ALSA: seq: Fix missing NULL check at remove_events ioctl
[linux/fpc-iii.git] / fs / gfs2 / aops.c
blob76251600cbeafbd7f47d08926a65cced29d29b48
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/aio.h>
25 #include "gfs2.h"
26 #include "incore.h"
27 #include "bmap.h"
28 #include "glock.h"
29 #include "inode.h"
30 #include "log.h"
31 #include "meta_io.h"
32 #include "quota.h"
33 #include "trans.h"
34 #include "rgrp.h"
35 #include "super.h"
36 #include "util.h"
37 #include "glops.h"
40 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 unsigned int from, unsigned int to)
43 struct buffer_head *head = page_buffers(page);
44 unsigned int bsize = head->b_size;
45 struct buffer_head *bh;
46 unsigned int start, end;
48 for (bh = head, start = 0; bh != head || !start;
49 bh = bh->b_this_page, start = end) {
50 end = start + bsize;
51 if (end <= from || start >= to)
52 continue;
53 if (gfs2_is_jdata(ip))
54 set_buffer_uptodate(bh);
55 gfs2_trans_add_data(ip->i_gl, bh);
59 /**
60 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
61 * @inode: The inode
62 * @lblock: The block number to look up
63 * @bh_result: The buffer head to return the result in
64 * @create: Non-zero if we may add block to the file
66 * Returns: errno
69 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
70 struct buffer_head *bh_result, int create)
72 int error;
74 error = gfs2_block_map(inode, lblock, bh_result, 0);
75 if (error)
76 return error;
77 if (!buffer_mapped(bh_result))
78 return -EIO;
79 return 0;
82 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
83 struct buffer_head *bh_result, int create)
85 return gfs2_block_map(inode, lblock, bh_result, 0);
88 /**
89 * gfs2_writepage_common - Common bits of writepage
90 * @page: The page to be written
91 * @wbc: The writeback control
93 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
96 static int gfs2_writepage_common(struct page *page,
97 struct writeback_control *wbc)
99 struct inode *inode = page->mapping->host;
100 struct gfs2_inode *ip = GFS2_I(inode);
101 struct gfs2_sbd *sdp = GFS2_SB(inode);
102 loff_t i_size = i_size_read(inode);
103 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
104 unsigned offset;
106 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
107 goto out;
108 if (current->journal_info)
109 goto redirty;
110 /* Is the page fully outside i_size? (truncate in progress) */
111 offset = i_size & (PAGE_CACHE_SIZE-1);
112 if (page->index > end_index || (page->index == end_index && !offset)) {
113 page->mapping->a_ops->invalidatepage(page, 0);
114 goto out;
116 return 1;
117 redirty:
118 redirty_page_for_writepage(wbc, page);
119 out:
120 unlock_page(page);
121 return 0;
125 * gfs2_writeback_writepage - Write page for writeback mappings
126 * @page: The page
127 * @wbc: The writeback control
131 static int gfs2_writeback_writepage(struct page *page,
132 struct writeback_control *wbc)
134 int ret;
136 ret = gfs2_writepage_common(page, wbc);
137 if (ret <= 0)
138 return ret;
140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
144 * gfs2_ordered_writepage - Write page for ordered data files
145 * @page: The page to write
146 * @wbc: The writeback control
150 static int gfs2_ordered_writepage(struct page *page,
151 struct writeback_control *wbc)
153 struct inode *inode = page->mapping->host;
154 struct gfs2_inode *ip = GFS2_I(inode);
155 int ret;
157 ret = gfs2_writepage_common(page, wbc);
158 if (ret <= 0)
159 return ret;
161 if (!page_has_buffers(page)) {
162 create_empty_buffers(page, inode->i_sb->s_blocksize,
163 (1 << BH_Dirty)|(1 << BH_Uptodate));
165 gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
166 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
170 * __gfs2_jdata_writepage - The core of jdata writepage
171 * @page: The page to write
172 * @wbc: The writeback control
174 * This is shared between writepage and writepages and implements the
175 * core of the writepage operation. If a transaction is required then
176 * PageChecked will have been set and the transaction will have
177 * already been started before this is called.
