ALSA: seq: Fix missing NULL check at remove_events ioctl
[linux/fpc-iii.git] / fs / dcache.c
blob17222fa5bdc6ce7ccec737ebb1dc863d28d7eb66
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
117 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
120 static int get_nr_dentry(void)
122 int i;
123 int sum = 0;
124 for_each_possible_cpu(i)
125 sum += per_cpu(nr_dentry, i);
126 return sum < 0 ? 0 : sum;
129 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
130 size_t *lenp, loff_t *ppos)
132 dentry_stat.nr_dentry = get_nr_dentry();
133 return proc_dointvec(table, write, buffer, lenp, ppos);
135 #endif
138 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
139 * The strings are both count bytes long, and count is non-zero.
141 #ifdef CONFIG_DCACHE_WORD_ACCESS
143 #include <asm/word-at-a-time.h>
145 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
146 * aligned allocation for this particular component. We don't
147 * strictly need the load_unaligned_zeropad() safety, but it
148 * doesn't hurt either.
150 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
151 * need the careful unaligned handling.
153 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
155 unsigned long a,b,mask;
157 for (;;) {
158 a = *(unsigned long *)cs;
159 b = load_unaligned_zeropad(ct);
160 if (tcount < sizeof(unsigned long))
161 break;
162 if (unlikely(a != b))
163 return 1;
164 cs += sizeof(unsigned long);
165 ct += sizeof(unsigned long);
166 tcount -= sizeof(unsigned long);
167 if (!tcount)
168 return 0;
170 mask = ~(~0ul << tcount*8);
171 return unlikely(!!((a ^ b) & mask));
174 #else
176 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 do {
179 if (*cs != *ct)
180 return 1;
181 cs++;
182 ct++;
183 tcount--;
184 } while (tcount);
185 return 0;
188 #endif
190 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
192 const unsigned char *cs;
194 * Be careful about RCU walk racing with rename:
195 * use ACCESS_ONCE to fetch the name pointer.
197 * NOTE! Even if a rename will mean that the length
198 * was not loaded atomically, we don't care. The
199 * RCU walk will check the sequence count eventually,
200 * and catch it. And we won't overrun the buffer,
201 * because we're reading the name pointer atomically,
202 * and a dentry name is guaranteed to be properly
203 * terminated with a NUL byte.
205 * End result: even if 'len' is wrong, we'll exit
206 * early because the data cannot match (there can
207 * be no NUL in the ct/tcount data)
209 cs = ACCESS_ONCE(dentry->d_name.name);
210 smp_read_barrier_depends();
211 return dentry_string_cmp(cs, ct, tcount);
214 static void __d_free(struct rcu_head *head)
216 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
218 if (dname_external(dentry))
219 kfree(dentry->d_name.name);
220 kmem_cache_free(dentry_cache, dentry);
224 * no locks, please.
226 static void d_free(struct dentry *dentry)
228 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
229 BUG_ON(dentry->d_count);
230 this_cpu_dec(nr_dentry);
231 if (dentry->d_op && dentry->d_op->d_release)
232 dentry->d_op->d_release(dentry);
234 /* if dentry was never visible to RCU, immediate free is OK */
235 if (!(dentry->d_flags & DCACHE_RCUACCESS))
236 __d_free(&dentry->d_u.d_rcu);
237 else
238 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
243 * @dentry: the target dentry
244 * After this call, in-progress rcu-walk path lookup will fail. This
245 * should be called after unhashing, and after changing d_inode (if
246 * the dentry has not already been unhashed).
248 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
250 assert_spin_locked(&dentry->d_lock);
251 /* Go through a barrier */
252 write_seqcount_barrier(&dentry->d_seq);
256 * Release the dentry's inode, using the filesystem
257 * d_iput() operation if defined. Dentry has no refcount
258 * and is unhashed.
260 static void dentry_iput(struct dentry * dentry)
261 __releases(dentry->d_lock)
262 __releases(dentry->d_inode->i_lock)
264 struct inode *inode = dentry->d_inode;
265 if (inode) {
266 dentry->d_inode = NULL;
267 hlist_del_init(&dentry->d_u.d_alias);
268 spin_unlock(&dentry->d_lock);
269 spin_unlock(&inode->i_lock);
270 if (!inode->i_nlink)
271 fsnotify_inoderemove(inode);
272 if (dentry->d_op && dentry->d_op->d_iput)
273 dentry->d_op->d_iput(dentry, inode);
274 else
275 iput(inode);
276 } else {
277 spin_unlock(&dentry->d_lock);
282 * Release the dentry's inode, using the filesystem
283 * d_iput() operation if defined. dentry remains in-use.
285 static void dentry_unlink_inode(struct dentry * dentry)
286 __releases(dentry->d_lock)
287 __releases(dentry->d_inode->i_lock)
289 struct inode *inode = dentry->d_inode;
290 dentry->d_inode = NULL;
291 hlist_del_init(&dentry->d_u.d_alias);
292 dentry_rcuwalk_barrier(dentry);
293 spin_unlock(&dentry->d_lock);
294 spin_unlock(&inode->i_lock);
295 if (!inode->i_nlink)
296 fsnotify_inoderemove(inode);
297 if (dentry->d_op && dentry->d_op->d_iput)
298 dentry->d_op->d_iput(dentry, inode);
299 else
300 iput(inode);
304 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
306 static void dentry_lru_add(struct dentry *dentry)
308 if (list_empty(&dentry->d_lru)) {
309 spin_lock(&dcache_lru_lock);
310 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
311 dentry->d_sb->s_nr_dentry_unused++;
312 dentry_stat.nr_unused++;
313 spin_unlock(&dcache_lru_lock);
317 static void __dentry_lru_del(struct dentry *dentry)
319 list_del_init(&dentry->d_lru);
320 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
321 dentry->d_sb->s_nr_dentry_unused--;
322 dentry_stat.nr_unused--;
326 * Remove a dentry with references from the LRU.
328 static void dentry_lru_del(struct dentry *dentry)
330 if (!list_empty(&dentry->d_lru)) {
331 spin_lock(&dcache_lru_lock);
332 __dentry_lru_del(dentry);
333 spin_unlock(&dcache_lru_lock);
337 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
339 spin_lock(&dcache_lru_lock);
340 if (list_empty(&dentry->d_lru)) {
341 list_add_tail(&dentry->d_lru, list);
342 dentry->d_sb->s_nr_dentry_unused++;
343 dentry_stat.nr_unused++;
344 } else {
345 list_move_tail(&dentry->d_lru, list);
347 spin_unlock(&dcache_lru_lock);
351 * d_kill - kill dentry and return parent
352 * @dentry: dentry to kill
353 * @parent: parent dentry
355 * The dentry must already be unhashed and removed from the LRU.
357 * If this is the root of the dentry tree, return NULL.
359 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
360 * d_kill.
362 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
363 __releases(dentry->d_lock)
364 __releases(parent->d_lock)
365 __releases(dentry->d_inode->i_lock)
367 __list_del_entry(&dentry->d_child);
369 * Inform ascending readers that we are no longer attached to the
370 * dentry tree
372 dentry->d_flags |= DCACHE_DENTRY_KILLED;
373 if (parent)
374 spin_unlock(&parent->d_lock);
375 dentry_iput(dentry);
377 * dentry_iput drops the locks, at which point nobody (except
378 * transient RCU lookups) can reach this dentry.
380 d_free(dentry);
381 return parent;
385 * Unhash a dentry without inserting an RCU walk barrier or checking that
386 * dentry->d_lock is locked. The caller must take care of that, if
387 * appropriate.
389 static void __d_shrink(struct dentry *dentry)
391 if (!d_unhashed(dentry)) {
392 struct hlist_bl_head *b;
393 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
394 b = &dentry->d_sb->s_anon;
395 else
396 b = d_hash(dentry->d_parent, dentry->d_name.hash);
398 hlist_bl_lock(b);
399 __hlist_bl_del(&dentry->d_hash);
400 dentry->d_hash.pprev = NULL;
401 hlist_bl_unlock(b);
406 * d_drop - drop a dentry
407 * @dentry: dentry to drop
409 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
410 * be found through a VFS lookup any more. Note that this is different from
411 * deleting the dentry - d_delete will try to mark the dentry negative if
412 * possible, giving a successful _negative_ lookup, while d_drop will
413 * just make the cache lookup fail.
415 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
416 * reason (NFS timeouts or autofs deletes).
418 * __d_drop requires dentry->d_lock.
420 void __d_drop(struct dentry *dentry)
422 if (!d_unhashed(dentry)) {
423 __d_shrink(dentry);
424 dentry_rcuwalk_barrier(dentry);
427 EXPORT_SYMBOL(__d_drop);
429 void d_drop(struct dentry *dentry)
431 spin_lock(&dentry->d_lock);
432 __d_drop(dentry);
433 spin_unlock(&dentry->d_lock);
435 EXPORT_SYMBOL(d_drop);
438 * Finish off a dentry we've decided to kill.
439 * dentry->d_lock must be held, returns with it unlocked.
440 * If ref is non-zero, then decrement the refcount too.
441 * Returns dentry requiring refcount drop, or NULL if we're done.
443 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
444 __releases(dentry->d_lock)
446 struct inode *inode;
447 struct dentry *parent;
449 inode = dentry->d_inode;
450 if (inode && !spin_trylock(&inode->i_lock)) {
451 relock:
452 spin_unlock(&dentry->d_lock);
453 cpu_relax();
454 return dentry; /* try again with same dentry */
456 if (IS_ROOT(dentry))
457 parent = NULL;
458 else
459 parent = dentry->d_parent;
460 if (parent && !spin_trylock(&parent->d_lock)) {
461 if (inode)
462 spin_unlock(&inode->i_lock);
463 goto relock;
466 if (ref)
467 dentry->d_count--;
469 * inform the fs via d_prune that this dentry is about to be
470 * unhashed and destroyed.
472 if (dentry->d_flags & DCACHE_OP_PRUNE)
473 dentry->d_op->d_prune(dentry);
475 dentry_lru_del(dentry);
476 /* if it was on the hash then remove it */
477 __d_drop(dentry);
478 return d_kill(dentry, parent);
482 * This is dput
484 * This is complicated by the fact that we do not want to put
485 * dentries that are no longer on any hash chain on the unused
486 * list: we'd much rather just get rid of them immediately.
488 * However, that implies that we have to traverse the dentry
489 * tree upwards to the parents which might _also_ now be
490 * scheduled for deletion (it may have been only waiting for
491 * its last child to go away).
493 * This tail recursion is done by hand as we don't want to depend
494 * on the compiler to always get this right (gcc generally doesn't).
