2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
46 struct buffer_head
*bh
, *head
;
48 *delalloc
= *unwritten
= 0;
50 bh
= head
= page_buffers(page
);
52 if (buffer_unwritten(bh
))
54 else if (buffer_delay(bh
))
56 } while ((bh
= bh
->b_this_page
) != head
);
59 STATIC
struct block_device
*
60 xfs_find_bdev_for_inode(
63 struct xfs_inode
*ip
= XFS_I(inode
);
64 struct xfs_mount
*mp
= ip
->i_mount
;
66 if (XFS_IS_REALTIME_INODE(ip
))
67 return mp
->m_rtdev_targp
->bt_bdev
;
69 return mp
->m_ddev_targp
->bt_bdev
;
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
82 struct buffer_head
*bh
, *next
;
84 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
86 bh
->b_end_io(bh
, !ioend
->io_error
);
90 inode_dio_done(ioend
->io_inode
);
91 if (ioend
->io_isasync
) {
92 aio_complete(ioend
->io_iocb
, ioend
->io_error
?
93 ioend
->io_error
: ioend
->io_result
, 0);
97 mempool_free(ioend
, xfs_ioend_pool
);
101 * Fast and loose check if this write could update the on-disk inode size.
103 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
105 return ioend
->io_offset
+ ioend
->io_size
>
106 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
110 xfs_setfilesize_trans_alloc(
111 struct xfs_ioend
*ioend
)
113 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
114 struct xfs_trans
*tp
;
117 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
119 error
= xfs_trans_reserve(tp
, 0, XFS_FSYNC_TS_LOG_RES(mp
), 0, 0, 0);
121 xfs_trans_cancel(tp
, 0);
125 ioend
->io_append_trans
= tp
;
128 * We may pass freeze protection with a transaction. So tell lockdep
131 rwsem_release(&ioend
->io_inode
->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
134 * We hand off the transaction to the completion thread now, so
135 * clear the flag here.
137 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
142 * Update on-disk file size now that data has been written to disk.
146 struct xfs_ioend
*ioend
)
148 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
149 struct xfs_trans
*tp
= ioend
->io_append_trans
;
153 * The transaction may have been allocated in the I/O submission thread,
154 * thus we need to mark ourselves as beeing in a transaction manually.
155 * Similarly for freeze protection.
157 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
158 rwsem_acquire_read(&VFS_I(ip
)->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
161 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
162 isize
= xfs_new_eof(ip
, ioend
->io_offset
+ ioend
->io_size
);
164 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
165 xfs_trans_cancel(tp
, 0);
169 trace_xfs_setfilesize(ip
, ioend
->io_offset
, ioend
->io_size
);
171 ip
->i_d
.di_size
= isize
;
172 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
173 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
175 return xfs_trans_commit(tp
, 0);
179 * Schedule IO completion handling on the final put of an ioend.
181 * If there is no work to do we might as well call it a day and free the
186 struct xfs_ioend
*ioend
)
188 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
189 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
191 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
192 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
193 else if (ioend
->io_append_trans
||
194 (ioend
->io_isdirect
&& xfs_ioend_is_append(ioend
)))
195 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
197 xfs_destroy_ioend(ioend
);
202 * IO write completion.
206 struct work_struct
*work
)
208 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
209 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
212 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
213 ioend
->io_error
= -EIO
;
220 * For unwritten extents we need to issue transactions to convert a
221 * range to normal written extens after the data I/O has finished.
223 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
224 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
226 } else if (ioend
->io_isdirect
&& xfs_ioend_is_append(ioend
)) {
228 * For direct I/O we do not know if we need to allocate blocks
229 * or not so we can't preallocate an append transaction as that
230 * results in nested reservations and log space deadlocks. Hence
231 * allocate the transaction here. While this is sub-optimal and
232 * can block IO completion for some time, we're stuck with doing
233 * it this way until we can pass the ioend to the direct IO
234 * allocation callbacks and avoid nesting that way.
236 error
= xfs_setfilesize_trans_alloc(ioend
);
239 error
= xfs_setfilesize(ioend
);
240 } else if (ioend
->io_append_trans
) {
241 error
= xfs_setfilesize(ioend
);
243 ASSERT(!xfs_ioend_is_append(ioend
));
248 ioend
->io_error
= -error
;
249 xfs_destroy_ioend(ioend
);
253 * Call IO completion handling in caller context on the final put of an ioend.
256 xfs_finish_ioend_sync(
257 struct xfs_ioend
*ioend
)
259 if (atomic_dec_and_test(&ioend
->io_remaining
))
260 xfs_end_io(&ioend
->io_work
);
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
276 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
279 * Set the count to 1 initially, which will prevent an I/O
280 * completion callback from happening before we have started
281 * all the I/O from calling the completion routine too early.