180 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
182 struct inode *inode = page->mapping->host;
183 struct gfs2_inode *ip = GFS2_I(inode);
184 struct gfs2_sbd *sdp = GFS2_SB(inode);
186 if (PageChecked(page)) {
187 ClearPageChecked(page);
188 if (!page_has_buffers(page)) {
189 create_empty_buffers(page, inode->i_sb->s_blocksize,
190 (1 << BH_Dirty)|(1 << BH_Uptodate));
192 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
194 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
198 * gfs2_jdata_writepage - Write complete page
199 * @page: Page to write
201 * Returns: errno
205 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
207 struct inode *inode = page->mapping->host;
208 struct gfs2_sbd *sdp = GFS2_SB(inode);
209 int ret;
210 int done_trans = 0;
212 if (PageChecked(page)) {
213 if (wbc->sync_mode != WB_SYNC_ALL)
214 goto out_ignore;
215 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
216 if (ret)
217 goto out_ignore;
218 done_trans = 1;
220 ret = gfs2_writepage_common(page, wbc);
221 if (ret > 0)
222 ret = __gfs2_jdata_writepage(page, wbc);
223 if (done_trans)
224 gfs2_trans_end(sdp);
225 return ret;
227 out_ignore:
228 redirty_page_for_writepage(wbc, page);
229 unlock_page(page);
230 return 0;
234 * gfs2_writepages - Write a bunch of dirty pages back to disk
235 * @mapping: The mapping to write
236 * @wbc: Write-back control
238 * Used for both ordered and writeback modes.
240 static int gfs2_writepages(struct address_space *mapping,
241 struct writeback_control *wbc)
243 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
247 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
248 * @mapping: The mapping
249 * @wbc: The writeback control
250 * @writepage: The writepage function to call for each page
251 * @pvec: The vector of pages
252 * @nr_pages: The number of pages to write
254 * Returns: non-zero if loop should terminate, zero otherwise
257 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
258 struct writeback_control *wbc,
259 struct pagevec *pvec,
260 int nr_pages, pgoff_t end)
262 struct inode *inode = mapping->host;
263 struct gfs2_sbd *sdp = GFS2_SB(inode);
264 loff_t i_size = i_size_read(inode);
265 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
266 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
267 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
268 int i;
269 int ret;
271 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
272 if (ret < 0)
273 return ret;
275 for(i = 0; i < nr_pages; i++) {
276 struct page *page = pvec->pages[i];
278 lock_page(page);
280 if (unlikely(page->mapping != mapping)) {
281 unlock_page(page);
282 continue;
285 if (!wbc->range_cyclic && page->index > end) {
286 ret = 1;
287 unlock_page(page);
288 continue;
291 if (wbc->sync_mode != WB_SYNC_NONE)
292 wait_on_page_writeback(page);
294 if (PageWriteback(page) ||
295 !clear_page_dirty_for_io(page)) {
296 unlock_page(page);
297 continue;
300 /* Is the page fully outside i_size? (truncate in progress) */
301 if (page->index > end_index || (page->index == end_index && !offset)) {
302 page->mapping->a_ops->invalidatepage(page, 0);
303 unlock_page(page);
304 continue;
307 ret = __gfs2_jdata_writepage(page, wbc);
309 if (ret || (--(wbc->nr_to_write) <= 0))
310 ret = 1;
312 gfs2_trans_end(sdp);
313 return ret;
317 * gfs2_write_cache_jdata - Like write_cache_pages but different
318 * @mapping: The mapping to write
319 * @wbc: The writeback control
320 * @writepage: The writepage function to call
321 * @data: The data to pass to writepage
323 * The reason that we use our own function here is that we need to
324 * start transactions before we grab page locks. This allows us
325 * to get the ordering right.
