
&& !(prot
& PROT_WRITE
))
1103 vm_flags
|= VM_MAYSHARE
;
1105 /* overlay a shareable mapping on the backing device or inode
1106 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1108 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1109 if (flags
& MAP_SHARED
)
1110 vm_flags
|= VM_SHARED
;
1113 /* refuse to let anyone share private mappings with this process if
1114 * it's being traced - otherwise breakpoints set in it may interfere
1115 * with another untraced process
1117 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1118 vm_flags
&= ~VM_MAYSHARE
;
1124 * set up a shared mapping on a file (the driver or filesystem provides and
1127 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1131 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1133 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1139 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1140 * opposed to tried but failed) so we can only give a suitable error as
1141 * it's not possible to make a private copy if MAP_SHARED was given */
1146 * set up a private mapping or an anonymous shared mapping
1148 static int do_mmap_private(struct vm_area_struct
*vma
,
1149 struct vm_region
*region
,
1151 unsigned long capabilities
)
1153 unsigned long total
, point
;
1157 /* invoke the file's mapping function so that it can keep track of
1158 * shared mappings on devices or memory
1159 * - VM_MAYSHARE will be set if it may attempt to share
1161 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1162 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1164 /* shouldn't return success if we're not sharing */
1165 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1166 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1172 /* getting an ENOSYS error indicates that direct mmap isn't
1173 * possible (as opposed to tried but failed) so we'll try to
1174 * make a private copy of the data and map that instead */
1178 /* allocate some memory to hold the mapping
1179 * - note that this may not return a page-aligned address if the object
1180 * we're allocating is smaller than a page
1182 order
= get_order(len
);
1183 kdebug("alloc order %d for %lx", order
, len
);
1186 point
= len
>> PAGE_SHIFT
;
1188 /* we don't want to allocate a power-of-2 sized page set */
1189 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1191 kdebug("try to alloc exact %lu pages", total
);
1192 base
= alloc_pages_exact(len
, GFP_KERNEL
);
1194 base
= (void *)__get_free_pages(GFP_KERNEL
, order
);
1200 atomic_long_add(total
, &mmap_pages_allocated
);
1202 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1203 region
->vm_start
= (unsigned long) base
;
1204 region
->vm_end
= region
->vm_start
+ len
;
1205 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1207 vma
->vm_start
= region
->vm_start
;
1208 vma
->vm_end
= region
->vm_start
+ len
;
1211 /* read the contents of a file into the copy */
1212 mm_segment_t old_fs
;
1215 fpos
= vma
->vm_pgoff
;
1216 fpos
<<= PAGE_SHIFT
;
1220 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1226 /* clear the last little bit */
1228 memset(base
+ ret
, 0, len
- ret
);
1235 free_page_series(region
->vm_start
, region
->vm_top
);
1236 region
->vm_start
= vma
->vm_start
= 0;
1237 region
->vm_end
= vma
->vm_end
= 0;
1242 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1243 len
, current
->pid
, current
->comm
);
1249 * handle mapping creation for uClinux
1251 unsigned long do_mmap_pgoff(struct file
*file
,
1255 unsigned long flags
,
1256 unsigned long pgoff
,
1257 unsigned long *populate
)
1259 struct vm_area_struct
*vma
;
1260 struct vm_region
*region
;
1262 unsigned long capabilities
, vm_flags
, result
;
1265 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1269 /* decide whether we should attempt the mapping, and if so what sort of
1271 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1274 kleave(" = %d [val]", ret
);
1278 /* we ignore the address hint */
1280 len
= PAGE_ALIGN(len
);
1282 /* we've determined that we can make the mapping, now translate what we
1283 * now know into VMA flags */
1284 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1286 /* we're going to need to record the mapping */
1287 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1289 goto error_getting_region
;
1291 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1293 goto error_getting_vma
;
1295 region
->vm_usage
= 1;
1296 region
->vm_flags
= vm_flags
;
1297 region
->vm_pgoff
= pgoff
;
1299 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1300 vma
->vm_flags
= vm_flags
;
1301 vma
->vm_pgoff
= pgoff
;
1304 region
->vm_file
= get_file(file
);
1305 vma
->vm_file
= get_file(file
);
1308 down_write(&nommu_region_sem
);
1310 /* if we want to share, we need to check for regions created by other
1311 * mmap() calls that overlap with our proposed mapping
1312 * - we can only share with a superset match on most regular files
1313 * - shared mappings on character devices and memory backed files are
1314 * permitted to overlap inexactly as far as we are concerned for in
