Linux 4.9.163
[linux/fpc-iii.git] / net / vmw_vsock / af_vsock.c
blob7566395e526d28593714e1b57eaa58dd841b9627
1 /*
2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
111 static void vsock_sk_destruct(struct sock *sk);
112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
114 /* Protocol family. */
115 static struct proto vsock_proto = {
116 .name = "AF_VSOCK",
117 .owner = THIS_MODULE,
118 .obj_size = sizeof(struct vsock_sock),
121 /* The default peer timeout indicates how long we will wait for a peer response
122 * to a control message.
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126 static const struct vsock_transport *transport;
127 static DEFINE_MUTEX(vsock_register_mutex);
129 /**** EXPORTS ****/
131 /* Get the ID of the local context. This is transport dependent. */
133 int vm_sockets_get_local_cid(void)
135 return transport->get_local_cid();
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
139 /**** UTILS ****/
141 /* Each bound VSocket is stored in the bind hash table and each connected
142 * VSocket is stored in the connected hash table.
144 * Unbound sockets are all put on the same list attached to the end of the hash
145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
146 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147 * represents the list that addr hashes to).
149 * Specifically, we initialize the vsock_bind_table array to a size of
150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
153 * mods with VSOCK_HASH_SIZE to ensure this.
155 #define VSOCK_HASH_SIZE 251
156 #define MAX_PORT_RETRIES 24
158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst) \
164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst) \
166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk) \
168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
172 static DEFINE_SPINLOCK(vsock_table_lock);
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock *vsk)
177 struct sock *sk = sk_vsock(vsk);
178 struct sockaddr_vm local_addr;
180 if (vsock_addr_bound(&vsk->local_addr))
181 return 0;
182 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
183 return __vsock_bind(sk, &local_addr);
186 static void vsock_init_tables(void)
188 int i;
190 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
191 INIT_LIST_HEAD(&vsock_bind_table[i]);
193 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
194 INIT_LIST_HEAD(&vsock_connected_table[i]);
197 static void __vsock_insert_bound(struct list_head *list,
198 struct vsock_sock *vsk)
200 sock_hold(&vsk->sk);
201 list_add(&vsk->bound_table, list);
204 static void __vsock_insert_connected(struct list_head *list,
205 struct vsock_sock *vsk)
207 sock_hold(&vsk->sk);
208 list_add(&vsk->connected_table, list);
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
213 list_del_init(&vsk->bound_table);
214 sock_put(&vsk->sk);
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
219 list_del_init(&vsk->connected_table);
220 sock_put(&vsk->sk);
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
225 struct vsock_sock *vsk;
227 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 if (addr->svm_port == vsk->local_addr.svm_port)
229 return sk_vsock(vsk);
231 return NULL;
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 struct sockaddr_vm *dst)
237 struct vsock_sock *vsk;
239 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 connected_table) {
241 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 dst->svm_port == vsk->local_addr.svm_port) {
243 return sk_vsock(vsk);
247 return NULL;
250 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
252 return !list_empty(&vsk->bound_table);
255 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
257 return !list_empty(&vsk->connected_table);
260 static void vsock_insert_unbound(struct vsock_sock *vsk)
262 spin_lock_bh(&vsock_table_lock);
263 __vsock_insert_bound(vsock_unbound_sockets, vsk);
264 spin_unlock_bh(&vsock_table_lock);
267 void vsock_insert_connected(struct vsock_sock *vsk)
269 struct list_head *list = vsock_connected_sockets(
270 &vsk->remote_addr, &vsk->local_addr);
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_insert_connected(list, vsk);
274 spin_unlock_bh(&vsock_table_lock);
276 EXPORT_SYMBOL_GPL(vsock_insert_connected);
278 void vsock_remove_bound(struct vsock_sock *vsk)
280 spin_lock_bh(&vsock_table_lock);
281 __vsock_remove_bound(vsk);
282 spin_unlock_bh(&vsock_table_lock);
284 EXPORT_SYMBOL_GPL(vsock_remove_bound);
286 void vsock_remove_connected(struct vsock_sock *vsk)
288 spin_lock_bh(&vsock_table_lock);
289 __vsock_remove_connected(vsk);
290 spin_unlock_bh(&vsock_table_lock);
292 EXPORT_SYMBOL_GPL(vsock_remove_connected);
294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
296 struct sock *sk;
298 spin_lock_bh(&vsock_table_lock);
299 sk = __vsock_find_bound_socket(addr);
300 if (sk)
301 sock_hold(sk);
303 spin_unlock_bh(&vsock_table_lock);
305 return sk;
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
310 struct sockaddr_vm *dst)
312 struct sock *sk;
314 spin_lock_bh(&vsock_table_lock);
315 sk = __vsock_find_connected_socket(src, dst);
316 if (sk)
317 sock_hold(sk);
319 spin_unlock_bh(&vsock_table_lock);
321 return sk;
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
325 static bool vsock_in_bound_table(struct vsock_sock *vsk)
327 bool ret;
329 spin_lock_bh(&vsock_table_lock);
330 ret = __vsock_in_bound_table(vsk);
331 spin_unlock_bh(&vsock_table_lock);
333 return ret;
336 static bool vsock_in_connected_table(struct vsock_sock *vsk)
338 bool ret;
340 spin_lock_bh(&vsock_table_lock);
341 ret = __vsock_in_connected_table(vsk);
342 spin_unlock_bh(&vsock_table_lock);
344 return ret;
347 void vsock_remove_sock(struct vsock_sock *vsk)
349 if (vsock_in_bound_table(vsk))
350 vsock_remove_bound(vsk);
352 if (vsock_in_connected_table(vsk))
353 vsock_remove_connected(vsk);
355 EXPORT_SYMBOL_GPL(vsock_remove_sock);
357 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
359 int i;
361 spin_lock_bh(&vsock_table_lock);
363 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
364 struct vsock_sock *vsk;
365 list_for_each_entry(vsk, &vsock_connected_table[i],
366 connected_table)
367 fn(sk_vsock(vsk));
370 spin_unlock_bh(&vsock_table_lock);
372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
374 void vsock_add_pending(struct sock *listener, struct sock *pending)
376 struct vsock_sock *vlistener;
377 struct vsock_sock *vpending;
379 vlistener = vsock_sk(listener);
380 vpending = vsock_sk(pending);
382 sock_hold(pending);
383 sock_hold(listener);
384 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
386 EXPORT_SYMBOL_GPL(vsock_add_pending);
388 void vsock_remove_pending(struct sock *listener, struct sock *pending)
390 struct vsock_sock *vpending = vsock_sk(pending);
392 list_del_init(&vpending->pending_links);
393 sock_put(listener);
394 sock_put(pending);
396 EXPORT_SYMBOL_GPL(vsock_remove_pending);
398 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
400 struct vsock_sock *vlistener;
401 struct vsock_sock *vconnected;
403 vlistener = vsock_sk(listener);
404 vconnected = vsock_sk(connected);
406 sock_hold(connected);
407 sock_hold(listener);
408 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
412 static struct sock *vsock_dequeue_accept(struct sock *listener)
414 struct vsock_sock *vlistener;
415 struct vsock_sock *vconnected;
417 vlistener = vsock_sk(listener);
419 if (list_empty(&vlistener->accept_queue))
420 return NULL;
422 vconnected = list_entry(vlistener->accept_queue.next,
423 struct vsock_sock, accept_queue);
425 list_del_init(&vconnected->accept_queue);
426 sock_put(listener);
427 /* The caller will need a reference on the connected socket so we let
428 * it call sock_put().