328 static int gfs2_write_cache_jdata(struct address_space *mapping,
329 struct writeback_control *wbc)
331 int ret = 0;
332 int done = 0;
333 struct pagevec pvec;
334 int nr_pages;
335 pgoff_t index;
336 pgoff_t end;
337 int scanned = 0;
338 int range_whole = 0;
340 pagevec_init(&pvec, 0);
341 if (wbc->range_cyclic) {
342 index = mapping->writeback_index; /* Start from prev offset */
343 end = -1;
344 } else {
345 index = wbc->range_start >> PAGE_CACHE_SHIFT;
346 end = wbc->range_end >> PAGE_CACHE_SHIFT;
347 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
348 range_whole = 1;
349 scanned = 1;
352 retry:
353 while (!done && (index <= end) &&
354 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
355 PAGECACHE_TAG_DIRTY,
356 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
357 scanned = 1;
358 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
359 if (ret)
360 done = 1;
361 if (ret > 0)
362 ret = 0;
364 pagevec_release(&pvec);
365 cond_resched();
368 if (!scanned && !done) {
370 * We hit the last page and there is more work to be done: wrap
371 * back to the start of the file
373 scanned = 1;
374 index = 0;
375 goto retry;
378 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
379 mapping->writeback_index = index;
380 return ret;
385 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
386 * @mapping: The mapping to write
387 * @wbc: The writeback control
391 static int gfs2_jdata_writepages(struct address_space *mapping,
392 struct writeback_control *wbc)
394 struct gfs2_inode *ip = GFS2_I(mapping->host);
395 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
396 int ret;
398 ret = gfs2_write_cache_jdata(mapping, wbc);
399 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
400 gfs2_log_flush(sdp, ip->i_gl);
401 ret = gfs2_write_cache_jdata(mapping, wbc);
403 return ret;
407 * stuffed_readpage - Fill in a Linux page with stuffed file data
408 * @ip: the inode
409 * @page: the page
411 * Returns: errno
414 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
416 struct buffer_head *dibh;
417 u64 dsize = i_size_read(&ip->i_inode);
418 void *kaddr;
419 int error;
422 * Due to the order of unstuffing files and ->fault(), we can be
423 * asked for a zero page in the case of a stuffed file being extended,
424 * so we need to supply one here. It doesn't happen often.
426 if (unlikely(page->index)) {
427 zero_user(page, 0, PAGE_CACHE_SIZE);
428 SetPageUptodate(page);
429 return 0;
432 error = gfs2_meta_inode_buffer(ip, &dibh);
433 if (error)
434 return error;
436 kaddr = kmap_atomic(page);
437 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
438 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
439 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
440 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
441 kunmap_atomic(kaddr);
442 flush_dcache_page(page);
443 brelse(dibh);
444 SetPageUptodate(page);
446 return 0;
451 * __gfs2_readpage - readpage
452 * @file: The file to read a page for
453 * @page: The page to read
455 * This is the core of gfs2's readpage. Its used by the internal file
456 * reading code as in that case we already hold the glock. Also its
457 * called by gfs2_readpage() once the required lock has been granted.
461 static int __gfs2_readpage(void *file, struct page *page)
463 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
464 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
465 int error;
467 if (gfs2_is_stuffed(ip)) {
468 error = stuffed_readpage(ip, page);
469 unlock_page(page);
470 } else {
471 error = mpage_readpage(page, gfs2_block_map);
474 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
475 return -EIO;
477 return error;
481 * gfs2_readpage - read a page of a file
482 * @file: The file to read
483 * @page: The page of the file
485 * This deals with the locking required. We have to unlock and
486 * relock the page in order to get the locking in the right
487 * order.
