4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
64 * dentry->d_inode->i_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
119 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
120 static int get_nr_dentry(void)
124 for_each_possible_cpu(i
)
125 sum
+= per_cpu(nr_dentry
, i
);
126 return sum
< 0 ? 0 : sum
;
129 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
130 size_t *lenp
, loff_t
*ppos
)
132 dentry_stat
.nr_dentry
= get_nr_dentry();
133 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
138 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
139 * The strings are both count bytes long, and count is non-zero.
141 #ifdef CONFIG_DCACHE_WORD_ACCESS
143 #include <asm/word-at-a-time.h>
145 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
146 * aligned allocation for this particular component. We don't
147 * strictly need the load_unaligned_zeropad() safety, but it
148 * doesn't hurt either.
150 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
151 * need the careful unaligned handling.
153 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
155 unsigned long a
,b
,mask
;
158 a
= *(unsigned long *)cs
;
159 b
= load_unaligned_zeropad(ct
);
160 if (tcount
< sizeof(unsigned long))
162 if (unlikely(a
!= b
))
164 cs
+= sizeof(unsigned long);
165 ct
+= sizeof(unsigned long);
166 tcount
-= sizeof(unsigned long);
170 mask
= ~(~0ul << tcount
*8);
171 return unlikely(!!((a
^ b
) & mask
));
176 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
190 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
192 const unsigned char *cs
;
194 * Be careful about RCU walk racing with rename:
195 * use ACCESS_ONCE to fetch the name pointer.
197 * NOTE! Even if a rename will mean that the length
198 * was not loaded atomically, we don't care. The
199 * RCU walk will check the sequence count eventually,
200 * and catch it. And we won't overrun the buffer,
201 * because we're reading the name pointer atomically,
202 * and a dentry name is guaranteed to be properly
203 * terminated with a NUL byte.
205 * End result: even if 'len' is wrong, we'll exit
206 * early because the data cannot match (there can
207 * be no NUL in the ct/tcount data)
209 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
210 smp_read_barrier_depends();
211 return dentry_string_cmp(cs
, ct
, tcount
);
214 static void __d_free(struct rcu_head
*head
)
216 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
218 if (dname_external(dentry
))
219 kfree(dentry
->d_name
.name
);
220 kmem_cache_free(dentry_cache
, dentry
);
226 static void d_free(struct dentry
*dentry
)
228 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
229 BUG_ON(dentry
->d_count
);
230 this_cpu_dec(nr_dentry
);
231 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
232 dentry
->d_op
->d_release(dentry
);
234 /* if dentry was never visible to RCU, immediate free is OK */
235 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
236 __d_free(&dentry
->d_u
.d_rcu
);
238 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
242 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
243 * @dentry: the target dentry
244 * After this call, in-progress rcu-walk path lookup will fail. This
245 * should be called after unhashing, and after changing d_inode (if
246 * the dentry has not already been unhashed).
248 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
250 assert_spin_locked(&dentry
->d_lock
);
251 /* Go through a barrier */
252 write_seqcount_barrier(&dentry
->d_seq
);
256 * Release the dentry's inode, using the filesystem
257 * d_iput() operation if defined. Dentry has no refcount
260 static void dentry_iput(struct dentry
* dentry
)
261 __releases(dentry
->d_lock
)
262 __releases(dentry
->d_inode
->i_lock
)
264 struct inode
*inode
= dentry
->d_inode
;
266 dentry
->d_inode
= NULL
;
267 hlist_del_init(&dentry
->d_u
.d_alias
);
268 spin_unlock(&dentry
->d_lock
);
269 spin_unlock(&inode
->i_lock
);
271 fsnotify_inoderemove(inode
);
272 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
273 dentry
->d_op
->d_iput(dentry
, inode
);
277 spin_unlock(&dentry
->d_lock
);
282 * Release the dentry's inode, using the filesystem
283 * d_iput() operation if defined. dentry remains in-use.
285 static void dentry_unlink_inode(struct dentry
* dentry
)
286 __releases(dentry
->d_lock
)
287 __releases(dentry
->d_inode
->i_lock
)
289 struct inode
*inode
= dentry
->d_inode
;
290 dentry
->d_inode
= NULL
;
291 hlist_del_init(&dentry
->d_u
.d_alias
);
292 dentry_rcuwalk_barrier(dentry
);
293 spin_unlock(&dentry
->d_lock
);
294 spin_unlock(&inode
->i_lock
);
296 fsnotify_inoderemove(inode
);
297 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
298 dentry
->d_op
->d_iput(dentry
, inode
);
304 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
306 static void dentry_lru_add(struct dentry
*dentry
)
308 if (list_empty(&dentry
->d_lru
)) {
309 spin_lock(&dcache_lru_lock
);
310 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
311 dentry
->d_sb
->s_nr_dentry_unused
++;
312 dentry_stat
.nr_unused
++;
313 spin_unlock(&dcache_lru_lock
);
317 static void __dentry_lru_del(struct dentry
*dentry
)
319 list_del_init(&dentry
->d_lru
);
320 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
321 dentry
->d_sb
->s_nr_dentry_unused
--;
322 dentry_stat
.nr_unused
--;
326 * Remove a dentry with references from the LRU.
328 static void dentry_lru_del(struct dentry
*dentry
)
330 if (!list_empty(&dentry
->d_lru
)) {
331 spin_lock(&dcache_lru_lock
);
332 __dentry_lru_del(dentry
);
333 spin_unlock(&dcache_lru_lock
);
337 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
339 spin_lock(&dcache_lru_lock
);
340 if (list_empty(&dentry
->d_lru
)) {
341 list_add_tail(&dentry
->d_lru
, list
);
342 dentry
->d_sb
->s_nr_dentry_unused
++;
343 dentry_stat
.nr_unused
++;
345 list_move_tail(&dentry
->d_lru
, list
);
347 spin_unlock(&dcache_lru_lock
);
351 * d_kill - kill dentry and return parent
352 * @dentry: dentry to kill
353 * @parent: parent dentry
355 * The dentry must already be unhashed and removed from the LRU.
357 * If this is the root of the dentry tree, return NULL.
359 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
362 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
363 __releases(dentry
->d_lock
)
364 __releases(parent
->d_lock
)
365 __releases(dentry
->d_inode
->i_lock
)
367 __list_del_entry(&dentry
->d_child
);
369 * Inform ascending readers that we are no longer attached to the
372 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
374 spin_unlock(&parent
->d_lock
);
377 * dentry_iput drops the locks, at which point nobody (except
378 * transient RCU lookups) can reach this dentry.
385 * Unhash a dentry without inserting an RCU walk barrier or checking that
386 * dentry->d_lock is locked. The caller must take care of that, if
389 static void __d_shrink(struct dentry
*dentry
)
391 if (!d_unhashed(dentry
)) {
392 struct hlist_bl_head
*b
;
393 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
394 b
= &dentry
->d_sb
->s_anon
;
396 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
399 __hlist_bl_del(&dentry
->d_hash
);
400 dentry
->d_hash
.pprev
= NULL
;
406 * d_drop - drop a dentry
407 * @dentry: dentry to drop
409 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
410 * be found through a VFS lookup any more. Note that this is different from
411 * deleting the dentry - d_delete will try to mark the dentry negative if
412 * possible, giving a successful _negative_ lookup, while d_drop will
413 * just make the cache lookup fail.
415 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
416 * reason (NFS timeouts or autofs deletes).
418 * __d_drop requires dentry->d_lock.
420 void __d_drop(struct dentry
*dentry
)
422 if (!d_unhashed(dentry
)) {
424 dentry_rcuwalk_barrier(dentry
);
427 EXPORT_SYMBOL(__d_drop
);
429 void d_drop(struct dentry
*dentry
)
431 spin_lock(&dentry
->d_lock
);
433 spin_unlock(&dentry
->d_lock
);
435 EXPORT_SYMBOL(d_drop
);
438 * Finish off a dentry we've decided to kill.
439 * dentry->d_lock must be held, returns with it unlocked.
440 * If ref is non-zero, then decrement the refcount too.
441 * Returns dentry requiring refcount drop, or NULL if we're done.
443 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
444 __releases(dentry
->d_lock
)
447 struct dentry
*parent
;
449 inode
= dentry
->d_inode
;
450 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
452 spin_unlock(&dentry
->d_lock
);
454 return dentry
; /* try again with same dentry */
459 parent
= dentry
->d_parent
;
460 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
462 spin_unlock(&inode
->i_lock
);
469 * inform the fs via d_prune that this dentry is about to be
470 * unhashed and destroyed.
472 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
473 dentry
->d_op
->d_prune(dentry
);
475 dentry_lru_del(dentry
);
476 /* if it was on the hash then remove it */
478 return d_kill(dentry
, parent
);
484 * This is complicated by the fact that we do not want to put
485 * dentries that are no longer on any hash chain on the unused
486 * list: we'd much rather just get rid of them immediately.