431 return sk_vsock(vconnected);
434 static bool vsock_is_accept_queue_empty(struct sock *sk)
436 struct vsock_sock *vsk = vsock_sk(sk);
437 return list_empty(&vsk->accept_queue);
440 static bool vsock_is_pending(struct sock *sk)
442 struct vsock_sock *vsk = vsock_sk(sk);
443 return !list_empty(&vsk->pending_links);
446 static int vsock_send_shutdown(struct sock *sk, int mode)
448 return transport->shutdown(vsock_sk(sk), mode);
451 static void vsock_pending_work(struct work_struct *work)
453 struct sock *sk;
454 struct sock *listener;
455 struct vsock_sock *vsk;
456 bool cleanup;
458 vsk = container_of(work, struct vsock_sock, pending_work.work);
459 sk = sk_vsock(vsk);
460 listener = vsk->listener;
461 cleanup = true;
463 lock_sock(listener);
464 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
466 if (vsock_is_pending(sk)) {
467 vsock_remove_pending(listener, sk);
469 listener->sk_ack_backlog--;
470 } else if (!vsk->rejected) {
471 /* We are not on the pending list and accept() did not reject
472 * us, so we must have been accepted by our user process. We
473 * just need to drop our references to the sockets and be on
474 * our way.
476 cleanup = false;
477 goto out;
480 /* We need to remove ourself from the global connected sockets list so
481 * incoming packets can't find this socket, and to reduce the reference
482 * count.
484 if (vsock_in_connected_table(vsk))
485 vsock_remove_connected(vsk);
487 sk->sk_state = SS_FREE;
489 out:
490 release_sock(sk);
491 release_sock(listener);
492 if (cleanup)
493 sock_put(sk);
495 sock_put(sk);
496 sock_put(listener);
499 /**** SOCKET OPERATIONS ****/
501 static int __vsock_bind_stream(struct vsock_sock *vsk,
502 struct sockaddr_vm *addr)
504 static u32 port = LAST_RESERVED_PORT + 1;
505 struct sockaddr_vm new_addr;
507 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
509 if (addr->svm_port == VMADDR_PORT_ANY) {
510 bool found = false;
511 unsigned int i;
513 for (i = 0; i < MAX_PORT_RETRIES; i++) {
514 if (port <= LAST_RESERVED_PORT)
515 port = LAST_RESERVED_PORT + 1;
517 new_addr.svm_port = port++;
519 if (!__vsock_find_bound_socket(&new_addr)) {
520 found = true;
521 break;
525 if (!found)
526 return -EADDRNOTAVAIL;
527 } else {
528 /* If port is in reserved range, ensure caller
529 * has necessary privileges.
531 if (addr->svm_port <= LAST_RESERVED_PORT &&
532 !capable(CAP_NET_BIND_SERVICE)) {
533 return -EACCES;
536 if (__vsock_find_bound_socket(&new_addr))
537 return -EADDRINUSE;
540 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
542 /* Remove stream sockets from the unbound list and add them to the hash
543 * table for easy lookup by its address. The unbound list is simply an
544 * extra entry at the end of the hash table, a trick used by AF_UNIX.
546 __vsock_remove_bound(vsk);
547 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
549 return 0;
552 static int __vsock_bind_dgram(struct vsock_sock *vsk,
553 struct sockaddr_vm *addr)
555 return transport->dgram_bind(vsk, addr);
558 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
560 struct vsock_sock *vsk = vsock_sk(sk);
561 u32 cid;
562 int retval;
564 /* First ensure this socket isn't already bound. */
565 if (vsock_addr_bound(&vsk->local_addr))
566 return -EINVAL;
568 /* Now bind to the provided address or select appropriate values if
569 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
570 * like AF_INET prevents binding to a non-local IP address (in most
571 * cases), we only allow binding to the local CID.