490 static int gfs2_readpage(struct file *file, struct page *page)
492 struct address_space *mapping = page->mapping;
493 struct gfs2_inode *ip = GFS2_I(mapping->host);
494 struct gfs2_holder gh;
495 int error;
497 unlock_page(page);
498 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
499 error = gfs2_glock_nq(&gh);
500 if (unlikely(error))
501 goto out;
502 error = AOP_TRUNCATED_PAGE;
503 lock_page(page);
504 if (page->mapping == mapping && !PageUptodate(page))
505 error = __gfs2_readpage(file, page);
506 else
507 unlock_page(page);
508 gfs2_glock_dq(&gh);
509 out:
510 gfs2_holder_uninit(&gh);
511 if (error && error != AOP_TRUNCATED_PAGE)
512 lock_page(page);
513 return error;
517 * gfs2_internal_read - read an internal file
518 * @ip: The gfs2 inode
519 * @buf: The buffer to fill
520 * @pos: The file position
521 * @size: The amount to read
525 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
526 unsigned size)
528 struct address_space *mapping = ip->i_inode.i_mapping;
529 unsigned long index = *pos / PAGE_CACHE_SIZE;
530 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
531 unsigned copied = 0;
532 unsigned amt;
533 struct page *page;
534 void *p;
536 do {
537 amt = size - copied;
538 if (offset + size > PAGE_CACHE_SIZE)
539 amt = PAGE_CACHE_SIZE - offset;
540 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
541 if (IS_ERR(page))
542 return PTR_ERR(page);
543 p = kmap_atomic(page);
544 memcpy(buf + copied, p + offset, amt);
545 kunmap_atomic(p);
546 mark_page_accessed(page);
547 page_cache_release(page);
548 copied += amt;
549 index++;
550 offset = 0;
551 } while(copied < size);
552 (*pos) += size;
553 return size;
557 * gfs2_readpages - Read a bunch of pages at once
559 * Some notes:
560 * 1. This is only for readahead, so we can simply ignore any things
561 * which are slightly inconvenient (such as locking conflicts between
562 * the page lock and the glock) and return having done no I/O. Its
563 * obviously not something we'd want to do on too regular a basis.
564 * Any I/O we ignore at this time will be done via readpage later.
565 * 2. We don't handle stuffed files here we let readpage do the honours.
566 * 3. mpage_readpages() does most of the heavy lifting in the common case.
567 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
570 static int gfs2_readpages(struct file *file, struct address_space *mapping,
571 struct list_head *pages, unsigned nr_pages)
573 struct inode *inode = mapping->host;
574 struct gfs2_inode *ip = GFS2_I(inode);
575 struct gfs2_sbd *sdp = GFS2_SB(inode);
576 struct gfs2_holder gh;
577 int ret;
579 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
580 ret = gfs2_glock_nq(&gh);
581 if (unlikely(ret))
582 goto out_uninit;
583 if (!gfs2_is_stuffed(ip))
584 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
585 gfs2_glock_dq(&gh);
586 out_uninit:
587 gfs2_holder_uninit(&gh);
588 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
589 ret = -EIO;
590 return ret;
594 * gfs2_write_begin - Begin to write to a file
595 * @file: The file to write to
596 * @mapping: The mapping in which to write
597 * @pos: The file offset at which to start writing
598 * @len: Length of the write
599 * @flags: Various flags
600 * @pagep: Pointer to return the page
601 * @fsdata: Pointer to return fs data (unused by GFS2)
603 * Returns: errno
606 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
607 loff_t pos, unsigned len, unsigned flags,
608 struct page **pagep, void **fsdata)
610 struct gfs2_inode *ip = GFS2_I(mapping->host);
611 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
612 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
613 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
614 unsigned requested = 0;
615 int alloc_required;
616 int error = 0;
617 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
618 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
619 struct page *page;
621 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