283 atomic_set(&ioend
->io_remaining
, 1);
284 ioend
->io_isasync
= 0;
285 ioend
->io_isdirect
= 0;
287 ioend
->io_list
= NULL
;
288 ioend
->io_type
= type
;
289 ioend
->io_inode
= inode
;
290 ioend
->io_buffer_head
= NULL
;
291 ioend
->io_buffer_tail
= NULL
;
292 ioend
->io_offset
= 0;
294 ioend
->io_iocb
= NULL
;
295 ioend
->io_result
= 0;
296 ioend
->io_append_trans
= NULL
;
298 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
306 struct xfs_bmbt_irec
*imap
,
310 struct xfs_inode
*ip
= XFS_I(inode
);
311 struct xfs_mount
*mp
= ip
->i_mount
;
312 ssize_t count
= 1 << inode
->i_blkbits
;
313 xfs_fileoff_t offset_fsb
, end_fsb
;
315 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
318 if (XFS_FORCED_SHUTDOWN(mp
))
319 return -XFS_ERROR(EIO
);
321 if (type
== XFS_IO_UNWRITTEN
)
322 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
324 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
326 return -XFS_ERROR(EAGAIN
);
327 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
330 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
331 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
332 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
334 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
335 count
= mp
->m_super
->s_maxbytes
- offset
;
336 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
337 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
338 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
339 imap
, &nimaps
, bmapi_flags
);
340 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
343 return -XFS_ERROR(error
);
345 if (type
== XFS_IO_DELALLOC
&&
346 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
347 error
= xfs_iomap_write_allocate(ip
, offset
, count
, imap
);
349 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
350 return -XFS_ERROR(error
);
354 if (type
== XFS_IO_UNWRITTEN
) {
356 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
357 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
361 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
368 struct xfs_bmbt_irec
*imap
,
371 offset
>>= inode
->i_blkbits
;
373 return offset
>= imap
->br_startoff
&&
374 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
378 * BIO completion handler for buffered IO.
385 xfs_ioend_t
*ioend
= bio
->bi_private
;
387 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
388 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
390 /* Toss bio and pass work off to an xfsdatad thread */
391 bio
->bi_private
= NULL
;
392 bio
->bi_end_io
= NULL
;
395 xfs_finish_ioend(ioend
);
399 xfs_submit_ioend_bio(
400 struct writeback_control
*wbc
,
404 atomic_inc(&ioend
->io_remaining
);
405 bio
->bi_private
= ioend
;
406 bio
->bi_end_io
= xfs_end_bio
;
407 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
412 struct buffer_head
*bh
)
414 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
415 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
417 ASSERT(bio
->bi_private
== NULL
);
418 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
419 bio
->bi_bdev
= bh
->b_bdev
;
424 xfs_start_buffer_writeback(
425 struct buffer_head
*bh
)
427 ASSERT(buffer_mapped(bh
));
428 ASSERT(buffer_locked(bh
));
429 ASSERT(!buffer_delay(bh
));
430 ASSERT(!buffer_unwritten(bh
));
432 mark_buffer_async_write(bh
);
433 set_buffer_uptodate(bh
);
434 clear_buffer_dirty(bh
);
438 xfs_start_page_writeback(
443 ASSERT(PageLocked(page
));
444 ASSERT(!PageWriteback(page
));
446 clear_page_dirty_for_io(page
);
447 set_page_writeback(page
);
449 /* If no buffers on the page are to be written, finish it here */
451 end_page_writeback(page
);
454 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
456 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
460 * Submit all of the bios for all of the ioends we have saved up, covering the
461 * initial writepage page and also any probed pages.
463 * Because we may have multiple ioends spanning a page, we need to start
464 * writeback on all the buffers before we submit them for I/O. If we mark the
465 * buffers as we got, then we can end up with a page that only has buffers
466 * marked async write and I/O complete on can occur before we mark the other
467 * buffers async write.
469 * The end result of this is that we trip a bug in end_page_writeback() because
470 * we call it twice for the one page as the code in end_buffer_async_write()
471 * assumes that all buffers on the page are started at the same time.
473 * The fix is two passes across the ioend list - one to start writeback on the
474 * buffer_heads, and then submit them for I/O on the second pass.
476 * If @fail is non-zero, it means that we have a situation where some part of
477 * the submission process has failed after we have marked paged for writeback
478 * and unlocked them. In this situation, we need to fail the ioend chain rather
479 * than submit it to IO. This typically only happens on a filesystem shutdown.
