2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item
)
27 static inline void count_compact_events(enum vm_event_item item
, long delta
)
29 count_vm_events(item
, delta
);
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
41 static unsigned long release_freepages(struct list_head
*freelist
)
43 struct page
*page
, *next
;
44 unsigned long count
= 0;
46 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
55 static void map_pages(struct list_head
*list
)
59 list_for_each_entry(page
, list
, lru
) {
60 arch_alloc_page(page
, 0);
61 kernel_map_pages(page
, 1, 1);
65 static inline bool migrate_async_suitable(int migratetype
)
67 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
71 * Check that the whole (or subset of) a pageblock given by the interval of
72 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73 * with the migration of free compaction scanner. The scanners then need to
74 * use only pfn_valid_within() check for arches that allow holes within
77 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
79 * It's possible on some configurations to have a setup like node0 node1 node0
80 * i.e. it's possible that all pages within a zones range of pages do not
81 * belong to a single zone. We assume that a border between node0 and node1
82 * can occur within a single pageblock, but not a node0 node1 node0
83 * interleaving within a single pageblock. It is therefore sufficient to check
84 * the first and last page of a pageblock and avoid checking each individual
85 * page in a pageblock.
87 static struct page
*pageblock_pfn_to_page(unsigned long start_pfn
,
88 unsigned long end_pfn
, struct zone
*zone
)
90 struct page
*start_page
;
91 struct page
*end_page
;
93 /* end_pfn is one past the range we are checking */
96 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
99 start_page
= pfn_to_page(start_pfn
);
101 if (page_zone(start_page
) != zone
)
104 end_page
= pfn_to_page(end_pfn
);
106 /* This gives a shorter code than deriving page_zone(end_page) */
107 if (page_zone_id(start_page
) != page_zone_id(end_page
))
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
115 static inline bool isolation_suitable(struct compact_control
*cc
,
118 if (cc
->ignore_skip_hint
)
121 return !get_pageblock_skip(page
);
125 * This function is called to clear all cached information on pageblocks that
126 * should be skipped for page isolation when the migrate and free page scanner
129 static void __reset_isolation_suitable(struct zone
*zone
)
131 unsigned long start_pfn
= zone
->zone_start_pfn
;
132 unsigned long end_pfn
= zone_end_pfn(zone
);
135 zone
->compact_cached_migrate_pfn
[0] = start_pfn
;
136 zone
->compact_cached_migrate_pfn
[1] = start_pfn
;
137 zone
->compact_cached_free_pfn
= end_pfn
;
138 zone
->compact_blockskip_flush
= false;
140 /* Walk the zone and mark every pageblock as suitable for isolation */
141 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
149 page
= pfn_to_page(pfn
);
150 if (zone
!= page_zone(page
))
153 clear_pageblock_skip(page
);
157 void reset_isolation_suitable(pg_data_t
*pgdat
)
161 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
162 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
163 if (!populated_zone(zone
))
166 /* Only flush if a full compaction finished recently */
167 if (zone
->compact_blockskip_flush
)
168 __reset_isolation_suitable(zone
);
173 * If no pages were isolated then mark this pageblock to be skipped in the
174 * future. The information is later cleared by __reset_isolation_suitable().
176 static void update_pageblock_skip(struct compact_control
*cc
,
177 struct page
*page
, unsigned long nr_isolated
,
178 bool migrate_scanner
)
180 struct zone
*zone
= cc
->zone
;
183 if (cc
->ignore_skip_hint
)
192 set_pageblock_skip(page
);
194 pfn
= page_to_pfn(page
);
196 /* Update where async and sync compaction should restart */
197 if (migrate_scanner
) {
198 if (cc
->finished_update_migrate
)
200 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
201 zone
->compact_cached_migrate_pfn
[0] = pfn
;
202 if (cc
->mode
!= MIGRATE_ASYNC
&&
203 pfn
> zone
->compact_cached_migrate_pfn
[1])
204 zone
->compact_cached_migrate_pfn
[1] = pfn
;
206 if (cc
->finished_update_free
)
208 if (pfn
< zone
->compact_cached_free_pfn
)
209 zone
->compact_cached_free_pfn
= pfn
;
213 static inline bool isolation_suitable(struct compact_control
*cc
,
219 static void update_pageblock_skip(struct compact_control
*cc
,
220 struct page
*page
, unsigned long nr_isolated
,
221 bool migrate_scanner
)
224 #endif /* CONFIG_COMPACTION */
227 * Compaction requires the taking of some coarse locks that are potentially
228 * very heavily contended. For async compaction, back out if the lock cannot
229 * be taken immediately. For sync compaction, spin on the lock if needed.