573 cid = transport->get_local_cid();
574 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
575 return -EADDRNOTAVAIL;
577 switch (sk->sk_socket->type) {
578 case SOCK_STREAM:
579 spin_lock_bh(&vsock_table_lock);
580 retval = __vsock_bind_stream(vsk, addr);
581 spin_unlock_bh(&vsock_table_lock);
582 break;
584 case SOCK_DGRAM:
585 retval = __vsock_bind_dgram(vsk, addr);
586 break;
588 default:
589 retval = -EINVAL;
590 break;
593 return retval;
596 static void vsock_connect_timeout(struct work_struct *work);
598 struct sock *__vsock_create(struct net *net,
599 struct socket *sock,
600 struct sock *parent,
601 gfp_t priority,
602 unsigned short type,
603 int kern)
605 struct sock *sk;
606 struct vsock_sock *psk;
607 struct vsock_sock *vsk;
609 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
610 if (!sk)
611 return NULL;
613 sock_init_data(sock, sk);
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
619 if (!sock)
620 sk->sk_type = type;
622 vsk = vsock_sk(sk);
623 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
626 sk->sk_destruct = vsock_sk_destruct;
627 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
628 sk->sk_state = 0;
629 sock_reset_flag(sk, SOCK_DONE);
631 INIT_LIST_HEAD(&vsk->bound_table);
632 INIT_LIST_HEAD(&vsk->connected_table);
633 vsk->listener = NULL;
634 INIT_LIST_HEAD(&vsk->pending_links);
635 INIT_LIST_HEAD(&vsk->accept_queue);
636 vsk->rejected = false;
637 vsk->sent_request = false;
638 vsk->ignore_connecting_rst = false;
639 vsk->peer_shutdown = 0;
640 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
641 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
643 psk = parent ? vsock_sk(parent) : NULL;
644 if (parent) {
645 vsk->trusted = psk->trusted;
646 vsk->owner = get_cred(psk->owner);
647 vsk->connect_timeout = psk->connect_timeout;
648 } else {
649 vsk->trusted = capable(CAP_NET_ADMIN);
650 vsk->owner = get_current_cred();
651 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
654 if (transport->init(vsk, psk) < 0) {
655 sk_free(sk);
656 return NULL;
659 if (sock)
660 vsock_insert_unbound(vsk);
662 return sk;
664 EXPORT_SYMBOL_GPL(__vsock_create);
666 static void __vsock_release(struct sock *sk)
668 if (sk) {
669 struct sk_buff *skb;
670 struct sock *pending;
671 struct vsock_sock *vsk;
673 vsk = vsock_sk(sk);
674 pending = NULL; /* Compiler warning. */
676 transport->release(vsk);
678 lock_sock(sk);
679 sock_orphan(sk);
680 sk->sk_shutdown = SHUTDOWN_MASK;
682 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
683 kfree_skb(skb);
685 /* Clean up any sockets that never were accepted. */
686 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
687 __vsock_release(pending);
688 sock_put(pending);
691 release_sock(sk);
692 sock_put(sk);
696 static void vsock_sk_destruct(struct sock *sk)
698 struct vsock_sock *vsk = vsock_sk(sk);
700 transport->destruct(vsk);
702 /* When clearing these addresses, there's no need to set the family and
703 * possibly register the address family with the kernel.
705 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
706 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
708 put_cred(vsk->owner);
711 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
713 int err;
715 err = sock_queue_rcv_skb(sk, skb);
716 if (err)
717 kfree_skb(skb);
719 return err;
722 s64 vsock_stream_has_data(struct vsock_sock *vsk)
724 return transport->stream_has_data(vsk);
726 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
728 s64 vsock_stream_has_space(struct vsock_sock *vsk)
730 return transport->stream_has_space(vsk);
732 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
734 static int vsock_release(struct socket *sock)
736 __vsock_release(sock->sk);
737 sock->sk = NULL;
738 sock->state = SS_FREE;
740 return 0;
743 static int
744 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
746 int err;
747 struct sock *sk;
748 struct sockaddr_vm *vm_addr;
750 sk = sock->sk;
752 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
753 return -EINVAL;
755 lock_sock(sk);
756 err = __vsock_bind(sk, vm_addr);
757 release_sock(sk);
759 return err;
762 static int vsock_getname(struct socket *sock,
763 struct sockaddr *addr, int *addr_len, int peer)
765 int err;
766 struct sock *sk;
767 struct vsock_sock *vsk;
768 struct sockaddr_vm *vm_addr;
770 sk = sock->sk;
771 vsk = vsock_sk(sk);
772 err = 0;
774 lock_sock(sk);
776 if (peer) {
777 if (sock->state != SS_CONNECTED) {
778 err = -ENOTCONN;
779 goto out;
781 vm_addr = &vsk->remote_addr;
782 } else {
783 vm_addr = &vsk->local_addr;
786 if (!vm_addr) {
787 err = -EINVAL;
788 goto out;
791 /* sys_getsockname() and sys_getpeername() pass us a
792 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
793 * that macro is defined in socket.c instead of .h, so we hardcode its
794 * value here.
796 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
797 memcpy(addr, vm_addr, sizeof(*vm_addr));
798 *addr_len = sizeof(*vm_addr);
800 out:
801 release_sock(sk);
802 return err;
805 static int vsock_shutdown(struct socket *sock, int mode)
807 int err;
808 struct sock *sk;
810 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
811 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
812 * here like the other address families do. Note also that the
813 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
814 * which is what we want.
816 mode++;
818 if ((mode & ~SHUTDOWN_MASK) || !mode)
819 return -EINVAL;
821 /* If this is a STREAM socket and it is not connected then bail out
822 * immediately. If it is a DGRAM socket then we must first kick the
823 * socket so that it wakes up from any sleeping calls, for example
824 * recv(), and then afterwards return the error.
827 sk = sock->sk;
828 if (sock->state == SS_UNCONNECTED) {
829 err = -ENOTCONN;
830 if (sk->sk_type == SOCK_STREAM)
831 return err;
832 } else {
833 sock->state = SS_DISCONNECTING;
834 err = 0;
837 /* Receive and send shutdowns are treated alike. */
838 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
839 if (mode) {
840 lock_sock(sk);
841 sk->sk_shutdown |= mode;
842 sk->sk_state_change(sk);
843 release_sock(sk);
845 if (sk->sk_type == SOCK_STREAM) {
846 sock_reset_flag(sk, SOCK_DONE);
847 vsock_send_shutdown(sk, mode);
851 return err;
854 static unsigned int vsock_poll(struct file *file, struct socket *sock,
855 poll_table *wait)
857 struct sock *sk;
858 unsigned int mask;
859 struct vsock_sock *vsk;
861 sk = sock->sk;
862 vsk = vsock_sk(sk);
864 poll_wait(file, sk_sleep(sk), wait);
865 mask = 0;
867 if (sk->sk_err)
868 /* Signify that there has been an error on this socket. */
869 mask |= POLLERR;
871 /* INET sockets treat local write shutdown and peer write shutdown as a
872 * case of POLLHUP set.