488 * However, that implies that we have to traverse the dentry
489 * tree upwards to the parents which might _also_ now be
490 * scheduled for deletion (it may have been only waiting for
491 * its last child to go away).
493 * This tail recursion is done by hand as we don't want to depend
494 * on the compiler to always get this right (gcc generally doesn't).
495 * Real recursion would eat up our stack space.
499 * dput - release a dentry
500 * @dentry: dentry to release
502 * Release a dentry. This will drop the usage count and if appropriate
503 * call the dentry unlink method as well as removing it from the queues and
504 * releasing its resources. If the parent dentries were scheduled for release
505 * they too may now get deleted.
507 void dput(struct dentry
*dentry
)
513 if (dentry
->d_count
== 1)
515 spin_lock(&dentry
->d_lock
);
516 BUG_ON(!dentry
->d_count
);
517 if (dentry
->d_count
> 1) {
519 spin_unlock(&dentry
->d_lock
);
523 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
526 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
527 if (dentry
->d_op
->d_delete(dentry
))
531 /* Unreachable? Get rid of it */
532 if (d_unhashed(dentry
))
535 dentry
->d_flags
|= DCACHE_REFERENCED
;
536 dentry_lru_add(dentry
);
539 spin_unlock(&dentry
->d_lock
);
543 dentry
= dentry_kill(dentry
, 1);
550 * d_invalidate - invalidate a dentry
551 * @dentry: dentry to invalidate
553 * Try to invalidate the dentry if it turns out to be
554 * possible. If there are other dentries that can be
555 * reached through this one we can't delete it and we
556 * return -EBUSY. On success we return 0.
561 int d_invalidate(struct dentry
* dentry
)
564 * If it's already been dropped, return OK.
566 spin_lock(&dentry
->d_lock
);
567 if (d_unhashed(dentry
)) {
568 spin_unlock(&dentry
->d_lock
);
572 * Check whether to do a partial shrink_dcache
573 * to get rid of unused child entries.
575 if (!list_empty(&dentry
->d_subdirs
)) {
576 spin_unlock(&dentry
->d_lock
);
577 shrink_dcache_parent(dentry
);
578 spin_lock(&dentry
->d_lock
);
582 * Somebody else still using it?
584 * If it's a directory, we can't drop it
585 * for fear of somebody re-populating it
586 * with children (even though dropping it
587 * would make it unreachable from the root,
588 * we might still populate it if it was a
589 * working directory or similar).
590 * We also need to leave mountpoints alone,
593 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
594 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
595 spin_unlock(&dentry
->d_lock
);
601 spin_unlock(&dentry
->d_lock
);
604 EXPORT_SYMBOL(d_invalidate
);
606 /* This must be called with d_lock held */
607 static inline void __dget_dlock(struct dentry
*dentry
)
612 static inline void __dget(struct dentry
*dentry
)
614 spin_lock(&dentry
->d_lock
);
615 __dget_dlock(dentry
);
616 spin_unlock(&dentry
->d_lock
);
619 struct dentry
*dget_parent(struct dentry
*dentry
)
625 * Don't need rcu_dereference because we re-check it was correct under
629 ret
= dentry
->d_parent
;
630 spin_lock(&ret
->d_lock
);
631 if (unlikely(ret
!= dentry
->d_parent
)) {
632 spin_unlock(&ret
->d_lock
);
637 BUG_ON(!ret
->d_count
);
639 spin_unlock(&ret
->d_lock
);
642 EXPORT_SYMBOL(dget_parent
);
645 * d_find_alias - grab a hashed alias of inode
646 * @inode: inode in question
647 * @want_discon: flag, used by d_splice_alias, to request
648 * that only a DISCONNECTED alias be returned.
650 * If inode has a hashed alias, or is a directory and has any alias,
651 * acquire the reference to alias and return it. Otherwise return NULL.
652 * Notice that if inode is a directory there can be only one alias and
653 * it can be unhashed only if it has no children, or if it is the root
656 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
657 * any other hashed alias over that one unless @want_discon is set,
658 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
660 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
662 struct dentry
*alias
, *discon_alias
;
666 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
667 spin_lock(&alias
->d_lock
);
668 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
669 if (IS_ROOT(alias
) &&
670 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
671 discon_alias
= alias
;
672 } else if (!want_discon
) {
674 spin_unlock(&alias
->d_lock
);
678 spin_unlock(&alias
->d_lock
);
681 alias
= discon_alias
;
682 spin_lock(&alias
->d_lock
);
683 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
684 if (IS_ROOT(alias
) &&
685 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
687 spin_unlock(&alias
->d_lock
);
691 spin_unlock(&alias
->d_lock
);
697 struct dentry
*d_find_alias(struct inode
*inode
)
699 struct dentry
*de
= NULL
;
701 if (!hlist_empty(&inode
->i_dentry
)) {
702 spin_lock(&inode
->i_lock
);
703 de
= __d_find_alias(inode
, 0);
704 spin_unlock(&inode
->i_lock
);
708 EXPORT_SYMBOL(d_find_alias
);
711 * Try to kill dentries associated with this inode.
712 * WARNING: you must own a reference to inode.
714 void d_prune_aliases(struct inode
*inode
)
716 struct dentry
*dentry
;
718 spin_lock(&inode
->i_lock
);
719 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
720 spin_lock(&dentry
->d_lock
);
721 if (!dentry
->d_count
) {
722 __dget_dlock(dentry
);
724 spin_unlock(&dentry
->d_lock
);
725 spin_unlock(&inode
->i_lock
);
729 spin_unlock(&dentry
->d_lock
);
731 spin_unlock(&inode
->i_lock
);
733 EXPORT_SYMBOL(d_prune_aliases
);
736 * Try to throw away a dentry - free the inode, dput the parent.
737 * Requires dentry->d_lock is held, and dentry->d_count == 0.
738 * Releases dentry->d_lock.
740 * This may fail if locks cannot be acquired no problem, just try again.
742 static void try_prune_one_dentry(struct dentry
*dentry
)
743 __releases(dentry
->d_lock
)
745 struct dentry
*parent
;
747 parent
= dentry_kill(dentry
, 0);
749 * If dentry_kill returns NULL, we have nothing more to do.
750 * if it returns the same dentry, trylocks failed. In either
751 * case, just loop again.
753 * Otherwise, we need to prune ancestors too. This is necessary
754 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 * is also expected to be beneficial in reducing dentry cache
760 if (parent
== dentry
)
763 /* Prune ancestors. */
766 spin_lock(&dentry
->d_lock
);
767 if (dentry
->d_count
> 1) {
769 spin_unlock(&dentry
->d_lock
);
772 dentry
= dentry_kill(dentry
, 1);
776 static void shrink_dentry_list(struct list_head
*list
)
778 struct dentry
*dentry
;
782 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
783 if (&dentry
->d_lru
== list
)
785 spin_lock(&dentry
->d_lock
);
786 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
787 spin_unlock(&dentry
->d_lock
);
792 * We found an inuse dentry which was not removed from
793 * the LRU because of laziness during lookup. Do not free
794 * it - just keep it off the LRU list.
796 if (dentry
->d_count
) {
797 dentry_lru_del(dentry
);
798 spin_unlock(&dentry
->d_lock
);
804 try_prune_one_dentry(dentry
);
812 * prune_dcache_sb - shrink the dcache
814 * @count: number of entries to try to free
816 * Attempt to shrink the superblock dcache LRU by @count entries. This is
817 * done when we need more memory an called from the superblock shrinker
820 * This function may fail to free any resources if all the dentries are in
823 void prune_dcache_sb(struct super_block
*sb
, int count
)
825 struct dentry
*dentry
;
826 LIST_HEAD(referenced
);
830 spin_lock(&dcache_lru_lock
);
831 while (!list_empty(&sb
->s_dentry_lru
)) {
832 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
833 struct dentry
, d_lru
);
834 BUG_ON(dentry
->d_sb
!= sb
);
836 if (!spin_trylock(&dentry
->d_lock
)) {
837 spin_unlock(&dcache_lru_lock
);
842 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
843 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
844 list_move(&dentry
->d_lru
, &referenced
);
845 spin_unlock(&dentry
->d_lock
);
847 list_move_tail(&dentry
->d_lru
, &tmp
);
848 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
849 spin_unlock(&dentry
->d_lock
);
853 cond_resched_lock(&dcache_lru_lock
);
855 if (!list_empty(&referenced
))
856 list_splice(&referenced
, &sb
->s_dentry_lru
);
857 spin_unlock(&dcache_lru_lock
);
859 shrink_dentry_list(&tmp
);
863 * shrink_dcache_sb - shrink dcache for a superblock
866 * Shrink the dcache for the specified super block. This is used to free
867 * the dcache before unmounting a file system.