495 * Real recursion would eat up our stack space.
499 * dput - release a dentry
500 * @dentry: dentry to release
502 * Release a dentry. This will drop the usage count and if appropriate
503 * call the dentry unlink method as well as removing it from the queues and
504 * releasing its resources. If the parent dentries were scheduled for release
505 * they too may now get deleted.
507 void dput(struct dentry *dentry)
509 if (!dentry)
510 return;
512 repeat:
513 if (dentry->d_count == 1)
514 might_sleep();
515 spin_lock(&dentry->d_lock);
516 BUG_ON(!dentry->d_count);
517 if (dentry->d_count > 1) {
518 dentry->d_count--;
519 spin_unlock(&dentry->d_lock);
520 return;
523 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
524 goto kill_it;
526 if (dentry->d_flags & DCACHE_OP_DELETE) {
527 if (dentry->d_op->d_delete(dentry))
528 goto kill_it;
531 /* Unreachable? Get rid of it */
532 if (d_unhashed(dentry))
533 goto kill_it;
535 dentry->d_flags |= DCACHE_REFERENCED;
536 dentry_lru_add(dentry);
538 dentry->d_count--;
539 spin_unlock(&dentry->d_lock);
540 return;
542 kill_it:
543 dentry = dentry_kill(dentry, 1);
544 if (dentry)
545 goto repeat;
547 EXPORT_SYMBOL(dput);
550 * d_invalidate - invalidate a dentry
551 * @dentry: dentry to invalidate
553 * Try to invalidate the dentry if it turns out to be
554 * possible. If there are other dentries that can be
555 * reached through this one we can't delete it and we
556 * return -EBUSY. On success we return 0.
558 * no dcache lock.
561 int d_invalidate(struct dentry * dentry)
564 * If it's already been dropped, return OK.
566 spin_lock(&dentry->d_lock);
567 if (d_unhashed(dentry)) {
568 spin_unlock(&dentry->d_lock);
569 return 0;
572 * Check whether to do a partial shrink_dcache
573 * to get rid of unused child entries.
575 if (!list_empty(&dentry->d_subdirs)) {
576 spin_unlock(&dentry->d_lock);
577 shrink_dcache_parent(dentry);
578 spin_lock(&dentry->d_lock);
582 * Somebody else still using it?
584 * If it's a directory, we can't drop it
585 * for fear of somebody re-populating it
586 * with children (even though dropping it
587 * would make it unreachable from the root,
588 * we might still populate it if it was a
589 * working directory or similar).
590 * We also need to leave mountpoints alone,
591 * directory or not.
593 if (dentry->d_count > 1 && dentry->d_inode) {
594 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
595 spin_unlock(&dentry->d_lock);
596 return -EBUSY;
600 __d_drop(dentry);
601 spin_unlock(&dentry->d_lock);
602 return 0;
604 EXPORT_SYMBOL(d_invalidate);
606 /* This must be called with d_lock held */
607 static inline void __dget_dlock(struct dentry *dentry)
609 dentry->d_count++;
612 static inline void __dget(struct dentry *dentry)
614 spin_lock(&dentry->d_lock);
615 __dget_dlock(dentry);
616 spin_unlock(&dentry->d_lock);
619 struct dentry *dget_parent(struct dentry *dentry)
621 struct dentry *ret;
623 repeat:
625 * Don't need rcu_dereference because we re-check it was correct under
626 * the lock.
628 rcu_read_lock();
629 ret = dentry->d_parent;
630 spin_lock(&ret->d_lock);
631 if (unlikely(ret != dentry->d_parent)) {
632 spin_unlock(&ret->d_lock);
633 rcu_read_unlock();
634 goto repeat;
636 rcu_read_unlock();
637 BUG_ON(!ret->d_count);
638 ret->d_count++;
639 spin_unlock(&ret->d_lock);
640 return ret;
642 EXPORT_SYMBOL(dget_parent);
645 * d_find_alias - grab a hashed alias of inode
646 * @inode: inode in question
647 * @want_discon: flag, used by d_splice_alias, to request
648 * that only a DISCONNECTED alias be returned.
650 * If inode has a hashed alias, or is a directory and has any alias,
651 * acquire the reference to alias and return it. Otherwise return NULL.
652 * Notice that if inode is a directory there can be only one alias and
653 * it can be unhashed only if it has no children, or if it is the root
654 * of a filesystem.
656 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
657 * any other hashed alias over that one unless @want_discon is set,
658 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
660 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
662 struct dentry *alias, *discon_alias;
664 again:
665 discon_alias = NULL;
666 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
667 spin_lock(&alias->d_lock);
668 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
669 if (IS_ROOT(alias) &&
670 (alias->d_flags & DCACHE_DISCONNECTED)) {
671 discon_alias = alias;
672 } else if (!want_discon) {
673 __dget_dlock(alias);
674 spin_unlock(&alias->d_lock);
675 return alias;
678 spin_unlock(&alias->d_lock);
680 if (discon_alias) {
681 alias = discon_alias;
682 spin_lock(&alias->d_lock);
683 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 if (IS_ROOT(alias) &&
685 (alias->d_flags & DCACHE_DISCONNECTED)) {
686 __dget_dlock(alias);
687 spin_unlock(&alias->d_lock);
688 return alias;
691 spin_unlock(&alias->d_lock);
692 goto again;
694 return NULL;
697 struct dentry *d_find_alias(struct inode *inode)
699 struct dentry *de = NULL;
701 if (!hlist_empty(&inode->i_dentry)) {
702 spin_lock(&inode->i_lock);
703 de = __d_find_alias(inode, 0);
704 spin_unlock(&inode->i_lock);
706 return de;
708 EXPORT_SYMBOL(d_find_alias);
711 * Try to kill dentries associated with this inode.
712 * WARNING: you must own a reference to inode.
714 void d_prune_aliases(struct inode *inode)
716 struct dentry *dentry;
717 restart:
718 spin_lock(&inode->i_lock);
719 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
720 spin_lock(&dentry->d_lock);
721 if (!dentry->d_count) {
722 __dget_dlock(dentry);
723 __d_drop(dentry);
724 spin_unlock(&dentry->d_lock);
725 spin_unlock(&inode->i_lock);
726 dput(dentry);
727 goto restart;
729 spin_unlock(&dentry->d_lock);
731 spin_unlock(&inode->i_lock);
733 EXPORT_SYMBOL(d_prune_aliases);
736 * Try to throw away a dentry - free the inode, dput the parent.
737 * Requires dentry->d_lock is held, and dentry->d_count == 0.
738 * Releases dentry->d_lock.
740 * This may fail if locks cannot be acquired no problem, just try again.
742 static void try_prune_one_dentry(struct dentry *dentry)
743 __releases(dentry->d_lock)
745 struct dentry *parent;
747 parent = dentry_kill(dentry, 0);
749 * If dentry_kill returns NULL, we have nothing more to do.
750 * if it returns the same dentry, trylocks failed. In either
751 * case, just loop again.
753 * Otherwise, we need to prune ancestors too. This is necessary
754 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 * is also expected to be beneficial in reducing dentry cache
756 * fragmentation.
758 if (!parent)
759 return;
760 if (parent == dentry)
761 return;
763 /* Prune ancestors. */
764 dentry = parent;
765 while (dentry) {
766 spin_lock(&dentry->d_lock);
767 if (dentry->d_count > 1) {
768 dentry->d_count--;
769 spin_unlock(&dentry->d_lock);
770 return;
772 dentry = dentry_kill(dentry, 1);
776 static void shrink_dentry_list(struct list_head *list)
778 struct dentry *dentry;
780 rcu_read_lock();
781 for (;;) {
782 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
783 if (&dentry->d_lru == list)
784 break; /* empty */
785 spin_lock(&dentry->d_lock);
786 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
787 spin_unlock(&dentry->d_lock);
788 continue;
792 * We found an inuse dentry which was not removed from
793 * the LRU because of laziness during lookup. Do not free
794 * it - just keep it off the LRU list.
796 if (dentry->d_count) {
797 dentry_lru_del(dentry);
798 spin_unlock(&dentry->d_lock);
799 continue;
802 rcu_read_unlock();
804 try_prune_one_dentry(dentry);
806 rcu_read_lock();
808 rcu_read_unlock();
812 * prune_dcache_sb - shrink the dcache
813 * @sb: superblock
814 * @count: number of entries to try to free
816 * Attempt to shrink the superblock dcache LRU by @count entries. This is
817 * done when we need more memory an called from the superblock shrinker
818 * function.
820 * This function may fail to free any resources if all the dentries are in
821 * use.
823 void prune_dcache_sb(struct super_block *sb, int count)
825 struct dentry *dentry;
826 LIST_HEAD(referenced);
827 LIST_HEAD(tmp);
829 relock:
830 spin_lock(&dcache_lru_lock);
831 while (!list_empty(&sb->s_dentry_lru)) {
832 dentry = list_entry(sb->s_dentry_lru.prev,
833 struct dentry, d_lru);
834 BUG_ON(dentry->d_sb != sb);
836 if (!spin_trylock(&dentry->d_lock)) {
837 spin_unlock(&dcache_lru_lock);
838 cpu_relax();
839 goto relock;
842 if (dentry->d_flags & DCACHE_REFERENCED) {
843 dentry->d_flags &= ~DCACHE_REFERENCED;
844 list_move(&dentry->d_lru, &referenced);
845 spin_unlock(&dentry->d_lock);
846 } else {
847 list_move_tail(&dentry->d_lru, &tmp);
848 dentry->d_flags |= DCACHE_SHRINK_LIST;
849 spin_unlock(&dentry->d_lock);
850 if (!--count)
851 break;
853 cond_resched_lock(&dcache_lru_lock);
855 if (!list_empty(&referenced))
856 list_splice(&referenced, &sb->s_dentry_lru);
857 spin_unlock(&dcache_lru_lock);
859 shrink_dentry_list(&tmp);
863 * shrink_dcache_sb - shrink dcache for a superblock
864 * @sb: superblock
866 * Shrink the dcache for the specified super block. This is used to free
867 * the dcache before unmounting a file system.
869 void shrink_dcache_sb(struct super_block *sb)
871 LIST_HEAD(tmp);
873 spin_lock(&dcache_lru_lock);
874 while (!list_empty(&sb->s_dentry_lru)) {
875 list_splice_init(&sb->s_dentry_lru, &tmp);
876 spin_unlock(&dcache_lru_lock);
877 shrink_dentry_list(&tmp);
878 spin_lock(&dcache_lru_lock);
880 spin_unlock(&dcache_lru_lock);
882 EXPORT_SYMBOL(shrink_dcache_sb);
885 * destroy a single subtree of dentries for unmount
886 * - see the comments on shrink_dcache_for_umount() for a description of the
887 * locking
889 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
891 struct dentry *parent;
893 BUG_ON(!IS_ROOT(dentry));
895 for (;;) {
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry->d_subdirs))
898 dentry = list_entry(dentry->d_subdirs.next,
899 struct dentry, d_child);
901 /* consume the dentries from this leaf up through its parents
902 * until we find one with children or run out altogether */
903 do {
904 struct inode *inode;
907 * inform the fs that this dentry is about to be
908 * unhashed and destroyed.
