2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
110 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
111 static void vsock_sk_destruct(struct sock
*sk
);
112 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
114 /* Protocol family. */
115 static struct proto vsock_proto
= {
117 .owner
= THIS_MODULE
,
118 .obj_size
= sizeof(struct vsock_sock
),
121 /* The default peer timeout indicates how long we will wait for a peer response
122 * to a control message.
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126 static const struct vsock_transport
*transport
;
127 static DEFINE_MUTEX(vsock_register_mutex
);
131 /* Get the ID of the local context. This is transport dependent. */
133 int vm_sockets_get_local_cid(void)
135 return transport
->get_local_cid();
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid
);
141 /* Each bound VSocket is stored in the bind hash table and each connected
142 * VSocket is stored in the connected hash table.
144 * Unbound sockets are all put on the same list attached to the end of the hash
145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
146 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147 * represents the list that addr hashes to).
149 * Specifically, we initialize the vsock_bind_table array to a size of
150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
153 * mods with VSOCK_HASH_SIZE to ensure this.
155 #define VSOCK_HASH_SIZE 251
156 #define MAX_PORT_RETRIES 24
158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst) \
164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst) \
166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk) \
168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170 static struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
171 static struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
172 static DEFINE_SPINLOCK(vsock_table_lock
);
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock
*vsk
)
177 struct sock
*sk
= sk_vsock(vsk
);
178 struct sockaddr_vm local_addr
;
180 if (vsock_addr_bound(&vsk
->local_addr
))
182 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
183 return __vsock_bind(sk
, &local_addr
);
186 static void vsock_init_tables(void)
190 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
191 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
193 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
194 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
197 static void __vsock_insert_bound(struct list_head
*list
,
198 struct vsock_sock
*vsk
)
201 list_add(&vsk
->bound_table
, list
);
204 static void __vsock_insert_connected(struct list_head
*list
,
205 struct vsock_sock
*vsk
)
208 list_add(&vsk
->connected_table
, list
);
211 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
213 list_del_init(&vsk
->bound_table
);
217 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
219 list_del_init(&vsk
->connected_table
);
223 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
225 struct vsock_sock
*vsk
;
227 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
)
228 if (addr
->svm_port
== vsk
->local_addr
.svm_port
)
229 return sk_vsock(vsk
);
234 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
235 struct sockaddr_vm
*dst
)
237 struct vsock_sock
*vsk
;
239 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
241 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
242 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
243 return sk_vsock(vsk
);
250 static bool __vsock_in_bound_table(struct vsock_sock
*vsk
)
252 return !list_empty(&vsk
->bound_table
);
255 static bool __vsock_in_connected_table(struct vsock_sock
*vsk
)
257 return !list_empty(&vsk
->connected_table
);
260 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
262 spin_lock_bh(&vsock_table_lock
);
263 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
264 spin_unlock_bh(&vsock_table_lock
);
267 void vsock_insert_connected(struct vsock_sock
*vsk
)
269 struct list_head
*list
= vsock_connected_sockets(
270 &vsk
->remote_addr
, &vsk
->local_addr
);
272 spin_lock_bh(&vsock_table_lock
);
273 __vsock_insert_connected(list
, vsk
);
274 spin_unlock_bh(&vsock_table_lock
);
276 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
278 void vsock_remove_bound(struct vsock_sock
*vsk
)
280 spin_lock_bh(&vsock_table_lock
);
281 __vsock_remove_bound(vsk
);
282 spin_unlock_bh(&vsock_table_lock
);
284 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
286 void vsock_remove_connected(struct vsock_sock
*vsk
)
288 spin_lock_bh(&vsock_table_lock
);
289 __vsock_remove_connected(vsk
);
290 spin_unlock_bh(&vsock_table_lock
);
292 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
294 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
298 spin_lock_bh(&vsock_table_lock
);
299 sk
= __vsock_find_bound_socket(addr
);
303 spin_unlock_bh(&vsock_table_lock
);
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