869 void shrink_dcache_sb(struct super_block
*sb
)
873 spin_lock(&dcache_lru_lock
);
874 while (!list_empty(&sb
->s_dentry_lru
)) {
875 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
876 spin_unlock(&dcache_lru_lock
);
877 shrink_dentry_list(&tmp
);
878 spin_lock(&dcache_lru_lock
);
880 spin_unlock(&dcache_lru_lock
);
882 EXPORT_SYMBOL(shrink_dcache_sb
);
885 * destroy a single subtree of dentries for unmount
886 * - see the comments on shrink_dcache_for_umount() for a description of the
889 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
891 struct dentry
*parent
;
893 BUG_ON(!IS_ROOT(dentry
));
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry
->d_subdirs
))
898 dentry
= list_entry(dentry
->d_subdirs
.next
,
899 struct dentry
, d_child
);
901 /* consume the dentries from this leaf up through its parents
902 * until we find one with children or run out altogether */
907 * inform the fs that this dentry is about to be
908 * unhashed and destroyed.
910 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
911 dentry
->d_op
->d_prune(dentry
);
913 dentry_lru_del(dentry
);
916 if (dentry
->d_count
!= 0) {
918 "BUG: Dentry %p{i=%lx,n=%s}"
920 " [unmount of %s %s]\n",
923 dentry
->d_inode
->i_ino
: 0UL,
926 dentry
->d_sb
->s_type
->name
,
931 if (IS_ROOT(dentry
)) {
933 list_del(&dentry
->d_child
);
935 parent
= dentry
->d_parent
;
937 list_del(&dentry
->d_child
);
940 inode
= dentry
->d_inode
;
942 dentry
->d_inode
= NULL
;
943 hlist_del_init(&dentry
->d_u
.d_alias
);
944 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
945 dentry
->d_op
->d_iput(dentry
, inode
);
952 /* finished when we fall off the top of the tree,
953 * otherwise we ascend to the parent and move to the
954 * next sibling if there is one */
958 } while (list_empty(&dentry
->d_subdirs
));
960 dentry
= list_entry(dentry
->d_subdirs
.next
,
961 struct dentry
, d_child
);
966 * destroy the dentries attached to a superblock on unmounting
967 * - we don't need to use dentry->d_lock because:
968 * - the superblock is detached from all mountings and open files, so the
969 * dentry trees will not be rearranged by the VFS
970 * - s_umount is write-locked, so the memory pressure shrinker will ignore
971 * any dentries belonging to this superblock that it comes across
972 * - the filesystem itself is no longer permitted to rearrange the dentries
975 void shrink_dcache_for_umount(struct super_block
*sb
)
977 struct dentry
*dentry
;
979 if (down_read_trylock(&sb
->s_umount
))
985 shrink_dcache_for_umount_subtree(dentry
);
987 while (!hlist_bl_empty(&sb
->s_anon
)) {
988 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
989 shrink_dcache_for_umount_subtree(dentry
);
994 * Search for at least 1 mount point in the dentry's subdirs.
995 * We descend to the next level whenever the d_subdirs
996 * list is non-empty and continue searching.
1000 * have_submounts - check for mounts over a dentry
1001 * @parent: dentry to check.
1003 * Return true if the parent or its subdirectories contain
1006 int have_submounts(struct dentry
*parent
)
1008 struct dentry
*this_parent
;
1009 struct list_head
*next
;
1013 seq
= read_seqbegin(&rename_lock
);
1015 this_parent
= parent
;
1017 if (d_mountpoint(parent
))
1019 spin_lock(&this_parent
->d_lock
);
1021 next
= this_parent
->d_subdirs
.next
;
1023 while (next
!= &this_parent
->d_subdirs
) {
1024 struct list_head
*tmp
= next
;
1025 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1028 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1029 /* Have we found a mount point ? */
1030 if (d_mountpoint(dentry
)) {
1031 spin_unlock(&dentry
->d_lock
);
1032 spin_unlock(&this_parent
->d_lock
);
1035 if (!list_empty(&dentry
->d_subdirs
)) {
1036 spin_unlock(&this_parent
->d_lock
);
1037 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1038 this_parent
= dentry
;
1039 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1042 spin_unlock(&dentry
->d_lock
);
1045 * All done at this level ... ascend and resume the search.
1049 if (this_parent
!= parent
) {
1050 struct dentry
*child
= this_parent
;
1051 this_parent
= child
->d_parent
;
1053 spin_unlock(&child
->d_lock
);
1054 spin_lock(&this_parent
->d_lock
);
1056 /* might go back up the wrong parent if we have had a rename. */
1057 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1059 /* go into the first sibling still alive */
1061 next
= child
->d_child
.next
;
1062 if (next
== &this_parent
->d_subdirs
)
1064 child
= list_entry(next
, struct dentry
, d_child
);
1065 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1069 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1071 spin_unlock(&this_parent
->d_lock
);
1074 write_sequnlock(&rename_lock
);
1075 return 0; /* No mount points found in tree */
1077 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1078 goto rename_retry_unlocked
;
1080 write_sequnlock(&rename_lock
);
1084 spin_unlock(&this_parent
->d_lock
);
1088 rename_retry_unlocked
:
1090 write_seqlock(&rename_lock
);
1093 EXPORT_SYMBOL(have_submounts
);
1096 * Search the dentry child list of the specified parent,
1097 * and move any unused dentries to the end of the unused
1098 * list for prune_dcache(). We descend to the next level
1099 * whenever the d_subdirs list is non-empty and continue
1102 * It returns zero iff there are no unused children,
1103 * otherwise it returns the number of children moved to
1104 * the end of the unused list. This may not be the total
1105 * number of unused children, because select_parent can
1106 * drop the lock and return early due to latency
1109 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1111 struct dentry
*this_parent
;
1112 struct list_head
*next
;
1117 seq
= read_seqbegin(&rename_lock
);
1119 this_parent
= parent
;
1120 spin_lock(&this_parent
->d_lock
);
1122 next
= this_parent
->d_subdirs
.next
;
1124 while (next
!= &this_parent
->d_subdirs
) {
1125 struct list_head
*tmp
= next
;
1126 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1129 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1132 * move only zero ref count dentries to the dispose list.
1134 * Those which are presently on the shrink list, being processed
1135 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1136 * loop in shrink_dcache_parent() might not make any progress
1139 if (dentry
->d_count
) {
1140 dentry_lru_del(dentry
);
1141 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1142 dentry_lru_move_list(dentry
, dispose
);
1143 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1147 * We can return to the caller if we have found some (this
1148 * ensures forward progress). We'll be coming back to find
1151 if (found
&& need_resched()) {
1152 spin_unlock(&dentry
->d_lock
);
1158 * Descend a level if the d_subdirs list is non-empty.
1160 if (!list_empty(&dentry
->d_subdirs
)) {
1161 spin_unlock(&this_parent
->d_lock
);
1162 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1163 this_parent
= dentry
;
1164 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1168 spin_unlock(&dentry
->d_lock
);
1171 * All done at this level ... ascend and resume the search.
1175 if (this_parent
!= parent
) {
1176 struct dentry
*child
= this_parent
;
1177 this_parent
= child
->d_parent
;
1179 spin_unlock(&child
->d_lock
);
1180 spin_lock(&this_parent
->d_lock
);
1182 /* might go back up the wrong parent if we have had a rename. */
1183 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1185 /* go into the first sibling still alive */
1187 next
= child
->d_child
.next
;
1188 if (next
== &this_parent
->d_subdirs
)
1190 child
= list_entry(next
, struct dentry
, d_child
);
1191 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1196 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1198 spin_unlock(&this_parent
->d_lock
);
1201 write_sequnlock(&rename_lock
);
1205 spin_unlock(&this_parent
->d_lock
);
1212 write_seqlock(&rename_lock
);
1217 * shrink_dcache_parent - prune dcache
1218 * @parent: parent of entries to prune
1220 * Prune the dcache to remove unused children of the parent dentry.
1222 void shrink_dcache_parent(struct dentry
* parent
)
1227 while ((found
= select_parent(parent
, &dispose
)) != 0) {
1228 shrink_dentry_list(&dispose
);
1232 EXPORT_SYMBOL(shrink_dcache_parent
);
1235 * __d_alloc - allocate a dcache entry
1236 * @sb: filesystem it will belong to
1237 * @name: qstr of the name
1239 * Allocates a dentry. It returns %NULL if there is insufficient memory
1240 * available. On a success the dentry is returned. The name passed in is
1241 * copied and the copy passed in may be reused after this call.
1244 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1246 struct dentry
*dentry
;
1249 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1254 * We guarantee that the inline name is always NUL-terminated.