910 if (dentry->d_flags & DCACHE_OP_PRUNE)
911 dentry->d_op->d_prune(dentry);
913 dentry_lru_del(dentry);
914 __d_shrink(dentry);
916 if (dentry->d_count != 0) {
917 printk(KERN_ERR
918 "BUG: Dentry %p{i=%lx,n=%s}"
919 " still in use (%d)"
920 " [unmount of %s %s]\n",
921 dentry,
922 dentry->d_inode ?
923 dentry->d_inode->i_ino : 0UL,
924 dentry->d_name.name,
925 dentry->d_count,
926 dentry->d_sb->s_type->name,
927 dentry->d_sb->s_id);
928 BUG();
931 if (IS_ROOT(dentry)) {
932 parent = NULL;
933 list_del(&dentry->d_child);
934 } else {
935 parent = dentry->d_parent;
936 parent->d_count--;
937 list_del(&dentry->d_child);
940 inode = dentry->d_inode;
941 if (inode) {
942 dentry->d_inode = NULL;
943 hlist_del_init(&dentry->d_u.d_alias);
944 if (dentry->d_op && dentry->d_op->d_iput)
945 dentry->d_op->d_iput(dentry, inode);
946 else
947 iput(inode);
950 d_free(dentry);
952 /* finished when we fall off the top of the tree,
953 * otherwise we ascend to the parent and move to the
954 * next sibling if there is one */
955 if (!parent)
956 return;
957 dentry = parent;
958 } while (list_empty(&dentry->d_subdirs));
960 dentry = list_entry(dentry->d_subdirs.next,
961 struct dentry, d_child);
966 * destroy the dentries attached to a superblock on unmounting
967 * - we don't need to use dentry->d_lock because:
968 * - the superblock is detached from all mountings and open files, so the
969 * dentry trees will not be rearranged by the VFS
970 * - s_umount is write-locked, so the memory pressure shrinker will ignore
971 * any dentries belonging to this superblock that it comes across
972 * - the filesystem itself is no longer permitted to rearrange the dentries
973 * in this superblock
975 void shrink_dcache_for_umount(struct super_block *sb)
977 struct dentry *dentry;
979 if (down_read_trylock(&sb->s_umount))
980 BUG();
982 dentry = sb->s_root;
983 sb->s_root = NULL;
984 dentry->d_count--;
985 shrink_dcache_for_umount_subtree(dentry);
987 while (!hlist_bl_empty(&sb->s_anon)) {
988 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
989 shrink_dcache_for_umount_subtree(dentry);
994 * Search for at least 1 mount point in the dentry's subdirs.
995 * We descend to the next level whenever the d_subdirs
996 * list is non-empty and continue searching.
1000 * have_submounts - check for mounts over a dentry
1001 * @parent: dentry to check.
1003 * Return true if the parent or its subdirectories contain
1004 * a mount point
1006 int have_submounts(struct dentry *parent)
1008 struct dentry *this_parent;
1009 struct list_head *next;
1010 unsigned seq;
1011 int locked = 0;
1013 seq = read_seqbegin(&rename_lock);
1014 again:
1015 this_parent = parent;
1017 if (d_mountpoint(parent))
1018 goto positive;
1019 spin_lock(&this_parent->d_lock);
1020 repeat:
1021 next = this_parent->d_subdirs.next;
1022 resume:
1023 while (next != &this_parent->d_subdirs) {
1024 struct list_head *tmp = next;
1025 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1026 next = tmp->next;
1028 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1029 /* Have we found a mount point ? */
1030 if (d_mountpoint(dentry)) {
1031 spin_unlock(&dentry->d_lock);
1032 spin_unlock(&this_parent->d_lock);
1033 goto positive;
1035 if (!list_empty(&dentry->d_subdirs)) {
1036 spin_unlock(&this_parent->d_lock);
1037 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1038 this_parent = dentry;
1039 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1040 goto repeat;
1042 spin_unlock(&dentry->d_lock);
1045 * All done at this level ... ascend and resume the search.
1047 rcu_read_lock();
1048 ascend:
1049 if (this_parent != parent) {
1050 struct dentry *child = this_parent;
1051 this_parent = child->d_parent;
1053 spin_unlock(&child->d_lock);
1054 spin_lock(&this_parent->d_lock);
1056 /* might go back up the wrong parent if we have had a rename. */
1057 if (!locked && read_seqretry(&rename_lock, seq))
1058 goto rename_retry;
1059 /* go into the first sibling still alive */
1060 do {
1061 next = child->d_child.next;
1062 if (next == &this_parent->d_subdirs)
1063 goto ascend;
1064 child = list_entry(next, struct dentry, d_child);
1065 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1066 rcu_read_unlock();
1067 goto resume;
1069 if (!locked && read_seqretry(&rename_lock, seq))
1070 goto rename_retry;
1071 spin_unlock(&this_parent->d_lock);
1072 rcu_read_unlock();
1073 if (locked)
1074 write_sequnlock(&rename_lock);
1075 return 0; /* No mount points found in tree */
1076 positive:
1077 if (!locked && read_seqretry(&rename_lock, seq))
1078 goto rename_retry_unlocked;
1079 if (locked)
1080 write_sequnlock(&rename_lock);
1081 return 1;
1083 rename_retry:
1084 spin_unlock(&this_parent->d_lock);
1085 rcu_read_unlock();
1086 if (locked)
1087 goto again;
1088 rename_retry_unlocked:
1089 locked = 1;
1090 write_seqlock(&rename_lock);
1091 goto again;
1093 EXPORT_SYMBOL(have_submounts);
1096 * Search the dentry child list of the specified parent,
1097 * and move any unused dentries to the end of the unused
1098 * list for prune_dcache(). We descend to the next level
1099 * whenever the d_subdirs list is non-empty and continue
1100 * searching.
1102 * It returns zero iff there are no unused children,
1103 * otherwise it returns the number of children moved to
1104 * the end of the unused list. This may not be the total
1105 * number of unused children, because select_parent can
1106 * drop the lock and return early due to latency
1107 * constraints.
1109 static int select_parent(struct dentry *parent, struct list_head *dispose)
1111 struct dentry *this_parent;
1112 struct list_head *next;
1113 unsigned seq;
1114 int found = 0;
1115 int locked = 0;
1117 seq = read_seqbegin(&rename_lock);
1118 again:
1119 this_parent = parent;
1120 spin_lock(&this_parent->d_lock);
1121 repeat:
1122 next = this_parent->d_subdirs.next;
1123 resume:
1124 while (next != &this_parent->d_subdirs) {
1125 struct list_head *tmp = next;
1126 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1127 next = tmp->next;
1129 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1132 * move only zero ref count dentries to the dispose list.
1134 * Those which are presently on the shrink list, being processed
1135 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1136 * loop in shrink_dcache_parent() might not make any progress
1137 * and loop forever.
1139 if (dentry->d_count) {
1140 dentry_lru_del(dentry);
1141 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1142 dentry_lru_move_list(dentry, dispose);
1143 dentry->d_flags |= DCACHE_SHRINK_LIST;
1144 found++;
1147 * We can return to the caller if we have found some (this
1148 * ensures forward progress). We'll be coming back to find
1149 * the rest.
1151 if (found && need_resched()) {
1152 spin_unlock(&dentry->d_lock);
1153 rcu_read_lock();
1154 goto out;
1158 * Descend a level if the d_subdirs list is non-empty.
1160 if (!list_empty(&dentry->d_subdirs)) {
1161 spin_unlock(&this_parent->d_lock);
1162 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1163 this_parent = dentry;
1164 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1165 goto repeat;
1168 spin_unlock(&dentry->d_lock);
1171 * All done at this level ... ascend and resume the search.
1173 rcu_read_lock();
1174 ascend:
1175 if (this_parent != parent) {
1176 struct dentry *child = this_parent;
1177 this_parent = child->d_parent;
1179 spin_unlock(&child->d_lock);
1180 spin_lock(&this_parent->d_lock);
1182 /* might go back up the wrong parent if we have had a rename. */
1183 if (!locked && read_seqretry(&rename_lock, seq))
1184 goto rename_retry;
1185 /* go into the first sibling still alive */
1186 do {
1187 next = child->d_child.next;
1188 if (next == &this_parent->d_subdirs)
1189 goto ascend;
1190 child = list_entry(next, struct dentry, d_child);
1191 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1192 rcu_read_unlock();
1193 goto resume;
1195 out:
1196 if (!locked && read_seqretry(&rename_lock, seq))
1197 goto rename_retry;
1198 spin_unlock(&this_parent->d_lock);
1199 rcu_read_unlock();
1200 if (locked)
1201 write_sequnlock(&rename_lock);
1202 return found;
1204 rename_retry:
1205 spin_unlock(&this_parent->d_lock);
1206 rcu_read_unlock();
1207 if (found)
1208 return found;
1209 if (locked)
1210 goto again;
1211 locked = 1;
1212 write_seqlock(&rename_lock);
1213 goto again;
1217 * shrink_dcache_parent - prune dcache
1218 * @parent: parent of entries to prune
1220 * Prune the dcache to remove unused children of the parent dentry.
1222 void shrink_dcache_parent(struct dentry * parent)
1224 LIST_HEAD(dispose);
1225 int found;
1227 while ((found = select_parent(parent, &dispose)) != 0) {
1228 shrink_dentry_list(&dispose);
1229 cond_resched();
1232 EXPORT_SYMBOL(shrink_dcache_parent);
1235 * __d_alloc - allocate a dcache entry
1236 * @sb: filesystem it will belong to
1237 * @name: qstr of the name
1239 * Allocates a dentry. It returns %NULL if there is insufficient memory
1240 * available. On a success the dentry is returned. The name passed in is
1241 * copied and the copy passed in may be reused after this call.
1244 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1246 struct dentry *dentry;
1247 char *dname;
1249 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1250 if (!dentry)
1251 return NULL;
1254 * We guarantee that the inline name is always NUL-terminated.