309 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
310 struct sockaddr_vm
*dst
)
314 spin_lock_bh(&vsock_table_lock
);
315 sk
= __vsock_find_connected_socket(src
, dst
);
319 spin_unlock_bh(&vsock_table_lock
);
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
325 static bool vsock_in_bound_table(struct vsock_sock
*vsk
)
329 spin_lock_bh(&vsock_table_lock
);
330 ret
= __vsock_in_bound_table(vsk
);
331 spin_unlock_bh(&vsock_table_lock
);
336 static bool vsock_in_connected_table(struct vsock_sock
*vsk
)
340 spin_lock_bh(&vsock_table_lock
);
341 ret
= __vsock_in_connected_table(vsk
);
342 spin_unlock_bh(&vsock_table_lock
);
347 void vsock_remove_sock(struct vsock_sock
*vsk
)
349 if (vsock_in_bound_table(vsk
))
350 vsock_remove_bound(vsk
);
352 if (vsock_in_connected_table(vsk
))
353 vsock_remove_connected(vsk
);
355 EXPORT_SYMBOL_GPL(vsock_remove_sock
);
357 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
361 spin_lock_bh(&vsock_table_lock
);
363 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
364 struct vsock_sock
*vsk
;
365 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
370 spin_unlock_bh(&vsock_table_lock
);
372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
374 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
376 struct vsock_sock
*vlistener
;
377 struct vsock_sock
*vpending
;
379 vlistener
= vsock_sk(listener
);
380 vpending
= vsock_sk(pending
);
384 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
386 EXPORT_SYMBOL_GPL(vsock_add_pending
);
388 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
390 struct vsock_sock
*vpending
= vsock_sk(pending
);
392 list_del_init(&vpending
->pending_links
);
396 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
398 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
400 struct vsock_sock
*vlistener
;
401 struct vsock_sock
*vconnected
;
403 vlistener
= vsock_sk(listener
);
404 vconnected
= vsock_sk(connected
);
406 sock_hold(connected
);
408 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
412 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
414 struct vsock_sock
*vlistener
;
415 struct vsock_sock
*vconnected
;
417 vlistener
= vsock_sk(listener
);
419 if (list_empty(&vlistener
->accept_queue
))
422 vconnected
= list_entry(vlistener
->accept_queue
.next
,
423 struct vsock_sock
, accept_queue
);
425 list_del_init(&vconnected
->accept_queue
);
427 /* The caller will need a reference on the connected socket so we let
428 * it call sock_put().
431 return sk_vsock(vconnected
);
434 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
436 struct vsock_sock
*vsk
= vsock_sk(sk
);
437 return list_empty(&vsk
->accept_queue
);
440 static bool vsock_is_pending(struct sock
*sk
)
442 struct vsock_sock
*vsk
= vsock_sk(sk
);
443 return !list_empty(&vsk
->pending_links
);
446 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
448 return transport
->shutdown(vsock_sk(sk
), mode
);
451 static void vsock_pending_work(struct work_struct
*work
)
454 struct sock
*listener
;
455 struct vsock_sock
*vsk
;
458 vsk
= container_of(work
, struct vsock_sock
, pending_work
.work
);
460 listener
= vsk
->listener
;
464 lock_sock_nested(sk
, SINGLE_DEPTH_NESTING
);
466 if (vsock_is_pending(sk
)) {
467 vsock_remove_pending(listener
, sk
);
469 listener
->sk_ack_backlog
--;
470 } else if (!vsk
->rejected
) {
471 /* We are not on the pending list and accept() did not reject
472 * us, so we must have been accepted by our user process. We
473 * just need to drop our references to the sockets and be on
480 /* We need to remove ourself from the global connected sockets list so
481 * incoming packets can't find this socket, and to reduce the reference
484 if (vsock_in_connected_table(vsk
))
485 vsock_remove_connected(vsk
);
487 sk
->sk_state
= SS_FREE
;
491 release_sock(listener
);
499 /**** SOCKET OPERATIONS ****/
501 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
502 struct sockaddr_vm
*addr
)
504 static u32 port
= LAST_RESERVED_PORT
+ 1;
505 struct sockaddr_vm new_addr
;
507 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
509 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
513 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
514 if (port
<= LAST_RESERVED_PORT
)
515 port
= LAST_RESERVED_PORT
+ 1;
517 new_addr
.svm_port
= port
++;
519 if (!__vsock_find_bound_socket(&new_addr
)) {
526 return -EADDRNOTAVAIL
;
528 /* If port is in reserved range, ensure caller
529 * has necessary privileges.
531 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
532 !capable(CAP_NET_BIND_SERVICE
)) {
536 if (__vsock_find_bound_socket(&new_addr
))
540 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
542 /* Remove stream sockets from the unbound list and add them to the hash
543 * table for easy lookup by its address. The unbound list is simply an
544 * extra entry at the end of the hash table, a trick used by AF_UNIX.