874 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
875 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
876 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
877 mask |= POLLHUP;
880 if (sk->sk_shutdown & RCV_SHUTDOWN ||
881 vsk->peer_shutdown & SEND_SHUTDOWN) {
882 mask |= POLLRDHUP;
885 if (sock->type == SOCK_DGRAM) {
886 /* For datagram sockets we can read if there is something in
887 * the queue and write as long as the socket isn't shutdown for
888 * sending.
890 if (!skb_queue_empty(&sk->sk_receive_queue) ||
891 (sk->sk_shutdown & RCV_SHUTDOWN)) {
892 mask |= POLLIN | POLLRDNORM;
895 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
896 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
898 } else if (sock->type == SOCK_STREAM) {
899 lock_sock(sk);
901 /* Listening sockets that have connections in their accept
902 * queue can be read.
904 if (sk->sk_state == VSOCK_SS_LISTEN
905 && !vsock_is_accept_queue_empty(sk))
906 mask |= POLLIN | POLLRDNORM;
908 /* If there is something in the queue then we can read. */
909 if (transport->stream_is_active(vsk) &&
910 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
911 bool data_ready_now = false;
912 int ret = transport->notify_poll_in(
913 vsk, 1, &data_ready_now);
914 if (ret < 0) {
915 mask |= POLLERR;
916 } else {
917 if (data_ready_now)
918 mask |= POLLIN | POLLRDNORM;
923 /* Sockets whose connections have been closed, reset, or
924 * terminated should also be considered read, and we check the
925 * shutdown flag for that.
927 if (sk->sk_shutdown & RCV_SHUTDOWN ||
928 vsk->peer_shutdown & SEND_SHUTDOWN) {
929 mask |= POLLIN | POLLRDNORM;
932 /* Connected sockets that can produce data can be written. */
933 if (sk->sk_state == SS_CONNECTED) {
934 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
935 bool space_avail_now = false;
936 int ret = transport->notify_poll_out(
937 vsk, 1, &space_avail_now);
938 if (ret < 0) {
939 mask |= POLLERR;
940 } else {
941 if (space_avail_now)
942 /* Remove POLLWRBAND since INET
943 * sockets are not setting it.
945 mask |= POLLOUT | POLLWRNORM;
951 /* Simulate INET socket poll behaviors, which sets
952 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
953 * but local send is not shutdown.
955 if (sk->sk_state == SS_UNCONNECTED) {
956 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
957 mask |= POLLOUT | POLLWRNORM;
961 release_sock(sk);
964 return mask;
967 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
968 size_t len)
970 int err;
971 struct sock *sk;
972 struct vsock_sock *vsk;
973 struct sockaddr_vm *remote_addr;
975 if (msg->msg_flags & MSG_OOB)
976 return -EOPNOTSUPP;
978 /* For now, MSG_DONTWAIT is always assumed... */
979 err = 0;
980 sk = sock->sk;
981 vsk = vsock_sk(sk);
983 lock_sock(sk);
985 err = vsock_auto_bind(vsk);
986 if (err)
987 goto out;
990 /* If the provided message contains an address, use that. Otherwise
991 * fall back on the socket's remote handle (if it has been connected).
993 if (msg->msg_name &&
994 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
995 &remote_addr) == 0) {
996 /* Ensure this address is of the right type and is a valid
997 * destination.
1000 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1001 remote_addr->svm_cid = transport->get_local_cid();
1003 if (!vsock_addr_bound(remote_addr)) {
1004 err = -EINVAL;
1005 goto out;
1007 } else if (sock->state == SS_CONNECTED) {
1008 remote_addr = &vsk->remote_addr;
1010 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1011 remote_addr->svm_cid = transport->get_local_cid();
1013 /* XXX Should connect() or this function ensure remote_addr is
1014 * bound?
1016 if (!vsock_addr_bound(&vsk->remote_addr)) {
1017 err = -EINVAL;
1018 goto out;
1020 } else {
1021 err = -EINVAL;
1022 goto out;
1025 if (!transport->dgram_allow(remote_addr->svm_cid,
1026 remote_addr->svm_port)) {
1027 err = -EINVAL;
1028 goto out;
1031 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1033 out:
1034 release_sock(sk);
1035 return err;
1038 static int vsock_dgram_connect(struct socket *sock,
1039 struct sockaddr *addr, int addr_len, int flags)
1041 int err;
1042 struct sock *sk;
1043 struct vsock_sock *vsk;
1044 struct sockaddr_vm *remote_addr;
1046 sk = sock->sk;
1047 vsk = vsock_sk(sk);
1049 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1050 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1051 lock_sock(sk);
1052 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1053 VMADDR_PORT_ANY);
1054 sock->state = SS_UNCONNECTED;
1055 release_sock(sk);
1056 return 0;
1057 } else if (err != 0)
1058 return -EINVAL;
1060 lock_sock(sk);
1062 err = vsock_auto_bind(vsk);
1063 if (err)
1064 goto out;
1066 if (!transport->dgram_allow(remote_addr->svm_cid,
1067 remote_addr->svm_port)) {
1068 err = -EINVAL;
1069 goto out;
1072 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1073 sock->state = SS_CONNECTED;
1075 out:
1076 release_sock(sk);
1077 return err;
1080 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1081 size_t len, int flags)
1083 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1086 static const struct proto_ops vsock_dgram_ops = {
1087 .family = PF_VSOCK,
1088 .owner = THIS_MODULE,
1089 .release = vsock_release,
1090 .bind = vsock_bind,
1091 .connect = vsock_dgram_connect,
1092 .socketpair = sock_no_socketpair,
1093 .accept = sock_no_accept,
1094 .getname = vsock_getname,
1095 .poll = vsock_poll,
1096 .ioctl = sock_no_ioctl,
1097 .listen = sock_no_listen,
1098 .shutdown = vsock_shutdown,
1099 .setsockopt = sock_no_setsockopt,
1100 .getsockopt = sock_no_getsockopt,
1101 .sendmsg = vsock_dgram_sendmsg,
1102 .recvmsg = vsock_dgram_recvmsg,
1103 .mmap = sock_no_mmap,
1104 .sendpage = sock_no_sendpage,