1255 * This way the memcpy() done by the name switching in rename
1256 * will still always have a NUL at the end, even if we might
1257 * be overwriting an internal NUL character
1259 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1260 if (name->len > DNAME_INLINE_LEN-1) {
1261 dname = kmalloc(name->len + 1, GFP_KERNEL);
1262 if (!dname) {
1263 kmem_cache_free(dentry_cache, dentry);
1264 return NULL;
1266 } else {
1267 dname = dentry->d_iname;
1270 dentry->d_name.len = name->len;
1271 dentry->d_name.hash = name->hash;
1272 memcpy(dname, name->name, name->len);
1273 dname[name->len] = 0;
1275 /* Make sure we always see the terminating NUL character */
1276 smp_wmb();
1277 dentry->d_name.name = dname;
1279 dentry->d_count = 1;
1280 dentry->d_flags = 0;
1281 spin_lock_init(&dentry->d_lock);
1282 seqcount_init(&dentry->d_seq);
1283 dentry->d_inode = NULL;
1284 dentry->d_parent = dentry;
1285 dentry->d_sb = sb;
1286 dentry->d_op = NULL;
1287 dentry->d_fsdata = NULL;
1288 INIT_HLIST_BL_NODE(&dentry->d_hash);
1289 INIT_LIST_HEAD(&dentry->d_lru);
1290 INIT_LIST_HEAD(&dentry->d_subdirs);
1291 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1292 INIT_LIST_HEAD(&dentry->d_child);
1293 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1295 this_cpu_inc(nr_dentry);
1297 return dentry;
1301 * d_alloc - allocate a dcache entry
1302 * @parent: parent of entry to allocate
1303 * @name: qstr of the name
1305 * Allocates a dentry. It returns %NULL if there is insufficient memory
1306 * available. On a success the dentry is returned. The name passed in is
1307 * copied and the copy passed in may be reused after this call.
1309 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1311 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1312 if (!dentry)
1313 return NULL;
1315 spin_lock(&parent->d_lock);
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1322 list_add(&dentry->d_child, &parent->d_subdirs);
1323 spin_unlock(&parent->d_lock);
1325 return dentry;
1327 EXPORT_SYMBOL(d_alloc);
1329 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1331 struct dentry *dentry = __d_alloc(sb, name);
1332 if (dentry)
1333 dentry->d_flags |= DCACHE_DISCONNECTED;
1334 return dentry;
1336 EXPORT_SYMBOL(d_alloc_pseudo);
1338 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1340 struct qstr q;
1342 q.name = name;
1343 q.len = strlen(name);
1344 q.hash = full_name_hash(q.name, q.len);
1345 return d_alloc(parent, &q);
1347 EXPORT_SYMBOL(d_alloc_name);
1349 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1351 WARN_ON_ONCE(dentry->d_op);
1352 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1353 DCACHE_OP_COMPARE |
1354 DCACHE_OP_REVALIDATE |
1355 DCACHE_OP_WEAK_REVALIDATE |
1356 DCACHE_OP_DELETE ));
1357 dentry->d_op = op;
1358 if (!op)
1359 return;
1360 if (op->d_hash)
1361 dentry->d_flags |= DCACHE_OP_HASH;
1362 if (op->d_compare)
1363 dentry->d_flags |= DCACHE_OP_COMPARE;
1364 if (op->d_revalidate)
1365 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1366 if (op->d_weak_revalidate)
1367 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1368 if (op->d_delete)
1369 dentry->d_flags |= DCACHE_OP_DELETE;
1370 if (op->d_prune)
1371 dentry->d_flags |= DCACHE_OP_PRUNE;
1374 EXPORT_SYMBOL(d_set_d_op);
1376 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1378 spin_lock(&dentry->d_lock);
1379 if (inode) {
1380 if (unlikely(IS_AUTOMOUNT(inode)))
1381 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1382 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1384 dentry->d_inode = inode;
1385 dentry_rcuwalk_barrier(dentry);
1386 spin_unlock(&dentry->d_lock);
1387 fsnotify_d_instantiate(dentry, inode);
1391 * d_instantiate - fill in inode information for a dentry
1392 * @entry: dentry to complete
1393 * @inode: inode to attach to this dentry
1395 * Fill in inode information in the entry.
1397 * This turns negative dentries into productive full members
1398 * of society.
1400 * NOTE! This assumes that the inode count has been incremented
1401 * (or otherwise set) by the caller to indicate that it is now
1402 * in use by the dcache.
1405 void d_instantiate(struct dentry *entry, struct inode * inode)
1407 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1408 if (inode)
1409 spin_lock(&inode->i_lock);
1410 __d_instantiate(entry, inode);
1411 if (inode)
1412 spin_unlock(&inode->i_lock);
1413 security_d_instantiate(entry, inode);
1415 EXPORT_SYMBOL(d_instantiate);
1418 * d_instantiate_unique - instantiate a non-aliased dentry
1419 * @entry: dentry to instantiate
1420 * @inode: inode to attach to this dentry
1422 * Fill in inode information in the entry. On success, it returns NULL.
1423 * If an unhashed alias of "entry" already exists, then we return the
1424 * aliased dentry instead and drop one reference to inode.
1426 * Note that in order to avoid conflicts with rename() etc, the caller
1427 * had better be holding the parent directory semaphore.
1429 * This also assumes that the inode count has been incremented
1430 * (or otherwise set) by the caller to indicate that it is now
1431 * in use by the dcache.
1433 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1434 struct inode *inode)
1436 struct dentry *alias;
1437 int len = entry->d_name.len;
1438 const char *name = entry->d_name.name;
1439 unsigned int hash = entry->d_name.hash;
1441 if (!inode) {
1442 __d_instantiate(entry, NULL);
1443 return NULL;
1446 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1448 * Don't need alias->d_lock here, because aliases with
1449 * d_parent == entry->d_parent are not subject to name or
1450 * parent changes, because the parent inode i_mutex is held.
1452 if (alias->d_name.hash != hash)
1453 continue;
1454 if (alias->d_parent != entry->d_parent)
1455 continue;
1456 if (alias->d_name.len != len)
1457 continue;
1458 if (dentry_cmp(alias, name, len))
1459 continue;
1460 __dget(alias);
1461 return alias;
1464 __d_instantiate(entry, inode);
1465 return NULL;
1468 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1470 struct dentry *result;
1472 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1474 if (inode)
1475 spin_lock(&inode->i_lock);
1476 result = __d_instantiate_unique(entry, inode);
1477 if (inode)
1478 spin_unlock(&inode->i_lock);
1480 if (!result) {
1481 security_d_instantiate(entry, inode);
1482 return NULL;
1485 BUG_ON(!d_unhashed(result));
1486 iput(inode);
1487 return result;
1490 EXPORT_SYMBOL(d_instantiate_unique);
1492 struct dentry *d_make_root(struct inode *root_inode)
1494 struct dentry *res = NULL;
1496 if (root_inode) {
1497 static const struct qstr name = QSTR_INIT("/", 1);
1499 res = __d_alloc(root_inode->i_sb, &name);
1500 if (res)
1501 d_instantiate(res, root_inode);
1502 else
1503 iput(root_inode);
1505 return res;
1507 EXPORT_SYMBOL(d_make_root);
1509 static struct dentry * __d_find_any_alias(struct inode *inode)
1511 struct dentry *alias;
1513 if (hlist_empty(&inode->i_dentry))
1514 return NULL;
1515 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1516 __dget(alias);
1517 return alias;
1521 * d_find_any_alias - find any alias for a given inode
1522 * @inode: inode to find an alias for
1524 * If any aliases exist for the given inode, take and return a
1525 * reference for one of them. If no aliases exist, return %NULL.
1527 struct dentry *d_find_any_alias(struct inode *inode)
1529 struct dentry *de;
1531 spin_lock(&inode->i_lock);
1532 de = __d_find_any_alias(inode);
1533 spin_unlock(&inode->i_lock);
1534 return de;
1536 EXPORT_SYMBOL(d_find_any_alias);
1539 * d_obtain_alias - find or allocate a dentry for a given inode
1540 * @inode: inode to allocate the dentry for
1542 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1543 * similar open by handle operations. The returned dentry may be anonymous,
1544 * or may have a full name (if the inode was already in the cache).
1546 * When called on a directory inode, we must ensure that the inode only ever
1547 * has one dentry. If a dentry is found, that is returned instead of
1548 * allocating a new one.
1550 * On successful return, the reference to the inode has been transferred
1551 * to the dentry. In case of an error the reference on the inode is released.
1552 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1553 * be passed in and will be the error will be propagate to the return value,
1554 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1556 struct dentry *d_obtain_alias(struct inode *inode)
1558 static const struct qstr anonstring = QSTR_INIT("/", 1);
1559 struct dentry *tmp;
1560 struct dentry *res;
1562 if (!inode)
1563 return ERR_PTR(-ESTALE);
1564 if (IS_ERR(inode))
1565 return ERR_CAST(inode);
1567 res = d_find_any_alias(inode);
1568 if (res)
1569 goto out_iput;
1571 tmp = __d_alloc(inode->i_sb, &anonstring);
1572 if (!tmp) {
1573 res = ERR_PTR(-ENOMEM);
1574 goto out_iput;
1577 spin_lock(&inode->i_lock);
1578 res = __d_find_any_alias(inode);
1579 if (res) {
1580 spin_unlock(&inode->i_lock);
1581 dput(tmp);
1582 goto out_iput;
1585 /* attach a disconnected dentry */
1586 spin_lock(&tmp->d_lock);
1587 tmp->d_inode = inode;
1588 tmp->d_flags |= DCACHE_DISCONNECTED;
1589 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1590 hlist_bl_lock(&tmp->d_sb->s_anon);
1591 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1592 hlist_bl_unlock(&tmp->d_sb->s_anon);
1593 spin_unlock(&tmp->d_lock);
1594 spin_unlock(&inode->i_lock);
1595 security_d_instantiate(tmp, inode);
1597 return tmp;
1599 out_iput:
1600 if (res && !IS_ERR(res))
1601 security_d_instantiate(res, inode);
1602 iput(inode);
1603 return res;
1605 EXPORT_SYMBOL(d_obtain_alias);
1608 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1609 * @inode: the inode which may have a disconnected dentry
1610 * @dentry: a negative dentry which we want to point to the inode.
1612 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1613 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1614 * and return it, else simply d_add the inode to the dentry and return NULL.
1616 * This is needed in the lookup routine of any filesystem that is exportable
1617 * (via knfsd) so that we can build dcache paths to directories effectively.
1619 * If a dentry was found and moved, then it is returned. Otherwise NULL
1620 * is returned. This matches the expected return value of ->lookup.