483 struct writeback_control
*wbc
,
487 xfs_ioend_t
*head
= ioend
;
489 struct buffer_head
*bh
;
491 sector_t lastblock
= 0;
493 /* Pass 1 - start writeback */
495 next
= ioend
->io_list
;
496 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
497 xfs_start_buffer_writeback(bh
);
498 } while ((ioend
= next
) != NULL
);
500 /* Pass 2 - submit I/O */
503 next
= ioend
->io_list
;
507 * If we are failing the IO now, just mark the ioend with an
508 * error and finish it. This will run IO completion immediately
509 * as there is only one reference to the ioend at this point in
513 ioend
->io_error
= -fail
;
514 xfs_finish_ioend(ioend
);
518 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
522 bio
= xfs_alloc_ioend_bio(bh
);
523 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
524 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
528 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
529 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
533 lastblock
= bh
->b_blocknr
;
536 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
537 xfs_finish_ioend(ioend
);
538 } while ((ioend
= next
) != NULL
);
542 * Cancel submission of all buffer_heads so far in this endio.
543 * Toss the endio too. Only ever called for the initial page
544 * in a writepage request, so only ever one page.
551 struct buffer_head
*bh
, *next_bh
;
554 next
= ioend
->io_list
;
555 bh
= ioend
->io_buffer_head
;
557 next_bh
= bh
->b_private
;
558 clear_buffer_async_write(bh
);
560 } while ((bh
= next_bh
) != NULL
);
562 mempool_free(ioend
, xfs_ioend_pool
);
563 } while ((ioend
= next
) != NULL
);
567 * Test to see if we've been building up a completion structure for
568 * earlier buffers -- if so, we try to append to this ioend if we
569 * can, otherwise we finish off any current ioend and start another.
570 * Return true if we've finished the given ioend.
575 struct buffer_head
*bh
,
578 xfs_ioend_t
**result
,
581 xfs_ioend_t
*ioend
= *result
;
583 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
584 xfs_ioend_t
*previous
= *result
;
586 ioend
= xfs_alloc_ioend(inode
, type
);
587 ioend
->io_offset
= offset
;
588 ioend
->io_buffer_head
= bh
;
589 ioend
->io_buffer_tail
= bh
;
591 previous
->io_list
= ioend
;
594 ioend
->io_buffer_tail
->b_private
= bh
;
595 ioend
->io_buffer_tail
= bh
;
598 bh
->b_private
= NULL
;
599 ioend
->io_size
+= bh
->b_size
;
605 struct buffer_head
*bh
,
606 struct xfs_bmbt_irec
*imap
,
610 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
611 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
612 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
614 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
615 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
617 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
618 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
620 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
623 set_buffer_mapped(bh
);
629 struct buffer_head
*bh
,
630 struct xfs_bmbt_irec
*imap
,
633 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
634 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
636 xfs_map_buffer(inode
, bh
, imap
, offset
);
637 set_buffer_mapped(bh
);
638 clear_buffer_delay(bh
);
639 clear_buffer_unwritten(bh
);
643 * Test if a given page is suitable for writing as part of an unwritten
644 * or delayed allocate extent.
651 if (PageWriteback(page
))
654 if (page
->mapping
&& page_has_buffers(page
)) {
655 struct buffer_head
*bh
, *head
;
658 bh
= head
= page_buffers(page
);
660 if (buffer_unwritten(bh
))
661 acceptable
+= (type
== XFS_IO_UNWRITTEN
);
662 else if (buffer_delay(bh
))
663 acceptable
+= (type
== XFS_IO_DELALLOC
);
664 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
665 acceptable
+= (type
== XFS_IO_OVERWRITE
);
668 } while ((bh
= bh
->b_this_page
) != head
);
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
688 struct xfs_bmbt_irec
*imap
,
689 xfs_ioend_t
**ioendp
,
690 struct writeback_control
*wbc
)
692 struct buffer_head
*bh
, *head
;
693 xfs_off_t end_offset
;
694 unsigned long p_offset
;
697 int count
= 0, done
= 0, uptodate
= 1;
698 xfs_off_t offset
= page_offset(page
);
700 if (page
->index
!= tindex
)
702 if (!trylock_page(page
))
704 if (PageWriteback(page
))
705 goto fail_unlock_page
;
706 if (page
->mapping
!= inode
->i_mapping
)
707 goto fail_unlock_page
;
708 if (!xfs_check_page_type(page
, (*ioendp
)->io_type
))
709 goto fail_unlock_page
;
712 * page_dirty is initially a count of buffers on the page before
713 * EOF and is decremented as we move each into a cleanable state.