546 __vsock_remove_bound(vsk
);
547 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
552 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
553 struct sockaddr_vm
*addr
)
555 return transport
->dgram_bind(vsk
, addr
);
558 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
560 struct vsock_sock
*vsk
= vsock_sk(sk
);
564 /* First ensure this socket isn't already bound. */
565 if (vsock_addr_bound(&vsk
->local_addr
))
568 /* Now bind to the provided address or select appropriate values if
569 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
570 * like AF_INET prevents binding to a non-local IP address (in most
571 * cases), we only allow binding to the local CID.
573 cid
= transport
->get_local_cid();
574 if (addr
->svm_cid
!= cid
&& addr
->svm_cid
!= VMADDR_CID_ANY
)
575 return -EADDRNOTAVAIL
;
577 switch (sk
->sk_socket
->type
) {
579 spin_lock_bh(&vsock_table_lock
);
580 retval
= __vsock_bind_stream(vsk
, addr
);
581 spin_unlock_bh(&vsock_table_lock
);
585 retval
= __vsock_bind_dgram(vsk
, addr
);
596 static void vsock_connect_timeout(struct work_struct
*work
);
598 struct sock
*__vsock_create(struct net
*net
,
606 struct vsock_sock
*psk
;
607 struct vsock_sock
*vsk
;
609 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
613 sock_init_data(sock
, sk
);
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
623 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
624 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
626 sk
->sk_destruct
= vsock_sk_destruct
;
627 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
629 sock_reset_flag(sk
, SOCK_DONE
);
631 INIT_LIST_HEAD(&vsk
->bound_table
);
632 INIT_LIST_HEAD(&vsk
->connected_table
);
633 vsk
->listener
= NULL
;
634 INIT_LIST_HEAD(&vsk
->pending_links
);
635 INIT_LIST_HEAD(&vsk
->accept_queue
);
636 vsk
->rejected
= false;
637 vsk
->sent_request
= false;
638 vsk
->ignore_connecting_rst
= false;
639 vsk
->peer_shutdown
= 0;
640 INIT_DELAYED_WORK(&vsk
->connect_work
, vsock_connect_timeout
);
641 INIT_DELAYED_WORK(&vsk
->pending_work
, vsock_pending_work
);
643 psk
= parent
? vsock_sk(parent
) : NULL
;
645 vsk
->trusted
= psk
->trusted
;
646 vsk
->owner
= get_cred(psk
->owner
);
647 vsk
->connect_timeout
= psk
->connect_timeout
;
649 vsk
->trusted
= capable(CAP_NET_ADMIN
);
650 vsk
->owner
= get_current_cred();
651 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
654 if (transport
->init(vsk
, psk
) < 0) {
660 vsock_insert_unbound(vsk
);
664 EXPORT_SYMBOL_GPL(__vsock_create
);
666 static void __vsock_release(struct sock
*sk
)
670 struct sock
*pending
;
671 struct vsock_sock
*vsk
;
674 pending
= NULL
; /* Compiler warning. */
676 transport
->release(vsk
);
680 sk
->sk_shutdown
= SHUTDOWN_MASK
;
682 while ((skb
= skb_dequeue(&sk
->sk_receive_queue
)))
685 /* Clean up any sockets that never were accepted. */
686 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
687 __vsock_release(pending
);
696 static void vsock_sk_destruct(struct sock
*sk
)
698 struct vsock_sock
*vsk
= vsock_sk(sk
);
700 transport
->destruct(vsk
);
702 /* When clearing these addresses, there's no need to set the family and
703 * possibly register the address family with the kernel.
705 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
706 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
708 put_cred(vsk
->owner
);
711 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
715 err
= sock_queue_rcv_skb(sk
, skb
);
722 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
724 return transport
->stream_has_data(vsk
);
726 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
728 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
730 return transport
->stream_has_space(vsk
);
732 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
734 static int vsock_release(struct socket
*sock
)
736 __vsock_release(sock
->sk
);
738 sock
->state
= SS_FREE
;
744 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
748 struct sockaddr_vm
*vm_addr
;
752 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
756 err
= __vsock_bind(sk
, vm_addr
);
762 static int vsock_getname(struct socket
*sock
,
763 struct sockaddr
*addr
, int *addr_len
, int peer
)
767 struct vsock_sock
*vsk
;
768 struct sockaddr_vm
*vm_addr
;
777 if (sock
->state
!= SS_CONNECTED
) {
781 vm_addr
= &vsk
->remote_addr
;
783 vm_addr
= &vsk
->local_addr
;
791 /* sys_getsockname() and sys_getpeername() pass us a
792 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
793 * that macro is defined in socket.c instead of .h, so we hardcode its
796 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
797 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
798 *addr_len
= sizeof(*vm_addr
);
805 static int vsock_shutdown(struct socket
*sock
, int mode
)
810 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
811 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
812 * here like the other address families do. Note also that the
813 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
814 * which is what we want.