1255 * This way the memcpy() done by the name switching in rename
1256 * will still always have a NUL at the end, even if we might
1257 * be overwriting an internal NUL character
1259 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1260 if (name
->len
> DNAME_INLINE_LEN
-1) {
1261 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1263 kmem_cache_free(dentry_cache
, dentry
);
1267 dname
= dentry
->d_iname
;
1270 dentry
->d_name
.len
= name
->len
;
1271 dentry
->d_name
.hash
= name
->hash
;
1272 memcpy(dname
, name
->name
, name
->len
);
1273 dname
[name
->len
] = 0;
1275 /* Make sure we always see the terminating NUL character */
1277 dentry
->d_name
.name
= dname
;
1279 dentry
->d_count
= 1;
1280 dentry
->d_flags
= 0;
1281 spin_lock_init(&dentry
->d_lock
);
1282 seqcount_init(&dentry
->d_seq
);
1283 dentry
->d_inode
= NULL
;
1284 dentry
->d_parent
= dentry
;
1286 dentry
->d_op
= NULL
;
1287 dentry
->d_fsdata
= NULL
;
1288 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1289 INIT_LIST_HEAD(&dentry
->d_lru
);
1290 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1291 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1292 INIT_LIST_HEAD(&dentry
->d_child
);
1293 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1295 this_cpu_inc(nr_dentry
);
1301 * d_alloc - allocate a dcache entry
1302 * @parent: parent of entry to allocate
1303 * @name: qstr of the name
1305 * Allocates a dentry. It returns %NULL if there is insufficient memory
1306 * available. On a success the dentry is returned. The name passed in is
1307 * copied and the copy passed in may be reused after this call.
1309 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1311 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1315 spin_lock(&parent
->d_lock
);
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1320 __dget_dlock(parent
);
1321 dentry
->d_parent
= parent
;
1322 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1323 spin_unlock(&parent
->d_lock
);
1327 EXPORT_SYMBOL(d_alloc
);
1329 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1331 struct dentry
*dentry
= __d_alloc(sb
, name
);
1333 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1336 EXPORT_SYMBOL(d_alloc_pseudo
);
1338 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1343 q
.len
= strlen(name
);
1344 q
.hash
= full_name_hash(q
.name
, q
.len
);
1345 return d_alloc(parent
, &q
);
1347 EXPORT_SYMBOL(d_alloc_name
);
1349 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1351 WARN_ON_ONCE(dentry
->d_op
);
1352 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1354 DCACHE_OP_REVALIDATE
|
1355 DCACHE_OP_WEAK_REVALIDATE
|
1356 DCACHE_OP_DELETE
));
1361 dentry
->d_flags
|= DCACHE_OP_HASH
;
1363 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1364 if (op
->d_revalidate
)
1365 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1366 if (op
->d_weak_revalidate
)
1367 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1369 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1371 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1374 EXPORT_SYMBOL(d_set_d_op
);
1376 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1378 spin_lock(&dentry
->d_lock
);
1380 if (unlikely(IS_AUTOMOUNT(inode
)))
1381 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1382 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1384 dentry
->d_inode
= inode
;
1385 dentry_rcuwalk_barrier(dentry
);
1386 spin_unlock(&dentry
->d_lock
);
1387 fsnotify_d_instantiate(dentry
, inode
);
1391 * d_instantiate - fill in inode information for a dentry
1392 * @entry: dentry to complete
1393 * @inode: inode to attach to this dentry
1395 * Fill in inode information in the entry.
1397 * This turns negative dentries into productive full members
1400 * NOTE! This assumes that the inode count has been incremented
1401 * (or otherwise set) by the caller to indicate that it is now
1402 * in use by the dcache.
1405 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1407 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1409 spin_lock(&inode
->i_lock
);
1410 __d_instantiate(entry
, inode
);
1412 spin_unlock(&inode
->i_lock
);
1413 security_d_instantiate(entry
, inode
);
1415 EXPORT_SYMBOL(d_instantiate
);
1418 * d_instantiate_unique - instantiate a non-aliased dentry
1419 * @entry: dentry to instantiate
1420 * @inode: inode to attach to this dentry
1422 * Fill in inode information in the entry. On success, it returns NULL.
1423 * If an unhashed alias of "entry" already exists, then we return the
1424 * aliased dentry instead and drop one reference to inode.
1426 * Note that in order to avoid conflicts with rename() etc, the caller
1427 * had better be holding the parent directory semaphore.
1429 * This also assumes that the inode count has been incremented
1430 * (or otherwise set) by the caller to indicate that it is now
1431 * in use by the dcache.
1433 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1434 struct inode
*inode
)
1436 struct dentry
*alias
;
1437 int len
= entry
->d_name
.len
;
1438 const char *name
= entry
->d_name
.name
;
1439 unsigned int hash
= entry
->d_name
.hash
;
1442 __d_instantiate(entry
, NULL
);
1446 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1448 * Don't need alias->d_lock here, because aliases with
1449 * d_parent == entry->d_parent are not subject to name or
1450 * parent changes, because the parent inode i_mutex is held.
1452 if (alias
->d_name
.hash
!= hash
)
1454 if (alias
->d_parent
!= entry
->d_parent
)
1456 if (alias
->d_name
.len
!= len
)
1458 if (dentry_cmp(alias
, name
, len
))
1464 __d_instantiate(entry
, inode
);
1468 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1470 struct dentry
*result
;
1472 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1475 spin_lock(&inode
->i_lock
);
1476 result
= __d_instantiate_unique(entry
, inode
);
1478 spin_unlock(&inode
->i_lock
);
1481 security_d_instantiate(entry
, inode
);
1485 BUG_ON(!d_unhashed(result
));
1490 EXPORT_SYMBOL(d_instantiate_unique
);
1492 struct dentry
*d_make_root(struct inode
*root_inode
)
1494 struct dentry
*res
= NULL
;
1497 static const struct qstr name
= QSTR_INIT("/", 1);
1499 res
= __d_alloc(root_inode
->i_sb
, &name
);
1501 d_instantiate(res
, root_inode
);
1507 EXPORT_SYMBOL(d_make_root
);
1509 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1511 struct dentry
*alias
;
1513 if (hlist_empty(&inode
->i_dentry
))
1515 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1521 * d_find_any_alias - find any alias for a given inode
1522 * @inode: inode to find an alias for
1524 * If any aliases exist for the given inode, take and return a
1525 * reference for one of them. If no aliases exist, return %NULL.
1527 struct dentry
*d_find_any_alias(struct inode
*inode
)
1531 spin_lock(&inode
->i_lock
);
1532 de
= __d_find_any_alias(inode
);
1533 spin_unlock(&inode
->i_lock
);
1536 EXPORT_SYMBOL(d_find_any_alias
);
1539 * d_obtain_alias - find or allocate a dentry for a given inode
1540 * @inode: inode to allocate the dentry for
1542 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1543 * similar open by handle operations. The returned dentry may be anonymous,
1544 * or may have a full name (if the inode was already in the cache).
1546 * When called on a directory inode, we must ensure that the inode only ever
1547 * has one dentry. If a dentry is found, that is returned instead of
1548 * allocating a new one.
1550 * On successful return, the reference to the inode has been transferred
1551 * to the dentry. In case of an error the reference on the inode is released.
1552 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1553 * be passed in and will be the error will be propagate to the return value,
1554 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1556 struct dentry
*d_obtain_alias(struct inode
*inode
)
1558 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1563 return ERR_PTR(-ESTALE
);
1565 return ERR_CAST(inode
);
1567 res
= d_find_any_alias(inode
);
1571 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1573 res
= ERR_PTR(-ENOMEM
);
1577 spin_lock(&inode
->i_lock
);
1578 res
= __d_find_any_alias(inode
);
1580 spin_unlock(&inode
->i_lock
);
1585 /* attach a disconnected dentry */
1586 spin_lock(&tmp
->d_lock
);
1587 tmp
->d_inode
= inode
;
1588 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1589 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1590 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1591 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1592 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1593 spin_unlock(&tmp
->d_lock
);
1594 spin_unlock(&inode
->i_lock
);
1595 security_d_instantiate(tmp
, inode
);
1600 if (res
&& !IS_ERR(res
))
1601 security_d_instantiate(res
, inode
);
1605 EXPORT_SYMBOL(d_obtain_alias
);
1608 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1609 * @inode: the inode which may have a disconnected dentry
1610 * @dentry: a negative dentry which we want to point to the inode.
1612 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1613 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1614 * and return it, else simply d_add the inode to the dentry and return NULL.
1616 * This is needed in the lookup routine of any filesystem that is exportable
1617 * (via knfsd) so that we can build dcache paths to directories effectively.
1619 * If a dentry was found and moved, then it is returned. Otherwise NULL
1620 * is returned. This matches the expected return value of ->lookup.