1315 * these cases, sharing is handled in the driver or filesystem rather
1318 if (vm_flags
& VM_MAYSHARE
) {
1319 struct vm_region
*pregion
;
1320 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1322 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1323 pgend
= pgoff
+ pglen
;
1325 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1326 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1328 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1331 /* search for overlapping mappings on the same file */
1332 if (file_inode(pregion
->vm_file
) !=
1336 if (pregion
->vm_pgoff
>= pgend
)
1339 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1340 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1341 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1342 if (pgoff
>= rpgend
)
1345 /* handle inexactly overlapping matches between
1347 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1348 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1349 /* new mapping is not a subset of the region */
1350 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1351 goto sharing_violation
;
1355 /* we've found a region we can share */
1356 pregion
->vm_usage
++;
1357 vma
->vm_region
= pregion
;
1358 start
= pregion
->vm_start
;
1359 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1360 vma
->vm_start
= start
;
1361 vma
->vm_end
= start
+ len
;
1363 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1364 kdebug("share copy");
1365 vma
->vm_flags
|= VM_MAPPED_COPY
;
1367 kdebug("share mmap");
1368 ret
= do_mmap_shared_file(vma
);
1370 vma
->vm_region
= NULL
;
1373 pregion
->vm_usage
--;
1375 goto error_just_free
;
1378 fput(region
->vm_file
);
1379 kmem_cache_free(vm_region_jar
, region
);
1385 /* obtain the address at which to make a shared mapping
1386 * - this is the hook for quasi-memory character devices to
1387 * tell us the location of a shared mapping
1389 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1390 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1392 if (IS_ERR_VALUE(addr
)) {
1395 goto error_just_free
;
1397 /* the driver refused to tell us where to site
1398 * the mapping so we'll have to attempt to copy
1401 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1402 goto error_just_free
;
1404 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1406 vma
->vm_start
= region
->vm_start
= addr
;
1407 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1412 vma
->vm_region
= region
;
1414 /* set up the mapping
1415 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1417 if (file
&& vma
->vm_flags
& VM_SHARED
)
1418 ret
= do_mmap_shared_file(vma
);
1420 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1422 goto error_just_free
;
1423 add_nommu_region(region
);
1425 /* clear anonymous mappings that don't ask for uninitialized data */
1426 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1427 memset((void *)region
->vm_start
, 0,
1428 region
->vm_end
- region
->vm_start
);
1430 /* okay... we have a mapping; now we have to register it */
1431 result
= vma
->vm_start
;
1433 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1436 add_vma_to_mm(current
->mm
, vma
);
1438 /* we flush the region from the icache only when the first executable
1439 * mapping of it is made */
1440 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1441 flush_icache_range(region
->vm_start
, region
->vm_end
);
1442 region
->vm_icache_flushed
= true;
1445 up_write(&nommu_region_sem
);
1447 kleave(" = %lx", result
);
1451 up_write(&nommu_region_sem
);
1453 if (region
->vm_file
)
1454 fput(region
->vm_file
);
1455 kmem_cache_free(vm_region_jar
, region
);
1458 kmem_cache_free(vm_area_cachep
, vma
);
1459 kleave(" = %d", ret
);
1463 up_write(&nommu_region_sem
);
1464 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1469 kmem_cache_free(vm_region_jar
, region
);
1470 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1471 " from process %d failed\n",
1476 error_getting_region
:
1477 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1478 " from process %d failed\n",
1484 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1485 unsigned long, prot
, unsigned long, flags
,
1486 unsigned long, fd
, unsigned long, pgoff
)
1488 struct file
*file
= NULL
;
1489 unsigned long retval
= -EBADF
;
1491 audit_mmap_fd(fd
, flags
);
1492 if (!(flags
& MAP_ANONYMOUS
)) {
1498 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1500 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1508 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1509 struct mmap_arg_struct
{
1513 unsigned long flags
;
1515 unsigned long offset
;
1518 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1520 struct mmap_arg_struct a
;
1522 if (copy_from_user(&a
, arg
, sizeof(a
)))
1524 if (a
.offset
& ~PAGE_MASK
)
1527 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1528 a
.offset
>> PAGE_SHIFT
);
1530 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1533 * split a vma into two pieces at address 'addr', a new vma is allocated either
1534 * for the first part or the tail.