1107 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1109 if (!transport->cancel_pkt)
1110 return -EOPNOTSUPP;
1112 return transport->cancel_pkt(vsk);
1115 static void vsock_connect_timeout(struct work_struct *work)
1117 struct sock *sk;
1118 struct vsock_sock *vsk;
1119 int cancel = 0;
1121 vsk = container_of(work, struct vsock_sock, connect_work.work);
1122 sk = sk_vsock(vsk);
1124 lock_sock(sk);
1125 if (sk->sk_state == SS_CONNECTING &&
1126 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1127 sk->sk_state = SS_UNCONNECTED;
1128 sk->sk_err = ETIMEDOUT;
1129 sk->sk_error_report(sk);
1130 cancel = 1;
1132 release_sock(sk);
1133 if (cancel)
1134 vsock_transport_cancel_pkt(vsk);
1136 sock_put(sk);
1139 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1140 int addr_len, int flags)
1142 int err;
1143 struct sock *sk;
1144 struct vsock_sock *vsk;
1145 struct sockaddr_vm *remote_addr;
1146 long timeout;
1147 DEFINE_WAIT(wait);
1149 err = 0;
1150 sk = sock->sk;
1151 vsk = vsock_sk(sk);
1153 lock_sock(sk);
1155 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1156 switch (sock->state) {
1157 case SS_CONNECTED:
1158 err = -EISCONN;
1159 goto out;
1160 case SS_DISCONNECTING:
1161 err = -EINVAL;
1162 goto out;
1163 case SS_CONNECTING:
1164 /* This continues on so we can move sock into the SS_CONNECTED
1165 * state once the connection has completed (at which point err
1166 * will be set to zero also). Otherwise, we will either wait
1167 * for the connection or return -EALREADY should this be a
1168 * non-blocking call.
1170 err = -EALREADY;
1171 break;
1172 default:
1173 if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1174 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1175 err = -EINVAL;
1176 goto out;
1179 /* The hypervisor and well-known contexts do not have socket
1180 * endpoints.
1182 if (!transport->stream_allow(remote_addr->svm_cid,
1183 remote_addr->svm_port)) {
1184 err = -ENETUNREACH;
1185 goto out;
1188 /* Set the remote address that we are connecting to. */
1189 memcpy(&vsk->remote_addr, remote_addr,
1190 sizeof(vsk->remote_addr));
1192 err = vsock_auto_bind(vsk);
1193 if (err)
1194 goto out;
1196 sk->sk_state = SS_CONNECTING;
1198 err = transport->connect(vsk);
1199 if (err < 0)
1200 goto out;
1202 /* Mark sock as connecting and set the error code to in
1203 * progress in case this is a non-blocking connect.
1205 sock->state = SS_CONNECTING;
1206 err = -EINPROGRESS;
1209 /* The receive path will handle all communication until we are able to
1210 * enter the connected state. Here we wait for the connection to be
1211 * completed or a notification of an error.
1213 timeout = vsk->connect_timeout;
1214 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1216 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1217 if (flags & O_NONBLOCK) {
1218 /* If we're not going to block, we schedule a timeout
1219 * function to generate a timeout on the connection
1220 * attempt, in case the peer doesn't respond in a
1221 * timely manner. We hold on to the socket until the
1222 * timeout fires.
1224 sock_hold(sk);
1225 schedule_delayed_work(&vsk->connect_work, timeout);
1227 /* Skip ahead to preserve error code set above. */
1228 goto out_wait;
1231 release_sock(sk);
1232 timeout = schedule_timeout(timeout);
1233 lock_sock(sk);
1235 if (signal_pending(current)) {
1236 err = sock_intr_errno(timeout);
1237 sk->sk_state = SS_UNCONNECTED;
1238 sock->state = SS_UNCONNECTED;
1239 vsock_transport_cancel_pkt(vsk);
1240 goto out_wait;
1241 } else if (timeout == 0) {
1242 err = -ETIMEDOUT;
1243 sk->sk_state = SS_UNCONNECTED;
1244 sock->state = SS_UNCONNECTED;
1245 vsock_transport_cancel_pkt(vsk);
1246 goto out_wait;
1249 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1252 if (sk->sk_err) {
1253 err = -sk->sk_err;
1254 sk->sk_state = SS_UNCONNECTED;
1255 sock->state = SS_UNCONNECTED;
1256 } else {
1257 err = 0;
1260 out_wait:
1261 finish_wait(sk_sleep(sk), &wait);
1262 out:
1263 release_sock(sk);
1264 return err;
1267 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1269 struct sock *listener;
1270 int err;
1271 struct sock *connected;
1272 struct vsock_sock *vconnected;
1273 long timeout;
1274 DEFINE_WAIT(wait);
1276 err = 0;
1277 listener = sock->sk;
1279 lock_sock(listener);
1281 if (sock->type != SOCK_STREAM) {
1282 err = -EOPNOTSUPP;
1283 goto out;
1286 if (listener->sk_state != VSOCK_SS_LISTEN) {
1287 err = -EINVAL;
1288 goto out;
1291 /* Wait for children sockets to appear; these are the new sockets
1292 * created upon connection establishment.
1294 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1295 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1297 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1298 listener->sk_err == 0) {
1299 release_sock(listener);
1300 timeout = schedule_timeout(timeout);
1301 finish_wait(sk_sleep(listener), &wait);
1302 lock_sock(listener);
1304 if (signal_pending(current)) {
1305 err = sock_intr_errno(timeout);
1306 goto out;
1307 } else if (timeout == 0) {
1308 err = -EAGAIN;
1309 goto out;
1312 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1314 finish_wait(sk_sleep(listener), &wait);
1316 if (listener->sk_err)
1317 err = -listener->sk_err;
1319 if (connected) {
1320 listener->sk_ack_backlog--;
1322 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1323 vconnected = vsock_sk(connected);
1325 /* If the listener socket has received an error, then we should
1326 * reject this socket and return. Note that we simply mark the
1327 * socket rejected, drop our reference, and let the cleanup
1328 * function handle the cleanup; the fact that we found it in
1329 * the listener's accept queue guarantees that the cleanup
1330 * function hasn't run yet.