231 * Returns true if the lock is held
232 * Returns false if the lock is not held and compaction should abort
234 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
235 struct compact_control
*cc
)
237 if (cc
->mode
== MIGRATE_ASYNC
) {
238 if (!spin_trylock_irqsave(lock
, *flags
)) {
239 cc
->contended
= COMPACT_CONTENDED_LOCK
;
243 spin_lock_irqsave(lock
, *flags
);
250 * Compaction requires the taking of some coarse locks that are potentially
251 * very heavily contended. The lock should be periodically unlocked to avoid
252 * having disabled IRQs for a long time, even when there is nobody waiting on
253 * the lock. It might also be that allowing the IRQs will result in
254 * need_resched() becoming true. If scheduling is needed, async compaction
255 * aborts. Sync compaction schedules.
256 * Either compaction type will also abort if a fatal signal is pending.
257 * In either case if the lock was locked, it is dropped and not regained.
259 * Returns true if compaction should abort due to fatal signal pending, or
260 * async compaction due to need_resched()
261 * Returns false when compaction can continue (sync compaction might have
264 static bool compact_unlock_should_abort(spinlock_t
*lock
,
265 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
268 spin_unlock_irqrestore(lock
, flags
);
272 if (fatal_signal_pending(current
)) {
273 cc
->contended
= COMPACT_CONTENDED_SCHED
;
277 if (need_resched()) {
278 if (cc
->mode
== MIGRATE_ASYNC
) {
279 cc
->contended
= COMPACT_CONTENDED_SCHED
;
289 * Aside from avoiding lock contention, compaction also periodically checks
290 * need_resched() and either schedules in sync compaction or aborts async
291 * compaction. This is similar to what compact_unlock_should_abort() does, but
292 * is used where no lock is concerned.
294 * Returns false when no scheduling was needed, or sync compaction scheduled.
295 * Returns true when async compaction should abort.
297 static inline bool compact_should_abort(struct compact_control
*cc
)
299 /* async compaction aborts if contended */
300 if (need_resched()) {
301 if (cc
->mode
== MIGRATE_ASYNC
) {
302 cc
->contended
= COMPACT_CONTENDED_SCHED
;
312 /* Returns true if the page is within a block suitable for migration to */
313 static bool suitable_migration_target(struct page
*page
)
315 /* If the page is a large free page, then disallow migration */
316 if (PageBuddy(page
)) {
318 * We are checking page_order without zone->lock taken. But
319 * the only small danger is that we skip a potentially suitable
320 * pageblock, so it's not worth to check order for valid range.
322 if (page_order_unsafe(page
) >= pageblock_order
)
326 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
330 /* Otherwise skip the block */
335 * Isolate free pages onto a private freelist. If @strict is true, will abort
336 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337 * (even though it may still end up isolating some pages).
339 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
340 unsigned long *start_pfn
,
341 unsigned long end_pfn
,
342 struct list_head
*freelist
,
345 int nr_scanned
= 0, total_isolated
= 0;
346 struct page
*cursor
, *valid_page
= NULL
;
347 unsigned long flags
= 0;
349 unsigned long blockpfn
= *start_pfn
;
351 cursor
= pfn_to_page(blockpfn
);
353 /* Isolate free pages. */
354 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
356 struct page
*page
= cursor
;
359 * Periodically drop the lock (if held) regardless of its
360 * contention, to give chance to IRQs. Abort if fatal signal
361 * pending or async compaction detects need_resched()
363 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
364 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
369 if (!pfn_valid_within(blockpfn
))
374 if (!PageBuddy(page
))
378 * If we already hold the lock, we can skip some rechecking.
379 * Note that if we hold the lock now, checked_pageblock was
380 * already set in some previous iteration (or strict is true),
381 * so it is correct to skip the suitable migration target
386 * The zone lock must be held to isolate freepages.
387 * Unfortunately this is a very coarse lock and can be
388 * heavily contended if there are parallel allocations
389 * or parallel compactions. For async compaction do not
390 * spin on the lock and we acquire the lock as late as
393 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
398 /* Recheck this is a buddy page under lock */
399 if (!PageBuddy(page
))
403 /* Found a free page, break it into order-0 pages */
404 isolated
= split_free_page(page
);
405 total_isolated
+= isolated
;
406 for (i
= 0; i
< isolated
; i
++) {
407 list_add(&page
->lru
, freelist
);
411 /* If a page was split, advance to the end of it */
413 blockpfn
+= isolated
- 1;
414 cursor
+= isolated
- 1;
426 /* Record how far we have got within the block */
427 *start_pfn
= blockpfn
;
429 trace_mm_compaction_isolate_freepages(nr_scanned
, total_isolated
);
432 * If strict isolation is requested by CMA then check that all the
433 * pages requested were isolated. If there were any failures, 0 is
434 * returned and CMA will fail.