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
724 end_offset
= min_t(unsigned long long,
725 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
729 * If the current map does not span the entire page we are about to try
730 * to write, then give up. The only way we can write a page that spans
731 * multiple mappings in a single writeback iteration is via the
732 * xfs_vm_writepage() function. Data integrity writeback requires the
733 * entire page to be written in a single attempt, otherwise the part of
734 * the page we don't write here doesn't get written as part of the data
737 * For normal writeback, we also don't attempt to write partial pages
738 * here as it simply means that write_cache_pages() will see it under
739 * writeback and ignore the page until some point in the future, at
740 * which time this will be the only page in the file that needs
741 * writeback. Hence for more optimal IO patterns, we should always
742 * avoid partial page writeback due to multiple mappings on a page here.
744 if (!xfs_imap_valid(inode
, imap
, end_offset
))
745 goto fail_unlock_page
;
747 len
= 1 << inode
->i_blkbits
;
748 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
750 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
751 page_dirty
= p_offset
/ len
;
753 bh
= head
= page_buffers(page
);
755 if (offset
>= end_offset
)
757 if (!buffer_uptodate(bh
))
759 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
764 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
766 if (buffer_unwritten(bh
))
767 type
= XFS_IO_UNWRITTEN
;
768 else if (buffer_delay(bh
))
769 type
= XFS_IO_DELALLOC
;
771 type
= XFS_IO_OVERWRITE
;
773 if (!xfs_imap_valid(inode
, imap
, offset
)) {
779 if (type
!= XFS_IO_OVERWRITE
)
780 xfs_map_at_offset(inode
, bh
, imap
, offset
);
781 xfs_add_to_ioend(inode
, bh
, offset
, type
,
789 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
791 if (uptodate
&& bh
== head
)
792 SetPageUptodate(page
);
795 if (--wbc
->nr_to_write
<= 0 &&
796 wbc
->sync_mode
== WB_SYNC_NONE
)
799 xfs_start_page_writeback(page
, !page_dirty
, count
);
809 * Convert & write out a cluster of pages in the same extent as defined
810 * by mp and following the start page.
816 struct xfs_bmbt_irec
*imap
,
817 xfs_ioend_t
**ioendp
,
818 struct writeback_control
*wbc
,
824 pagevec_init(&pvec
, 0);
825 while (!done
&& tindex
<= tlast
) {
826 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
828 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
831 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
832 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
838 pagevec_release(&pvec
);
844 xfs_vm_invalidatepage(
846 unsigned long offset
)
848 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
);
849 block_invalidatepage(page
, offset
);
853 * If the page has delalloc buffers on it, we need to punch them out before we
854 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
855 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
856 * is done on that same region - the delalloc extent is returned when none is
857 * supposed to be there.
859 * We prevent this by truncating away the delalloc regions on the page before
860 * invalidating it. Because they are delalloc, we can do this without needing a
861 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
862 * truncation without a transaction as there is no space left for block
863 * reservation (typically why we see a ENOSPC in writeback).
865 * This is not a performance critical path, so for now just do the punching a
866 * buffer head at a time.
869 xfs_aops_discard_page(
872 struct inode
*inode
= page
->mapping
->host
;
873 struct xfs_inode
*ip
= XFS_I(inode
);
874 struct buffer_head
*bh
, *head
;
875 loff_t offset
= page_offset(page
);
877 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
))
880 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
883 xfs_alert(ip
->i_mount
,
884 "page discard on page %p, inode 0x%llx, offset %llu.",
885 page
, ip
->i_ino
, offset
);
887 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
888 bh
= head
= page_buffers(page
);
891 xfs_fileoff_t start_fsb
;
893 if (!buffer_delay(bh
))
896 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
897 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
899 /* something screwed, just bail */
900 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
901 xfs_alert(ip
->i_mount
,
902 "page discard unable to remove delalloc mapping.");
907 offset
+= 1 << inode
->i_blkbits
;
909 } while ((bh
= bh
->b_this_page
) != head
);
911 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
913 xfs_vm_invalidatepage(page
, 0);
918 * Write out a dirty page.
920 * For delalloc space on the page we need to allocate space and flush it.
921 * For unwritten space on the page we need to start the conversion to
922 * regular allocated space.
923 * For any other dirty buffer heads on the page we should flush them.
928 struct writeback_control
*wbc
)
930 struct inode
*inode
= page
->mapping
->host
;
931 struct buffer_head
*bh
, *head
;
932 struct xfs_bmbt_irec imap
;
933 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
936 __uint64_t end_offset
;
937 pgoff_t end_index
, last_index
;
939 int err
, imap_valid
= 0, uptodate
= 1;
943 trace_xfs_writepage(inode
, page
, 0);
945 ASSERT(page_has_buffers(page
));
948 * Refuse to write the page out if we are called from reclaim context.