622 error = gfs2_glock_nq(&ip->i_gh);
623 if (unlikely(error))
624 goto out_uninit;
625 if (&ip->i_inode == sdp->sd_rindex) {
626 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
627 GL_NOCACHE, &m_ip->i_gh);
628 if (unlikely(error)) {
629 gfs2_glock_dq(&ip->i_gh);
630 goto out_uninit;
634 alloc_required = gfs2_write_alloc_required(ip, pos, len);
636 if (alloc_required || gfs2_is_jdata(ip))
637 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
639 if (alloc_required) {
640 error = gfs2_quota_lock_check(ip);
641 if (error)
642 goto out_unlock;
644 requested = data_blocks + ind_blocks;
645 error = gfs2_inplace_reserve(ip, requested, 0);
646 if (error)
647 goto out_qunlock;
650 rblocks = RES_DINODE + ind_blocks;
651 if (gfs2_is_jdata(ip))
652 rblocks += data_blocks ? data_blocks : 1;
653 if (ind_blocks || data_blocks)
654 rblocks += RES_STATFS + RES_QUOTA;
655 if (&ip->i_inode == sdp->sd_rindex)
656 rblocks += 2 * RES_STATFS;
657 if (alloc_required)
658 rblocks += gfs2_rg_blocks(ip, requested);
660 error = gfs2_trans_begin(sdp, rblocks,
661 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
662 if (error)
663 goto out_trans_fail;
665 error = -ENOMEM;
666 flags |= AOP_FLAG_NOFS;
667 page = grab_cache_page_write_begin(mapping, index, flags);
668 *pagep = page;
669 if (unlikely(!page))
670 goto out_endtrans;
672 if (gfs2_is_stuffed(ip)) {
673 error = 0;
674 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
675 error = gfs2_unstuff_dinode(ip, page);
676 if (error == 0)
677 goto prepare_write;
678 } else if (!PageUptodate(page)) {
679 error = stuffed_readpage(ip, page);
681 goto out;
684 prepare_write:
685 error = __block_write_begin(page, from, len, gfs2_block_map);
686 out:
687 if (error == 0)
688 return 0;
690 unlock_page(page);
691 page_cache_release(page);
693 gfs2_trans_end(sdp);
694 if (pos + len > ip->i_inode.i_size)
695 gfs2_trim_blocks(&ip->i_inode);
696 goto out_trans_fail;
698 out_endtrans:
699 gfs2_trans_end(sdp);
700 out_trans_fail:
701 if (alloc_required) {
702 gfs2_inplace_release(ip);
703 out_qunlock:
704 gfs2_quota_unlock(ip);
706 out_unlock:
707 if (&ip->i_inode == sdp->sd_rindex) {
708 gfs2_glock_dq(&m_ip->i_gh);
709 gfs2_holder_uninit(&m_ip->i_gh);
711 gfs2_glock_dq(&ip->i_gh);
712 out_uninit:
713 gfs2_holder_uninit(&ip->i_gh);
714 return error;
718 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
719 * @inode: the rindex inode
721 static void adjust_fs_space(struct inode *inode)
723 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
724 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
725 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
726 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
727 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
728 struct buffer_head *m_bh, *l_bh;
729 u64 fs_total, new_free;
731 /* Total up the file system space, according to the latest rindex. */
732 fs_total = gfs2_ri_total(sdp);
733 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
734 return;
736 spin_lock(&sdp->sd_statfs_spin);
737 gfs2_statfs_change_in(m_sc, m_bh->b_data +
738 sizeof(struct gfs2_dinode));
739 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
740 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
741 else
742 new_free = 0;
743 spin_unlock(&sdp->sd_statfs_spin);
744 fs_warn(sdp, "File system extended by %llu blocks.\n",
745 (unsigned long long)new_free);
746 gfs2_statfs_change(sdp, new_free, new_free, 0);
748 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
749 goto out;
750 update_statfs(sdp, m_bh, l_bh);
751 brelse(l_bh);
752 out:
753 brelse(m_bh);
757 * gfs2_stuffed_write_end - Write end for stuffed files
758 * @inode: The inode
759 * @dibh: The buffer_head containing the on-disk inode
760 * @pos: The file position
761 * @len: The length of the write
762 * @copied: How much was actually copied by the VFS
763 * @page: The page
765 * This copies the data from the page into the inode block after
766 * the inode data structure itself.