1623 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1625 struct dentry *new = NULL;
1627 if (IS_ERR(inode))
1628 return ERR_CAST(inode);
1630 if (inode && S_ISDIR(inode->i_mode)) {
1631 spin_lock(&inode->i_lock);
1632 new = __d_find_alias(inode, 1);
1633 if (new) {
1634 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1635 spin_unlock(&inode->i_lock);
1636 security_d_instantiate(new, inode);
1637 d_move(new, dentry);
1638 iput(inode);
1639 } else {
1640 /* already taking inode->i_lock, so d_add() by hand */
1641 __d_instantiate(dentry, inode);
1642 spin_unlock(&inode->i_lock);
1643 security_d_instantiate(dentry, inode);
1644 d_rehash(dentry);
1646 } else
1647 d_add(dentry, inode);
1648 return new;
1650 EXPORT_SYMBOL(d_splice_alias);
1653 * d_add_ci - lookup or allocate new dentry with case-exact name
1654 * @inode: the inode case-insensitive lookup has found
1655 * @dentry: the negative dentry that was passed to the parent's lookup func
1656 * @name: the case-exact name to be associated with the returned dentry
1658 * This is to avoid filling the dcache with case-insensitive names to the
1659 * same inode, only the actual correct case is stored in the dcache for
1660 * case-insensitive filesystems.
1662 * For a case-insensitive lookup match and if the the case-exact dentry
1663 * already exists in in the dcache, use it and return it.
1665 * If no entry exists with the exact case name, allocate new dentry with
1666 * the exact case, and return the spliced entry.
1668 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1669 struct qstr *name)
1671 struct dentry *found;
1672 struct dentry *new;
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1678 found = d_hash_and_lookup(dentry->d_parent, name);
1679 if (unlikely(IS_ERR(found)))
1680 goto err_out;
1681 if (!found) {
1682 new = d_alloc(dentry->d_parent, name);
1683 if (!new) {
1684 found = ERR_PTR(-ENOMEM);
1685 goto err_out;
1688 found = d_splice_alias(inode, new);
1689 if (found) {
1690 dput(new);
1691 return found;
1693 return new;
1697 * If a matching dentry exists, and it's not negative use it.
1699 * Decrement the reference count to balance the iget() done
1700 * earlier on.
1702 if (found->d_inode) {
1703 if (unlikely(found->d_inode != inode)) {
1704 /* This can't happen because bad inodes are unhashed. */
1705 BUG_ON(!is_bad_inode(inode));
1706 BUG_ON(!is_bad_inode(found->d_inode));
1708 iput(inode);
1709 return found;
1713 * Negative dentry: instantiate it unless the inode is a directory and
1714 * already has a dentry.
1716 new = d_splice_alias(inode, found);
1717 if (new) {
1718 dput(found);
1719 found = new;
1721 return found;
1723 err_out:
1724 iput(inode);
1725 return found;
1727 EXPORT_SYMBOL(d_add_ci);
1730 * Do the slow-case of the dentry name compare.
1732 * Unlike the dentry_cmp() function, we need to atomically
1733 * load the name, length and inode information, so that the
1734 * filesystem can rely on them, and can use the 'name' and
1735 * 'len' information without worrying about walking off the
1736 * end of memory etc.
1738 * Thus the read_seqcount_retry() and the "duplicate" info
1739 * in arguments (the low-level filesystem should not look
1740 * at the dentry inode or name contents directly, since
1741 * rename can change them while we're in RCU mode).
1743 enum slow_d_compare {
1744 D_COMP_OK,
1745 D_COMP_NOMATCH,
1746 D_COMP_SEQRETRY,
1749 static noinline enum slow_d_compare slow_dentry_cmp(
1750 const struct dentry *parent,
1751 struct inode *inode,
1752 struct dentry *dentry,
1753 unsigned int seq,
1754 const struct qstr *name)
1756 int tlen = dentry->d_name.len;
1757 const char *tname = dentry->d_name.name;
1758 struct inode *i = dentry->d_inode;
1760 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1761 cpu_relax();
1762 return D_COMP_SEQRETRY;
1764 if (parent->d_op->d_compare(parent, inode,
1765 dentry, i,
1766 tlen, tname, name))
1767 return D_COMP_NOMATCH;
1768 return D_COMP_OK;
1772 * __d_lookup_rcu - search for a dentry (racy, store-free)
1773 * @parent: parent dentry
1774 * @name: qstr of name we wish to find
1775 * @seqp: returns d_seq value at the point where the dentry was found
1776 * @inode: returns dentry->d_inode when the inode was found valid.
1777 * Returns: dentry, or NULL
1779 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1780 * resolution (store-free path walking) design described in
1781 * Documentation/filesystems/path-lookup.txt.
1783 * This is not to be used outside core vfs.
1785 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1786 * held, and rcu_read_lock held. The returned dentry must not be stored into
1787 * without taking d_lock and checking d_seq sequence count against @seq
1788 * returned here.
1790 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1791 * function.
1793 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1794 * the returned dentry, so long as its parent's seqlock is checked after the
1795 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1796 * is formed, giving integrity down the path walk.
1798 * NOTE! The caller *has* to check the resulting dentry against the sequence
1799 * number we've returned before using any of the resulting dentry state!
1801 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1802 const struct qstr *name,
1803 unsigned *seqp, struct inode *inode)
1805 u64 hashlen = name->hash_len;
1806 const unsigned char *str = name->name;
1807 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1808 struct hlist_bl_node *node;
1809 struct dentry *dentry;
1812 * Note: There is significant duplication with __d_lookup_rcu which is
1813 * required to prevent single threaded performance regressions
1814 * especially on architectures where smp_rmb (in seqcounts) are costly.
1815 * Keep the two functions in sync.
1819 * The hash list is protected using RCU.
1821 * Carefully use d_seq when comparing a candidate dentry, to avoid
1822 * races with d_move().
1824 * It is possible that concurrent renames can mess up our list
1825 * walk here and result in missing our dentry, resulting in the
1826 * false-negative result. d_lookup() protects against concurrent
1827 * renames using rename_lock seqlock.
1829 * See Documentation/filesystems/path-lookup.txt for more details.
1831 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1832 unsigned seq;
1834 seqretry:
1836 * The dentry sequence count protects us from concurrent
1837 * renames, and thus protects inode, parent and name fields.
1839 * The caller must perform a seqcount check in order
1840 * to do anything useful with the returned dentry,
1841 * including using the 'd_inode' pointer.
1843 * NOTE! We do a "raw" seqcount_begin here. That means that
1844 * we don't wait for the sequence count to stabilize if it
1845 * is in the middle of a sequence change. If we do the slow
1846 * dentry compare, we will do seqretries until it is stable,
1847 * and if we end up with a successful lookup, we actually
1848 * want to exit RCU lookup anyway.
1850 seq = raw_seqcount_begin(&dentry->d_seq);
1851 if (dentry->d_parent != parent)
1852 continue;
1853 if (d_unhashed(dentry))
1854 continue;
1855 *seqp = seq;
1857 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1858 if (dentry->d_name.hash != hashlen_hash(hashlen))
1859 continue;
1860 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1861 case D_COMP_OK:
1862 return dentry;
1863 case D_COMP_NOMATCH:
1864 continue;
1865 default:
1866 goto seqretry;
1870 if (dentry->d_name.hash_len != hashlen)
1871 continue;
1872 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1873 return dentry;
1875 return NULL;
1879 * d_lookup - search for a dentry
1880 * @parent: parent dentry
1881 * @name: qstr of name we wish to find
1882 * Returns: dentry, or NULL
1884 * d_lookup searches the children of the parent dentry for the name in
1885 * question. If the dentry is found its reference count is incremented and the
1886 * dentry is returned. The caller must use dput to free the entry when it has
1887 * finished using it. %NULL is returned if the dentry does not exist.
1889 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1891 struct dentry *dentry;
1892 unsigned seq;
1894 do {
1895 seq = read_seqbegin(&rename_lock);
1896 dentry = __d_lookup(parent, name);
1897 if (dentry)
1898 break;
1899 } while (read_seqretry(&rename_lock, seq));
1900 return dentry;
1902 EXPORT_SYMBOL(d_lookup);
1905 * __d_lookup - search for a dentry (racy)
1906 * @parent: parent dentry
1907 * @name: qstr of name we wish to find
1908 * Returns: dentry, or NULL
1910 * __d_lookup is like d_lookup, however it may (rarely) return a
1911 * false-negative result due to unrelated rename activity.
1913 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1914 * however it must be used carefully, eg. with a following d_lookup in
1915 * the case of failure.
1917 * __d_lookup callers must be commented.
1919 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1921 unsigned int len = name->len;
1922 unsigned int hash = name->hash;
1923 const unsigned char *str = name->name;
1924 struct hlist_bl_head *b = d_hash(parent, hash);
1925 struct hlist_bl_node *node;
1926 struct dentry *found = NULL;
1927 struct dentry *dentry;
1930 * Note: There is significant duplication with __d_lookup_rcu which is
1931 * required to prevent single threaded performance regressions
1932 * especially on architectures where smp_rmb (in seqcounts) are costly.
1933 * Keep the two functions in sync.
1937 * The hash list is protected using RCU.
1939 * Take d_lock when comparing a candidate dentry, to avoid races
1940 * with d_move().
1942 * It is possible that concurrent renames can mess up our list
1943 * walk here and result in missing our dentry, resulting in the
1944 * false-negative result. d_lookup() protects against concurrent
1945 * renames using rename_lock seqlock.
1947 * See Documentation/filesystems/path-lookup.txt for more details.
1949 rcu_read_lock();
1951 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1953 if (dentry->d_name.hash != hash)
1954 continue;
1956 spin_lock(&dentry->d_lock);
1957 if (dentry->d_parent != parent)
1958 goto next;
1959 if (d_unhashed(dentry))
1960 goto next;
1963 * It is safe to compare names since d_move() cannot
1964 * change the qstr (protected by d_lock).
1966 if (parent->d_flags & DCACHE_OP_COMPARE) {
1967 int tlen = dentry->d_name.len;
1968 const char *tname = dentry->d_name.name;
1969 if (parent->d_op->d_compare(parent, parent->d_inode,
1970 dentry, dentry->d_inode,
1971 tlen, tname, name))
1972 goto next;
1973 } else {
1974 if (dentry->d_name.len != len)
1975 goto next;
1976 if (dentry_cmp(dentry, str, len))
1977 goto next;
1980 dentry->d_count++;
1981 found = dentry;
1982 spin_unlock(&dentry->d_lock);
1983 break;
1984 next:
1985 spin_unlock(&dentry->d_lock);
1987 rcu_read_unlock();
1989 return found;
1993 * d_hash_and_lookup - hash the qstr then search for a dentry
1994 * @dir: Directory to search in
1995 * @name: qstr of name we wish to find
1997 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1999 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2002 * Check for a fs-specific hash function. Note that we must
2003 * calculate the standard hash first, as the d_op->d_hash()
2004 * routine may choose to leave the hash value unchanged.