436 if (strict
&& blockpfn
< end_pfn
)
440 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
442 /* Update the pageblock-skip if the whole pageblock was scanned */
443 if (blockpfn
== end_pfn
)
444 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
446 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
448 count_compact_events(COMPACTISOLATED
, total_isolated
);
449 return total_isolated
;
453 * isolate_freepages_range() - isolate free pages.
454 * @start_pfn: The first PFN to start isolating.
455 * @end_pfn: The one-past-last PFN.
457 * Non-free pages, invalid PFNs, or zone boundaries within the
458 * [start_pfn, end_pfn) range are considered errors, cause function to
459 * undo its actions and return zero.
461 * Otherwise, function returns one-past-the-last PFN of isolated page
462 * (which may be greater then end_pfn if end fell in a middle of
466 isolate_freepages_range(struct compact_control
*cc
,
467 unsigned long start_pfn
, unsigned long end_pfn
)
469 unsigned long isolated
, pfn
, block_end_pfn
;
473 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
475 for (; pfn
< end_pfn
; pfn
+= isolated
,
476 block_end_pfn
+= pageblock_nr_pages
) {
477 /* Protect pfn from changing by isolate_freepages_block */
478 unsigned long isolate_start_pfn
= pfn
;
480 block_end_pfn
= min(block_end_pfn
, end_pfn
);
482 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
485 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
486 block_end_pfn
, &freelist
, true);
489 * In strict mode, isolate_freepages_block() returns 0 if
490 * there are any holes in the block (ie. invalid PFNs or
497 * If we managed to isolate pages, it is always (1 << n) *
498 * pageblock_nr_pages for some non-negative n. (Max order
499 * page may span two pageblocks).
503 /* split_free_page does not map the pages */
504 map_pages(&freelist
);
507 /* Loop terminated early, cleanup. */
508 release_freepages(&freelist
);
512 /* We don't use freelists for anything. */
516 /* Update the number of anon and file isolated pages in the zone */
517 static void acct_isolated(struct zone
*zone
, struct compact_control
*cc
)
520 unsigned int count
[2] = { 0, };
522 if (list_empty(&cc
->migratepages
))
525 list_for_each_entry(page
, &cc
->migratepages
, lru
)
526 count
[!!page_is_file_cache(page
)]++;
528 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
529 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
532 /* Similar to reclaim, but different enough that they don't share logic */
533 static bool too_many_isolated(struct zone
*zone
)
535 unsigned long active
, inactive
, isolated
;
537 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
538 zone_page_state(zone
, NR_INACTIVE_ANON
);
539 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
540 zone_page_state(zone
, NR_ACTIVE_ANON
);
541 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
542 zone_page_state(zone
, NR_ISOLATED_ANON
);
544 return isolated
> (inactive
+ active
) / 2;
548 * isolate_migratepages_block() - isolate all migrate-able pages within
550 * @cc: Compaction control structure.
551 * @low_pfn: The first PFN to isolate
552 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
553 * @isolate_mode: Isolation mode to be used.
555 * Isolate all pages that can be migrated from the range specified by
556 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
557 * Returns zero if there is a fatal signal pending, otherwise PFN of the
558 * first page that was not scanned (which may be both less, equal to or more
561 * The pages are isolated on cc->migratepages list (not required to be empty),
562 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
563 * is neither read nor updated.
566 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
567 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
569 struct zone
*zone
= cc
->zone
;
570 unsigned long nr_scanned
= 0, nr_isolated
= 0;
571 struct list_head
*migratelist
= &cc
->migratepages
;
572 struct lruvec
*lruvec
;
573 unsigned long flags
= 0;
575 struct page
*page
= NULL
, *valid_page
= NULL
;
578 * Ensure that there are not too many pages isolated from the LRU
579 * list by either parallel reclaimers or compaction. If there are,
580 * delay for some time until fewer pages are isolated
582 while (unlikely(too_many_isolated(zone
))) {
583 /* async migration should just abort */
584 if (cc
->mode
== MIGRATE_ASYNC
)
587 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
589 if (fatal_signal_pending(current
))
593 if (compact_should_abort(cc
))
596 /* Time to isolate some pages for migration */
597 for (; low_pfn
< end_pfn
; low_pfn
++) {
599 * Periodically drop the lock (if held) regardless of its
600 * contention, to give chance to IRQs. Abort async compaction
603 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
604 && compact_unlock_should_abort(&zone
->lru_lock
, flags
,
608 if (!pfn_valid_within(low_pfn
))
612 page
= pfn_to_page(low_pfn
);
618 * Skip if free. We read page order here without zone lock
619 * which is generally unsafe, but the race window is small and
620 * the worst thing that can happen is that we skip some
621 * potential isolation targets.