1623 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1625 struct dentry
*new = NULL
;
1628 return ERR_CAST(inode
);
1630 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1631 spin_lock(&inode
->i_lock
);
1632 new = __d_find_alias(inode
, 1);
1634 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1635 spin_unlock(&inode
->i_lock
);
1636 security_d_instantiate(new, inode
);
1637 d_move(new, dentry
);
1640 /* already taking inode->i_lock, so d_add() by hand */
1641 __d_instantiate(dentry
, inode
);
1642 spin_unlock(&inode
->i_lock
);
1643 security_d_instantiate(dentry
, inode
);
1647 d_add(dentry
, inode
);
1650 EXPORT_SYMBOL(d_splice_alias
);
1653 * d_add_ci - lookup or allocate new dentry with case-exact name
1654 * @inode: the inode case-insensitive lookup has found
1655 * @dentry: the negative dentry that was passed to the parent's lookup func
1656 * @name: the case-exact name to be associated with the returned dentry
1658 * This is to avoid filling the dcache with case-insensitive names to the
1659 * same inode, only the actual correct case is stored in the dcache for
1660 * case-insensitive filesystems.
1662 * For a case-insensitive lookup match and if the the case-exact dentry
1663 * already exists in in the dcache, use it and return it.
1665 * If no entry exists with the exact case name, allocate new dentry with
1666 * the exact case, and return the spliced entry.
1668 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1671 struct dentry
*found
;
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1678 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1679 if (unlikely(IS_ERR(found
)))
1682 new = d_alloc(dentry
->d_parent
, name
);
1684 found
= ERR_PTR(-ENOMEM
);
1688 found
= d_splice_alias(inode
, new);
1697 * If a matching dentry exists, and it's not negative use it.
1699 * Decrement the reference count to balance the iget() done
1702 if (found
->d_inode
) {
1703 if (unlikely(found
->d_inode
!= inode
)) {
1704 /* This can't happen because bad inodes are unhashed. */
1705 BUG_ON(!is_bad_inode(inode
));
1706 BUG_ON(!is_bad_inode(found
->d_inode
));
1713 * Negative dentry: instantiate it unless the inode is a directory and
1714 * already has a dentry.
1716 new = d_splice_alias(inode
, found
);
1727 EXPORT_SYMBOL(d_add_ci
);
1730 * Do the slow-case of the dentry name compare.
1732 * Unlike the dentry_cmp() function, we need to atomically
1733 * load the name, length and inode information, so that the
1734 * filesystem can rely on them, and can use the 'name' and
1735 * 'len' information without worrying about walking off the
1736 * end of memory etc.
1738 * Thus the read_seqcount_retry() and the "duplicate" info
1739 * in arguments (the low-level filesystem should not look
1740 * at the dentry inode or name contents directly, since
1741 * rename can change them while we're in RCU mode).
1743 enum slow_d_compare
{
1749 static noinline
enum slow_d_compare
slow_dentry_cmp(
1750 const struct dentry
*parent
,
1751 struct inode
*inode
,
1752 struct dentry
*dentry
,
1754 const struct qstr
*name
)
1756 int tlen
= dentry
->d_name
.len
;
1757 const char *tname
= dentry
->d_name
.name
;
1758 struct inode
*i
= dentry
->d_inode
;
1760 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1762 return D_COMP_SEQRETRY
;
1764 if (parent
->d_op
->d_compare(parent
, inode
,
1767 return D_COMP_NOMATCH
;
1772 * __d_lookup_rcu - search for a dentry (racy, store-free)
1773 * @parent: parent dentry
1774 * @name: qstr of name we wish to find
1775 * @seqp: returns d_seq value at the point where the dentry was found
1776 * @inode: returns dentry->d_inode when the inode was found valid.
1777 * Returns: dentry, or NULL
1779 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1780 * resolution (store-free path walking) design described in
1781 * Documentation/filesystems/path-lookup.txt.
1783 * This is not to be used outside core vfs.
1785 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1786 * held, and rcu_read_lock held. The returned dentry must not be stored into
1787 * without taking d_lock and checking d_seq sequence count against @seq
1790 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1793 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1794 * the returned dentry, so long as its parent's seqlock is checked after the
1795 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1796 * is formed, giving integrity down the path walk.
1798 * NOTE! The caller *has* to check the resulting dentry against the sequence
1799 * number we've returned before using any of the resulting dentry state!
1801 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1802 const struct qstr
*name
,
1803 unsigned *seqp
, struct inode
*inode
)
1805 u64 hashlen
= name
->hash_len
;
1806 const unsigned char *str
= name
->name
;
1807 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
1808 struct hlist_bl_node
*node
;
1809 struct dentry
*dentry
;
1812 * Note: There is significant duplication with __d_lookup_rcu which is
1813 * required to prevent single threaded performance regressions
1814 * especially on architectures where smp_rmb (in seqcounts) are costly.
1815 * Keep the two functions in sync.
1819 * The hash list is protected using RCU.
1821 * Carefully use d_seq when comparing a candidate dentry, to avoid
1822 * races with d_move().
1824 * It is possible that concurrent renames can mess up our list
1825 * walk here and result in missing our dentry, resulting in the
1826 * false-negative result. d_lookup() protects against concurrent
1827 * renames using rename_lock seqlock.
1829 * See Documentation/filesystems/path-lookup.txt for more details.
1831 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1836 * The dentry sequence count protects us from concurrent
1837 * renames, and thus protects inode, parent and name fields.
1839 * The caller must perform a seqcount check in order
1840 * to do anything useful with the returned dentry,
1841 * including using the 'd_inode' pointer.
1843 * NOTE! We do a "raw" seqcount_begin here. That means that
1844 * we don't wait for the sequence count to stabilize if it
1845 * is in the middle of a sequence change. If we do the slow
1846 * dentry compare, we will do seqretries until it is stable,
1847 * and if we end up with a successful lookup, we actually
1848 * want to exit RCU lookup anyway.
1850 seq
= raw_seqcount_begin(&dentry
->d_seq
);
1851 if (dentry
->d_parent
!= parent
)
1853 if (d_unhashed(dentry
))
1857 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1858 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
1860 switch (slow_dentry_cmp(parent
, inode
, dentry
, seq
, name
)) {
1863 case D_COMP_NOMATCH
:
1870 if (dentry
->d_name
.hash_len
!= hashlen
)
1872 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
1879 * d_lookup - search for a dentry
1880 * @parent: parent dentry
1881 * @name: qstr of name we wish to find
1882 * Returns: dentry, or NULL
1884 * d_lookup searches the children of the parent dentry for the name in
1885 * question. If the dentry is found its reference count is incremented and the
1886 * dentry is returned. The caller must use dput to free the entry when it has
1887 * finished using it. %NULL is returned if the dentry does not exist.
1889 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1891 struct dentry
*dentry
;
1895 seq
= read_seqbegin(&rename_lock
);
1896 dentry
= __d_lookup(parent
, name
);
1899 } while (read_seqretry(&rename_lock
, seq
));
1902 EXPORT_SYMBOL(d_lookup
);
1905 * __d_lookup - search for a dentry (racy)
1906 * @parent: parent dentry
1907 * @name: qstr of name we wish to find
1908 * Returns: dentry, or NULL
1910 * __d_lookup is like d_lookup, however it may (rarely) return a
1911 * false-negative result due to unrelated rename activity.
1913 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1914 * however it must be used carefully, eg. with a following d_lookup in
1915 * the case of failure.
1917 * __d_lookup callers must be commented.
1919 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
1921 unsigned int len
= name
->len
;
1922 unsigned int hash
= name
->hash
;
1923 const unsigned char *str
= name
->name
;
1924 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1925 struct hlist_bl_node
*node
;
1926 struct dentry
*found
= NULL
;
1927 struct dentry
*dentry
;
1930 * Note: There is significant duplication with __d_lookup_rcu which is
1931 * required to prevent single threaded performance regressions
1932 * especially on architectures where smp_rmb (in seqcounts) are costly.
1933 * Keep the two functions in sync.
1937 * The hash list is protected using RCU.
1939 * Take d_lock when comparing a candidate dentry, to avoid races
1942 * It is possible that concurrent renames can mess up our list
1943 * walk here and result in missing our dentry, resulting in the
1944 * false-negative result. d_lookup() protects against concurrent
1945 * renames using rename_lock seqlock.
1947 * See Documentation/filesystems/path-lookup.txt for more details.
1951 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1953 if (dentry
->d_name
.hash
!= hash
)
1956 spin_lock(&dentry
->d_lock
);
1957 if (dentry
->d_parent
!= parent
)
1959 if (d_unhashed(dentry
))
1963 * It is safe to compare names since d_move() cannot
1964 * change the qstr (protected by d_lock).