768 * Returns: errno
770 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
771 loff_t pos, unsigned len, unsigned copied,
772 struct page *page)
774 struct gfs2_inode *ip = GFS2_I(inode);
775 struct gfs2_sbd *sdp = GFS2_SB(inode);
776 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
777 u64 to = pos + copied;
778 void *kaddr;
779 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
781 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
782 kaddr = kmap_atomic(page);
783 memcpy(buf + pos, kaddr + pos, copied);
784 memset(kaddr + pos + copied, 0, len - copied);
785 flush_dcache_page(page);
786 kunmap_atomic(kaddr);
788 if (!PageUptodate(page))
789 SetPageUptodate(page);
790 unlock_page(page);
791 page_cache_release(page);
793 if (copied) {
794 if (inode->i_size < to)
795 i_size_write(inode, to);
796 mark_inode_dirty(inode);
799 if (inode == sdp->sd_rindex) {
800 adjust_fs_space(inode);
801 sdp->sd_rindex_uptodate = 0;
804 brelse(dibh);
805 gfs2_trans_end(sdp);
806 if (inode == sdp->sd_rindex) {
807 gfs2_glock_dq(&m_ip->i_gh);
808 gfs2_holder_uninit(&m_ip->i_gh);
810 gfs2_glock_dq(&ip->i_gh);
811 gfs2_holder_uninit(&ip->i_gh);
812 return copied;
816 * gfs2_write_end
817 * @file: The file to write to
818 * @mapping: The address space to write to
819 * @pos: The file position
820 * @len: The length of the data
821 * @copied:
822 * @page: The page that has been written
823 * @fsdata: The fsdata (unused in GFS2)
825 * The main write_end function for GFS2. We have a separate one for
826 * stuffed files as they are slightly different, otherwise we just
827 * put our locking around the VFS provided functions.
829 * Returns: errno
832 static int gfs2_write_end(struct file *file, struct address_space *mapping,
833 loff_t pos, unsigned len, unsigned copied,
834 struct page *page, void *fsdata)
836 struct inode *inode = page->mapping->host;
837 struct gfs2_inode *ip = GFS2_I(inode);
838 struct gfs2_sbd *sdp = GFS2_SB(inode);
839 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
840 struct buffer_head *dibh;
841 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
842 unsigned int to = from + len;
843 int ret;
845 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
847 ret = gfs2_meta_inode_buffer(ip, &dibh);
848 if (unlikely(ret)) {
849 unlock_page(page);
850 page_cache_release(page);
851 goto failed;
854 gfs2_trans_add_meta(ip->i_gl, dibh);
856 if (gfs2_is_stuffed(ip))
857 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
859 if (!gfs2_is_writeback(ip))
860 gfs2_page_add_databufs(ip, page, from, to);
862 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
864 if (inode == sdp->sd_rindex) {
865 adjust_fs_space(inode);
866 sdp->sd_rindex_uptodate = 0;
869 brelse(dibh);
870 failed:
871 gfs2_trans_end(sdp);
872 gfs2_inplace_release(ip);
873 if (ip->i_res->rs_qa_qd_num)
874 gfs2_quota_unlock(ip);
875 if (inode == sdp->sd_rindex) {
876 gfs2_glock_dq(&m_ip->i_gh);
877 gfs2_holder_uninit(&m_ip->i_gh);
879 gfs2_glock_dq(&ip->i_gh);
880 gfs2_holder_uninit(&ip->i_gh);
881 return ret;
885 * gfs2_set_page_dirty - Page dirtying function
886 * @page: The page to dirty
888 * Returns: 1 if it dirtyed the page, or 0 otherwise
891 static int gfs2_set_page_dirty(struct page *page)
893 SetPageChecked(page);
894 return __set_page_dirty_buffers(page);
898 * gfs2_bmap - Block map function
899 * @mapping: Address space info
900 * @lblock: The block to map
902 * Returns: The disk address for the block or 0 on hole or error
905 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
907 struct gfs2_inode *ip = GFS2_I(mapping->host);
908 struct gfs2_holder i_gh;
909 sector_t dblock = 0;
910 int error;
912 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
913 if (error)
914 return 0;
916 if (!gfs2_is_stuffed(ip))
917 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
919 gfs2_glock_dq_uninit(&i_gh);
921 return dblock;
924 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
926 struct gfs2_bufdata *bd;
928 lock_buffer(bh);
929 gfs2_log_lock(sdp);
930 clear_buffer_dirty(bh);