950 * This avoids stack overflows when called from deeply used stacks in
951 * random callers for direct reclaim or memcg reclaim. We explicitly
952 * allow reclaim from kswapd as the stack usage there is relatively low.
954 * This should never happen except in the case of a VM regression so
957 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
962 * Given that we do not allow direct reclaim to call us, we should
963 * never be called while in a filesystem transaction.
965 if (WARN_ON(current
->flags
& PF_FSTRANS
))
968 /* Is this page beyond the end of the file? */
969 offset
= i_size_read(inode
);
970 end_index
= offset
>> PAGE_CACHE_SHIFT
;
971 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
972 if (page
->index
>= end_index
) {
973 unsigned offset_into_page
= offset
& (PAGE_CACHE_SIZE
- 1);
976 * Skip the page if it is fully outside i_size, e.g. due to a
977 * truncate operation that is in progress. We must redirty the
978 * page so that reclaim stops reclaiming it. Otherwise
979 * xfs_vm_releasepage() is called on it and gets confused.
981 if (page
->index
>= end_index
+ 1 || offset_into_page
== 0)
985 * The page straddles i_size. It must be zeroed out on each
986 * and every writepage invocation because it may be mmapped.
987 * "A file is mapped in multiples of the page size. For a file
988 * that is not a multiple of the page size, the remaining
989 * memory is zeroed when mapped, and writes to that region are
990 * not written out to the file."
992 zero_user_segment(page
, offset_into_page
, PAGE_CACHE_SIZE
);
995 end_offset
= min_t(unsigned long long,
996 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
998 len
= 1 << inode
->i_blkbits
;
1000 bh
= head
= page_buffers(page
);
1001 offset
= page_offset(page
);
1002 type
= XFS_IO_OVERWRITE
;
1004 if (wbc
->sync_mode
== WB_SYNC_NONE
)
1010 if (offset
>= end_offset
)
1012 if (!buffer_uptodate(bh
))
1016 * set_page_dirty dirties all buffers in a page, independent
1017 * of their state. The dirty state however is entirely
1018 * meaningless for holes (!mapped && uptodate), so skip
1019 * buffers covering holes here.
1021 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
1026 if (buffer_unwritten(bh
)) {
1027 if (type
!= XFS_IO_UNWRITTEN
) {
1028 type
= XFS_IO_UNWRITTEN
;
1031 } else if (buffer_delay(bh
)) {
1032 if (type
!= XFS_IO_DELALLOC
) {
1033 type
= XFS_IO_DELALLOC
;
1036 } else if (buffer_uptodate(bh
)) {
1037 if (type
!= XFS_IO_OVERWRITE
) {
1038 type
= XFS_IO_OVERWRITE
;
1042 if (PageUptodate(page
))
1043 ASSERT(buffer_mapped(bh
));
1045 * This buffer is not uptodate and will not be
1046 * written to disk. Ensure that we will put any
1047 * subsequent writeable buffers into a new
1055 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1058 * If we didn't have a valid mapping then we need to
1059 * put the new mapping into a separate ioend structure.
1060 * This ensures non-contiguous extents always have
1061 * separate ioends, which is particularly important
1062 * for unwritten extent conversion at I/O completion
1066 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1070 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1074 if (type
!= XFS_IO_OVERWRITE
)
1075 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1076 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1084 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1086 if (uptodate
&& bh
== head
)
1087 SetPageUptodate(page
);
1089 xfs_start_page_writeback(page
, 1, count
);
1091 /* if there is no IO to be submitted for this page, we are done */
1098 * Any errors from this point onwards need tobe reported through the IO
1099 * completion path as we have marked the initial page as under writeback
1103 xfs_off_t end_index
;
1105 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1108 end_index
<<= inode
->i_blkbits
;
1111 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1113 /* check against file size */
1114 if (end_index
> last_index
)
1115 end_index
= last_index
;
1117 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1123 * Reserve log space if we might write beyond the on-disk inode size.
1126 if (ioend
->io_type
!= XFS_IO_UNWRITTEN
&& xfs_ioend_is_append(ioend
))
1127 err
= xfs_setfilesize_trans_alloc(ioend
);
1129 xfs_submit_ioend(wbc
, iohead
, err
);
1135 xfs_cancel_ioend(iohead
);
1140 xfs_aops_discard_page(page
);
1141 ClearPageUptodate(page
);
1146 redirty_page_for_writepage(wbc
, page
);
1153 struct address_space
*mapping
,
1154 struct writeback_control
*wbc
)
1156 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1157 return generic_writepages(mapping
, wbc
);
1161 * Called to move a page into cleanable state - and from there
1162 * to be released. The page should already be clean. We always
1163 * have buffer heads in this call.