818 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
821 /* If this is a STREAM socket and it is not connected then bail out
822 * immediately. If it is a DGRAM socket then we must first kick the
823 * socket so that it wakes up from any sleeping calls, for example
824 * recv(), and then afterwards return the error.
828 if (sock
->state
== SS_UNCONNECTED
) {
830 if (sk
->sk_type
== SOCK_STREAM
)
833 sock
->state
= SS_DISCONNECTING
;
837 /* Receive and send shutdowns are treated alike. */
838 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
841 sk
->sk_shutdown
|= mode
;
842 sk
->sk_state_change(sk
);
845 if (sk
->sk_type
== SOCK_STREAM
) {
846 sock_reset_flag(sk
, SOCK_DONE
);
847 vsock_send_shutdown(sk
, mode
);
854 static unsigned int vsock_poll(struct file
*file
, struct socket
*sock
,
859 struct vsock_sock
*vsk
;
864 poll_wait(file
, sk_sleep(sk
), wait
);
868 /* Signify that there has been an error on this socket. */
871 /* INET sockets treat local write shutdown and peer write shutdown as a
872 * case of POLLHUP set.
874 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
875 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
876 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
880 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
881 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
885 if (sock
->type
== SOCK_DGRAM
) {
886 /* For datagram sockets we can read if there is something in
887 * the queue and write as long as the socket isn't shutdown for
890 if (!skb_queue_empty(&sk
->sk_receive_queue
) ||
891 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
892 mask
|= POLLIN
| POLLRDNORM
;
895 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
896 mask
|= POLLOUT
| POLLWRNORM
| POLLWRBAND
;
898 } else if (sock
->type
== SOCK_STREAM
) {
901 /* Listening sockets that have connections in their accept
904 if (sk
->sk_state
== VSOCK_SS_LISTEN
905 && !vsock_is_accept_queue_empty(sk
))
906 mask
|= POLLIN
| POLLRDNORM
;
908 /* If there is something in the queue then we can read. */
909 if (transport
->stream_is_active(vsk
) &&
910 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
911 bool data_ready_now
= false;
912 int ret
= transport
->notify_poll_in(
913 vsk
, 1, &data_ready_now
);
918 mask
|= POLLIN
| POLLRDNORM
;
923 /* Sockets whose connections have been closed, reset, or
924 * terminated should also be considered read, and we check the
925 * shutdown flag for that.
927 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
928 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
929 mask
|= POLLIN
| POLLRDNORM
;
932 /* Connected sockets that can produce data can be written. */
933 if (sk
->sk_state
== SS_CONNECTED
) {
934 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
935 bool space_avail_now
= false;
936 int ret
= transport
->notify_poll_out(
937 vsk
, 1, &space_avail_now
);
942 /* Remove POLLWRBAND since INET
943 * sockets are not setting it.
945 mask
|= POLLOUT
| POLLWRNORM
;
951 /* Simulate INET socket poll behaviors, which sets
952 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
953 * but local send is not shutdown.
955 if (sk
->sk_state
== SS_UNCONNECTED
) {
956 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
957 mask
|= POLLOUT
| POLLWRNORM
;
967 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
972 struct vsock_sock
*vsk
;
973 struct sockaddr_vm
*remote_addr
;
975 if (msg
->msg_flags
& MSG_OOB
)
978 /* For now, MSG_DONTWAIT is always assumed... */
985 err
= vsock_auto_bind(vsk
);
990 /* If the provided message contains an address, use that. Otherwise
991 * fall back on the socket's remote handle (if it has been connected).