623 if (PageBuddy(page
)) {
624 unsigned long freepage_order
= page_order_unsafe(page
);
627 * Without lock, we cannot be sure that what we got is
628 * a valid page order. Consider only values in the
629 * valid order range to prevent low_pfn overflow.
631 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
632 low_pfn
+= (1UL << freepage_order
) - 1;
637 * Check may be lockless but that's ok as we recheck later.
638 * It's possible to migrate LRU pages and balloon pages
639 * Skip any other type of page
641 if (!PageLRU(page
)) {
642 if (unlikely(balloon_page_movable(page
))) {
643 if (balloon_page_isolate(page
)) {
644 /* Successfully isolated */
645 goto isolate_success
;
652 * PageLRU is set. lru_lock normally excludes isolation
653 * splitting and collapsing (collapsing has already happened
654 * if PageLRU is set) but the lock is not necessarily taken
655 * here and it is wasteful to take it just to check transhuge.
656 * Check TransHuge without lock and skip the whole pageblock if
657 * it's either a transhuge or hugetlbfs page, as calling
658 * compound_order() without preventing THP from splitting the
659 * page underneath us may return surprising results.
661 if (PageTransHuge(page
)) {
663 low_pfn
= ALIGN(low_pfn
+ 1,
664 pageblock_nr_pages
) - 1;
666 low_pfn
+= (1 << compound_order(page
)) - 1;
672 * Migration will fail if an anonymous page is pinned in memory,
673 * so avoid taking lru_lock and isolating it unnecessarily in an
674 * admittedly racy check.
676 if (!page_mapping(page
) &&
677 page_count(page
) > page_mapcount(page
))
680 /* If we already hold the lock, we can skip some rechecking */
682 locked
= compact_trylock_irqsave(&zone
->lru_lock
,
687 /* Recheck PageLRU and PageTransHuge under lock */
690 if (PageTransHuge(page
)) {
691 low_pfn
+= (1 << compound_order(page
)) - 1;
696 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
698 /* Try isolate the page */
699 if (__isolate_lru_page(page
, isolate_mode
) != 0)
702 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
704 /* Successfully isolated */
705 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
708 cc
->finished_update_migrate
= true;
709 list_add(&page
->lru
, migratelist
);
710 cc
->nr_migratepages
++;
713 /* Avoid isolating too much */
714 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
721 * The PageBuddy() check could have potentially brought us outside
722 * the range to be scanned.
724 if (unlikely(low_pfn
> end_pfn
))
728 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
731 * Update the pageblock-skip information and cached scanner pfn,
732 * if the whole pageblock was scanned without isolating any page.
734 if (low_pfn
== end_pfn
)
735 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
737 trace_mm_compaction_isolate_migratepages(nr_scanned
, nr_isolated
);
739 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
741 count_compact_events(COMPACTISOLATED
, nr_isolated
);
747 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
748 * @cc: Compaction control structure.
749 * @start_pfn: The first PFN to start isolating.
750 * @end_pfn: The one-past-last PFN.
752 * Returns zero if isolation fails fatally due to e.g. pending signal.
753 * Otherwise, function returns one-past-the-last PFN of isolated page
754 * (which may be greater than end_pfn if end fell in a middle of a THP page).
757 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
758 unsigned long end_pfn
)
760 unsigned long pfn
, block_end_pfn
;
762 /* Scan block by block. First and last block may be incomplete */
764 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
766 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
767 block_end_pfn
+= pageblock_nr_pages
) {
769 block_end_pfn
= min(block_end_pfn
, end_pfn
);
771 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
774 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
775 ISOLATE_UNEVICTABLE
);
778 * In case of fatal failure, release everything that might
779 * have been isolated in the previous iteration, and signal
780 * the failure back to caller.
783 putback_movable_pages(&cc
->migratepages
);
784 cc
->nr_migratepages
= 0;
788 acct_isolated(cc
->zone
, cc
);
793 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
794 #ifdef CONFIG_COMPACTION
796 * Based on information in the current compact_control, find blocks
797 * suitable for isolating free pages from and then isolate them.