1165 * Returns 1 if the page is ok to release, 0 otherwise.
1172 int delalloc
, unwritten
;
1174 trace_xfs_releasepage(page
->mapping
->host
, page
, 0);
1176 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1178 if (WARN_ON(delalloc
))
1180 if (WARN_ON(unwritten
))
1183 return try_to_free_buffers(page
);
1188 struct inode
*inode
,
1190 struct buffer_head
*bh_result
,
1194 struct xfs_inode
*ip
= XFS_I(inode
);
1195 struct xfs_mount
*mp
= ip
->i_mount
;
1196 xfs_fileoff_t offset_fsb
, end_fsb
;
1199 struct xfs_bmbt_irec imap
;
1205 if (XFS_FORCED_SHUTDOWN(mp
))
1206 return -XFS_ERROR(EIO
);
1208 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1209 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1210 size
= bh_result
->b_size
;
1212 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1216 * Direct I/O is usually done on preallocated files, so try getting
1217 * a block mapping without an exclusive lock first. For buffered
1218 * writes we already have the exclusive iolock anyway, so avoiding
1219 * a lock roundtrip here by taking the ilock exclusive from the
1220 * beginning is a useful micro optimization.
1222 if (create
&& !direct
) {
1223 lockmode
= XFS_ILOCK_EXCL
;
1224 xfs_ilock(ip
, lockmode
);
1226 lockmode
= xfs_ilock_map_shared(ip
);
1229 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1230 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1231 size
= mp
->m_super
->s_maxbytes
- offset
;
1232 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1233 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1235 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1236 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1242 (imap
.br_startblock
== HOLESTARTBLOCK
||
1243 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1244 if (direct
|| xfs_get_extsz_hint(ip
)) {
1246 * Drop the ilock in preparation for starting the block
1247 * allocation transaction. It will be retaken
1248 * exclusively inside xfs_iomap_write_direct for the
1249 * actual allocation.
1251 xfs_iunlock(ip
, lockmode
);
1252 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1259 * Delalloc reservations do not require a transaction,
1260 * we can go on without dropping the lock here. If we
1261 * are allocating a new delalloc block, make sure that
1262 * we set the new flag so that we mark the buffer new so
1263 * that we know that it is newly allocated if the write
1266 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1268 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1272 xfs_iunlock(ip
, lockmode
);
1275 trace_xfs_get_blocks_alloc(ip
, offset
, size
, 0, &imap
);
1276 } else if (nimaps
) {
1277 trace_xfs_get_blocks_found(ip
, offset
, size
, 0, &imap
);
1278 xfs_iunlock(ip
, lockmode
);
1280 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1284 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1285 imap
.br_startblock
!= DELAYSTARTBLOCK
) {
1287 * For unwritten extents do not report a disk address on
1288 * the read case (treat as if we're reading into a hole).
1290 if (create
|| !ISUNWRITTEN(&imap
))
1291 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1292 if (create
&& ISUNWRITTEN(&imap
)) {
1294 bh_result
->b_private
= inode
;
1295 set_buffer_unwritten(bh_result
);
1300 * If this is a realtime file, data may be on a different device.
1301 * to that pointed to from the buffer_head b_bdev currently.
1303 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1306 * If we previously allocated a block out beyond eof and we are now
1307 * coming back to use it then we will need to flag it as new even if it
1308 * has a disk address.
1310 * With sub-block writes into unwritten extents we also need to mark
1311 * the buffer as new so that the unwritten parts of the buffer gets
1315 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1316 (offset
>= i_size_read(inode
)) ||
1317 (new || ISUNWRITTEN(&imap
))))
1318 set_buffer_new(bh_result
);
1320 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1323 set_buffer_uptodate(bh_result
);
1324 set_buffer_mapped(bh_result
);
1325 set_buffer_delay(bh_result
);
1330 * If this is O_DIRECT or the mpage code calling tell them how large
1331 * the mapping is, so that we can avoid repeated get_blocks calls.
1333 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1334 xfs_off_t mapping_size
;
1336 mapping_size
= imap
.br_startoff
+ imap
.br_blockcount
- iblock
;
1337 mapping_size
<<= inode
->i_blkbits
;
1339 ASSERT(mapping_size
> 0);
1340 if (mapping_size
> size
)
1341 mapping_size
= size
;
1342 if (mapping_size
> LONG_MAX
)
1343 mapping_size
= LONG_MAX
;
1345 bh_result
->b_size
= mapping_size
;
1351 xfs_iunlock(ip
, lockmode
);
1357 struct inode
*inode
,
1359 struct buffer_head
*bh_result
,
1362 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 0);
1366 xfs_get_blocks_direct(
1367 struct inode
*inode
,
1369 struct buffer_head
*bh_result
,
1372 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 1);
1376 * Complete a direct I/O write request.