1332 if (err) {
1333 vconnected->rejected = true;
1334 } else {
1335 newsock->state = SS_CONNECTED;
1336 sock_graft(connected, newsock);
1339 release_sock(connected);
1340 sock_put(connected);
1343 out:
1344 release_sock(listener);
1345 return err;
1348 static int vsock_listen(struct socket *sock, int backlog)
1350 int err;
1351 struct sock *sk;
1352 struct vsock_sock *vsk;
1354 sk = sock->sk;
1356 lock_sock(sk);
1358 if (sock->type != SOCK_STREAM) {
1359 err = -EOPNOTSUPP;
1360 goto out;
1363 if (sock->state != SS_UNCONNECTED) {
1364 err = -EINVAL;
1365 goto out;
1368 vsk = vsock_sk(sk);
1370 if (!vsock_addr_bound(&vsk->local_addr)) {
1371 err = -EINVAL;
1372 goto out;
1375 sk->sk_max_ack_backlog = backlog;
1376 sk->sk_state = VSOCK_SS_LISTEN;
1378 err = 0;
1380 out:
1381 release_sock(sk);
1382 return err;
1385 static int vsock_stream_setsockopt(struct socket *sock,
1386 int level,
1387 int optname,
1388 char __user *optval,
1389 unsigned int optlen)
1391 int err;
1392 struct sock *sk;
1393 struct vsock_sock *vsk;
1394 u64 val;
1396 if (level != AF_VSOCK)
1397 return -ENOPROTOOPT;
1399 #define COPY_IN(_v) \
1400 do { \
1401 if (optlen < sizeof(_v)) { \
1402 err = -EINVAL; \
1403 goto exit; \
1405 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1406 err = -EFAULT; \
1407 goto exit; \
1409 } while (0)
1411 err = 0;
1412 sk = sock->sk;
1413 vsk = vsock_sk(sk);
1415 lock_sock(sk);
1417 switch (optname) {
1418 case SO_VM_SOCKETS_BUFFER_SIZE:
1419 COPY_IN(val);
1420 transport->set_buffer_size(vsk, val);
1421 break;
1423 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1424 COPY_IN(val);
1425 transport->set_max_buffer_size(vsk, val);
1426 break;
1428 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1429 COPY_IN(val);
1430 transport->set_min_buffer_size(vsk, val);
1431 break;
1433 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1434 struct timeval tv;
1435 COPY_IN(tv);
1436 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1437 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1438 vsk->connect_timeout = tv.tv_sec * HZ +
1439 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1440 if (vsk->connect_timeout == 0)
1441 vsk->connect_timeout =
1442 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1444 } else {
1445 err = -ERANGE;
1447 break;
1450 default:
1451 err = -ENOPROTOOPT;
1452 break;
1455 #undef COPY_IN
1457 exit:
1458 release_sock(sk);
1459 return err;
1462 static int vsock_stream_getsockopt(struct socket *sock,
1463 int level, int optname,
1464 char __user *optval,
1465 int __user *optlen)
1467 int err;
1468 int len;
1469 struct sock *sk;
1470 struct vsock_sock *vsk;
1471 u64 val;
1473 if (level != AF_VSOCK)
1474 return -ENOPROTOOPT;
1476 err = get_user(len, optlen);
1477 if (err != 0)
1478 return err;
1480 #define COPY_OUT(_v) \
1481 do { \
1482 if (len < sizeof(_v)) \
1483 return -EINVAL; \
1485 len = sizeof(_v); \
1486 if (copy_to_user(optval, &_v, len) != 0) \
1487 return -EFAULT; \
1489 } while (0)
1491 err = 0;
1492 sk = sock->sk;
1493 vsk = vsock_sk(sk);
1495 switch (optname) {
1496 case SO_VM_SOCKETS_BUFFER_SIZE:
1497 val = transport->get_buffer_size(vsk);
1498 COPY_OUT(val);
1499 break;
1501 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1502 val = transport->get_max_buffer_size(vsk);
1503 COPY_OUT(val);
1504 break;
1506 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1507 val = transport->get_min_buffer_size(vsk);
1508 COPY_OUT(val);
1509 break;
1511 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1512 struct timeval tv;
1513 tv.tv_sec = vsk->connect_timeout / HZ;
1514 tv.tv_usec =
1515 (vsk->connect_timeout -
1516 tv.tv_sec * HZ) * (1000000 / HZ);
1517 COPY_OUT(tv);
1518 break;
1520 default:
1521 return -ENOPROTOOPT;
1524 err = put_user(len, optlen);
1525 if (err != 0)
1526 return -EFAULT;
1528 #undef COPY_OUT
1530 return 0;
1533 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1534 size_t len)
1536 struct sock *sk;
1537 struct vsock_sock *vsk;
1538 ssize_t total_written;
1539 long timeout;
1540 int err;
1541 struct vsock_transport_send_notify_data send_data;
1542 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1544 sk = sock->sk;
1545 vsk = vsock_sk(sk);
1546 total_written = 0;
1547 err = 0;
1549 if (msg->msg_flags & MSG_OOB)
1550 return -EOPNOTSUPP;
1552 lock_sock(sk);
1554 /* Callers should not provide a destination with stream sockets. */
1555 if (msg->msg_namelen) {
1556 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1557 goto out;
1560 /* Send data only if both sides are not shutdown in the direction. */
1561 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1562 vsk->peer_shutdown & RCV_SHUTDOWN) {
1563 err = -EPIPE;
1564 goto out;
1567 if (sk->sk_state != SS_CONNECTED ||
1568 !vsock_addr_bound(&vsk->local_addr)) {
1569 err = -ENOTCONN;
1570 goto out;
1573 if (!vsock_addr_bound(&vsk->remote_addr)) {
1574 err = -EDESTADDRREQ;
1575 goto out;
1578 /* Wait for room in the produce queue to enqueue our user's data. */
1579 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1581 err = transport->notify_send_init(vsk, &send_data);
1582 if (err < 0)
1583 goto out;
1585 while (total_written < len) {
1586 ssize_t written;
1588 add_wait_queue(sk_sleep(sk), &wait);
1589 while (vsock_stream_has_space(vsk) == 0 &&
1590 sk->sk_err == 0 &&
1591 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1592 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1594 /* Don't wait for non-blocking sockets. */
1595 if (timeout == 0) {
1596 err = -EAGAIN;
1597 remove_wait_queue(sk_sleep(sk), &wait);
1598 goto out_err;
1601 err = transport->notify_send_pre_block(vsk, &send_data);
1602 if (err < 0) {
1603 remove_wait_queue(sk_sleep(sk), &wait);
1604 goto out_err;
1607 release_sock(sk);
1608 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1609 lock_sock(sk);
1610 if (signal_pending(current)) {
1611 err = sock_intr_errno(timeout);
1612 remove_wait_queue(sk_sleep(sk), &wait);
1613 goto out_err;
1614 } else if (timeout == 0) {
1615 err = -EAGAIN;
1616 remove_wait_queue(sk_sleep(sk), &wait);
1617 goto out_err;
1620 remove_wait_queue(sk_sleep(sk), &wait);
1622 /* These checks occur both as part of and after the loop
1623 * conditional since we need to check before and after
1624 * sleeping.