1536 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1537 unsigned long addr
, int new_below
)
1539 struct vm_area_struct
*new;
1540 struct vm_region
*region
;
1541 unsigned long npages
;
1545 /* we're only permitted to split anonymous regions (these should have
1546 * only a single usage on the region) */
1550 if (mm
->map_count
>= sysctl_max_map_count
)
1553 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1557 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1559 kmem_cache_free(vm_region_jar
, region
);
1563 /* most fields are the same, copy all, and then fixup */
1565 *region
= *vma
->vm_region
;
1566 new->vm_region
= region
;
1568 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1571 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1573 region
->vm_start
= new->vm_start
= addr
;
1574 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1577 if (new->vm_ops
&& new->vm_ops
->open
)
1578 new->vm_ops
->open(new);
1580 delete_vma_from_mm(vma
);
1581 down_write(&nommu_region_sem
);
1582 delete_nommu_region(vma
->vm_region
);
1584 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1585 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1587 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1588 vma
->vm_region
->vm_top
= addr
;
1590 add_nommu_region(vma
->vm_region
);
1591 add_nommu_region(new->vm_region
);
1592 up_write(&nommu_region_sem
);
1593 add_vma_to_mm(mm
, vma
);
1594 add_vma_to_mm(mm
, new);
1599 * shrink a VMA by removing the specified chunk from either the beginning or
1602 static int shrink_vma(struct mm_struct
*mm
,
1603 struct vm_area_struct
*vma
,
1604 unsigned long from
, unsigned long to
)
1606 struct vm_region
*region
;
1610 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1612 delete_vma_from_mm(vma
);
1613 if (from
> vma
->vm_start
)
1617 add_vma_to_mm(mm
, vma
);
1619 /* cut the backing region down to size */
1620 region
= vma
->vm_region
;
1621 BUG_ON(region
->vm_usage
!= 1);
1623 down_write(&nommu_region_sem
);
1624 delete_nommu_region(region
);
1625 if (from
> region
->vm_start
) {
1626 to
= region
->vm_top
;
1627 region
->vm_top
= region
->vm_end
= from
;
1629 region
->vm_start
= to
;
1631 add_nommu_region(region
);
1632 up_write(&nommu_region_sem
);
1634 free_page_series(from
, to
);
1640 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1641 * VMA, though it need not cover the whole VMA
1643 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1645 struct vm_area_struct
*vma
;
1649 kenter(",%lx,%zx", start
, len
);
1651 len
= PAGE_ALIGN(len
);
1657 /* find the first potentially overlapping VMA */
1658 vma
= find_vma(mm
, start
);
1663 "munmap of memory not mmapped by process %d"
1664 " (%s): 0x%lx-0x%lx\n",
1665 current
->pid
, current
->comm
,
1666 start
, start
+ len
- 1);
1672 /* we're allowed to split an anonymous VMA but not a file-backed one */
1675 if (start
> vma
->vm_start
) {
1676 kleave(" = -EINVAL [miss]");
1679 if (end
== vma
->vm_end
)
1680 goto erase_whole_vma
;
1683 kleave(" = -EINVAL [split file]");
1686 /* the chunk must be a subset of the VMA found */
1687 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1688 goto erase_whole_vma
;
1689 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1690 kleave(" = -EINVAL [superset]");
1693 if (start
& ~PAGE_MASK
) {
1694 kleave(" = -EINVAL [unaligned start]");
1697 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1698 kleave(" = -EINVAL [unaligned split]");
1701 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1702 ret
= split_vma(mm
, vma
, start
, 1);
1704 kleave(" = %d [split]", ret
);
1708 return shrink_vma(mm
, vma
, start
, end
);
1712 delete_vma_from_mm(vma
);
1713 delete_vma(mm
, vma
);
1717 EXPORT_SYMBOL(do_munmap
);
1719 int vm_munmap(unsigned long addr
, size_t len
)
1721 struct mm_struct
*mm
= current
->mm
;
1724 down_write(&mm
->mmap_sem
);
1725 ret
= do_munmap(mm
, addr
, len
);
1726 up_write(&mm
->mmap_sem
);
1729 EXPORT_SYMBOL(vm_munmap
);
1731 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1733 return vm_munmap(addr
, len
);
1737 * release all the mappings made in a process's VM space
1739 void exit_mmap(struct mm_struct
*mm
)
1741 struct vm_area_struct
*vma
;
1750 while ((vma
= mm
->mmap
)) {
1751 mm
->mmap
= vma
->vm_next
;
1752 delete_vma_from_mm(vma
);
1753 delete_vma(mm
, vma
);
1760 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1766 * expand (or shrink) an existing mapping, potentially moving it at the same