799 static void isolate_freepages(struct compact_control
*cc
)
801 struct zone
*zone
= cc
->zone
;
803 unsigned long block_start_pfn
; /* start of current pageblock */
804 unsigned long isolate_start_pfn
; /* exact pfn we start at */
805 unsigned long block_end_pfn
; /* end of current pageblock */
806 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
807 int nr_freepages
= cc
->nr_freepages
;
808 struct list_head
*freelist
= &cc
->freepages
;
811 * Initialise the free scanner. The starting point is where we last
812 * successfully isolated from, zone-cached value, or the end of the
813 * zone when isolating for the first time. For looping we also need
814 * this pfn aligned down to the pageblock boundary, because we do
815 * block_start_pfn -= pageblock_nr_pages in the for loop.
816 * For ending point, take care when isolating in last pageblock of a
817 * a zone which ends in the middle of a pageblock.
818 * The low boundary is the end of the pageblock the migration scanner
821 isolate_start_pfn
= cc
->free_pfn
;
822 block_start_pfn
= cc
->free_pfn
& ~(pageblock_nr_pages
-1);
823 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
825 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
828 * Isolate free pages until enough are available to migrate the
829 * pages on cc->migratepages. We stop searching if the migrate
830 * and free page scanners meet or enough free pages are isolated.
832 for (; block_start_pfn
>= low_pfn
&& cc
->nr_migratepages
> nr_freepages
;
833 block_end_pfn
= block_start_pfn
,
834 block_start_pfn
-= pageblock_nr_pages
,
835 isolate_start_pfn
= block_start_pfn
) {
836 unsigned long isolated
;
839 * This can iterate a massively long zone without finding any
840 * suitable migration targets, so periodically check if we need
841 * to schedule, or even abort async compaction.
843 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
844 && compact_should_abort(cc
))
847 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
852 /* Check the block is suitable for migration */
853 if (!suitable_migration_target(page
))
856 /* If isolation recently failed, do not retry */
857 if (!isolation_suitable(cc
, page
))
860 /* Found a block suitable for isolating free pages from. */
861 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
862 block_end_pfn
, freelist
, false);
863 nr_freepages
+= isolated
;
866 * Remember where the free scanner should restart next time,
867 * which is where isolate_freepages_block() left off.
868 * But if it scanned the whole pageblock, isolate_start_pfn
869 * now points at block_end_pfn, which is the start of the next
871 * In that case we will however want to restart at the start
872 * of the previous pageblock.
874 cc
->free_pfn
= (isolate_start_pfn
< block_end_pfn
) ?
876 block_start_pfn
- pageblock_nr_pages
;
879 * Set a flag that we successfully isolated in this pageblock.
880 * In the next loop iteration, zone->compact_cached_free_pfn
881 * will not be updated and thus it will effectively contain the
882 * highest pageblock we isolated pages from.
885 cc
->finished_update_free
= true;
888 * isolate_freepages_block() might have aborted due to async
889 * compaction being contended
895 /* split_free_page does not map the pages */
899 * If we crossed the migrate scanner, we want to keep it that way
900 * so that compact_finished() may detect this
902 if (block_start_pfn
< low_pfn
)
903 cc
->free_pfn
= cc
->migrate_pfn
;
905 cc
->nr_freepages
= nr_freepages
;
909 * This is a migrate-callback that "allocates" freepages by taking pages
910 * from the isolated freelists in the block we are migrating to.
912 static struct page
*compaction_alloc(struct page
*migratepage
,
916 struct compact_control
*cc
= (struct compact_control
*)data
;
917 struct page
*freepage
;
920 * Isolate free pages if necessary, and if we are not aborting due to
923 if (list_empty(&cc
->freepages
)) {
925 isolate_freepages(cc
);
927 if (list_empty(&cc
->freepages
))
931 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
932 list_del(&freepage
->lru
);
939 * This is a migrate-callback that "frees" freepages back to the isolated
940 * freelist. All pages on the freelist are from the same zone, so there is no
941 * special handling needed for NUMA.
943 static void compaction_free(struct page
*page
, unsigned long data
)
945 struct compact_control
*cc
= (struct compact_control
*)data
;
947 list_add(&page
->lru
, &cc
->freepages
);
951 /* possible outcome of isolate_migratepages */
953 ISOLATE_ABORT
, /* Abort compaction now */
954 ISOLATE_NONE
, /* No pages isolated, continue scanning */
955 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
959 * Isolate all pages that can be migrated from the first suitable block,
960 * starting at the block pointed to by the migrate scanner pfn within
963 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
964 struct compact_control
*cc
)
966 unsigned long low_pfn
, end_pfn
;
968 const isolate_mode_t isolate_mode
=
969 (cc
->mode
== MIGRATE_ASYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
972 * Start at where we last stopped, or beginning of the zone as
973 * initialized by compact_zone()
975 low_pfn
= cc
->migrate_pfn
;
977 /* Only scan within a pageblock boundary */
978 end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
981 * Iterate over whole pageblocks until we find the first suitable.