1378 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1379 * need to issue a transaction to convert the range from unwritten to written
1380 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1381 * to do this and we are done. But in case this was a successful AIO
1382 * request this handler is called from interrupt context, from which we
1383 * can't start transactions. In that case offload the I/O completion to
1384 * the workqueues we also use for buffered I/O completion.
1387 xfs_end_io_direct_write(
1395 struct xfs_ioend
*ioend
= iocb
->private;
1398 * While the generic direct I/O code updates the inode size, it does
1399 * so only after the end_io handler is called, which means our
1400 * end_io handler thinks the on-disk size is outside the in-core
1401 * size. To prevent this just update it a little bit earlier here.
1403 if (offset
+ size
> i_size_read(ioend
->io_inode
))
1404 i_size_write(ioend
->io_inode
, offset
+ size
);
1407 * blockdev_direct_IO can return an error even after the I/O
1408 * completion handler was called. Thus we need to protect
1409 * against double-freeing.
1411 iocb
->private = NULL
;
1413 ioend
->io_offset
= offset
;
1414 ioend
->io_size
= size
;
1415 ioend
->io_iocb
= iocb
;
1416 ioend
->io_result
= ret
;
1417 if (private && size
> 0)
1418 ioend
->io_type
= XFS_IO_UNWRITTEN
;
1421 ioend
->io_isasync
= 1;
1422 xfs_finish_ioend(ioend
);
1424 xfs_finish_ioend_sync(ioend
);
1432 const struct iovec
*iov
,
1434 unsigned long nr_segs
)
1436 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1437 struct block_device
*bdev
= xfs_find_bdev_for_inode(inode
);
1438 struct xfs_ioend
*ioend
= NULL
;
1442 size_t size
= iov_length(iov
, nr_segs
);
1445 * We cannot preallocate a size update transaction here as we
1446 * don't know whether allocation is necessary or not. Hence we
1447 * can only tell IO completion that one is necessary if we are
1448 * not doing unwritten extent conversion.
1450 iocb
->private = ioend
= xfs_alloc_ioend(inode
, XFS_IO_DIRECT
);
1451 if (offset
+ size
> XFS_I(inode
)->i_d
.di_size
)
1452 ioend
->io_isdirect
= 1;
1454 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1456 xfs_get_blocks_direct
,
1457 xfs_end_io_direct_write
, NULL
, 0);
1458 if (ret
!= -EIOCBQUEUED
&& iocb
->private)
1459 goto out_destroy_ioend
;
1461 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1463 xfs_get_blocks_direct
,
1470 xfs_destroy_ioend(ioend
);
1475 * Punch out the delalloc blocks we have already allocated.
1477 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1478 * as the page is still locked at this point.
1481 xfs_vm_kill_delalloc_range(
1482 struct inode
*inode
,
1486 struct xfs_inode
*ip
= XFS_I(inode
);
1487 xfs_fileoff_t start_fsb
;
1488 xfs_fileoff_t end_fsb
;
1491 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1492 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1493 if (end_fsb
<= start_fsb
)
1496 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1497 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1498 end_fsb
- start_fsb
);
1500 /* something screwed, just bail */
1501 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1502 xfs_alert(ip
->i_mount
,
1503 "xfs_vm_write_failed: unable to clean up ino %lld",
1507 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1511 xfs_vm_write_failed(
1512 struct inode
*inode
,
1517 loff_t block_offset
= pos
& PAGE_MASK
;
1520 loff_t from
= pos
& (PAGE_CACHE_SIZE
- 1);
1521 loff_t to
= from
+ len
;
1522 struct buffer_head
*bh
, *head
;
1524 ASSERT(block_offset
+ from
== pos
);
1526 head
= page_buffers(page
);
1528 for (bh
= head
; bh
!= head
|| !block_start
;
1529 bh
= bh
->b_this_page
, block_start
= block_end
,
1530 block_offset
+= bh
->b_size
) {
1531 block_end
= block_start
+ bh
->b_size
;
1533 /* skip buffers before the write */
1534 if (block_end
<= from
)
1537 /* if the buffer is after the write, we're done */
1538 if (block_start
>= to
)
1541 if (!buffer_delay(bh
))
1544 if (!buffer_new(bh
) && block_offset
< i_size_read(inode
))
1547 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1548 block_offset
+ bh
->b_size
);
1554 * This used to call block_write_begin(), but it unlocks and releases the page
1555 * on error, and we need that page to be able to punch stale delalloc blocks out
1556 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1557 * the appropriate point.