1626 if (sk->sk_err) {
1627 err = -sk->sk_err;
1628 goto out_err;
1629 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1630 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1631 err = -EPIPE;
1632 goto out_err;
1635 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1636 if (err < 0)
1637 goto out_err;
1639 /* Note that enqueue will only write as many bytes as are free
1640 * in the produce queue, so we don't need to ensure len is
1641 * smaller than the queue size. It is the caller's
1642 * responsibility to check how many bytes we were able to send.
1645 written = transport->stream_enqueue(
1646 vsk, msg,
1647 len - total_written);
1648 if (written < 0) {
1649 err = -ENOMEM;
1650 goto out_err;
1653 total_written += written;
1655 err = transport->notify_send_post_enqueue(
1656 vsk, written, &send_data);
1657 if (err < 0)
1658 goto out_err;
1662 out_err:
1663 if (total_written > 0)
1664 err = total_written;
1665 out:
1666 release_sock(sk);
1667 return err;
1671 static int
1672 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1673 int flags)
1675 struct sock *sk;
1676 struct vsock_sock *vsk;
1677 int err;
1678 size_t target;
1679 ssize_t copied;
1680 long timeout;
1681 struct vsock_transport_recv_notify_data recv_data;
1683 DEFINE_WAIT(wait);
1685 sk = sock->sk;
1686 vsk = vsock_sk(sk);
1687 err = 0;
1689 lock_sock(sk);
1691 if (sk->sk_state != SS_CONNECTED) {
1692 /* Recvmsg is supposed to return 0 if a peer performs an
1693 * orderly shutdown. Differentiate between that case and when a
1694 * peer has not connected or a local shutdown occured with the
1695 * SOCK_DONE flag.
1697 if (sock_flag(sk, SOCK_DONE))
1698 err = 0;
1699 else
1700 err = -ENOTCONN;
1702 goto out;
1705 if (flags & MSG_OOB) {
1706 err = -EOPNOTSUPP;
1707 goto out;
1710 /* We don't check peer_shutdown flag here since peer may actually shut
1711 * down, but there can be data in the queue that a local socket can
1712 * receive.
1714 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1715 err = 0;
1716 goto out;
1719 /* It is valid on Linux to pass in a zero-length receive buffer. This
1720 * is not an error. We may as well bail out now.
1722 if (!len) {
1723 err = 0;
1724 goto out;
1727 /* We must not copy less than target bytes into the user's buffer
1728 * before returning successfully, so we wait for the consume queue to
1729 * have that much data to consume before dequeueing. Note that this
1730 * makes it impossible to handle cases where target is greater than the
1731 * queue size.
1733 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1734 if (target >= transport->stream_rcvhiwat(vsk)) {
1735 err = -ENOMEM;
1736 goto out;
1738 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1739 copied = 0;
1741 err = transport->notify_recv_init(vsk, target, &recv_data);
1742 if (err < 0)
1743 goto out;
1746 while (1) {
1747 s64 ready;
1749 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1750 ready = vsock_stream_has_data(vsk);
1752 if (ready == 0) {
1753 if (sk->sk_err != 0 ||
1754 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1755 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1756 finish_wait(sk_sleep(sk), &wait);
1757 break;
1759 /* Don't wait for non-blocking sockets. */
1760 if (timeout == 0) {
1761 err = -EAGAIN;
1762 finish_wait(sk_sleep(sk), &wait);
1763 break;
1766 err = transport->notify_recv_pre_block(
1767 vsk, target, &recv_data);
1768 if (err < 0) {
1769 finish_wait(sk_sleep(sk), &wait);
1770 break;
1772 release_sock(sk);
1773 timeout = schedule_timeout(timeout);
1774 lock_sock(sk);
1776 if (signal_pending(current)) {
1777 err = sock_intr_errno(timeout);
1778 finish_wait(sk_sleep(sk), &wait);
1779 break;
1780 } else if (timeout == 0) {
1781 err = -EAGAIN;
1782 finish_wait(sk_sleep(sk), &wait);
1783 break;
1785 } else {
1786 ssize_t read;
1788 finish_wait(sk_sleep(sk), &wait);
1790 if (ready < 0) {
1791 /* Invalid queue pair content. XXX This should
1792 * be changed to a connection reset in a later
1793 * change.