1966 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1967 int tlen
= dentry
->d_name
.len
;
1968 const char *tname
= dentry
->d_name
.name
;
1969 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1970 dentry
, dentry
->d_inode
,
1974 if (dentry
->d_name
.len
!= len
)
1976 if (dentry_cmp(dentry
, str
, len
))
1982 spin_unlock(&dentry
->d_lock
);
1985 spin_unlock(&dentry
->d_lock
);
1993 * d_hash_and_lookup - hash the qstr then search for a dentry
1994 * @dir: Directory to search in
1995 * @name: qstr of name we wish to find
1997 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1999 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2002 * Check for a fs-specific hash function. Note that we must
2003 * calculate the standard hash first, as the d_op->d_hash()
2004 * routine may choose to leave the hash value unchanged.
2006 name
->hash
= full_name_hash(name
->name
, name
->len
);
2007 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2008 int err
= dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
);
2009 if (unlikely(err
< 0))
2010 return ERR_PTR(err
);
2012 return d_lookup(dir
, name
);
2014 EXPORT_SYMBOL(d_hash_and_lookup
);
2017 * d_validate - verify dentry provided from insecure source (deprecated)
2018 * @dentry: The dentry alleged to be valid child of @dparent
2019 * @dparent: The parent dentry (known to be valid)
2021 * An insecure source has sent us a dentry, here we verify it and dget() it.
2022 * This is used by ncpfs in its readdir implementation.
2023 * Zero is returned in the dentry is invalid.
2025 * This function is slow for big directories, and deprecated, do not use it.
2027 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2029 struct dentry
*child
;
2031 spin_lock(&dparent
->d_lock
);
2032 list_for_each_entry(child
, &dparent
->d_subdirs
, d_child
) {
2033 if (dentry
== child
) {
2034 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2035 __dget_dlock(dentry
);
2036 spin_unlock(&dentry
->d_lock
);
2037 spin_unlock(&dparent
->d_lock
);
2041 spin_unlock(&dparent
->d_lock
);
2045 EXPORT_SYMBOL(d_validate
);
2048 * When a file is deleted, we have two options:
2049 * - turn this dentry into a negative dentry
2050 * - unhash this dentry and free it.
2052 * Usually, we want to just turn this into
2053 * a negative dentry, but if anybody else is
2054 * currently using the dentry or the inode
2055 * we can't do that and we fall back on removing
2056 * it from the hash queues and waiting for
2057 * it to be deleted later when it has no users
2061 * d_delete - delete a dentry
2062 * @dentry: The dentry to delete
2064 * Turn the dentry into a negative dentry if possible, otherwise
2065 * remove it from the hash queues so it can be deleted later
2068 void d_delete(struct dentry
* dentry
)
2070 struct inode
*inode
;
2073 * Are we the only user?
2076 spin_lock(&dentry
->d_lock
);
2077 inode
= dentry
->d_inode
;
2078 isdir
= S_ISDIR(inode
->i_mode
);
2079 if (dentry
->d_count
== 1) {
2080 if (!spin_trylock(&inode
->i_lock
)) {
2081 spin_unlock(&dentry
->d_lock
);
2085 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2086 dentry_unlink_inode(dentry
);
2087 fsnotify_nameremove(dentry
, isdir
);
2091 if (!d_unhashed(dentry
))
2094 spin_unlock(&dentry
->d_lock
);
2096 fsnotify_nameremove(dentry
, isdir
);
2098 EXPORT_SYMBOL(d_delete
);
2100 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2102 BUG_ON(!d_unhashed(entry
));
2104 entry
->d_flags
|= DCACHE_RCUACCESS
;
2105 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2109 static void _d_rehash(struct dentry
* entry
)
2111 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2115 * d_rehash - add an entry back to the hash
2116 * @entry: dentry to add to the hash
2118 * Adds a dentry to the hash according to its name.
2121 void d_rehash(struct dentry
* entry
)
2123 spin_lock(&entry
->d_lock
);
2125 spin_unlock(&entry
->d_lock
);
2127 EXPORT_SYMBOL(d_rehash
);
2130 * dentry_update_name_case - update case insensitive dentry with a new name
2131 * @dentry: dentry to be updated
2134 * Update a case insensitive dentry with new case of name.
2136 * dentry must have been returned by d_lookup with name @name. Old and new
2137 * name lengths must match (ie. no d_compare which allows mismatched name
2140 * Parent inode i_mutex must be held over d_lookup and into this call (to
2141 * keep renames and concurrent inserts, and readdir(2) away).
2143 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2145 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2146 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2148 spin_lock(&dentry
->d_lock
);
2149 write_seqcount_begin(&dentry
->d_seq
);
2150 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2151 write_seqcount_end(&dentry
->d_seq
);
2152 spin_unlock(&dentry
->d_lock
);
2154 EXPORT_SYMBOL(dentry_update_name_case
);
2156 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2158 if (dname_external(target
)) {
2159 if (dname_external(dentry
)) {
2161 * Both external: swap the pointers
2163 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2166 * dentry:internal, target:external. Steal target's
2167 * storage and make target internal.
2169 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2170 dentry
->d_name
.len
+ 1);
2171 dentry
->d_name
.name
= target
->d_name
.name
;
2172 target
->d_name
.name
= target
->d_iname
;
2175 if (dname_external(dentry
)) {
2177 * dentry:external, target:internal. Give dentry's
2178 * storage to target and make dentry internal
2180 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2181 target
->d_name
.len
+ 1);
2182 target
->d_name
.name
= dentry
->d_name
.name
;
2183 dentry
->d_name
.name
= dentry
->d_iname
;
2186 * Both are internal. Just copy target to dentry
2188 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2189 target
->d_name
.len
+ 1);
2190 dentry
->d_name
.len
= target
->d_name
.len
;
2194 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2197 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2200 * XXXX: do we really need to take target->d_lock?
2202 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2203 spin_lock(&target
->d_parent
->d_lock
);
2205 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2206 spin_lock(&dentry
->d_parent
->d_lock
);
2207 spin_lock_nested(&target
->d_parent
->d_lock
,
2208 DENTRY_D_LOCK_NESTED
);
2210 spin_lock(&target
->d_parent
->d_lock
);
2211 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2212 DENTRY_D_LOCK_NESTED
);
2215 if (target
< dentry
) {
2216 spin_lock_nested(&target
->d_lock
, 2);
2217 spin_lock_nested(&dentry
->d_lock
, 3);
2219 spin_lock_nested(&dentry
->d_lock
, 2);
2220 spin_lock_nested(&target
->d_lock
, 3);
2224 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2225 struct dentry
*target
)
2227 if (target
->d_parent
!= dentry
->d_parent
)
2228 spin_unlock(&dentry
->d_parent
->d_lock
);
2229 if (target
->d_parent
!= target
)
2230 spin_unlock(&target
->d_parent
->d_lock
);
2234 * When switching names, the actual string doesn't strictly have to
2235 * be preserved in the target - because we're dropping the target
2236 * anyway. As such, we can just do a simple memcpy() to copy over
2237 * the new name before we switch.
2239 * Note that we have to be a lot more careful about getting the hash
2240 * switched - we have to switch the hash value properly even if it
2241 * then no longer matches the actual (corrupted) string of the target.
2242 * The hash value has to match the hash queue that the dentry is on..
2245 * __d_move - move a dentry
2246 * @dentry: entry to move
2247 * @target: new dentry
2249 * Update the dcache to reflect the move of a file name. Negative
2250 * dcache entries should not be moved in this way. Caller must hold
2251 * rename_lock, the i_mutex of the source and target directories,
2252 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2254 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2256 if (!dentry
->d_inode
)
2257 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2259 BUG_ON(d_ancestor(dentry
, target
));
2260 BUG_ON(d_ancestor(target
, dentry
));
2262 dentry_lock_for_move(dentry
, target
);
2264 write_seqcount_begin(&dentry
->d_seq
);
2265 write_seqcount_begin(&target
->d_seq
);
2267 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2270 * Move the dentry to the target hash queue. Don't bother checking
2271 * for the same hash queue because of how unlikely it is.
2274 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2276 /* Unhash the target: dput() will then get rid of it */
2279 list_del(&dentry
->d_child
);
2280 list_del(&target
->d_child
);
2282 /* Switch the names.. */
2283 switch_names(dentry
, target
);
2284 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2286 /* ... and switch the parents */
2287 if (IS_ROOT(dentry
)) {
2288 dentry
->d_parent
= target
->d_parent
;
2289 target
->d_parent
= target
;
2290 INIT_LIST_HEAD(&target
->d_child
);
2292 swap(dentry
->d_parent
, target
->d_parent
);
2294 /* And add them back to the (new) parent lists */
2295 list_add(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2298 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2300 write_seqcount_end(&target
->d_seq
);
2301 write_seqcount_end(&dentry
->d_seq
);
2303 dentry_unlock_parents_for_move(dentry
, target
);
2304 spin_unlock(&target
->d_lock
);
2305 fsnotify_d_move(dentry
);
2306 spin_unlock(&dentry
->d_lock
);
2310 * d_move - move a dentry
2311 * @dentry: entry to move
2312 * @target: new dentry
2314 * Update the dcache to reflect the move of a file name. Negative
2315 * dcache entries should not be moved in this way. See the locking
2316 * requirements for __d_move.