982 * Do not cross the free scanner.
984 for (; end_pfn
<= cc
->free_pfn
;
985 low_pfn
= end_pfn
, end_pfn
+= pageblock_nr_pages
) {
988 * This can potentially iterate a massively long zone with
989 * many pageblocks unsuitable, so periodically check if we
990 * need to schedule, or even abort async compaction.
992 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
993 && compact_should_abort(cc
))
996 page
= pageblock_pfn_to_page(low_pfn
, end_pfn
, zone
);
1000 /* If isolation recently failed, do not retry */
1001 if (!isolation_suitable(cc
, page
))
1005 * For async compaction, also only scan in MOVABLE blocks.
1006 * Async compaction is optimistic to see if the minimum amount
1007 * of work satisfies the allocation.
1009 if (cc
->mode
== MIGRATE_ASYNC
&&
1010 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1013 /* Perform the isolation */
1014 low_pfn
= isolate_migratepages_block(cc
, low_pfn
, end_pfn
,
1017 if (!low_pfn
|| cc
->contended
)
1018 return ISOLATE_ABORT
;
1021 * Either we isolated something and proceed with migration. Or
1022 * we failed and compact_zone should decide if we should
1028 acct_isolated(zone
, cc
);
1029 /* Record where migration scanner will be restarted */
1030 cc
->migrate_pfn
= low_pfn
;
1032 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1035 static int compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1036 const int migratetype
)
1039 unsigned long watermark
;
1041 if (cc
->contended
|| fatal_signal_pending(current
))
1042 return COMPACT_PARTIAL
;
1044 /* Compaction run completes if the migrate and free scanner meet */
1045 if (cc
->free_pfn
<= cc
->migrate_pfn
) {
1046 /* Let the next compaction start anew. */
1047 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
1048 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
1049 zone
->compact_cached_free_pfn
= zone_end_pfn(zone
);
1052 * Mark that the PG_migrate_skip information should be cleared
1053 * by kswapd when it goes to sleep. kswapd does not set the
1054 * flag itself as the decision to be clear should be directly
1055 * based on an allocation request.
1057 if (!current_is_kswapd())
1058 zone
->compact_blockskip_flush
= true;
1060 return COMPACT_COMPLETE
;
1064 * order == -1 is expected when compacting via
1065 * /proc/sys/vm/compact_memory
1067 if (cc
->order
== -1)
1068 return COMPACT_CONTINUE
;
1070 /* Compaction run is not finished if the watermark is not met */
1071 watermark
= low_wmark_pages(zone
);
1072 watermark
+= (1 << cc
->order
);
1074 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, 0, 0))
1075 return COMPACT_CONTINUE
;
1077 /* Direct compactor: Is a suitable page free? */
1078 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1079 struct free_area
*area
= &zone
->free_area
[order
];
1081 /* Job done if page is free of the right migratetype */
1082 if (!list_empty(&area
->free_list
[migratetype
]))
1083 return COMPACT_PARTIAL
;
1085 /* Job done if allocation would set block type */
1086 if (cc
->order
>= pageblock_order
&& area
->nr_free
)
1087 return COMPACT_PARTIAL
;
1090 return COMPACT_CONTINUE
;
1094 * compaction_suitable: Is this suitable to run compaction on this zone now?
1096 * COMPACT_SKIPPED - If there are too few free pages for compaction
1097 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1098 * COMPACT_CONTINUE - If compaction should run now
1100 unsigned long compaction_suitable(struct zone
*zone
, int order
)
1103 unsigned long watermark
;
1106 * order == -1 is expected when compacting via
1107 * /proc/sys/vm/compact_memory
1110 return COMPACT_CONTINUE
;
1113 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1114 * This is because during migration, copies of pages need to be
1115 * allocated and for a short time, the footprint is higher
1117 watermark
= low_wmark_pages(zone
) + (2UL << order
);
1118 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1119 return COMPACT_SKIPPED
;
1122 * fragmentation index determines if allocation failures are due to
1123 * low memory or external fragmentation
1125 * index of -1000 implies allocations might succeed depending on
1127 * index towards 0 implies failure is due to lack of memory
1128 * index towards 1000 implies failure is due to fragmentation
1130 * Only compact if a failure would be due to fragmentation.