2006 name->hash = full_name_hash(name->name, name->len);
2007 if (dir->d_flags & DCACHE_OP_HASH) {
2008 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2009 if (unlikely(err < 0))
2010 return ERR_PTR(err);
2012 return d_lookup(dir, name);
2014 EXPORT_SYMBOL(d_hash_and_lookup);
2017 * d_validate - verify dentry provided from insecure source (deprecated)
2018 * @dentry: The dentry alleged to be valid child of @dparent
2019 * @dparent: The parent dentry (known to be valid)
2021 * An insecure source has sent us a dentry, here we verify it and dget() it.
2022 * This is used by ncpfs in its readdir implementation.
2023 * Zero is returned in the dentry is invalid.
2025 * This function is slow for big directories, and deprecated, do not use it.
2027 int d_validate(struct dentry *dentry, struct dentry *dparent)
2029 struct dentry *child;
2031 spin_lock(&dparent->d_lock);
2032 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
2033 if (dentry == child) {
2034 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2035 __dget_dlock(dentry);
2036 spin_unlock(&dentry->d_lock);
2037 spin_unlock(&dparent->d_lock);
2038 return 1;
2041 spin_unlock(&dparent->d_lock);
2043 return 0;
2045 EXPORT_SYMBOL(d_validate);
2048 * When a file is deleted, we have two options:
2049 * - turn this dentry into a negative dentry
2050 * - unhash this dentry and free it.
2052 * Usually, we want to just turn this into
2053 * a negative dentry, but if anybody else is
2054 * currently using the dentry or the inode
2055 * we can't do that and we fall back on removing
2056 * it from the hash queues and waiting for
2057 * it to be deleted later when it has no users
2061 * d_delete - delete a dentry
2062 * @dentry: The dentry to delete
2064 * Turn the dentry into a negative dentry if possible, otherwise
2065 * remove it from the hash queues so it can be deleted later
2068 void d_delete(struct dentry * dentry)
2070 struct inode *inode;
2071 int isdir = 0;
2073 * Are we the only user?
2075 again:
2076 spin_lock(&dentry->d_lock);
2077 inode = dentry->d_inode;
2078 isdir = S_ISDIR(inode->i_mode);
2079 if (dentry->d_count == 1) {
2080 if (!spin_trylock(&inode->i_lock)) {
2081 spin_unlock(&dentry->d_lock);
2082 cpu_relax();
2083 goto again;
2085 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2086 dentry_unlink_inode(dentry);
2087 fsnotify_nameremove(dentry, isdir);
2088 return;
2091 if (!d_unhashed(dentry))
2092 __d_drop(dentry);
2094 spin_unlock(&dentry->d_lock);
2096 fsnotify_nameremove(dentry, isdir);
2098 EXPORT_SYMBOL(d_delete);
2100 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2102 BUG_ON(!d_unhashed(entry));
2103 hlist_bl_lock(b);
2104 entry->d_flags |= DCACHE_RCUACCESS;
2105 hlist_bl_add_head_rcu(&entry->d_hash, b);
2106 hlist_bl_unlock(b);
2109 static void _d_rehash(struct dentry * entry)
2111 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2115 * d_rehash - add an entry back to the hash
2116 * @entry: dentry to add to the hash
2118 * Adds a dentry to the hash according to its name.
2121 void d_rehash(struct dentry * entry)
2123 spin_lock(&entry->d_lock);
2124 _d_rehash(entry);
2125 spin_unlock(&entry->d_lock);
2127 EXPORT_SYMBOL(d_rehash);
2130 * dentry_update_name_case - update case insensitive dentry with a new name
2131 * @dentry: dentry to be updated
2132 * @name: new name
2134 * Update a case insensitive dentry with new case of name.
2136 * dentry must have been returned by d_lookup with name @name. Old and new
2137 * name lengths must match (ie. no d_compare which allows mismatched name
2138 * lengths).
2140 * Parent inode i_mutex must be held over d_lookup and into this call (to
2141 * keep renames and concurrent inserts, and readdir(2) away).
2143 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2145 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2146 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2148 spin_lock(&dentry->d_lock);
2149 write_seqcount_begin(&dentry->d_seq);
2150 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2151 write_seqcount_end(&dentry->d_seq);
2152 spin_unlock(&dentry->d_lock);
2154 EXPORT_SYMBOL(dentry_update_name_case);
2156 static void switch_names(struct dentry *dentry, struct dentry *target)
2158 if (dname_external(target)) {
2159 if (dname_external(dentry)) {
2161 * Both external: swap the pointers
2163 swap(target->d_name.name, dentry->d_name.name);
2164 } else {
2166 * dentry:internal, target:external. Steal target's
2167 * storage and make target internal.
2169 memcpy(target->d_iname, dentry->d_name.name,
2170 dentry->d_name.len + 1);
2171 dentry->d_name.name = target->d_name.name;
2172 target->d_name.name = target->d_iname;
2174 } else {
2175 if (dname_external(dentry)) {
2177 * dentry:external, target:internal. Give dentry's
2178 * storage to target and make dentry internal
2180 memcpy(dentry->d_iname, target->d_name.name,
2181 target->d_name.len + 1);
2182 target->d_name.name = dentry->d_name.name;
2183 dentry->d_name.name = dentry->d_iname;
2184 } else {
2186 * Both are internal. Just copy target to dentry
2188 memcpy(dentry->d_iname, target->d_name.name,
2189 target->d_name.len + 1);
2190 dentry->d_name.len = target->d_name.len;
2191 return;
2194 swap(dentry->d_name.len, target->d_name.len);
2197 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2200 * XXXX: do we really need to take target->d_lock?
2202 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2203 spin_lock(&target->d_parent->d_lock);
2204 else {
2205 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2206 spin_lock(&dentry->d_parent->d_lock);
2207 spin_lock_nested(&target->d_parent->d_lock,
2208 DENTRY_D_LOCK_NESTED);
2209 } else {
2210 spin_lock(&target->d_parent->d_lock);
2211 spin_lock_nested(&dentry->d_parent->d_lock,
2212 DENTRY_D_LOCK_NESTED);
2215 if (target < dentry) {
2216 spin_lock_nested(&target->d_lock, 2);
2217 spin_lock_nested(&dentry->d_lock, 3);
2218 } else {
2219 spin_lock_nested(&dentry->d_lock, 2);
2220 spin_lock_nested(&target->d_lock, 3);
2224 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2225 struct dentry *target)
2227 if (target->d_parent != dentry->d_parent)
2228 spin_unlock(&dentry->d_parent->d_lock);
2229 if (target->d_parent != target)
2230 spin_unlock(&target->d_parent->d_lock);
2234 * When switching names, the actual string doesn't strictly have to
2235 * be preserved in the target - because we're dropping the target
2236 * anyway. As such, we can just do a simple memcpy() to copy over
2237 * the new name before we switch.
2239 * Note that we have to be a lot more careful about getting the hash
2240 * switched - we have to switch the hash value properly even if it
2241 * then no longer matches the actual (corrupted) string of the target.
2242 * The hash value has to match the hash queue that the dentry is on..
2245 * __d_move - move a dentry
2246 * @dentry: entry to move
2247 * @target: new dentry
2249 * Update the dcache to reflect the move of a file name. Negative
2250 * dcache entries should not be moved in this way. Caller must hold
2251 * rename_lock, the i_mutex of the source and target directories,
2252 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2254 static void __d_move(struct dentry * dentry, struct dentry * target)
2256 if (!dentry->d_inode)
2257 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2259 BUG_ON(d_ancestor(dentry, target));
2260 BUG_ON(d_ancestor(target, dentry));
2262 dentry_lock_for_move(dentry, target);
2264 write_seqcount_begin(&dentry->d_seq);
2265 write_seqcount_begin(&target->d_seq);
2267 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2270 * Move the dentry to the target hash queue. Don't bother checking
2271 * for the same hash queue because of how unlikely it is.
2273 __d_drop(dentry);
2274 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2276 /* Unhash the target: dput() will then get rid of it */
2277 __d_drop(target);
2279 list_del(&dentry->d_child);
2280 list_del(&target->d_child);
2282 /* Switch the names.. */
2283 switch_names(dentry, target);
2284 swap(dentry->d_name.hash, target->d_name.hash);
2286 /* ... and switch the parents */
2287 if (IS_ROOT(dentry)) {
2288 dentry->d_parent = target->d_parent;
2289 target->d_parent = target;
2290 INIT_LIST_HEAD(&target->d_child);
2291 } else {
2292 swap(dentry->d_parent, target->d_parent);
2294 /* And add them back to the (new) parent lists */
2295 list_add(&target->d_child, &target->d_parent->d_subdirs);
2298 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
2300 write_seqcount_end(&target->d_seq);
2301 write_seqcount_end(&dentry->d_seq);
2303 dentry_unlock_parents_for_move(dentry, target);
2304 spin_unlock(&target->d_lock);
2305 fsnotify_d_move(dentry);
2306 spin_unlock(&dentry->d_lock);
2310 * d_move - move a dentry
2311 * @dentry: entry to move
2312 * @target: new dentry
2314 * Update the dcache to reflect the move of a file name. Negative
2315 * dcache entries should not be moved in this way. See the locking
2316 * requirements for __d_move.
2318 void d_move(struct dentry *dentry, struct dentry *target)
2320 write_seqlock(&rename_lock);
2321 __d_move(dentry, target);
2322 write_sequnlock(&rename_lock);
2324 EXPORT_SYMBOL(d_move);
2327 * d_ancestor - search for an ancestor
2328 * @p1: ancestor dentry
2329 * @p2: child dentry
2331 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2332 * an ancestor of p2, else NULL.
2334 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2336 struct dentry *p;
2338 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2339 if (p->d_parent == p1)
2340 return p;
2342 return NULL;
2346 * This helper attempts to cope with remotely renamed directories
2348 * It assumes that the caller is already holding
2349 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2351 * Note: If ever the locking in lock_rename() changes, then please
2352 * remember to update this too...