994 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
995 &remote_addr
) == 0) {
996 /* Ensure this address is of the right type and is a valid
1000 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1001 remote_addr
->svm_cid
= transport
->get_local_cid();
1003 if (!vsock_addr_bound(remote_addr
)) {
1007 } else if (sock
->state
== SS_CONNECTED
) {
1008 remote_addr
= &vsk
->remote_addr
;
1010 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1011 remote_addr
->svm_cid
= transport
->get_local_cid();
1013 /* XXX Should connect() or this function ensure remote_addr is
1016 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1025 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1026 remote_addr
->svm_port
)) {
1031 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1038 static int vsock_dgram_connect(struct socket
*sock
,
1039 struct sockaddr
*addr
, int addr_len
, int flags
)
1043 struct vsock_sock
*vsk
;
1044 struct sockaddr_vm
*remote_addr
;
1049 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1050 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1052 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1054 sock
->state
= SS_UNCONNECTED
;
1057 } else if (err
!= 0)
1062 err
= vsock_auto_bind(vsk
);
1066 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1067 remote_addr
->svm_port
)) {
1072 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1073 sock
->state
= SS_CONNECTED
;
1080 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1081 size_t len
, int flags
)
1083 return transport
->dgram_dequeue(vsock_sk(sock
->sk
), msg
, len
, flags
);
1086 static const struct proto_ops vsock_dgram_ops
= {
1088 .owner
= THIS_MODULE
,
1089 .release
= vsock_release
,
1091 .connect
= vsock_dgram_connect
,
1092 .socketpair
= sock_no_socketpair
,
1093 .accept
= sock_no_accept
,
1094 .getname
= vsock_getname
,
1096 .ioctl
= sock_no_ioctl
,
1097 .listen
= sock_no_listen
,
1098 .shutdown
= vsock_shutdown
,
1099 .setsockopt
= sock_no_setsockopt
,
1100 .getsockopt
= sock_no_getsockopt
,
1101 .sendmsg
= vsock_dgram_sendmsg
,
1102 .recvmsg
= vsock_dgram_recvmsg
,
1103 .mmap
= sock_no_mmap
,
1104 .sendpage
= sock_no_sendpage
,
1107 static int vsock_transport_cancel_pkt(struct vsock_sock
*vsk
)
1109 if (!transport
->cancel_pkt
)
1112 return transport
->cancel_pkt(vsk
);
1115 static void vsock_connect_timeout(struct work_struct
*work
)
1118 struct vsock_sock
*vsk
;
1121 vsk
= container_of(work
, struct vsock_sock
, connect_work
.work
);
1125 if (sk
->sk_state
== SS_CONNECTING
&&
1126 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1127 sk
->sk_state
= SS_UNCONNECTED
;
1128 sk
->sk_err
= ETIMEDOUT
;
1129 sk
->sk_error_report(sk
);
1134 vsock_transport_cancel_pkt(vsk
);
1139 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1140 int addr_len
, int flags
)
1144 struct vsock_sock
*vsk
;
1145 struct sockaddr_vm
*remote_addr
;
1155 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1156 switch (sock
->state
) {
1160 case SS_DISCONNECTING
:
1164 /* This continues on so we can move sock into the SS_CONNECTED
1165 * state once the connection has completed (at which point err
1166 * will be set to zero also). Otherwise, we will either wait
1167 * for the connection or return -EALREADY should this be a
1168 * non-blocking call.
1173 if ((sk
->sk_state
== VSOCK_SS_LISTEN
) ||
1174 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1179 /* The hypervisor and well-known contexts do not have socket
1182 if (!transport
->stream_allow(remote_addr
->svm_cid
,
1183 remote_addr
->svm_port
)) {
1188 /* Set the remote address that we are connecting to. */
1189 memcpy(&vsk
->remote_addr
, remote_addr
,
1190 sizeof(vsk
->remote_addr
));
1192 err
= vsock_auto_bind(vsk
);
1196 sk
->sk_state
= SS_CONNECTING
;
1198 err
= transport
->connect(vsk
);
1202 /* Mark sock as connecting and set the error code to in
1203 * progress in case this is a non-blocking connect.
1205 sock
->state
= SS_CONNECTING
;
1209 /* The receive path will handle all communication until we are able to
1210 * enter the connected state. Here we wait for the connection to be
1211 * completed or a notification of an error.
1213 timeout
= vsk
->connect_timeout
;
1214 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1216 while (sk
->sk_state
!= SS_CONNECTED
&& sk
->sk_err
== 0) {
1217 if (flags
& O_NONBLOCK
) {
1218 /* If we're not going to block, we schedule a timeout
1219 * function to generate a timeout on the connection
1220 * attempt, in case the peer doesn't respond in a
1221 * timely manner. We hold on to the socket until the
1225 schedule_delayed_work(&vsk
->connect_work
, timeout
);
1227 /* Skip ahead to preserve error code set above. */
1232 timeout
= schedule_timeout(timeout
);
1235 if (signal_pending(current
)) {
1236 err
= sock_intr_errno(timeout
);
1237 sk
->sk_state
= SS_UNCONNECTED
;
1238 sock
->state
= SS_UNCONNECTED
;
1239 vsock_transport_cancel_pkt(vsk
);
1241 } else if (timeout
== 0) {
1243 sk
->sk_state
= SS_UNCONNECTED
;
1244 sock
->state
= SS_UNCONNECTED
;
1245 vsock_transport_cancel_pkt(vsk
);
1249 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1254 sk
->sk_state
= SS_UNCONNECTED
;
1255 sock
->state
= SS_UNCONNECTED
;
1261 finish_wait(sk_sleep(sk
), &wait
);
1267 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1269 struct sock
*listener
;
1271 struct sock
*connected
;
1272 struct vsock_sock
*vconnected
;
1277 listener
= sock
->sk
;
1279 lock_sock(listener
);
1281 if (sock
->type
!= SOCK_STREAM
) {
1286 if (listener
->sk_state
!= VSOCK_SS_LISTEN
) {
1291 /* Wait for children sockets to appear; these are the new sockets
1292 * created upon connection establishment.