1132 fragindex
= fragmentation_index(zone
, order
);
1133 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1134 return COMPACT_SKIPPED
;
1136 if (fragindex
== -1000 && zone_watermark_ok(zone
, order
, watermark
,
1138 return COMPACT_PARTIAL
;
1140 return COMPACT_CONTINUE
;
1143 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1146 unsigned long start_pfn
= zone
->zone_start_pfn
;
1147 unsigned long end_pfn
= zone_end_pfn(zone
);
1148 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1149 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1151 ret
= compaction_suitable(zone
, cc
->order
);
1153 case COMPACT_PARTIAL
:
1154 case COMPACT_SKIPPED
:
1155 /* Compaction is likely to fail */
1157 case COMPACT_CONTINUE
:
1158 /* Fall through to compaction */
1163 * Clear pageblock skip if there were failures recently and compaction
1164 * is about to be retried after being deferred. kswapd does not do
1165 * this reset as it'll reset the cached information when going to sleep.
1167 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
1168 __reset_isolation_suitable(zone
);
1171 * Setup to move all movable pages to the end of the zone. Used cached
1172 * information on where the scanners should start but check that it
1173 * is initialised by ensuring the values are within zone boundaries.
1175 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1176 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1177 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
> end_pfn
) {
1178 cc
->free_pfn
= end_pfn
& ~(pageblock_nr_pages
-1);
1179 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1181 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
> end_pfn
) {
1182 cc
->migrate_pfn
= start_pfn
;
1183 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1184 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1187 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
, cc
->free_pfn
, end_pfn
);
1189 migrate_prep_local();
1191 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1195 switch (isolate_migratepages(zone
, cc
)) {
1197 ret
= COMPACT_PARTIAL
;
1198 putback_movable_pages(&cc
->migratepages
);
1199 cc
->nr_migratepages
= 0;
1203 case ISOLATE_SUCCESS
:
1207 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1208 compaction_free
, (unsigned long)cc
, cc
->mode
,
1211 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1214 /* All pages were either migrated or will be released */
1215 cc
->nr_migratepages
= 0;
1217 putback_movable_pages(&cc
->migratepages
);
1219 * migrate_pages() may return -ENOMEM when scanners meet
1220 * and we want compact_finished() to detect it
1222 if (err
== -ENOMEM
&& cc
->free_pfn
> cc
->migrate_pfn
) {
1223 ret
= COMPACT_PARTIAL
;
1230 /* Release free pages and check accounting */
1231 cc
->nr_freepages
-= release_freepages(&cc
->freepages
);
1232 VM_BUG_ON(cc
->nr_freepages
!= 0);
1234 trace_mm_compaction_end(ret
);
1239 static unsigned long compact_zone_order(struct zone
*zone
, int order
,
1240 gfp_t gfp_mask
, enum migrate_mode mode
, int *contended
)
1243 struct compact_control cc
= {
1245 .nr_migratepages
= 0,
1247 .gfp_mask
= gfp_mask
,
1251 INIT_LIST_HEAD(&cc
.freepages
);
1252 INIT_LIST_HEAD(&cc
.migratepages
);
1254 ret
= compact_zone(zone
, &cc
);
1256 VM_BUG_ON(!list_empty(&cc
.freepages
));
1257 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1259 *contended
= cc
.contended
;
1263 int sysctl_extfrag_threshold
= 500;
1266 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1267 * @zonelist: The zonelist used for the current allocation
1268 * @order: The order of the current allocation
1269 * @gfp_mask: The GFP mask of the current allocation
1270 * @nodemask: The allowed nodes to allocate from
1271 * @mode: The migration mode for async, sync light, or sync migration
1272 * @contended: Return value that determines if compaction was aborted due to
1273 * need_resched() or lock contention
1274 * @candidate_zone: Return the zone where we think allocation should succeed
1276 * This is the main entry point for direct page compaction.
1278 unsigned long try_to_compact_pages(struct zonelist
*zonelist
,
1279 int order
, gfp_t gfp_mask
, nodemask_t
*nodemask
,
1280 enum migrate_mode mode
, int *contended
,
1281 struct zone
**candidate_zone
)
1283 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1284 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1285 int may_perform_io
= gfp_mask
& __GFP_IO
;
1288 int rc
= COMPACT_DEFERRED
;
1289 int alloc_flags
= 0;
1290 int all_zones_contended
= COMPACT_CONTENDED_LOCK
; /* init for &= op */
1292 *contended
= COMPACT_CONTENDED_NONE
;
1294 /* Check if the GFP flags allow compaction */
1295 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1296 return COMPACT_SKIPPED
;
1299 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
1300 alloc_flags
|= ALLOC_CMA
;
1302 /* Compact each zone in the list */
1303 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1308 if (compaction_deferred(zone
, order
))
1311 status
= compact_zone_order(zone
, order
, gfp_mask
, mode
,
1313 rc
= max(status
, rc
);
1315 * It takes at least one zone that wasn't lock contended
1316 * to clear all_zones_contended.