2354 static struct dentry *__d_unalias(struct inode *inode,
2355 struct dentry *dentry, struct dentry *alias)
2357 struct mutex *m1 = NULL, *m2 = NULL;
2358 struct dentry *ret = ERR_PTR(-EBUSY);
2360 /* If alias and dentry share a parent, then no extra locks required */
2361 if (alias->d_parent == dentry->d_parent)
2362 goto out_unalias;
2364 /* See lock_rename() */
2365 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2366 goto out_err;
2367 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2368 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2369 goto out_err;
2370 m2 = &alias->d_parent->d_inode->i_mutex;
2371 out_unalias:
2372 if (likely(!d_mountpoint(alias))) {
2373 __d_move(alias, dentry);
2374 ret = alias;
2376 out_err:
2377 spin_unlock(&inode->i_lock);
2378 if (m2)
2379 mutex_unlock(m2);
2380 if (m1)
2381 mutex_unlock(m1);
2382 return ret;
2386 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2387 * named dentry in place of the dentry to be replaced.
2388 * returns with anon->d_lock held!
2390 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2392 struct dentry *dparent;
2394 dentry_lock_for_move(anon, dentry);
2396 write_seqcount_begin(&dentry->d_seq);
2397 write_seqcount_begin(&anon->d_seq);
2399 dparent = dentry->d_parent;
2401 switch_names(dentry, anon);
2402 swap(dentry->d_name.hash, anon->d_name.hash);
2404 dentry->d_parent = dentry;
2405 list_del_init(&dentry->d_child);
2406 anon->d_parent = dparent;
2407 list_move(&anon->d_child, &dparent->d_subdirs);
2409 write_seqcount_end(&dentry->d_seq);
2410 write_seqcount_end(&anon->d_seq);
2412 dentry_unlock_parents_for_move(anon, dentry);
2413 spin_unlock(&dentry->d_lock);
2415 /* anon->d_lock still locked, returns locked */
2416 anon->d_flags &= ~DCACHE_DISCONNECTED;
2420 * d_materialise_unique - introduce an inode into the tree
2421 * @dentry: candidate dentry
2422 * @inode: inode to bind to the dentry, to which aliases may be attached
2424 * Introduces an dentry into the tree, substituting an extant disconnected
2425 * root directory alias in its place if there is one. Caller must hold the
2426 * i_mutex of the parent directory.
2428 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2430 struct dentry *actual;
2432 BUG_ON(!d_unhashed(dentry));
2434 if (!inode) {
2435 actual = dentry;
2436 __d_instantiate(dentry, NULL);
2437 d_rehash(actual);
2438 goto out_nolock;
2441 spin_lock(&inode->i_lock);
2443 if (S_ISDIR(inode->i_mode)) {
2444 struct dentry *alias;
2446 /* Does an aliased dentry already exist? */
2447 alias = __d_find_alias(inode, 0);
2448 if (alias) {
2449 actual = alias;
2450 write_seqlock(&rename_lock);
2452 if (d_ancestor(alias, dentry)) {
2453 /* Check for loops */
2454 actual = ERR_PTR(-ELOOP);
2455 spin_unlock(&inode->i_lock);
2456 } else if (IS_ROOT(alias)) {
2457 /* Is this an anonymous mountpoint that we
2458 * could splice into our tree? */
2459 __d_materialise_dentry(dentry, alias);
2460 write_sequnlock(&rename_lock);
2461 __d_drop(alias);
2462 goto found;
2463 } else {
2464 /* Nope, but we must(!) avoid directory
2465 * aliasing. This drops inode->i_lock */
2466 actual = __d_unalias(inode, dentry, alias);
2468 write_sequnlock(&rename_lock);
2469 if (IS_ERR(actual)) {
2470 if (PTR_ERR(actual) == -ELOOP)
2471 pr_warn_ratelimited(
2472 "VFS: Lookup of '%s' in %s %s"
2473 " would have caused loop\n",
2474 dentry->d_name.name,
2475 inode->i_sb->s_type->name,
2476 inode->i_sb->s_id);
2477 dput(alias);
2479 goto out_nolock;
2483 /* Add a unique reference */
2484 actual = __d_instantiate_unique(dentry, inode);
2485 if (!actual)
2486 actual = dentry;
2487 else
2488 BUG_ON(!d_unhashed(actual));
2490 spin_lock(&actual->d_lock);
2491 found:
2492 _d_rehash(actual);
2493 spin_unlock(&actual->d_lock);
2494 spin_unlock(&inode->i_lock);
2495 out_nolock:
2496 if (actual == dentry) {
2497 security_d_instantiate(dentry, inode);
2498 return NULL;
2501 iput(inode);
2502 return actual;
2504 EXPORT_SYMBOL_GPL(d_materialise_unique);
2506 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2508 *buflen -= namelen;
2509 if (*buflen < 0)
2510 return -ENAMETOOLONG;
2511 *buffer -= namelen;
2512 memcpy(*buffer, str, namelen);
2513 return 0;
2516 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2518 return prepend(buffer, buflen, name->name, name->len);
2522 * prepend_path - Prepend path string to a buffer
2523 * @path: the dentry/vfsmount to report
2524 * @root: root vfsmnt/dentry
2525 * @buffer: pointer to the end of the buffer
2526 * @buflen: pointer to buffer length
2528 * Caller holds the rename_lock.
2530 static int prepend_path(const struct path *path,
2531 const struct path *root,
2532 char **buffer, int *buflen)
2534 struct dentry *dentry = path->dentry;
2535 struct vfsmount *vfsmnt = path->mnt;
2536 struct mount *mnt = real_mount(vfsmnt);
2537 char *orig_buffer = *buffer;
2538 int orig_len = *buflen;
2539 bool slash = false;
2540 int error = 0;
2542 while (dentry != root->dentry || vfsmnt != root->mnt) {
2543 struct dentry * parent;
2545 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2546 /* Escaped? */
2547 if (dentry != vfsmnt->mnt_root) {
2548 *buffer = orig_buffer;
2549 *buflen = orig_len;
2550 slash = false;
2551 error = 3;
2552 goto global_root;
2554 /* Global root? */
2555 if (!mnt_has_parent(mnt))
2556 goto global_root;
2557 dentry = mnt->mnt_mountpoint;
2558 mnt = mnt->mnt_parent;
2559 vfsmnt = &mnt->mnt;
2560 continue;
2562 parent = dentry->d_parent;
2563 prefetch(parent);
2564 spin_lock(&dentry->d_lock);
2565 error = prepend_name(buffer, buflen, &dentry->d_name);
2566 spin_unlock(&dentry->d_lock);
2567 if (!error)
2568 error = prepend(buffer, buflen, "/", 1);
2569 if (error)
2570 break;
2572 slash = true;
2573 dentry = parent;
2576 if (!error && !slash)
2577 error = prepend(buffer, buflen, "/", 1);
2579 return error;
2581 global_root:
2582 if (!slash)
2583 error = prepend(buffer, buflen, "/", 1);
2584 if (!error)
2585 error = is_mounted(vfsmnt) ? 1 : 2;
2586 return error;
2590 * __d_path - return the path of a dentry
2591 * @path: the dentry/vfsmount to report
2592 * @root: root vfsmnt/dentry
2593 * @buf: buffer to return value in
2594 * @buflen: buffer length
2596 * Convert a dentry into an ASCII path name.
2598 * Returns a pointer into the buffer or an error code if the
2599 * path was too long.
2601 * "buflen" should be positive.
2603 * If the path is not reachable from the supplied root, return %NULL.
2605 char *__d_path(const struct path *path,
2606 const struct path *root,
2607 char *buf, int buflen)
2609 char *res = buf + buflen;
2610 int error;
2612 prepend(&res, &buflen, "\0", 1);
2613 br_read_lock(&vfsmount_lock);
2614 write_seqlock(&rename_lock);
2615 error = prepend_path(path, root, &res, &buflen);
2616 write_sequnlock(&rename_lock);
2617 br_read_unlock(&vfsmount_lock);
2619 if (error < 0)
2620 return ERR_PTR(error);
2621 if (error > 0)
2622 return NULL;
2623 return res;
2626 char *d_absolute_path(const struct path *path,
2627 char *buf, int buflen)
2629 struct path root = {};
2630 char *res = buf + buflen;
2631 int error;
2633 prepend(&res, &buflen, "\0", 1);
2634 br_read_lock(&vfsmount_lock);
2635 write_seqlock(&rename_lock);
2636 error = prepend_path(path, &root, &res, &buflen);
2637 write_sequnlock(&rename_lock);
2638 br_read_unlock(&vfsmount_lock);
2640 if (error > 1)
2641 error = -EINVAL;
2642 if (error < 0)
2643 return ERR_PTR(error);
2644 return res;
2648 * same as __d_path but appends "(deleted)" for unlinked files.
2650 static int path_with_deleted(const struct path *path,
2651 const struct path *root,
2652 char **buf, int *buflen)
2654 prepend(buf, buflen, "\0", 1);
2655 if (d_unlinked(path->dentry)) {
2656 int error = prepend(buf, buflen, " (deleted)", 10);
2657 if (error)
2658 return error;
2661 return prepend_path(path, root, buf, buflen);
2664 static int prepend_unreachable(char **buffer, int *buflen)
2666 return prepend(buffer, buflen, "(unreachable)", 13);
2670 * d_path - return the path of a dentry
2671 * @path: path to report
2672 * @buf: buffer to return value in
2673 * @buflen: buffer length
2675 * Convert a dentry into an ASCII path name. If the entry has been deleted
2676 * the string " (deleted)" is appended. Note that this is ambiguous.
2678 * Returns a pointer into the buffer or an error code if the path was
2679 * too long. Note: Callers should use the returned pointer, not the passed
2680 * in buffer, to use the name! The implementation often starts at an offset
2681 * into the buffer, and may leave 0 bytes at the start.
2683 * "buflen" should be positive.
2685 char *d_path(const struct path *path, char *buf, int buflen)
2687 char *res = buf + buflen;
2688 struct path root;
2689 int error;
2692 * We have various synthetic filesystems that never get mounted. On
2693 * these filesystems dentries are never used for lookup purposes, and
2694 * thus don't need to be hashed. They also don't need a name until a
2695 * user wants to identify the object in /proc/pid/fd/. The little hack
2696 * below allows us to generate a name for these objects on demand:
2698 * Some pseudo inodes are mountable. When they are mounted
2699 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2700 * and instead have d_path return the mounted path.
2702 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2703 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
2704 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2706 get_fs_root(current->fs, &root);
2707 br_read_lock(&vfsmount_lock);
2708 write_seqlock(&rename_lock);
2709 error = path_with_deleted(path, &root, &res, &buflen);
2710 write_sequnlock(&rename_lock);
2711 br_read_unlock(&vfsmount_lock);
2712 if (error < 0)
2713 res = ERR_PTR(error);
2714 path_put(&root);
2715 return res;
2717 EXPORT_SYMBOL(d_path);
2720 * Helper function for dentry_operations.d_dname() members
2722 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2723 const char *fmt, ...)