1294 timeout
= sock_sndtimeo(listener
, flags
& O_NONBLOCK
);
1295 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1297 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1298 listener
->sk_err
== 0) {
1299 release_sock(listener
);
1300 timeout
= schedule_timeout(timeout
);
1301 finish_wait(sk_sleep(listener
), &wait
);
1302 lock_sock(listener
);
1304 if (signal_pending(current
)) {
1305 err
= sock_intr_errno(timeout
);
1307 } else if (timeout
== 0) {
1312 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1314 finish_wait(sk_sleep(listener
), &wait
);
1316 if (listener
->sk_err
)
1317 err
= -listener
->sk_err
;
1320 listener
->sk_ack_backlog
--;
1322 lock_sock_nested(connected
, SINGLE_DEPTH_NESTING
);
1323 vconnected
= vsock_sk(connected
);
1325 /* If the listener socket has received an error, then we should
1326 * reject this socket and return. Note that we simply mark the
1327 * socket rejected, drop our reference, and let the cleanup
1328 * function handle the cleanup; the fact that we found it in
1329 * the listener's accept queue guarantees that the cleanup
1330 * function hasn't run yet.
1333 vconnected
->rejected
= true;
1335 newsock
->state
= SS_CONNECTED
;
1336 sock_graft(connected
, newsock
);
1339 release_sock(connected
);
1340 sock_put(connected
);
1344 release_sock(listener
);
1348 static int vsock_listen(struct socket
*sock
, int backlog
)
1352 struct vsock_sock
*vsk
;
1358 if (sock
->type
!= SOCK_STREAM
) {
1363 if (sock
->state
!= SS_UNCONNECTED
) {
1370 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1375 sk
->sk_max_ack_backlog
= backlog
;
1376 sk
->sk_state
= VSOCK_SS_LISTEN
;
1385 static int vsock_stream_setsockopt(struct socket
*sock
,
1388 char __user
*optval
,
1389 unsigned int optlen
)
1393 struct vsock_sock
*vsk
;
1396 if (level
!= AF_VSOCK
)
1397 return -ENOPROTOOPT
;
1399 #define COPY_IN(_v) \
1401 if (optlen < sizeof(_v)) { \
1405 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1418 case SO_VM_SOCKETS_BUFFER_SIZE
:
1420 transport
->set_buffer_size(vsk
, val
);
1423 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1425 transport
->set_max_buffer_size(vsk
, val
);
1428 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1430 transport
->set_min_buffer_size(vsk
, val
);
1433 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1436 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1437 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1438 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1439 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1440 if (vsk
->connect_timeout
== 0)
1441 vsk
->connect_timeout
=
1442 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1462 static int vsock_stream_getsockopt(struct socket
*sock
,
1463 int level
, int optname
,
1464 char __user
*optval
,
1470 struct vsock_sock
*vsk
;
1473 if (level
!= AF_VSOCK
)
1474 return -ENOPROTOOPT
;
1476 err
= get_user(len
, optlen
);
1480 #define COPY_OUT(_v) \
1482 if (len < sizeof(_v)) \
1486 if (copy_to_user(optval, &_v, len) != 0) \
1496 case SO_VM_SOCKETS_BUFFER_SIZE
:
1497 val
= transport
->get_buffer_size(vsk
);
1501 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1502 val
= transport
->get_max_buffer_size(vsk
);
1506 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1507 val
= transport
->get_min_buffer_size(vsk
);
1511 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1513 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1515 (vsk
->connect_timeout
-
1516 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1521 return -ENOPROTOOPT
;
1524 err
= put_user(len
, optlen
);
1533 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1537 struct vsock_sock
*vsk
;
1538 ssize_t total_written
;
1541 struct vsock_transport_send_notify_data send_data
;
1542 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
1549 if (msg
->msg_flags
& MSG_OOB
)
1554 /* Callers should not provide a destination with stream sockets. */
1555 if (msg
->msg_namelen
) {
1556 err
= sk
->sk_state
== SS_CONNECTED
? -EISCONN
: -EOPNOTSUPP
;
1560 /* Send data only if both sides are not shutdown in the direction. */
1561 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1562 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1567 if (sk