2318 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2320 write_seqlock(&rename_lock
);
2321 __d_move(dentry
, target
);
2322 write_sequnlock(&rename_lock
);
2324 EXPORT_SYMBOL(d_move
);
2327 * d_ancestor - search for an ancestor
2328 * @p1: ancestor dentry
2331 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2332 * an ancestor of p2, else NULL.
2334 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2338 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2339 if (p
->d_parent
== p1
)
2346 * This helper attempts to cope with remotely renamed directories
2348 * It assumes that the caller is already holding
2349 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2351 * Note: If ever the locking in lock_rename() changes, then please
2352 * remember to update this too...
2354 static struct dentry
*__d_unalias(struct inode
*inode
,
2355 struct dentry
*dentry
, struct dentry
*alias
)
2357 struct mutex
*m1
= NULL
, *m2
= NULL
;
2358 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2360 /* If alias and dentry share a parent, then no extra locks required */
2361 if (alias
->d_parent
== dentry
->d_parent
)
2364 /* See lock_rename() */
2365 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2367 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2368 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2370 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2372 if (likely(!d_mountpoint(alias
))) {
2373 __d_move(alias
, dentry
);
2377 spin_unlock(&inode
->i_lock
);
2386 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2387 * named dentry in place of the dentry to be replaced.
2388 * returns with anon->d_lock held!
2390 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2392 struct dentry
*dparent
;
2394 dentry_lock_for_move(anon
, dentry
);
2396 write_seqcount_begin(&dentry
->d_seq
);
2397 write_seqcount_begin(&anon
->d_seq
);
2399 dparent
= dentry
->d_parent
;
2401 switch_names(dentry
, anon
);
2402 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2404 dentry
->d_parent
= dentry
;
2405 list_del_init(&dentry
->d_child
);
2406 anon
->d_parent
= dparent
;
2407 list_move(&anon
->d_child
, &dparent
->d_subdirs
);
2409 write_seqcount_end(&dentry
->d_seq
);
2410 write_seqcount_end(&anon
->d_seq
);
2412 dentry_unlock_parents_for_move(anon
, dentry
);
2413 spin_unlock(&dentry
->d_lock
);
2415 /* anon->d_lock still locked, returns locked */
2416 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2420 * d_materialise_unique - introduce an inode into the tree
2421 * @dentry: candidate dentry
2422 * @inode: inode to bind to the dentry, to which aliases may be attached
2424 * Introduces an dentry into the tree, substituting an extant disconnected
2425 * root directory alias in its place if there is one. Caller must hold the
2426 * i_mutex of the parent directory.
2428 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2430 struct dentry
*actual
;
2432 BUG_ON(!d_unhashed(dentry
));
2436 __d_instantiate(dentry
, NULL
);
2441 spin_lock(&inode
->i_lock
);
2443 if (S_ISDIR(inode
->i_mode
)) {
2444 struct dentry
*alias
;
2446 /* Does an aliased dentry already exist? */
2447 alias
= __d_find_alias(inode
, 0);
2450 write_seqlock(&rename_lock
);
2452 if (d_ancestor(alias
, dentry
)) {
2453 /* Check for loops */
2454 actual
= ERR_PTR(-ELOOP
);
2455 spin_unlock(&inode
->i_lock
);
2456 } else if (IS_ROOT(alias
)) {
2457 /* Is this an anonymous mountpoint that we
2458 * could splice into our tree? */
2459 __d_materialise_dentry(dentry
, alias
);
2460 write_sequnlock(&rename_lock
);
2464 /* Nope, but we must(!) avoid directory
2465 * aliasing. This drops inode->i_lock */
2466 actual
= __d_unalias(inode
, dentry
, alias
);
2468 write_sequnlock(&rename_lock
);
2469 if (IS_ERR(actual
)) {
2470 if (PTR_ERR(actual
) == -ELOOP
)
2471 pr_warn_ratelimited(
2472 "VFS: Lookup of '%s' in %s %s"
2473 " would have caused loop\n",
2474 dentry
->d_name
.name
,
2475 inode
->i_sb
->s_type
->name
,
2483 /* Add a unique reference */
2484 actual
= __d_instantiate_unique(dentry
, inode
);
2488 BUG_ON(!d_unhashed(actual
));
2490 spin_lock(&actual
->d_lock
);
2493 spin_unlock(&actual
->d_lock
);
2494 spin_unlock(&inode
->i_lock
);
2496 if (actual
== dentry
) {
2497 security_d_instantiate(dentry
, inode
);
2504 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2506 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2510 return -ENAMETOOLONG
;
2512 memcpy(*buffer
, str
, namelen
);
2516 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2518 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2522 * prepend_path - Prepend path string to a buffer
2523 * @path: the dentry/vfsmount to report
2524 * @root: root vfsmnt/dentry
2525 * @buffer: pointer to the end of the buffer
2526 * @buflen: pointer to buffer length
2528 * Caller holds the rename_lock.
2530 static int prepend_path(const struct path
*path
,
2531 const struct path
*root
,
2532 char **buffer
, int *buflen
)
2534 struct dentry
*dentry
= path
->dentry
;
2535 struct vfsmount
*vfsmnt
= path
->mnt
;
2536 struct mount
*mnt
= real_mount(vfsmnt
);
2537 char *orig_buffer
= *buffer
;
2538 int orig_len
= *buflen
;
2542 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2543 struct dentry
* parent
;
2545 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2547 if (dentry
!= vfsmnt
->mnt_root
) {
2548 *buffer
= orig_buffer
;
2555 if (!mnt_has_parent(mnt
))
2557 dentry
= mnt
->mnt_mountpoint
;
2558 mnt
= mnt
->mnt_parent
;
2562 parent
= dentry
->d_parent
;
2564 spin_lock(&dentry
->d_lock
);
2565 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2566 spin_unlock(&dentry
->d_lock
);
2568 error
= prepend(buffer
, buflen
, "/", 1);
2576 if (!error
&& !slash
)
2577 error
= prepend(buffer
, buflen
, "/", 1);
2583 error
= prepend(buffer
, buflen
, "/", 1);
2585 error
= is_mounted(vfsmnt
) ? 1 : 2;
2590 * __d_path - return the path of a dentry
2591 * @path: the dentry/vfsmount to report
2592 * @root: root vfsmnt/dentry
2593 * @buf: buffer to return value in
2594 * @buflen: buffer length
2596 * Convert a dentry into an ASCII path name.
2598 * Returns a pointer into the buffer or an error code if the
2599 * path was too long.
2601 * "buflen" should be positive.
2603 * If the path is not reachable from the supplied root, return %NULL.
2605 char *__d_path(const struct path
*path
,
2606 const struct path
*root
,
2607 char *buf
, int buflen
)
2609 char *res
= buf
+ buflen
;
2612 prepend(&res
, &buflen
, "\0", 1);
2613 br_read_lock(&vfsmount_lock
);
2614 write_seqlock(&rename_lock
);
2615 error
= prepend_path(path
, root
, &res
, &buflen
);
2616 write_sequnlock(&rename_lock
);
2617 br_read_unlock(&vfsmount_lock
);
2620 return ERR_PTR(error
);
2626 char *d_absolute_path(const struct path
*path
,
2627 char *buf
, int buflen
)
2629 struct path root
= {};
2630 char *res
= buf
+ buflen
;
2633 prepend(&res
, &buflen
, "\0", 1);
2634 br_read_lock(&vfsmount_lock
);
2635 write_seqlock(&rename_lock
);
2636 error
= prepend_path(path
, &root
, &res
, &buflen
);
2637 write_sequnlock(&rename_lock
);
2638 br_read_unlock(&vfsmount_lock
);
2643 return ERR_PTR(error
);
2648 * same as __d_path but appends "(deleted)" for unlinked files.
2650 static int path_with_deleted(const struct path
*path
,
2651 const struct path
*root
,
2652 char **buf
, int *buflen
)
2654 prepend(buf
, buflen
, "\0", 1);
2655 if (d_unlinked(path
->dentry
)) {
2656 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2661 return prepend_path(path
, root
, buf
, buflen
);
2664 static int prepend_unreachable(char **buffer
, int *buflen
)
2666 return prepend(buffer
, buflen
, "(unreachable)", 13);
2670 * d_path - return the path of a dentry
2671 * @path: path to report
2672 * @buf: buffer to return value in
2673 * @buflen: buffer length
2675 * Convert a dentry into an ASCII path name. If the entry has been deleted
2676 * the string " (deleted)" is appended. Note that this is ambiguous.
2678 * Returns a pointer into the buffer or an error code if the path was
2679 * too long. Note: Callers should use the returned pointer, not the passed
2680 * in buffer, to use the name! The implementation often starts at an offset
2681 * into the buffer, and may leave 0 bytes at the start.