1562 struct address_space
*mapping
,
1566 struct page
**pagep
,
1569 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1573 ASSERT(len
<= PAGE_CACHE_SIZE
);
1575 page
= grab_cache_page_write_begin(mapping
, index
,
1576 flags
| AOP_FLAG_NOFS
);
1580 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1581 if (unlikely(status
)) {
1582 struct inode
*inode
= mapping
->host
;
1584 xfs_vm_write_failed(inode
, page
, pos
, len
);
1587 if (pos
+ len
> i_size_read(inode
))
1588 truncate_pagecache(inode
, pos
+ len
, i_size_read(inode
));
1590 page_cache_release(page
);
1599 * On failure, we only need to kill delalloc blocks beyond EOF because they
1600 * will never be written. For blocks within EOF, generic_write_end() zeros them
1601 * so they are safe to leave alone and be written with all the other valid data.
1606 struct address_space
*mapping
,
1615 ASSERT(len
<= PAGE_CACHE_SIZE
);
1617 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1618 if (unlikely(ret
< len
)) {
1619 struct inode
*inode
= mapping
->host
;
1620 size_t isize
= i_size_read(inode
);
1621 loff_t to
= pos
+ len
;
1624 truncate_pagecache(inode
, to
, isize
);
1625 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1633 struct address_space
*mapping
,
1636 struct inode
*inode
= (struct inode
*)mapping
->host
;
1637 struct xfs_inode
*ip
= XFS_I(inode
);
1639 trace_xfs_vm_bmap(XFS_I(inode
));
1640 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1641 filemap_write_and_wait(mapping
);
1642 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1643 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1648 struct file
*unused
,
1651 return mpage_readpage(page
, xfs_get_blocks
);
1656 struct file
*unused
,
1657 struct address_space
*mapping
,
1658 struct list_head
*pages
,
1661 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1665 * This is basically a copy of __set_page_dirty_buffers() with one
1666 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1667 * dirty, we'll never be able to clean them because we don't write buffers
1668 * beyond EOF, and that means we can't invalidate pages that span EOF
1669 * that have been marked dirty. Further, the dirty state can leak into
1670 * the file interior if the file is extended, resulting in all sorts of
1671 * bad things happening as the state does not match the underlying data.
1673 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1674 * this only exist because of bufferheads and how the generic code manages them.
1677 xfs_vm_set_page_dirty(
1680 struct address_space
*mapping
= page
->mapping
;
1681 struct inode
*inode
= mapping
->host
;
1686 if (unlikely(!mapping
))
1687 return !TestSetPageDirty(page
);
1689 end_offset
= i_size_read(inode
);
1690 offset
= page_offset(page
);
1692 spin_lock(&mapping
->private_lock
);
1693 if (page_has_buffers(page
)) {
1694 struct buffer_head
*head
= page_buffers(page
);
1695 struct buffer_head
*bh
= head
;
1698 if (offset
< end_offset
)
1699 set_buffer_dirty(bh
);
1700 bh
= bh
->b_this_page
;
1701 offset
+= 1 << inode
->i_blkbits
;
1702 } while (bh
!= head
);
1704 newly_dirty
= !TestSetPageDirty(page
);
1705 spin_unlock(&mapping
->private_lock
);
1708 /* sigh - __set_page_dirty() is static, so copy it here, too */
1709 unsigned long flags
;
1711 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1712 if (page
->mapping
) { /* Race with truncate? */
1713 WARN_ON_ONCE(!PageUptodate(page
));
1714 account_page_dirtied(page
, mapping
);
1715 radix_tree_tag_set(&mapping
->page_tree
,
1716 page_index(page
), PAGECACHE_TAG_DIRTY
);
1718 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1719 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1724 const struct address_space_operations xfs_address_space_operations
= {
1725 .readpage
= xfs_vm_readpage
,
1726 .readpages
= xfs_vm_readpages
,
1727 .writepage
= xfs_vm_writepage
,
1728 .writepages
= xfs_vm_writepages
,
1729 .set_page_dirty
= xfs_vm_set_page_dirty
,
1730 .releasepage
= xfs_vm_releasepage
,
1731 .invalidatepage
= xfs_vm_invalidatepage
,
1732 .write_begin
= xfs_vm_write_begin
,
1733 .write_end
= xfs_vm_write_end
,
1734 .bmap
= xfs_vm_bmap
,
1735 .direct_IO
= xfs_vm_direct_IO
,
1736 .migratepage
= buffer_migrate_page
,
1737 .is_partially_uptodate
= block_is_partially_uptodate
,
1738 .error_remove_page
= generic_error_remove_page
,