->sk_state
!= SS_CONNECTED
||
1568 !vsock_addr_bound(&vsk
->local_addr
)) {
1573 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1574 err
= -EDESTADDRREQ
;
1578 /* Wait for room in the produce queue to enqueue our user's data. */
1579 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1581 err
= transport
->notify_send_init(vsk
, &send_data
);
1585 while (total_written
< len
) {
1588 add_wait_queue(sk_sleep(sk
), &wait
);
1589 while (vsock_stream_has_space(vsk
) == 0 &&
1591 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1592 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1594 /* Don't wait for non-blocking sockets. */
1597 remove_wait_queue(sk_sleep(sk
), &wait
);
1601 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1603 remove_wait_queue(sk_sleep(sk
), &wait
);
1608 timeout
= wait_woken(&wait
, TASK_INTERRUPTIBLE
, timeout
);
1610 if (signal_pending(current
)) {
1611 err
= sock_intr_errno(timeout
);
1612 remove_wait_queue(sk_sleep(sk
), &wait
);
1614 } else if (timeout
== 0) {
1616 remove_wait_queue(sk_sleep(sk
), &wait
);
1620 remove_wait_queue(sk_sleep(sk
), &wait
);
1622 /* These checks occur both as part of and after the loop
1623 * conditional since we need to check before and after
1629 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1630 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1635 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1639 /* Note that enqueue will only write as many bytes as are free
1640 * in the produce queue, so we don't need to ensure len is
1641 * smaller than the queue size. It is the caller's
1642 * responsibility to check how many bytes we were able to send.
1645 written
= transport
->stream_enqueue(
1647 len
- total_written
);
1653 total_written
+= written
;
1655 err
= transport
->notify_send_post_enqueue(
1656 vsk
, written
, &send_data
);
1663 if (total_written
> 0)
1664 err
= total_written
;
1672 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1676 struct vsock_sock
*vsk
;
1681 struct vsock_transport_recv_notify_data recv_data
;
1691 if (sk
->sk_state
!= SS_CONNECTED
) {
1692 /* Recvmsg is supposed to return 0 if a peer performs an
1693 * orderly shutdown. Differentiate between that case and when a
1694 * peer has not connected or a local shutdown occured with the
1697 if (sock_flag(sk
, SOCK_DONE
))
1705 if (flags
& MSG_OOB
) {
1710 /* We don't check peer_shutdown flag here since peer may actually shut
1711 * down, but there can be data in the queue that a local socket can
1714 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1719 /* It is valid on Linux to pass in a zero-length receive buffer. This
1720 * is not an error. We may as well bail out now.
1727 /* We must not copy less than target bytes into the user's buffer
1728 * before returning successfully, so we wait for the consume queue to
1729 * have that much data to consume before dequeueing. Note that this
1730 * makes it impossible to handle cases where target is greater than the
1733 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1734 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1738 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1741 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1749 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1750 ready
= vsock_stream_has_data(vsk
);
1753 if (sk
->sk_err
!= 0 ||
1754 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1755 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1756 finish_wait(sk_sleep(sk
), &wait
);
1759 /* Don't wait for non-blocking sockets. */
1762 finish_wait(sk_sleep(sk
), &wait
);
1766 err
= transport
->notify_recv_pre_block(
1767 vsk
, target
, &recv_data
);
1769 finish_wait(sk_sleep(sk
), &wait
);
1773 timeout
= schedule_timeout(timeout
);
1776 if (signal_pending(current
)) {
1777 err
= sock_intr_errno(timeout
);
1778 finish_wait(sk_sleep(sk
), &wait
);
1780 } else if (timeout
== 0) {
1782 finish_wait(sk_sleep(sk
), &wait
);
1788 finish_wait(sk_sleep(sk
), &wait
);
1791 /* Invalid queue pair content. XXX This should
1792 * be changed to a connection reset in a later
1800 err
= transport
->notify_recv_pre_dequeue(