1796 err = -ENOMEM;
1797 goto out;
1800 err = transport->notify_recv_pre_dequeue(
1801 vsk, target, &recv_data);
1802 if (err < 0)
1803 break;
1805 read = transport->stream_dequeue(
1806 vsk, msg,
1807 len - copied, flags);
1808 if (read < 0) {
1809 err = -ENOMEM;
1810 break;
1813 copied += read;
1815 err = transport->notify_recv_post_dequeue(
1816 vsk, target, read,
1817 !(flags & MSG_PEEK), &recv_data);
1818 if (err < 0)
1819 goto out;
1821 if (read >= target || flags & MSG_PEEK)
1822 break;
1824 target -= read;
1828 if (sk->sk_err)
1829 err = -sk->sk_err;
1830 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1831 err = 0;
1833 if (copied > 0)
1834 err = copied;
1836 out:
1837 release_sock(sk);
1838 return err;
1841 static const struct proto_ops vsock_stream_ops = {
1842 .family = PF_VSOCK,
1843 .owner = THIS_MODULE,
1844 .release = vsock_release,
1845 .bind = vsock_bind,
1846 .connect = vsock_stream_connect,
1847 .socketpair = sock_no_socketpair,
1848 .accept = vsock_accept,
1849 .getname = vsock_getname,
1850 .poll = vsock_poll,
1851 .ioctl = sock_no_ioctl,
1852 .listen = vsock_listen,
1853 .shutdown = vsock_shutdown,
1854 .setsockopt = vsock_stream_setsockopt,
1855 .getsockopt = vsock_stream_getsockopt,
1856 .sendmsg = vsock_stream_sendmsg,
1857 .recvmsg = vsock_stream_recvmsg,
1858 .mmap = sock_no_mmap,
1859 .sendpage = sock_no_sendpage,
1862 static int vsock_create(struct net *net, struct socket *sock,
1863 int protocol, int kern)
1865 if (!sock)
1866 return -EINVAL;
1868 if (protocol && protocol != PF_VSOCK)
1869 return -EPROTONOSUPPORT;
1871 switch (sock->type) {
1872 case SOCK_DGRAM:
1873 sock->ops = &vsock_dgram_ops;
1874 break;
1875 case SOCK_STREAM:
1876 sock->ops = &vsock_stream_ops;
1877 break;
1878 default:
1879 return -ESOCKTNOSUPPORT;
1882 sock->state = SS_UNCONNECTED;
1884 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1887 static const struct net_proto_family vsock_family_ops = {
1888 .family = AF_VSOCK,
1889 .create = vsock_create,
1890 .owner = THIS_MODULE,
1893 static long vsock_dev_do_ioctl(struct file *filp,
1894 unsigned int cmd, void __user *ptr)
1896 u32 __user *p = ptr;
1897 int retval = 0;
1899 switch (cmd) {
1900 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1901 if (put_user(transport->get_local_cid(), p) != 0)
1902 retval = -EFAULT;
1903 break;
1905 default:
1906 pr_err("Unknown ioctl %d\n", cmd);
1907 retval = -EINVAL;
1910 return retval;
1913 static long vsock_dev_ioctl(struct file *filp,
1914 unsigned int cmd, unsigned long arg)
1916 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1919 #ifdef CONFIG_COMPAT
1920 static long vsock_dev_compat_ioctl(struct file *filp,
1921 unsigned int cmd, unsigned long arg)
1923 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1925 #endif
1927 static const struct file_operations vsock_device_ops = {
1928 .owner = THIS_MODULE,
1929 .unlocked_ioctl = vsock_dev_ioctl,
1930 #ifdef CONFIG_COMPAT
1931 .compat_ioctl = vsock_dev_compat_ioctl,
1932 #endif
1933 .open = nonseekable_open,
1936 static struct miscdevice vsock_device = {
1937 .name = "vsock",
1938 .fops = &vsock_device_ops,
1941 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1943 int err = mutex_lock_interruptible(&vsock_register_mutex);
1945 if (err)
1946 return err;
1948 if (transport) {
1949 err = -EBUSY;
1950 goto err_busy;
1953 /* Transport must be the owner of the protocol so that it can't
1954 * unload while there are open sockets.
1956 vsock_proto.owner = owner;
1957 transport = t;
1959 vsock_init_tables();
1961 vsock_device.minor = MISC_DYNAMIC_MINOR;
1962 err = misc_register(&vsock_device);
1963 if (err) {
1964 pr_err("Failed to register misc device\n");
1965 goto err_reset_transport;
1968 err = proto_register(&vsock_proto, 1); /* we want our slab */
1969 if (err) {
1970 pr_err("Cannot register vsock protocol\n");
1971 goto err_deregister_misc;
1974 err = sock_register(&vsock_family_ops);
1975 if (err) {
1976 pr_err("could not register af_vsock (%d) address family: %d\n",
1977 AF_VSOCK, err);
1978 goto err_unregister_proto;
1981 mutex_unlock(&vsock_register_mutex);
1982 return 0;
1984 err_unregister_proto:
1985 proto_unregister(&vsock_proto);
1986 err_deregister_misc:
1987 misc_deregister(&vsock_device);
1988 err_reset_transport:
1989 transport = NULL;
1990 err_busy:
1991 mutex_unlock(&vsock_register_mutex);
1992 return err;
1994 EXPORT_SYMBOL_GPL(__vsock_core_init);
1996 void vsock_core_exit(void)
1998 mutex_lock(&vsock_register_mutex);
2000 misc_deregister(&vsock_device);
2001 sock_unregister(AF_VSOCK);
2002 proto_unregister(&vsock_proto);
2004 /* We do not want the assignment below re-ordered. */
2005 mb();
2006 transport = NULL;
2008 mutex_unlock(&vsock_register_mutex);
2010 EXPORT_SYMBOL_GPL(vsock_core_exit);
2012 const struct vsock_transport *vsock_core_get_transport(void)
2014 /* vsock_register_mutex not taken since only the transport uses this
2015 * function and only while registered.
2017 return transport;
2019 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2021 MODULE_AUTHOR("VMware, Inc.");
2022 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2023 MODULE_VERSION("1.0.2.0-k");
2024 MODULE_LICENSE("GPL v2");