931 bd = bh->b_private;
932 if (bd) {
933 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
934 list_del_init(&bd->bd_list);
935 else
936 gfs2_remove_from_journal(bh, current->journal_info, 0);
938 bh->b_bdev = NULL;
939 clear_buffer_mapped(bh);
940 clear_buffer_req(bh);
941 clear_buffer_new(bh);
942 gfs2_log_unlock(sdp);
943 unlock_buffer(bh);
946 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
948 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
949 struct buffer_head *bh, *head;
950 unsigned long pos = 0;
952 BUG_ON(!PageLocked(page));
953 if (offset == 0)
954 ClearPageChecked(page);
955 if (!page_has_buffers(page))
956 goto out;
958 bh = head = page_buffers(page);
959 do {
960 if (offset <= pos)
961 gfs2_discard(sdp, bh);
962 pos += bh->b_size;
963 bh = bh->b_this_page;
964 } while (bh != head);
965 out:
966 if (offset == 0)
967 try_to_release_page(page, 0);
971 * gfs2_ok_for_dio - check that dio is valid on this file
972 * @ip: The inode
973 * @rw: READ or WRITE
974 * @offset: The offset at which we are reading or writing
976 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
977 * 1 (to accept the i/o request)
979 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
982 * Should we return an error here? I can't see that O_DIRECT for
983 * a stuffed file makes any sense. For now we'll silently fall
984 * back to buffered I/O
986 if (gfs2_is_stuffed(ip))
987 return 0;
989 if (offset >= i_size_read(&ip->i_inode))
990 return 0;
991 return 1;
996 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
997 const struct iovec *iov, loff_t offset,
998 unsigned long nr_segs)
1000 struct file *file = iocb->ki_filp;
1001 struct inode *inode = file->f_mapping->host;
1002 struct address_space *mapping = inode->i_mapping;
1003 struct gfs2_inode *ip = GFS2_I(inode);
1004 struct gfs2_holder gh;
1005 int rv;
1008 * Deferred lock, even if its a write, since we do no allocation
1009 * on this path. All we need change is atime, and this lock mode
1010 * ensures that other nodes have flushed their buffered read caches
1011 * (i.e. their page cache entries for this inode). We do not,
1012 * unfortunately have the option of only flushing a range like
1013 * the VFS does.
1015 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1016 rv = gfs2_glock_nq(&gh);
1017 if (rv)
1018 return rv;
1019 rv = gfs2_ok_for_dio(ip, rw, offset);
1020 if (rv != 1)
1021 goto out; /* dio not valid, fall back to buffered i/o */
1024 * Now since we are holding a deferred (CW) lock at this point, you
1025 * might be wondering why this is ever needed. There is a case however
1026 * where we've granted a deferred local lock against a cached exclusive
1027 * glock. That is ok provided all granted local locks are deferred, but
1028 * it also means that it is possible to encounter pages which are
1029 * cached and possibly also mapped. So here we check for that and sort
1030 * them out ahead of the dio. The glock state machine will take care of
1031 * everything else.
1033 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1034 * the first place, mapping->nr_pages will always be zero.
1036 if (mapping->nrpages) {
1037 loff_t lstart = offset & (PAGE_CACHE_SIZE - 1);
1038 loff_t len = iov_length(iov, nr_segs);
1039 loff_t end = PAGE_ALIGN(offset + len) - 1;
1041 rv = 0;
1042 if (len == 0)
1043 goto out;
1044 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1045 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1046 rv = filemap_write_and_wait_range(mapping, lstart, end);
1047 if (rv)
1048 return rv;
1049 truncate_inode_pages_range(mapping, lstart, end);
1052 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1053 offset, nr_segs, gfs2_get_block_direct,
1054 NULL, NULL, 0);
1055 out:
1056 gfs2_glock_dq(&gh);
1057 gfs2_holder_uninit(&gh);
1058 return rv;
1062 * gfs2_releasepage - free the metadata associated with a page
1063 * @page: the page that's being released
1064 * @gfp_mask: passed from Linux VFS, ignored by us
1066 * Call try_to_free_buffers() if the buffers in this page can be
1067 * released.