1767 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1769 * under NOMMU conditions, we only permit changing a mapping's size, and only
1770 * as long as it stays within the region allocated by do_mmap_private() and the
1771 * block is not shareable
1773 * MREMAP_FIXED is not supported under NOMMU conditions
1775 static unsigned long do_mremap(unsigned long addr
,
1776 unsigned long old_len
, unsigned long new_len
,
1777 unsigned long flags
, unsigned long new_addr
)
1779 struct vm_area_struct
*vma
;
1781 /* insanity checks first */
1782 old_len
= PAGE_ALIGN(old_len
);
1783 new_len
= PAGE_ALIGN(new_len
);
1784 if (old_len
== 0 || new_len
== 0)
1785 return (unsigned long) -EINVAL
;
1787 if (addr
& ~PAGE_MASK
)
1790 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1791 return (unsigned long) -EINVAL
;
1793 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1795 return (unsigned long) -EINVAL
;
1797 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1798 return (unsigned long) -EFAULT
;
1800 if (vma
->vm_flags
& VM_MAYSHARE
)
1801 return (unsigned long) -EPERM
;
1803 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1804 return (unsigned long) -ENOMEM
;
1806 /* all checks complete - do it */
1807 vma
->vm_end
= vma
->vm_start
+ new_len
;
1808 return vma
->vm_start
;
1811 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1812 unsigned long, new_len
, unsigned long, flags
,
1813 unsigned long, new_addr
)
1817 down_write(¤t
->mm
->mmap_sem
);
1818 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1819 up_write(¤t
->mm
->mmap_sem
);
1823 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1824 unsigned long address
, unsigned int flags
,
1825 unsigned int *page_mask
)
1831 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1832 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1834 if (addr
!= (pfn
<< PAGE_SHIFT
))
1837 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1840 EXPORT_SYMBOL(remap_pfn_range
);
1842 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1844 unsigned long pfn
= start
>> PAGE_SHIFT
;
1845 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1847 pfn
+= vma
->vm_pgoff
;
1848 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1850 EXPORT_SYMBOL(vm_iomap_memory
);
1852 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1853 unsigned long pgoff
)
1855 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1857 if (!(vma
->vm_flags
& VM_USERMAP
))
1860 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1861 vma
->vm_end
= vma
->vm_start
+ size
;
1865 EXPORT_SYMBOL(remap_vmalloc_range
);
1867 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1868 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1873 void unmap_mapping_range(struct address_space
*mapping
,
1874 loff_t
const holebegin
, loff_t
const holelen
,
1878 EXPORT_SYMBOL(unmap_mapping_range
);
1881 * Check that a process has enough memory to allocate a new virtual
1882 * mapping. 0 means there is enough memory for the allocation to
1883 * succeed and -ENOMEM implies there is not.
1885 * We currently support three overcommit policies, which are set via the
1886 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1888 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1889 * Additional code 2002 Jul 20 by Robert Love.
1891 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1893 * Note this is a helper function intended to be used by LSMs which
1894 * wish to use this logic.
1896 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1898 unsigned long free
, allowed
, reserve
;
1900 vm_acct_memory(pages
);
1903 * Sometimes we want to use more memory than we have
1905 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1908 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1909 free
= global_page_state(NR_FREE_PAGES
);
1910 free
+= global_page_state(NR_FILE_PAGES
);
1913 * shmem pages shouldn't be counted as free in this
1914 * case, they can't be purged, only swapped out, and
1915 * that won't affect the overall amount of available
1916 * memory in the system.
1918 free
-= global_page_state(NR_SHMEM
);
1920 free
+= get_nr_swap_pages();
1923 * Any slabs which are created with the
1924 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1925 * which are reclaimable, under pressure. The dentry
1926 * cache and most inode caches should fall into this
1928 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1931 * Leave reserved pages. The pages are not for anonymous pages.