1318 all_zones_contended
&= zone_contended
;
1320 /* If a normal allocation would succeed, stop compacting */
1321 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0,
1323 *candidate_zone
= zone
;
1325 * We think the allocation will succeed in this zone,
1326 * but it is not certain, hence the false. The caller
1327 * will repeat this with true if allocation indeed
1328 * succeeds in this zone.
1330 compaction_defer_reset(zone
, order
, false);
1332 * It is possible that async compaction aborted due to
1333 * need_resched() and the watermarks were ok thanks to
1334 * somebody else freeing memory. The allocation can
1335 * however still fail so we better signal the
1336 * need_resched() contention anyway (this will not
1337 * prevent the allocation attempt).
1339 if (zone_contended
== COMPACT_CONTENDED_SCHED
)
1340 *contended
= COMPACT_CONTENDED_SCHED
;
1345 if (mode
!= MIGRATE_ASYNC
) {
1347 * We think that allocation won't succeed in this zone
1348 * so we defer compaction there. If it ends up
1349 * succeeding after all, it will be reset.
1351 defer_compaction(zone
, order
);
1355 * We might have stopped compacting due to need_resched() in
1356 * async compaction, or due to a fatal signal detected. In that
1357 * case do not try further zones and signal need_resched()
1360 if ((zone_contended
== COMPACT_CONTENDED_SCHED
)
1361 || fatal_signal_pending(current
)) {
1362 *contended
= COMPACT_CONTENDED_SCHED
;
1369 * We might not have tried all the zones, so be conservative
1370 * and assume they are not all lock contended.
1372 all_zones_contended
= 0;
1377 * If at least one zone wasn't deferred or skipped, we report if all
1378 * zones that were tried were lock contended.
1380 if (rc
> COMPACT_SKIPPED
&& all_zones_contended
)
1381 *contended
= COMPACT_CONTENDED_LOCK
;
1387 /* Compact all zones within a node */
1388 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1393 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1395 zone
= &pgdat
->node_zones
[zoneid
];
1396 if (!populated_zone(zone
))
1399 cc
->nr_freepages
= 0;
1400 cc
->nr_migratepages
= 0;
1402 INIT_LIST_HEAD(&cc
->freepages
);
1403 INIT_LIST_HEAD(&cc
->migratepages
);
1405 if (cc
->order
== -1 || !compaction_deferred(zone
, cc
->order
))
1406 compact_zone(zone
, cc
);
1408 if (cc
->order
> 0) {
1409 if (zone_watermark_ok(zone
, cc
->order
,
1410 low_wmark_pages(zone
), 0, 0))
1411 compaction_defer_reset(zone
, cc
->order
, false);
1414 VM_BUG_ON(!list_empty(&cc
->freepages
));
1415 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1419 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1421 struct compact_control cc
= {
1423 .mode
= MIGRATE_ASYNC
,
1429 __compact_pgdat(pgdat
, &cc
);
1432 static void compact_node(int nid
)
1434 struct compact_control cc
= {
1436 .mode
= MIGRATE_SYNC
,
1437 .ignore_skip_hint
= true,
1440 __compact_pgdat(NODE_DATA(nid
), &cc
);
1443 /* Compact all nodes in the system */
1444 static void compact_nodes(void)
1448 /* Flush pending updates to the LRU lists */
1449 lru_add_drain_all();
1451 for_each_online_node(nid
)
1455 /* The written value is actually unused, all memory is compacted */
1456 int sysctl_compact_memory
;
1458 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1459 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1460 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1468 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1469 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1471 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1476 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1477 static ssize_t
sysfs_compact_node(struct device
*dev
,
1478 struct device_attribute
*attr
,
1479 const char *buf
, size_t count
)
1483 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1484 /* Flush pending updates to the LRU lists */
1485 lru_add_drain_all();
1492 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1494 int compaction_register_node(struct node
*node
)
1496 return device_create_file(&node
->dev
, &dev_attr_compact
);
1499 void compaction_unregister_node(struct node
*node
)
1501 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1503 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1505 #endif /* CONFIG_COMPACTION */