1801 vsk
, target
, &recv_data
);
1805 read
= transport
->stream_dequeue(
1807 len
- copied
, flags
);
1815 err
= transport
->notify_recv_post_dequeue(
1817 !(flags
& MSG_PEEK
), &recv_data
);
1821 if (read
>= target
|| flags
& MSG_PEEK
)
1830 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1841 static const struct proto_ops vsock_stream_ops
= {
1843 .owner
= THIS_MODULE
,
1844 .release
= vsock_release
,
1846 .connect
= vsock_stream_connect
,
1847 .socketpair
= sock_no_socketpair
,
1848 .accept
= vsock_accept
,
1849 .getname
= vsock_getname
,
1851 .ioctl
= sock_no_ioctl
,
1852 .listen
= vsock_listen
,
1853 .shutdown
= vsock_shutdown
,
1854 .setsockopt
= vsock_stream_setsockopt
,
1855 .getsockopt
= vsock_stream_getsockopt
,
1856 .sendmsg
= vsock_stream_sendmsg
,
1857 .recvmsg
= vsock_stream_recvmsg
,
1858 .mmap
= sock_no_mmap
,
1859 .sendpage
= sock_no_sendpage
,
1862 static int vsock_create(struct net
*net
, struct socket
*sock
,
1863 int protocol
, int kern
)
1868 if (protocol
&& protocol
!= PF_VSOCK
)
1869 return -EPROTONOSUPPORT
;
1871 switch (sock
->type
) {
1873 sock
->ops
= &vsock_dgram_ops
;
1876 sock
->ops
= &vsock_stream_ops
;
1879 return -ESOCKTNOSUPPORT
;
1882 sock
->state
= SS_UNCONNECTED
;
1884 return __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
) ? 0 : -ENOMEM
;
1887 static const struct net_proto_family vsock_family_ops
= {
1889 .create
= vsock_create
,
1890 .owner
= THIS_MODULE
,
1893 static long vsock_dev_do_ioctl(struct file
*filp
,
1894 unsigned int cmd
, void __user
*ptr
)
1896 u32 __user
*p
= ptr
;
1900 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
1901 if (put_user(transport
->get_local_cid(), p
) != 0)
1906 pr_err("Unknown ioctl %d\n", cmd
);
1913 static long vsock_dev_ioctl(struct file
*filp
,
1914 unsigned int cmd
, unsigned long arg
)
1916 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
1919 #ifdef CONFIG_COMPAT
1920 static long vsock_dev_compat_ioctl(struct file
*filp
,
1921 unsigned int cmd
, unsigned long arg
)
1923 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
1927 static const struct file_operations vsock_device_ops
= {
1928 .owner
= THIS_MODULE
,
1929 .unlocked_ioctl
= vsock_dev_ioctl
,
1930 #ifdef CONFIG_COMPAT
1931 .compat_ioctl
= vsock_dev_compat_ioctl
,
1933 .open
= nonseekable_open
,
1936 static struct miscdevice vsock_device
= {
1938 .fops
= &vsock_device_ops
,
1941 int __vsock_core_init(const struct vsock_transport
*t
, struct module
*owner
)
1943 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
1953 /* Transport must be the owner of the protocol so that it can't
1954 * unload while there are open sockets.
1956 vsock_proto
.owner
= owner
;
1959 vsock_init_tables();
1961 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
1962 err
= misc_register(&vsock_device
);
1964 pr_err("Failed to register misc device\n");
1965 goto err_reset_transport
;
1968 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
1970 pr_err("Cannot register vsock protocol\n");
1971 goto err_deregister_misc
;
1974 err
= sock_register(&vsock_family_ops
);
1976 pr_err("could not register af_vsock (%d) address family: %d\n",
1978 goto err_unregister_proto
;
1981 mutex_unlock(&vsock_register_mutex
);
1984 err_unregister_proto
:
1985 proto_unregister(&vsock_proto
);
1986 err_deregister_misc
:
1987 misc_deregister(&vsock_device
);
1988 err_reset_transport
:
1991 mutex_unlock(&vsock_register_mutex
);
1994 EXPORT_SYMBOL_GPL(__vsock_core_init
);
1996 void vsock_core_exit(void)
1998 mutex_lock(&vsock_register_mutex
);
2000 misc_deregister(&vsock_device
);
2001 sock_unregister(AF_VSOCK
);
2002 proto_unregister(&vsock_proto
);
2004 /* We do not want the assignment below re-ordered. */
2008 mutex_unlock(&vsock_register_mutex
);
2010 EXPORT_SYMBOL_GPL(vsock_core_exit
);
2012 const struct vsock_transport
*vsock_core_get_transport(void)
2014 /* vsock_register_mutex not taken since only the transport uses this
2015 * function and only while registered.
2019 EXPORT_SYMBOL_GPL(vsock_core_get_transport
);
2021 MODULE_AUTHOR("VMware, Inc.");
2022 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2023 MODULE_VERSION("1.0.2.0-k");
2024 MODULE_LICENSE("GPL v2");