1933 if (free
<= totalreserve_pages
)
1936 free
-= totalreserve_pages
;
1939 * Reserve some for root
1942 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1950 allowed
= vm_commit_limit();
1952 * Reserve some 3% for root
1955 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1958 * Don't let a single process grow so big a user can't recover
1961 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1962 allowed
-= min(mm
->total_vm
/ 32, reserve
);
1965 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1969 vm_unacct_memory(pages
);
1974 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1979 EXPORT_SYMBOL(filemap_fault
);
1981 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1985 EXPORT_SYMBOL(filemap_map_pages
);
1987 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1988 unsigned long addr
, void *buf
, int len
, int write
)
1990 struct vm_area_struct
*vma
;
1992 down_read(&mm
->mmap_sem
);
1994 /* the access must start within one of the target process's mappings */
1995 vma
= find_vma(mm
, addr
);
1997 /* don't overrun this mapping */
1998 if (addr
+ len
>= vma
->vm_end
)
1999 len
= vma
->vm_end
- addr
;
2001 /* only read or write mappings where it is permitted */
2002 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2003 copy_to_user_page(vma
, NULL
, addr
,
2004 (void *) addr
, buf
, len
);
2005 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2006 copy_from_user_page(vma
, NULL
, addr
,
2007 buf
, (void *) addr
, len
);
2014 up_read(&mm
->mmap_sem
);
2020 * @access_remote_vm - access another process' address space
2021 * @mm: the mm_struct of the target address space
2022 * @addr: start address to access
2023 * @buf: source or destination buffer
2024 * @len: number of bytes to transfer
2025 * @write: whether the access is a write
2027 * The caller must hold a reference on @mm.
2029 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2030 void *buf
, int len
, int write
)
2032 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2036 * Access another process' address space.
2037 * - source/target buffer must be kernel space
2039 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2041 struct mm_struct
*mm
;
2043 if (addr
+ len
< addr
)
2046 mm
= get_task_mm(tsk
);
2050 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2057 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2058 * @inode: The inode to check
2059 * @size: The current filesize of the inode
2060 * @newsize: The proposed filesize of the inode
2062 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2063 * make sure that that any outstanding VMAs aren't broken and then shrink the
2064 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2065 * automatically grant mappings that are too large.
2067 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2070 struct vm_area_struct
*vma
;
2071 struct vm_region
*region
;
2073 size_t r_size
, r_top
;
2075 low
= newsize
>> PAGE_SHIFT
;
2076 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2078 down_write(&nommu_region_sem
);
2079 i_mmap_lock_read(inode
->i_mapping
);
2081 /* search for VMAs that fall within the dead zone */
2082 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2083 /* found one - only interested if it's shared out of the page
2085 if (vma
->vm_flags
& VM_SHARED
) {
2086 i_mmap_unlock_read(inode
->i_mapping
);
2087 up_write(&nommu_region_sem
);
2088 return -ETXTBSY
; /* not quite true, but near enough */
2092 /* reduce any regions that overlap the dead zone - if in existence,
2093 * these will be pointed to by VMAs that don't overlap the dead zone
2095 * we don't check for any regions that start beyond the EOF as there
2098 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, 0, ULONG_MAX
) {
2099 if (!(vma
->vm_flags
& VM_SHARED
))
2102 region
= vma
->vm_region
;
2103 r_size
= region
->vm_top
- region
->vm_start
;
2104 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2106 if (r_top
> newsize
) {
2107 region
->vm_top
-= r_top
- newsize
;
2108 if (region
->vm_end
> region
->vm_top
)
2109 region
->vm_end
= region
->vm_top
;
2113 i_mmap_unlock_read(inode
->i_mapping
);
2114 up_write(&nommu_region_sem
);
2119 * Initialise sysctl_user_reserve_kbytes.
2121 * This is intended to prevent a user from starting a single memory hogging
2122 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2125 * The default value is min(3% of free memory, 128MB)
2126 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2128 static int __meminit
init_user_reserve(void)
2130 unsigned long free_kbytes
;
2132 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2134 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
2137 module_init(init_user_reserve
)
2140 * Initialise sysctl_admin_reserve_kbytes.
2142 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2143 * to log in and kill a memory hogging process.
2145 * Systems with more than 256MB will reserve 8MB, enough to recover
2146 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2147 * only reserve 3% of free pages by default.
2149 static int __meminit
init_admin_reserve(void)
2151 unsigned long free_kbytes
;
2153 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2155 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
2158 module_init(init_admin_reserve
)