2683 * "buflen" should be positive.
2685 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2687 char *res
= buf
+ buflen
;
2692 * We have various synthetic filesystems that never get mounted. On
2693 * these filesystems dentries are never used for lookup purposes, and
2694 * thus don't need to be hashed. They also don't need a name until a
2695 * user wants to identify the object in /proc/pid/fd/. The little hack
2696 * below allows us to generate a name for these objects on demand:
2698 * Some pseudo inodes are mountable. When they are mounted
2699 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2700 * and instead have d_path return the mounted path.
2702 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
2703 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
2704 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2706 get_fs_root(current
->fs
, &root
);
2707 br_read_lock(&vfsmount_lock
);
2708 write_seqlock(&rename_lock
);
2709 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2710 write_sequnlock(&rename_lock
);
2711 br_read_unlock(&vfsmount_lock
);
2713 res
= ERR_PTR(error
);
2717 EXPORT_SYMBOL(d_path
);
2720 * Helper function for dentry_operations.d_dname() members
2722 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2723 const char *fmt
, ...)
2729 va_start(args
, fmt
);
2730 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2733 if (sz
> sizeof(temp
) || sz
> buflen
)
2734 return ERR_PTR(-ENAMETOOLONG
);
2736 buffer
+= buflen
- sz
;
2737 return memcpy(buffer
, temp
, sz
);
2740 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2742 char *end
= buffer
+ buflen
;
2743 /* these dentries are never renamed, so d_lock is not needed */
2744 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
2745 prepend_name(&end
, &buflen
, &dentry
->d_name
) ||
2746 prepend(&end
, &buflen
, "/", 1))
2747 end
= ERR_PTR(-ENAMETOOLONG
);
2752 * Write full pathname from the root of the filesystem into the buffer.
2754 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2756 char *end
= buf
+ buflen
;
2759 prepend(&end
, &buflen
, "\0", 1);
2766 while (!IS_ROOT(dentry
)) {
2767 struct dentry
*parent
= dentry
->d_parent
;
2771 spin_lock(&dentry
->d_lock
);
2772 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2773 spin_unlock(&dentry
->d_lock
);
2774 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2782 return ERR_PTR(-ENAMETOOLONG
);
2785 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2789 write_seqlock(&rename_lock
);
2790 retval
= __dentry_path(dentry
, buf
, buflen
);
2791 write_sequnlock(&rename_lock
);
2795 EXPORT_SYMBOL(dentry_path_raw
);
2797 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2802 write_seqlock(&rename_lock
);
2803 if (d_unlinked(dentry
)) {
2805 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2809 retval
= __dentry_path(dentry
, buf
, buflen
);
2810 write_sequnlock(&rename_lock
);
2811 if (!IS_ERR(retval
) && p
)
2812 *p
= '/'; /* restore '/' overriden with '\0' */
2815 return ERR_PTR(-ENAMETOOLONG
);
2819 * NOTE! The user-level library version returns a
2820 * character pointer. The kernel system call just
2821 * returns the length of the buffer filled (which
2822 * includes the ending '\0' character), or a negative
2823 * error value. So libc would do something like
2825 * char *getcwd(char * buf, size_t size)
2829 * retval = sys_getcwd(buf, size);
2836 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2839 struct path pwd
, root
;
2840 char *page
= (char *) __get_free_page(GFP_USER
);
2845 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2848 br_read_lock(&vfsmount_lock
);
2849 write_seqlock(&rename_lock
);
2850 if (!d_unlinked(pwd
.dentry
)) {
2852 char *cwd
= page
+ PAGE_SIZE
;
2853 int buflen
= PAGE_SIZE
;
2855 prepend(&cwd
, &buflen
, "\0", 1);
2856 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2857 write_sequnlock(&rename_lock
);
2858 br_read_unlock(&vfsmount_lock
);
2863 /* Unreachable from current root */
2865 error
= prepend_unreachable(&cwd
, &buflen
);
2871 len
= PAGE_SIZE
+ page
- cwd
;
2874 if (copy_to_user(buf
, cwd
, len
))
2878 write_sequnlock(&rename_lock
);
2879 br_read_unlock(&vfsmount_lock
);
2885 free_page((unsigned long) page
);
2890 * Test whether new_dentry is a subdirectory of old_dentry.
2892 * Trivially implemented using the dcache structure
2896 * is_subdir - is new dentry a subdirectory of old_dentry
2897 * @new_dentry: new dentry
2898 * @old_dentry: old dentry
2900 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2901 * Returns 0 otherwise.
2902 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2905 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2910 if (new_dentry
== old_dentry
)
2914 /* for restarting inner loop in case of seq retry */
2915 seq
= read_seqbegin(&rename_lock
);
2917 * Need rcu_readlock to protect against the d_parent trashing
2921 if (d_ancestor(old_dentry
, new_dentry
))
2926 } while (read_seqretry(&rename_lock
, seq
));
2931 void d_genocide(struct dentry
*root
)
2933 struct dentry
*this_parent
;
2934 struct list_head
*next
;
2938 seq
= read_seqbegin(&rename_lock
);
2941 spin_lock(&this_parent
->d_lock
);
2943 next
= this_parent
->d_subdirs
.next
;
2945 while (next
!= &this_parent
->d_subdirs
) {
2946 struct list_head
*tmp
= next
;
2947 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
2950 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2951 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2952 spin_unlock(&dentry
->d_lock
);
2955 if (!list_empty(&dentry
->d_subdirs
)) {
2956 spin_unlock(&this_parent
->d_lock
);
2957 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2958 this_parent
= dentry
;
2959 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2962 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2963 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2966 spin_unlock(&dentry
->d_lock
);
2970 if (this_parent
!= root
) {
2971 struct dentry
*child
= this_parent
;
2972 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2973 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2974 this_parent
->d_count
--;
2976 this_parent
= child
->d_parent
;
2978 spin_unlock(&child
->d_lock
);
2979 spin_lock(&this_parent
->d_lock
);
2981 /* might go back up the wrong parent if we have had a rename. */
2982 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2984 /* go into the first sibling still alive */
2986 next
= child
->d_child
.next
;
2987 if (next
== &this_parent
->d_subdirs
)
2989 child
= list_entry(next
, struct dentry
, d_child
);
2990 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
2994 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2996 spin_unlock(&this_parent
->d_lock
);
2999 write_sequnlock(&rename_lock
);
3003 spin_unlock(&this_parent
->d_lock
);
3008 write_seqlock(&rename_lock
);
3013 * find_inode_number - check for dentry with name
3014 * @dir: directory to check
3015 * @name: Name to find.
3017 * Check whether a dentry already exists for the given name,
3018 * and return the inode number if it has an inode. Otherwise
3021 * This routine is used to post-process directory listings for
3022 * filesystems using synthetic inode numbers, and is necessary
3023 * to keep getcwd() working.
3026 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
3028 struct dentry
* dentry
;
3031 dentry
= d_hash_and_lookup(dir
, name
);
3032 if (!IS_ERR_OR_NULL(dentry
)) {
3033 if (dentry
->d_inode
)
3034 ino
= dentry
->d_inode
->i_ino
;
3039 EXPORT_SYMBOL(find_inode_number
);
3041 static __initdata
unsigned long dhash_entries
;
3042 static int __init
set_dhash_entries(char *str
)
3046 dhash_entries
= simple_strtoul(str
, &str
, 0);
3049 __setup("dhash_entries=", set_dhash_entries
);
3051 static void __init
dcache_init_early(void)
3055 /* If hashes are distributed across NUMA nodes, defer
3056 * hash allocation until vmalloc space is available.
3062 alloc_large_system_hash("Dentry cache",
3063 sizeof(struct hlist_bl_head
),
3072 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3073 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3076 static void __init
dcache_init(void)
3081 * A constructor could be added for stable state like the lists,
3082 * but it is probably not worth it because of the cache nature
3085 dentry_cache
= KMEM_CACHE(dentry
,
3086 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3088 /* Hash may have been set up in dcache_init_early */
3093 alloc_large_system_hash("Dentry cache",
3094 sizeof(struct hlist_bl_head
),
3103 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3104 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3107 /* SLAB cache for __getname() consumers */
3108 struct kmem_cache
*names_cachep __read_mostly
;
3109 EXPORT_SYMBOL(names_cachep
);
3111 EXPORT_SYMBOL(d_genocide
);
3113 void __init
vfs_caches_init_early(void)
3115 dcache_init_early();
3119 void __init
vfs_caches_init(unsigned long mempages
)
3121 unsigned long reserve
;
3123 /* Base hash sizes on available memory, with a reserve equal to
3124 150% of current kernel size */
3126 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3127 mempages
-= reserve
;
3129 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3130 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3134 files_init(mempages
);