1069 * Returns: 0
1072 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1074 struct address_space *mapping = page->mapping;
1075 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1076 struct buffer_head *bh, *head;
1077 struct gfs2_bufdata *bd;
1079 if (!page_has_buffers(page))
1080 return 0;
1082 gfs2_log_lock(sdp);
1083 spin_lock(&sdp->sd_ail_lock);
1084 head = bh = page_buffers(page);
1085 do {
1086 if (atomic_read(&bh->b_count))
1087 goto cannot_release;
1088 bd = bh->b_private;
1089 if (bd && bd->bd_tr)
1090 goto cannot_release;
1091 if (buffer_pinned(bh) || buffer_dirty(bh))
1092 goto not_possible;
1093 bh = bh->b_this_page;
1094 } while(bh != head);
1095 spin_unlock(&sdp->sd_ail_lock);
1096 gfs2_log_unlock(sdp);
1098 head = bh = page_buffers(page);
1099 do {
1100 gfs2_log_lock(sdp);
1101 bd = bh->b_private;
1102 if (bd) {
1103 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1104 if (!list_empty(&bd->bd_list)) {
1105 if (!buffer_pinned(bh))
1106 list_del_init(&bd->bd_list);
1107 else
1108 bd = NULL;
1110 if (bd)
1111 bd->bd_bh = NULL;
1112 bh->b_private = NULL;
1114 gfs2_log_unlock(sdp);
1115 if (bd)
1116 kmem_cache_free(gfs2_bufdata_cachep, bd);
1118 bh = bh->b_this_page;
1119 } while (bh != head);
1121 return try_to_free_buffers(page);
1123 not_possible: /* Should never happen */
1124 WARN_ON(buffer_dirty(bh));
1125 WARN_ON(buffer_pinned(bh));
1126 cannot_release:
1127 spin_unlock(&sdp->sd_ail_lock);
1128 gfs2_log_unlock(sdp);
1129 return 0;
1132 static const struct address_space_operations gfs2_writeback_aops = {
1133 .writepage = gfs2_writeback_writepage,
1134 .writepages = gfs2_writepages,
1135 .readpage = gfs2_readpage,
1136 .readpages = gfs2_readpages,
1137 .write_begin = gfs2_write_begin,
1138 .write_end = gfs2_write_end,
1139 .bmap = gfs2_bmap,
1140 .invalidatepage = gfs2_invalidatepage,
1141 .releasepage = gfs2_releasepage,
1142 .direct_IO = gfs2_direct_IO,
1143 .migratepage = buffer_migrate_page,
1144 .is_partially_uptodate = block_is_partially_uptodate,
1145 .error_remove_page = generic_error_remove_page,
1148 static const struct address_space_operations gfs2_ordered_aops = {
1149 .writepage = gfs2_ordered_writepage,
1150 .writepages = gfs2_writepages,
1151 .readpage = gfs2_readpage,
1152 .readpages = gfs2_readpages,
1153 .write_begin = gfs2_write_begin,
1154 .write_end = gfs2_write_end,
1155 .set_page_dirty = gfs2_set_page_dirty,
1156 .bmap = gfs2_bmap,
1157 .invalidatepage = gfs2_invalidatepage,
1158 .releasepage = gfs2_releasepage,
1159 .direct_IO = gfs2_direct_IO,
1160 .migratepage = buffer_migrate_page,
1161 .is_partially_uptodate = block_is_partially_uptodate,
1162 .error_remove_page = generic_error_remove_page,
1165 static const struct address_space_operations gfs2_jdata_aops = {
1166 .writepage = gfs2_jdata_writepage,
1167 .writepages = gfs2_jdata_writepages,
1168 .readpage = gfs2_readpage,
1169 .readpages = gfs2_readpages,
1170 .write_begin = gfs2_write_begin,
1171 .write_end = gfs2_write_end,
1172 .set_page_dirty = gfs2_set_page_dirty,
1173 .bmap = gfs2_bmap,
1174 .invalidatepage = gfs2_invalidatepage,
1175 .releasepage = gfs2_releasepage,
1176 .is_partially_uptodate = block_is_partially_uptodate,
1177 .error_remove_page = generic_error_remove_page,
1180 void gfs2_set_aops(struct inode *inode)
1182 struct gfs2_inode *ip = GFS2_I(inode);
1184 if (gfs2_is_writeback(ip))
1185 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1186 else if (gfs2_is_ordered(ip))
1187 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1188 else if (gfs2_is_jdata(ip))
1189 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1190 else
1191 BUG();