2725 va_list args;
2726 char temp[64];
2727 int sz;
2729 va_start(args, fmt);
2730 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2731 va_end(args);
2733 if (sz > sizeof(temp) || sz > buflen)
2734 return ERR_PTR(-ENAMETOOLONG);
2736 buffer += buflen - sz;
2737 return memcpy(buffer, temp, sz);
2740 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2742 char *end = buffer + buflen;
2743 /* these dentries are never renamed, so d_lock is not needed */
2744 if (prepend(&end, &buflen, " (deleted)", 11) ||
2745 prepend_name(&end, &buflen, &dentry->d_name) ||
2746 prepend(&end, &buflen, "/", 1))
2747 end = ERR_PTR(-ENAMETOOLONG);
2748 return end;
2752 * Write full pathname from the root of the filesystem into the buffer.
2754 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2756 char *end = buf + buflen;
2757 char *retval;
2759 prepend(&end, &buflen, "\0", 1);
2760 if (buflen < 1)
2761 goto Elong;
2762 /* Get '/' right */
2763 retval = end-1;
2764 *retval = '/';
2766 while (!IS_ROOT(dentry)) {
2767 struct dentry *parent = dentry->d_parent;
2768 int error;
2770 prefetch(parent);
2771 spin_lock(&dentry->d_lock);
2772 error = prepend_name(&end, &buflen, &dentry->d_name);
2773 spin_unlock(&dentry->d_lock);
2774 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2775 goto Elong;
2777 retval = end;
2778 dentry = parent;
2780 return retval;
2781 Elong:
2782 return ERR_PTR(-ENAMETOOLONG);
2785 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2787 char *retval;
2789 write_seqlock(&rename_lock);
2790 retval = __dentry_path(dentry, buf, buflen);
2791 write_sequnlock(&rename_lock);
2793 return retval;
2795 EXPORT_SYMBOL(dentry_path_raw);
2797 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2799 char *p = NULL;
2800 char *retval;
2802 write_seqlock(&rename_lock);
2803 if (d_unlinked(dentry)) {
2804 p = buf + buflen;
2805 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2806 goto Elong;
2807 buflen++;
2809 retval = __dentry_path(dentry, buf, buflen);
2810 write_sequnlock(&rename_lock);
2811 if (!IS_ERR(retval) && p)
2812 *p = '/'; /* restore '/' overriden with '\0' */
2813 return retval;
2814 Elong:
2815 return ERR_PTR(-ENAMETOOLONG);
2819 * NOTE! The user-level library version returns a
2820 * character pointer. The kernel system call just
2821 * returns the length of the buffer filled (which
2822 * includes the ending '\0' character), or a negative
2823 * error value. So libc would do something like
2825 * char *getcwd(char * buf, size_t size)
2827 * int retval;
2829 * retval = sys_getcwd(buf, size);
2830 * if (retval >= 0)
2831 * return buf;
2832 * errno = -retval;
2833 * return NULL;
2836 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2838 int error;
2839 struct path pwd, root;
2840 char *page = (char *) __get_free_page(GFP_USER);
2842 if (!page)
2843 return -ENOMEM;
2845 get_fs_root_and_pwd(current->fs, &root, &pwd);
2847 error = -ENOENT;
2848 br_read_lock(&vfsmount_lock);
2849 write_seqlock(&rename_lock);
2850 if (!d_unlinked(pwd.dentry)) {
2851 unsigned long len;
2852 char *cwd = page + PAGE_SIZE;
2853 int buflen = PAGE_SIZE;
2855 prepend(&cwd, &buflen, "\0", 1);
2856 error = prepend_path(&pwd, &root, &cwd, &buflen);
2857 write_sequnlock(&rename_lock);
2858 br_read_unlock(&vfsmount_lock);
2860 if (error < 0)
2861 goto out;
2863 /* Unreachable from current root */
2864 if (error > 0) {
2865 error = prepend_unreachable(&cwd, &buflen);
2866 if (error)
2867 goto out;
2870 error = -ERANGE;
2871 len = PAGE_SIZE + page - cwd;
2872 if (len <= size) {
2873 error = len;
2874 if (copy_to_user(buf, cwd, len))
2875 error = -EFAULT;
2877 } else {
2878 write_sequnlock(&rename_lock);
2879 br_read_unlock(&vfsmount_lock);
2882 out:
2883 path_put(&pwd);
2884 path_put(&root);
2885 free_page((unsigned long) page);
2886 return error;
2890 * Test whether new_dentry is a subdirectory of old_dentry.
2892 * Trivially implemented using the dcache structure
2896 * is_subdir - is new dentry a subdirectory of old_dentry
2897 * @new_dentry: new dentry
2898 * @old_dentry: old dentry
2900 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2901 * Returns 0 otherwise.
2902 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2905 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2907 int result;
2908 unsigned seq;
2910 if (new_dentry == old_dentry)
2911 return 1;
2913 do {
2914 /* for restarting inner loop in case of seq retry */
2915 seq = read_seqbegin(&rename_lock);
2917 * Need rcu_readlock to protect against the d_parent trashing
2918 * due to d_move
2920 rcu_read_lock();
2921 if (d_ancestor(old_dentry, new_dentry))
2922 result = 1;
2923 else
2924 result = 0;
2925 rcu_read_unlock();
2926 } while (read_seqretry(&rename_lock, seq));
2928 return result;
2931 void d_genocide(struct dentry *root)
2933 struct dentry *this_parent;
2934 struct list_head *next;
2935 unsigned seq;
2936 int locked = 0;
2938 seq = read_seqbegin(&rename_lock);
2939 again:
2940 this_parent = root;
2941 spin_lock(&this_parent->d_lock);
2942 repeat:
2943 next = this_parent->d_subdirs.next;
2944 resume:
2945 while (next != &this_parent->d_subdirs) {
2946 struct list_head *tmp = next;
2947 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
2948 next = tmp->next;
2950 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2951 if (d_unhashed(dentry) || !dentry->d_inode) {
2952 spin_unlock(&dentry->d_lock);
2953 continue;
2955 if (!list_empty(&dentry->d_subdirs)) {
2956 spin_unlock(&this_parent->d_lock);
2957 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2958 this_parent = dentry;
2959 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2960 goto repeat;
2962 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2963 dentry->d_flags |= DCACHE_GENOCIDE;
2964 dentry->d_count--;
2966 spin_unlock(&dentry->d_lock);
2968 rcu_read_lock();
2969 ascend:
2970 if (this_parent != root) {
2971 struct dentry *child = this_parent;
2972 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2973 this_parent->d_flags |= DCACHE_GENOCIDE;
2974 this_parent->d_count--;
2976 this_parent = child->d_parent;
2978 spin_unlock(&child->d_lock);
2979 spin_lock(&this_parent->d_lock);
2981 /* might go back up the wrong parent if we have had a rename. */
2982 if (!locked && read_seqretry(&rename_lock, seq))
2983 goto rename_retry;
2984 /* go into the first sibling still alive */
2985 do {
2986 next = child->d_child.next;
2987 if (next == &this_parent->d_subdirs)
2988 goto ascend;
2989 child = list_entry(next, struct dentry, d_child);
2990 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
2991 rcu_read_unlock();
2992 goto resume;
2994 if (!locked && read_seqretry(&rename_lock, seq))
2995 goto rename_retry;
2996 spin_unlock(&this_parent->d_lock);
2997 rcu_read_unlock();
2998 if (locked)
2999 write_sequnlock(&rename_lock);
3000 return;
3002 rename_retry:
3003 spin_unlock(&this_parent->d_lock);
3004 rcu_read_unlock();
3005 if (locked)
3006 goto again;
3007 locked = 1;
3008 write_seqlock(&rename_lock);
3009 goto again;
3013 * find_inode_number - check for dentry with name
3014 * @dir: directory to check
3015 * @name: Name to find.
3017 * Check whether a dentry already exists for the given name,
3018 * and return the inode number if it has an inode. Otherwise
3019 * 0 is returned.
3021 * This routine is used to post-process directory listings for
3022 * filesystems using synthetic inode numbers, and is necessary
3023 * to keep getcwd() working.
3026 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3028 struct dentry * dentry;
3029 ino_t ino = 0;
3031 dentry = d_hash_and_lookup(dir, name);
3032 if (!IS_ERR_OR_NULL(dentry)) {
3033 if (dentry->d_inode)
3034 ino = dentry->d_inode->i_ino;
3035 dput(dentry);
3037 return ino;
3039 EXPORT_SYMBOL(find_inode_number);
3041 static __initdata unsigned long dhash_entries;
3042 static int __init set_dhash_entries(char *str)
3044 if (!str)
3045 return 0;
3046 dhash_entries = simple_strtoul(str, &str, 0);
3047 return 1;
3049 __setup("dhash_entries=", set_dhash_entries);
3051 static void __init dcache_init_early(void)
3053 unsigned int loop;
3055 /* If hashes are distributed across NUMA nodes, defer
3056 * hash allocation until vmalloc space is available.
3058 if (hashdist)
3059 return;
3061 dentry_hashtable =
3062 alloc_large_system_hash("Dentry cache",
3063 sizeof(struct hlist_bl_head),
3064 dhash_entries,
3066 HASH_EARLY,
3067 &d_hash_shift,
3068 &d_hash_mask,
3072 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3073 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3076 static void __init dcache_init(void)
3078 unsigned int loop;
3081 * A constructor could be added for stable state like the lists,
3082 * but it is probably not worth it because of the cache nature
3083 * of the dcache.
3085 dentry_cache = KMEM_CACHE(dentry,
3086 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3088 /* Hash may have been set up in dcache_init_early */
3089 if (!hashdist)
3090 return;
3092 dentry_hashtable =
3093 alloc_large_system_hash("Dentry cache",
3094 sizeof(struct hlist_bl_head),
3095 dhash_entries,
3098 &d_hash_shift,
3099 &d_hash_mask,
3103 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3104 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3107 /* SLAB cache for __getname() consumers */
3108 struct kmem_cache *names_cachep __read_mostly;
3109 EXPORT_SYMBOL(names_cachep);
3111 EXPORT_SYMBOL(d_genocide);
3113 void __init vfs_caches_init_early(void)
3115 dcache_init_early();
3116 inode_init_early();
3119 void __init vfs_caches_init(unsigned long mempages)
3121 unsigned long reserve;
3123 /* Base hash sizes on available memory, with a reserve equal to
3124 150% of current kernel size */
3126 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3127 mempages -= reserve;
3129 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3130 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3132 dcache_init();
3133 inode_init();
3134 files_init(mempages);
3135 mnt_init();
3136 bdev_cache_init();
3137 chrdev_init();